

Lecture Notes in Computer Science 2076
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Fernando Orejas Paul G. Spirakis
Jan van Leeuwen (Eds.)

Automata,Languages
and Programming

28th International Colloquium, ICALP 2001
Crete, Greece, July 8-12, 2001
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Fernando Orejas
Univ. Politècnica de Catalunya, Departament de Llenguatges i Sistemes Informàtics
C/Jordi Girona Salgado 1-3, 08034 Barcelona, Spain
E-mail: orejas@lsi.upc.es

Paul G. Spirakis
University of Patras, Computer Technology Institute (CTI)
61 Riga Feraiou street, 26221 Patras, Greece
E-mail: spirakis@cti.gr

Jan van Leeuwen
Utrecht University, Institute of Information and Computing Sciences
Padualaan 14, 3584 CH Utrecht, The Netherlands
E-mail: jan@cs.uu.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Automata, languages and programming : 28th international colloquium ;
proceedings / ICALP 2001, Crete, Greece, July 8 - 12, 2001. Fernando Orejas
... (ed.). - Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2076)
ISBN 3-540-42287-0

CR Subject Classification (1998): F, D, C.2-3, G.1-2, I.3

ISSN 0302-9743
ISBN 3-540-42287-0 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10781802 06/3142 5 4 3 2 1 0

Preface
The 28th International Colloquium on Automata, Languages and Programming
(ICALP 2001) was held July 8-12, 2001 in the Aldemar-Knossos Royal Village
near Hersonissos on Crete, Greece. This volume contains all contributed papers
presented at ICALP 2001, together with the invited lectures by Ahmed Bouaj-
jani (Paris), Martin Große-Rhode (Berlin), Mogens Nielsen (Aarhus), and Ingo
Wegener (Dortmund) and two of the keynote lectures, by Christos Papadimitriou
and Boris Trakhtenbrot.

For almost 30 years now, ICALP has been the main annual event of the
European Association for Theoretical Computer Science (EATCS). The ICALP
program currently consists of track A: Algorithms, Automata, Complexity, and
Games and track B: Logic, Semantics, and Theory of Programming.

In response to the Call for Papers, the program committee received 208 sub-
missions: 162 for track A, 46 for track B. The committee met on March 23/24,
2001 in Barcelona and selected 80 papers for inclusion into the scientific program.
The selection was based on originality, quality, and relevance to theoretical com-
puter science. We wish to thank all authors who submitted extended abstracts
for consideration, and all 366 referees who helped in the extensive evaluation
process. The program committee for ICALP 2001 consisted of:

TRACK A
Maxime Crochemore (Marne-la-Vallée) Jose Rolim (Geneva)
Leslie A. Goldberg (Warwick) Peter Sanders (Saarbrücken)
Mordecai J. Golin (Hong Kong) Erik M. Schmidt (Aarhus)
Juraj Hromkovic (Aachen) Maria Serna (Barcelona)
Guiseppe F. Italiano (Rome) Jack Snoeyink (Chapell Hill)
Viggo Kann (Stockholm) Athanasios K. Tsakalidis (Patras)
Ludek Kucera (Prague) Jan van Leeuwen (Utrecht, chair)
Bill McColl (Oxford and Sychron Inc.) Dorothea Wagner (Konstanz)
David Peleg (Rehovot)

TRACK B
Samson Abramsky (Oxford) Eugenio Moggi (Genova)
Kim B. Bruce (Williamstown) Ugo Montanari (Pisa)
Stavros Cosmadakis (Patras) Damian Niwinski (Warsaw)
Hartmut Ehrig (Berlin) Fernando Orejas (Barcelona, chair)
Javier Esparza (München) Catuscia Palamidessi (Penn State)
Thomas A. Henzinger (Berkeley) Andreas Podelski (Saarbrücken)
Jean-Pierre Jouannaud (Orsay) Hanne Riis Nielson (Lingby)
Jose Meseguer (SRI Menlo Park)

The EATCS Best Paper Award was given to William Hesse (Amherst MA, also
Best Student Paper) and to Parosh Aziz Abdulla, Luc Boasson, and Ahmed
Bouajjani (Uppsala/Paris) for their respective papers in ICALP 2001.

ICALP 2001 was a very special ICALP. Two other leading Computer Science
conferences co-located with ICALP this time: the 13th Annual ACM Symposium

VI Preface

on Parallel Algorithms and Architectures (SPAA 2001), and the 33rd Annual
ACM Symposium on Theory of Computing (STOC 2001), giving the joint parti-
cipants an unprecedented opportunity in Europe to see the advances in a broad
spectrum of foundational computer science research. It was the first time ever
that STOC had been held outside of the USA.

During STOC 2001 and ICALP 2001 the following special events took place:
(a) the Turing Award Lecture by Andrew C-C. Yao (Princeton), (b) the EATCS
Distinguished Service Award for Corrado Böhm (Rome), (c) the Greek Computer
Society/CTI Prize for Christos Papadimitriou (Berkeley) recognizing him as the
most influential scientist of Greek origin for his contributions to the foundations
of computer science, and (d) the Gödel Prize 2001 awarded to S. Arora, U.
Feige, S. Goldwasser, C. Lund, L. Lovasz, R. Motwani, S. Safra, M. Sudan,
and M. Szegedy for their fundamental papers on PCP’s and the complexity of
approximation problems. Special attention was given to the 80 th birthday of
B.A. Trakhtenbrot (Tel Aviv).

Several high-level workshops were held as ‘satellite events’ of ICALP 2001,
with Christos Zaroliagis (Patras) as coordinator. This included the following
workshops: Algorithmic Methods and Models for Optimization of Railways (AT-
MOS 2001), Böhm’s Theorem: Applications to Computer Science Theory (BOTH
2001), Graph Transformation and Visual Modeling Techniques (2nd Int. Works-
hop, GT-VMT 2001), and Verification of Parameterized Systems (VEPAS 2001).
The scientific program of ICALP 2001 showed that theoretical computer science
is a vibrant field, deepening our insights into the foundations and futures of
computing and system design in many modern application areas.

The sponsors of ICALP 2001 included the Information Society DG of the
European Commission, the Ministry of the Aegean, the Ministry of Culture,
and the Ministry of Education and Religious Affairs of Greece, the Hellenic
Pedagogical Institute, the Intracom Institute of Technology (IIT), CTI (Patras),
and the following companies: Intracom SA, Intralot SA, Intrasoft SA, ALTEC
SA, MLS Multimedia SA, OPAP SA, Pliroforiki Technognosia Ltd, 01 Pliroforiki
SA, Rainbow Computer SA, and Systema Informatics SA.

We are very grateful to the Computer Technology Institute (CTI) of Pa-
tras University for supporting the organization of ICALP 2001. The organizing
committee consisted of: C. Bouras (CTI), S. Bozapalidis (Thessaloniki), R. Ef-
stathiadou (CTI), C. Kaklamanis (CTI), M. Mavronicolas (Cyprus), C. Niko-
laou (ICS-FORTH Crete), S. Nikoletseas (CTI), P. Spirakis (CTI), A. Tsakalidis
(CTI), S. Zachos (Athens), and C. Zaroliagis (CTI). We thank Henk P. Penning
and Henk van Lingen, system administrators at the Institute of Information and
Computing Sciences of Utrecht University, for their outstanding effort in desi-
gning and developing the CSCS electronic conference server for ICALP 2001.

July 2001 Fernando Orejas
Paul G. Spirakis

Jan van Leeuwen

Table of Contents

Keynote Papers

Algorithms, Games, and the Internet . 1
C.H. Papadimitriou

Automata, Circuits, and Hybrids: Facets of Continuous Time 4
B.A. Trakhtenbrot

Invited Papers

Languages, Rewriting Systems, and Verification of Infinite-State Systems . . . 24
A. Bouajjani

Integrating Semantics for Object-Oriented System Models 40
M. Große-Rhode

Modelling with Partial Orders - Why and Why Not?. .61
M. Nielsen

Theoretical Aspects of Evolutionary Algorithms . 64
I. Wegener

Algebraic and Circuit Complexity

Improvements of the Alder-Strassen Bound: Algebras with
Nonzero Radical . 79

M. Bläser

On Generating All Minimal Integer Solutions for a Monotone System
of Linear Inequalities . 92

E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, K. Makino

Division Is in Uniform TC0 . 104
W. Hesse

Algorithm Analysis

A Framework for Index Bulk Loading and Dynamization 115
P.K. Agarwal, L. Arge, O. Procopiuc, J.S. Vitter

VIII Table of Contents

A Characterization of Temporal Locality and Its Portability across
Memory Hierarchies . 128

G. Bilardi, E. Peserico

The Complexity of Constructing Evolutionary Trees Using Experiments . . . 140
G.S. Brodal, R. Fagerberg, C.N.S. Pedersen, A. Östlin

Hidden Pattern Statistics . 152
P. Flajolet, Y. Guivarc’h, W. Szpankowski, B. Vallée

Combinatorics and Algorithms on Low-Discrepancy Roundings of
a Real Sequence . 166

K. Sadakane, N. Takki-Chebihi, T. Tokuyama

All-Pairs Shortest Paths Computation in the BSP Model 178
A. Tiskin

Approximation and Optimization

Approximating the Minimum Spanning Tree Weight in Sublinear Time 190
B. Chazelle, R. Rubinfeld, L. Trevisan

Approximation Hardness of TSP with Bounded Metrics 201
L. Engebretsen, M. Karpinski

The RPR2 Rounding Technique for Semidefinite Programs 213
U. Feige, M. Langberg

Approximation Algorithms for Partial Covering Problems.225
R. Gandhi, S. Khuller, A. Srinivasan

On the Online Bin Packing Problem . 237
S.S. Seiden

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 249
M. Thorup

Complexity

Parameterized Complexity: Exponential Speed-Up for Planar Graph
Problems . 261

J. Alber, H. Fernau, R. Niedermeier

Table of Contents IX

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 273
L. Cai, D. Juedes

Improved Lower Bounds on the Randomized Complexity of
Graph Properties . 285

A. Chakrabarti, S. Khot

New Imperfect Random Source with Applications to Coin-Flipping 297
Y. Dodis

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 310
J. Friedman, A. Goerdt

Weisfeiler-Lehman Refinement Requires at Least a Linear Number of
Iterations . 322

M. Fürer

On Interactive Proofs with a Laconic Prover . 334
O. Goldreich, S. Vadhan, A. Wigderson

Quantum Complexities of Ordered Searching, Sorting, and Element
Distinctness . 346

P. Høyer, J. Neerbek, Y. Shi

Lower Bounds in the Quantum Cell Probe Model . 358
P. Sen, S. Venkatesh

Concurrency

Axiomatizations for Probabilistic Bisimulation . 370
E. Bandini, R. Segala

Noninterference for Concurrent Programs. 382
G. Boudol, I. Castellani

Distributed Controller Synthesis for Local Specifications 396
P. Madhusudan, P.S. Thiagarajan

A Distributed Abstract Machine for Safe Ambients . 408
D. Sangiorgi, A. Valente

Towards Quantitative Verification of Probabilistic Transition Systems.421
F. van Breugel, J. Worrell

X Table of Contents

Efficient Datastructures

Efficient Generation of Plane Triangulations without Repetitions 433
Z. Li, S-i. Nakano

The Longest Common Subsequence Problem for Sequences with
Nested Arc Annotations . 444

G.-H. Lin, Z.-Z. Chen, T. Jiang, J. Wen

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 456
S.-M. Park, J.-H. Lee, K.-Y. Chwa

A New Method for Balancing Binary Search Trees . 469
S. Roura

Graph Algorithms

Permutation Editing and Matching via Embeddings . 481
G. Cormode, S. Muthukrishnan, S.C. S. ahinalp

Testing Hypergraph Coloring . 493
A. Czumaj, C. Sohler

Total Colorings of Degenerated Graphs . 506
S. Isobe, X. Zhou, T. Nishizeki

Decidable Properties of Graphs of All-Optical Networks 518
L. Margara, J. Simon

Majority Consensus and the Local Majority Rule . 530
N.H. Mustafa, A. Pekeč

Language Theory, Codes and Automata

Solvability of Equations in Free Partially Commutative Groups
Is Decidable . 543

V. Diekert, A. Muscholl

Rational Transformations of Formal Power Series . 555
M. Droste, G.-Q. Zhang

Combinatorics of Three-Interval Exchanges . 567
S. Ferenczi, C. Holton, L.Q. Zamboni

Table of Contents XI

Decision Questions Concerning Semilinearity, Morphisms, and
Commutation of Languages. .579

T. Harju, O. Ibarra, J. Karhumäki, A. Salomaa

The Star Problem in Trace Monoids: Reductions Beyond C4 591
D. Kirsten

The Trace Coding Problem Is Undecidable . 603
M. Kunc

Combinatorics of Periods in Strings. .615
E. Rivals, S. Rahmann

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes Are
Easy to Construct . 627

P. Shankar, P.N.A. Kumar, H. Singh, B.S. Rajan

Model Checking and Protocol Analysis

Effective Lossy Queue Languages . 639
P.A. Abdulla, L. Boasson, A. Bouajjani

Model Checking of Unrestricted Hierarchical State Machines 652
M. Benedikt, P. Godefroid, T. Reps

Symbolic Trace Analysis of Cryptographic Protocols . 667
M. Boreale

Tree Automata with One Memory, Set Constraints, and
Ping-Pong Protocols. .682

H. Comon, V. Cortier, J. Mitchell

Fair Simulation Relations, Parity Games, and State Space Reduction
for Büchi Automata . 694

K. Etessami, T. Wilke, R.A. Schuller

Hypergraphs in Model Checking: Acyclicity and Hypertree-Width
versus Clique-Width. .708

G. Gottlob, R. Pichler

From Finite State Communication Protocols to High-Level Message
Sequence Charts . 720

A. Muscholl, D. Peled

XII Table of Contents

Networks and Routing

Fractional Path Coloring with Applications to WDM Networks 732
I. Caragiannis, A. Ferreira, C. Kaklamanis, S. Pérennes,
H. Rivano

Performance Aspects of Distributed Caches Using TTL-Based
Consistency . 744

E. Cohen, E. Halperin, H. Kaplan

Routing in Trees . 757
P. Fraigniaud, C. Gavoille

Online Packet Routing on Linear Arrays and Rings . 773
J.T. Havill

Faster Gossiping on Butterflies . 785
J.F. Sibeyn

Reasoning and Verification

Realizability and Verification of MSC Graphs . 797
R. Alur, K. Etessami, M. Yannakakis

Reasoning about Sequential and Branching Behaviours of Message
Sequence Graphs . 809

P. Madhusudan

A Set-Theoretic Framework for Assume-Guarantee Reasoning 821
P. Maier

Foundations for Circular Compositional Reasoning . 835
M. Viswanathan, R. Viswanathan

Scheduling

A PTAS for Minimizing Weighted Completion Time on Uniformly
Related Machines . 848

C. Chekuri, S. Khanna

The Buffer Minimization Problem for Multiprocessor Scheduling
with Conflicts . 862

M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall,
G.J. Woeginger

Table of Contents XIII

On Minimizing Average Weighted Completion Time of Multiprocessor
Tasks with Release Dates . 875

A.V. Fishkin, K. Jansen, L. Porkolab

On the Approximability of Average Completion Time Scheduling
under Precedence Constraints . 887

G.J. Woeginger

Secure Computation

Optimistic Asynchronous Multi-party Contract Signing with
Reduced Number of Rounds . 898

B. Baum-Waidner

Information-Theoretic Private Information Retrieval: A Unified
Construction . 912

A. Beimel, Y. Ishai

Secure Multiparty Computation of Approximations . 927
J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M.J. Strauss,
R.N. Wright

Secure Games with Polynomial Expressions. .939
A. Kiayias, M. Yung

Specification and Deduction

On the Completeness of Arbitrary Selection Strategies for
Paramodulation . 951

M. Bofill, G. Godoy

An Axiomatic Approach to Metareasoning on Nominal Algebras
in HOAS . 963

F. Honsell, M. Miculan, I. Scagnetto

Knuth-Bendix Constraint Solving Is NP-Complete . 979
K. Korovin, A. Voronkov

Amalgamation in Casl via Enriched Signatures . 993
L. Schröder, T. Mossakowski, A. Tarlecki

XIV Table of Contents

Structural Complexity

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1005
A. Atserias, M.L. Bonet, J.L. Esteban

Time and Space Bounds for Reversible Simulation . 1017
H. Buhrman, J. Tromp, P. Vitányi

Finite-State Dimension . 1028
J.J. Dai, J.I. Lathrop, J.H. Lutz, E. Mayordomo

The Complexity of Computing the Size of an Interval. .1040
L.A. Hemaspaandra, S. Kosub, K.W. Wagner

Communication Gap for Finite Memory Devices . 1052
T. Jurdziński, M. Kuty lowski

Separating Quantum and Classical Learning . 1065
R.A. Servedio

Author Index .1081

Algorithms, Games, and the Internet
(Extended Abstract)

Christos H. Papadimitriou

Computer Science Division, UC Berkeley, Berkeley, CA 94720, USA,
christos@cs.berkeley.edu,

http://www.cs.berkeley.edu/˜christos

Over the past fifty years, researchers in Theoretical Computer Science have
sought and achieved a productive foundational understanding of the von Neu-
mann computer and its software, employing the mathematical tools of Logic and
Combinatorics. The next half century appears now much more confusing (half-
centuries tend to look like that in the beginning). What computational artifact
will be the object of the next great modeling adventure of our field? And what
mathematical tools will be handy in this endeavor?

The Internet has arguably surpassed the von Neumann computer as the most
complex computational artifact (if you can call it that) of our time. Of all the
formidable characteristics of the Internet (its size and growth, its almost spon-
taneous emergence, its open architecture, its unprecedented availability and uni-
versality as an information repository, etc.), I believe that the most novel and
defining one is its socio-economic complexity: The Internet is unique among
all computer systems in that it is built, operated, and used by a multitude of
diverse economic interests, in varying relationships of collaboration and compe-
tition with each other. This suggests that the mathematical tools and insights
most appropriate for understanding the Internet may come from a fusion of algo-
rithmic ideas with concepts and techniques from Mathematical Economics and
Game Theory (see [3,5] for two excellent introductions in the respective sub-
jects, and see the web site www.cs.berkeley.edu/∼christos/cs294.html for many
additional references of work in this interface.)

This talk is a survey of some of the many important points of contact between
Game Theory and Economic Theory, Theoretical CS, and the Internet.1

Nash Equilibrium. Game theory was founded by von Neumann and Morgen-
stern (in fact, about the same time von Neumann designed the EDVAC. . .) as
a general theory of rational behavior. The Nash equilibrium (definition omit-
ted here) is the predominant concept of rationality in Game Theory; it is also
a most fundamental computational problem whose complexity is wide open:
Is there a polynomial algorithm which, given a two-person game with a finite
strategy space, computes a mixed Nash equilibrium? Together with factoring,
the complexity of finding a Nash equilibrium is in my opinion the most important
concrete open question on the boundary of P today.
1 Invited talk presented at a joint session of ICALP 2001 and STOC 2001. The full

version of this paper appeared in the Proceedings of STOC 2001. Research supported
by the National Science Foundation of the U.S.A.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1–3, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 C.H. Papadimitriou

In relation to the Internet, it would be most interesting to develop a game-
theoretic model of Internet congestion control from which (an appropriate ap-
proximation of) TCP/IP emerges as a Nash equilibrium.

Coalitional Games. A coalitional game with n players is an increasing function
v : 2[n] 7→ <+; that is, a specification of the amount that each coalition of players
“deserves.” The fundamental issue in coalitional games is deciding whether a
proposed allocation to the players, a vector x ∈ <n+ with x[n] = v([n]), is a
“fair” way for the n players to split the loot in v([n]). A chief notion of fairness
(among many others) is the core: A vector x ∈ <n+ with x[[n]] = v([n]) is in the
core if x[S] ≥ v([S]) for all S.

We can model the high-level operation of the Internet (the interaction of
the “autonomous systems” that run it) as a coalitional game, as follows: We are
given a graph with n nodes (the autonomous systems); an n×n symmetric traffic
matrix F , where fij is the total traffic requirements between customers of i and
customers of j; and a capacity ci for each node (a simplification attempting to
capture the capacity of i’s subnetwork to carry traffic). If S is a set of nodes,
consider the subgraph induced by S as a multicommodity network with node
capacities and commodity requirements given by the entries of F ; let v(S) be
the maximum total flow in this network —notice that this defines a coalitional
game.

The key problem here is this: Is there an optimum solution in the multicom-
modity flow problem for the overall network, achieving a flow matrix F ′ ≤ F ,
such that the corresponding payoffs for the nodes xi =

∑
j f

′
ij are in the core of

the coalitional game v (or abide by one of the other notions of fairness mentioned
above).

The Price of Anarchy. There is no central authority that designs, engineers
and runs the Internet.2 But what if there were such master puppeteer, a benevo-
lent Internet dictator who, for example, micromanaged its operation, allocating
bandwidth to flows so as to maximize total user satisfaction? How much better
would the Internet run? What is the price of anarchy?

This question was posed (and partially answered in the restricted context
of a network consisting of two nodes and parallel edges) in [2]. More recently,
[6] showed that, in the context of a general multicommodity flow network in
which message delays increase with edge congestion while flows choose paths so
as to minimize delay, the price of anarchy is two (more precisely, the anarchistic
solution is no worse than the optimum solution with double the bandwidth).

But, of course, in today’s Internet, flows cannot choose shortest paths. In the
Internet, routers direct traffic based on local information, users respond to delay
patterns by modifying their traffic, and network providers throw bandwidth at
the resulting hot spots. How does this compare in efficiency with an ideal, ab
initio optimum network design? What is the price of the Internet architecture?

2 Recall David Clark’s famous maxim: “We reject kings, presidents and voting. We
believe in rough consensus and running code.”

Algorithms, Games, and the Internet 3

Mechanism Design. If Game Theory strives to understand rational behavior in
competitive situations, the goal of Mechanism Design (an important and elegant
research tradition, very extensive in both scope and accomplishment, and one
that could alternatively be called “inverse game theory”) is even grander: Given
desired goals (such as to maximize a society’s total welfare), design a game
(strategies and payoffs) in such a clever way that individual players, motivated
solely by self-interest, end up achieving the designer’s goals. There have been
recently interesting interactions between this fascinating area and Theoretical
CS, see e.g. [4,1], and further opportunities abound.

Rough Markets. The famous Arrow-Debreu Theorem states that, under rea-
sonable conditions, in any market there is always a set of prices that clears the
market (agents optimizing their basket end up buying a total amount of each
good which exactly equals the sum of the endowments that each agent brought
in the market). But if the goods are integer-valued, then such an equlibrium may
not exist. In recent joint work with Deng Xiaotie, we prove that it is NP-hard to
tell if a price equilibrium exists even for very simple discrete markets; however,
a price vector that clears markets approximately on the average (definition omit-
ted) does exist and can be found in polynomial time —if the number of goods
is bounded.

Finally, three more areas of contact between Theoretical Computer Science and
Economics are discussed in the full paper: Economic aspects of privacy (algo-
rithmic problems involved in computing the fair royalty for private information
in various contexts), of clustering (how economic considerations can be a guide
in the chaos of clustering criteria), and of the web graph (can the world-wide
web’s economic aspects explain its peculiar structure as a graph?).

References

1. J. Feigenbaum, C.H. Papadimitriou, S. Shenker, “Sharing the cost of multicast
transmissions,” Proc. STOC 2000.

2. E. Koutsoupias, C.H. Papadimitriou, “Worst-case equilibria,” Proc. STACS 1998.
3. A. Mas-Colell, M.D. Winston, J.R. Green Microeconomic Theory, Oxford Univer-

sity Press 1995.
4. N. Nisan, “Algorithms for selfish agents – Mechanism design for distributed com-

putation,” Proc. STACS 1999.
5. M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
6. T. Roughgarden, E. Tardos, “How Bad is Selfish Routing? (Extended Abstract),”

Proc. FOCS 2000.

Automata, Circuits, and Hybrids: Facets of
Continuous Time

Boris A. Trakhtenbrot

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel
trakhte@post.tau.ac.il

1 Introduction

Classical Automata Theory (AT) is mainly about devices that operate in dis-
crete time. Recent research stimulated the interest to, and the development of,
paradigms in which continuous time is involved whether in a pure way or in
cooperation with discrete time. This development is in particular evident in the
area that covers the following three interrelated trends: automata, logic (arguing
about automata) and interaction (composition of automata).

Unfortunately, the area is dominated by a plethora of concepts, terminology
and notation, which is not free of ad-hoc and ambiguous decisions that are liable
to misjudgments. A wrong formal decision can be misleading in long term even if
it turned out to be instrumental in concrete specific cases. It engenders further
models and formalisms, and it is not clear where to stop. Hence (quoting J.
Hartmanis) the challenge “to isolate the right concepts, to formulate the right
models, and to discard many others, that do not capture the reality we want
to understand...” A comprehensive undertaking of this challenge, covering the
three trends mentioned above is a large-scale task-work. Here we confine only to
some continuous-time paradigms that are suggested by the current literature on
hybrid automata and related control problems. In this literature are often used
cumbersome wordings to define ”from scratch” intricate notions. For example,
here is a (slightly edited) extraction from the definition of the core notion “hybrid
automaton” ([VdSS]):

“A hybrid automaton HA is described by a septuple (L, X, A, W, E, Inv, Act)
where the symbols have the following meanings:

L is a finite set ... (of) locations,
X is...
A is...
W is...
E is a finite set of edges called transitions (or events). Every edge is defined

by a five-tuple (l, a, GuardU ′ , JumpU ′ , l
′), where...

Inv is...

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 4–23, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Automata, Circuits, and Hybrids: Facets of Continuous Time 5

Act is a mapping that associates to each location l ∈ L a set of differential-
algebraic equations Fl... (Their) solutions are called the activities of the loca-
tion.”

Before attacking such intricate models and tackling the related control is-
sues, it is important to reach a clear understanding and, ultimately, to provide
definitions for some basic proviso. Namely,

(i) What are continuous-time (for short, continuous) automata and what is
their purposeful classification?

(ii) What are the relevant models of interaction and control for continuous
automata, and how do they relate to the original counterparts in classical au-
tomata theory?
After this is agreed upon, the next question to be addressed is:

(iii) What are (and what should be) hybrid systems (in particular, “hybrid
automata”)?

We believe that first, the agenda should build on mainstream, basic Automata
Theory and related, well-understood tools. Hence, on the conceptual level there is
no reason to involve abstract algebra and/or calculus, say differential equations.
For example, instead of the specific activities (we call them also flows) and jumps
that occur in the definition above, one would rely on the following

Definition 1. 1. A jump j on state-space X is a function of type X −→ X; it
is total if it is defined everywhere in X.

2. A flow f on state-space X is a function f : X × R≥0 −→ X, that meets the
following conditions:
(i) f(x, 0) = x; , and (additivity):

f(x, t1) = x′ &f(x′, t2) = x′′ −→ f(x, t1 + t2) = x′′,

(ii) if f(x, t) is defined, so is f(x, t′) for each 0 < t′ < t ,
(iii) the flow is total if f(x, t) is defined for all x ∈ X, t ∈ Rt≥0; otherwise

it is partial. “nil′′ is the notation for the (polymorphic) trivial flow:
∀t[nil(x, t) = x].

Suppose that the space X is actually the Euclidean Rn. Then, some flows could
be specified as solutions of appropriate differential equations, and some jumps,
as linear transformations. Clearly, information of this kind may be crucial for
those who, for example, compute reachable states of specific continuous systems.
Nevertheless, this information is not part of the basic concepts we pursue. These
are driven to some degree by mathematical curiosity: how can one lift classical
automata theory to deal with continuous time or ascertain that this is impossible.
As to potential applications, we content (following an apt expression of C. Rota)
with “hygienic prescriptions meant to guard us against potentially unpleasant
complications”. Hopefully, this will become clearer in the concluding section 8
(Discussion).
A major goal is to highlight the distinctions and the similarities between the
discrete and continuous tracks. Hence, the policy of building up definitional

6 B.A. Trakhtenbrot

suggestions in an incremental/orthogonal style; this allows to gradually estimate
the effect of introducing continuous time.

Eventually, in spite of similar terminology, a continuous-time entity is differ-
ent from (and more involved than) the corresponding one in discrete time. For
example:

(i) In discrete time, the execution of a transition is considered as an instan-
taneous event; for continuous time the duration aspects become relevant.

(ii) The unit delay is a finite automaton in the discrete case, whereas contin-
uous time forces the delay to memorize an uncountable amount of information.

On the other hand, some phenomena may look as being characteristic for
continuous time, merely because their discrete-time counterparts were not ex-
plicitly identified previously. Hence, the need to spell out accurately the related
issues and to highlight their universal character.

Below is a preliminary outline of what is to come. For many reasons (in
particular, because the lack of precise and elegant terminological standards) we
are forced to an eclectic, informal style. The numerous and somehow evasive
“Observations”, spread over the whole exposition, are intended mainly to help
comparing the discrete and continuous tracks.

We start with a brief (and not fully conventional) presentation of some dis-
crete stuff, whose continuous-time analogs and/or mutants we would like to
understand. Further we build on a generic definition of the automaton concept
via a system of axioms Ax borrowed from the Control-Theory monograph [S1].
Actually, this system is conceived for both discrete and continuous automata,
depending on whether the underlying time-domain TIME is the ordered set
Nat of natural numbers or the real line R≥0.
Continuous automata. Having chosen the real line. one can move toward more
specific continuous automata via expedient concretization of Ax and keeping to
the following principles:

(i) Consistency with Ax;
(ii) “Continuity” of automata refers only to their time-domain, i.e. to the

real line, equipped with its standard order, metrics and algebraic structure. As
to the input, output and state-spaces (alphabets), whether finite or infinite, they
are handled as amorphous spaces with discrete topology.

With these reservations, we mention immediately some germane features of
continuous automata that are not visible, or have different effects in discrete
time. Yet, none of them (nondeterminism, completeness and duration indepen-
dence) is considered explicitly in the literature.

On the other hand, on the intuitive level there is a consensus in the com-
munity about restrictions to be imposed on signals manipulated by continuous
automata. Namely,

(i) “Realistic” input signals, whether with finite or with infinite duration,
should enjoy the property known as finite variability (FV), i.e avoidance of
Zeno-anomaly.

Automata, Circuits, and Hybrids: Facets of Continuous Time 7

(ii) Under the influence of such input signals, a continuous automaton should
either evolve continuously for some duration of time (a flow phase), or should
be abruptly reset to a new value (a jump hit) from which subsequent continuous
evolution occurs.

At a lower degree of consensus is the following feature:
(iii) (Flow robustness) The behavior of the automaton is not influenced by

“sparse” deviations which do not affect the jump hits.
We aim at a formalization of these intuitions in a way that is consistent with

Ax.

Input/output. So far, about outputless automata; we call them simply “au-
tomata”. The term “transducer” is preserved for an automaton M equipped
with a readout Ψ : X × U −→ Y , where Y is a finite (!) output-space. As in
the discrete case, a transducer T computes (implements) an input/output op-
erator F which is retrospective, i.e. the output-value at time t depends only
on the values inputted not later than t. If the readout Φ depends only on the
current state of M it is called measurement. In this case, the i/o-operator F
is strongly retrospective, i.e. the output at time t depends only on the values
inputted before t. For a given retrospective operator F there may be different
implementations. In most of the issues concerning circuits and/or control the
essence is in F and not in its concrete implementation. This remark refers to
both discrete and continuous time.

In discrete time, strong retrospection and retrospection reflect sharply differ-
ent causal dependencies of output from input. Under appropriate (Baire) met-
rics, retrospection of an operator F implies its continuity. On the other hand,
strong retrospection implies the Lipshits property i.e. implies that F is a con-
tracting map. This paves the way to using strongly retrospective operators in
fixed point techniques needed to tackle feedback in circuits and in control. Yet,
in continuous time causality is more subtle and is not exhausted by the dilemma
“retrospection vs. strong retrospection”; hence, the need to define and analyze
more subtle properties of retrospective operators: predictivity, weak delaying,
bounded output variability etc.

Nondeterminism. In both discrete and continuous tracks it is handled in the ∃-
setup. Namely, a nondeterministic object Ob (automaton, transducer, operator)
is represented (implemented) by a deterministic object Ob′ with appropriately
hidden (shady) input.

Interaction. A comprehensive taxonomy of interaction relies on the following
dichotomies ([T4]):

1. Synchrony versus asynchrony.
2. Disjoint memory versus shared memory.

Here, we are interested mainly in synchrony of automata (respectively, trans-
ducers) with disjoint memory (“disjoint state-spaces”).

The crucial point about systems of interacting transducers is that, unlike sys-
tems of interacting automata, they are subjected to a specific feedback discipline;
we call such systems in brief - circuits. Originally, they were identified as faithful,

8 B.A. Trakhtenbrot

idealized models of digital (!) computer circuits. This is the hardware view on
circuits. In [BW], Burks and Wright coined the name Logical Net for circuits
composed of logical gates and delays working in discrete time. Circuits should
be feedback-reliable, i.e. intuitively, the propagation of signals along closed cy-
cles should be causally faithful. In continuous time, feedback-reliability is more
subtle because the (non existing in discrete time) danger of Zeno-anomaly.

A control view on circuits. Here the focus is on the interaction between
two main components, the plant and the controller. In discrete time, synthesis
of control circuits amounts to finding appropriate controllers for given plants.
In continuous time, synthesis includes also the design of a third component,
namely the interface. As mentioned earlier, there is no commitment to specific
techniques from differential equations and/or numerical analysis; however, one
still has to face non trivial feature of the circuit’s components.

2 Discrete Time

From now on, X, U, Y are typical notations for state, input and output alphabets
(spaces); U and Y are finite. Typically, u is an element of U , ũ a path with
values in U and, finally, Ũ the set of such paths. Similarly for other alphabets. A
deterministic discrete automaton M is usually identified with a map nextstate :
X ×U −→ X. When applied to a state x and an input sequence ũ = ũ(1)...ũ(n),
the automaton returns a state-sequence x̃ of length n + 1. Namely,

x̃(1) = x; x̃(i + 1) = nextstate(x̃(i), ũ(i))

Correspondingly, with nextstate are associated:

1. The terminal transition map Ψ : X × Ũ −→ X which returns the value
x̃(n + 1);

2. The full transition map Ψ̃ : X × Ũ −→ X̃ which returns the sequence
x̃(1)...x̃(n). Assume that an initial state is fixed. Then, Ψ̃ induces a strongly
retrospective input/state (i/s) behavior.

Observation 1. Nextstate, terminal and full transition maps can be uniquely
restored from each other. Full transition makes sense for infinite input sequences.

Nondeterminism. The terminal and full transition-maps ΨD, Ψ̃D of a determin-
istic automaton D represent the terminal and full transition-relations RD, R̃D

of a ∃-automaton. Assume that the input-alphabet of D is U × V , and, corre-
spondingly, its input paths are < ũ, ṽ >. Then, the terminal transition-relation
RV

D and the full transition-relation R̃V
D which are implemented by D via the

hiding (projecting out) of V , are as follows:

RV
D(x, ũ, x′) iff ∃ṽ[ΨD(x, < ũ, ṽ >) = x′]

R̃V
D(x, ũ, x̃) iff ∃ṽ[Ψ̃D(x, < ũ, ṽ >) = x̃]

Automata, Circuits, and Hybrids: Facets of Continuous Time 9

Since the ∃-implementation is not unique the following observation about the
implementation is instructive:
Observation 2. (Robustness of ∃-implementation) If RV

D = RV ′
D′ then R̃V

D = R̃V ′
D′

Circuits. The analysis in depth of feedback and causality issues is an essential
aspect of circuit theory. Most regrettably, this point is often missing in the
literature. We remind below some details ([BW], [KT]:

At the most appropriate level of abstraction, a circuit C of k interacting
transducers Ti communicating through their inputs and outputs, is specified
by a recursive system Eq of k functional equations Eqi with the format xi =
fi(y1, ..., yni

); i = 1, ..., k. Each equation describes one of C’s components, and fi

is a retrospective operator, namely the i/o-behavior of the transducer Ti. All the
variables occurring in Eq are typed; those which occur only on the right hand side
of an equation (say v1, ..., vm) are declared as input variables of Eq, the others
(say w1, ..., wn) - as its output variables. The conjunction

∧
Eqi defines a (m+n)-

dimensional relation R(v1, ..., vm; w1, ..., wn) which, by chance, may happen to
be the graph of a total operator < w1, ..., wn >= F (v1, ..., vm). Say that F is a
(functional) solution of Eq. For each fi, let fδ

i denotes its δ-truncation, i.e. the
restriction to paths with duration ≤ δ; respectively, consider the δ-truncations
Eqδ of the system Eq and their solutions. Only “good” solutions of Eq (if they
exist) are relevant for the input/output discipline.

Definition 2. The system Eq is well behaved if it has a unique i/o-solution F
with infinite duration; yet, in general, F is not necessarily retrospective. Eq is
sound if F is retrospective, and, moreover: for each finite δ, the truncated system
Eqδ has an unique δ-restricted solution, which is also retrospective. A circuit is
sound (synonymously, feedback-reliable) if the corresponding system Eq is sound.

Observation 3. The system Eq is sound if it satisfies the conditions:
(i) no two equations have the same left side,
(ii) each cycle in Eq passes through a strongly retrospective operator.

Circuit C∗ with nondeterministic components T ∗
i . Syntactically, instead

of equations Eqi with format “variable = term”, appear inclusions with for-
mat“variable ∈ term”. Actually,, according to the ∃-approach, C∗ is handled as
a circuit C in which the T ∗

i are replaced by corresponding deterministic imple-
mentations Ti; it is required that the shady input of Ti does not appear in any
other equation. Hence, in C, beyond the input variables inherited from C∗, all
the shady variables have also the status of input variables. What it remains to
do, is to check the soundness of C and to hide the relevant shady inputs.
Observation 4. (Robustness). The semantics of C∗ does not depend on the
choice of the implementations Ti for the given T ∗

i .

Constraining and Control. Given an automaton M one may be interested
only in those “good” trajectories or input-paths that meet some requirement
F . Let us look to safety requirements. A natural way to their formalization is
via an appropriate enabling relation E, where E(x, a) means “ in the state x
of M is allowed (not prohibited) the input a. The relation E may be identified

10 B.A. Trakhtenbrot

with the function menuE(x) which associates with x the finite set of those a
that are enabled at x. Alternatively, one may use admissibility regions; namely,
admE(ui) is the set of states in which the given ai is enabled. Correspondingly,
a trajectory < ũ, x̃ > of M is E-safe iff it does not violate E at any time-instant
t; in this case, the input-path ũ is also said to be E-safe. Saying it otherwise,
the pair < M, E > defines a subautomaton M ′ of M , whose trajectories are the
E-safe trajectories of M .

Yet another universal way to constrain an automaton M is to consider the
synchronization N = M × D with a companion automaton (“inhibitor) D .

A combination of both ideas is via synchronized enabling. It is assumed that
M, D have the same input-alphabet U and disjoint state-spaces X, S; on the
other side, the enabling E is chosen for N and, hence, induces admissibility
regions in the state-space X × D. The projection of < N, E > into X is the
intended constraining of M .

According to another popular constraining mechanism (by simple guards),
the admission or prohibition of a transition at the current state may depend
also on the value inputted at the preceding time-instant. This means that in
addition to E one considers also a guard relation G. Namely, G(x, ui, uj) means:
“uj is not prohibited at state x if it was preceded by ui. Hence also the use of
guard regions g(ui, uj) in addition to admissibility regions adm(ui).
Observation 5. Synchronized enabling is more powerful than enabling + simple
guards. In particular, finite-state inhibitors cover the effect of “regular” guards,
which take into account more than the immediately preceding input values.

The constraining of a transducer P reflects rather the control view on cir-
cuits. Here, the constraining of P is via synchronization with an appropriate
companion-transducer (“controller”) Con. It is required also that P together
with Con make up a feedback reliable circuit C. In view of the specific, simple
structure of the intended C, feedback-reliability issues are simpler than in the
general “hardware” perception. The controller problem is understood as follows:
given a plant P and requirement F , find (synthesize) the appropriate controller
Con or ascertain that this is impossible.
Observation 6. The celebrated synthesis problem in the theory of finite au-
tomata and its solution by Büchi can be reformulated in these terms. Note that
it does not refer specifically to safe requirements; moreover, it can manage with
circuits that are acyclic and, hence, are trivially feedback-reliable. However, the
use of suitable cycles may be justified by additional performance criteria.

3 The System Ax: First Refinements

In continuous time, the paths manipulated by M are signals i.e. functions from
intervals [t, t+δ) ⊆ R≥0 (here, δ may happen to be ∞) into the appropriate space
(alphabet). Hence, for continuous M , nextstate-map does not make sense, and
it is natural to start directly with a terminal transition map Ψ : X × Ũ → X.

Note that non-empty input-signals have some positive duration δ. The in-
tended semantics of a terminal transition is: if state x occurs at time t, then ũ

Automata, Circuits, and Hybrids: Facets of Continuous Time 11

with life-time [t, t + δ) produces the state x′ at time t + δ. The empty signal ε is
sometimes used for the sake of algebraic aesthetics. Below, ũ1, ũ2 ∈ Ũ are finite
paths, ũ1 · ũ2 designates their concatenation. Here is the system Ax:

- (Ax1) Semi-group.

Ψ(x, ε) = x; [Ψ(x, ũ1) = x′ & Ψ(x′, ũ2) = x′′] → Ψ(x, ũ1.ũ2) = x′′

- (Ax2) Restriction (Density). Assume that Ψ(x, ũ) = x′′. If ũ is the concate-
nation ũ1 · ũ2 then there exists x′ such that Ψ(x, ũ1) = x′ & Ψ(x′, ũ2) = x′′.

- (Ax3) Non-triviality. For each state x ∈ X there is a nonempty input-path
admissible at x.

Terminological/notational remarks. Wrt a signal z̃ with values in some Z,
continuity, right-continuity, right limit etc. refer to the discrete topology. For
example, z̃(t + 0) = a would mean that z̃ is defined and has the constant value
a in some interval (t, t + δ). Say that an ordered set of time-instances is sparse
iff it is finite or an increasing sequence t1 < t2 < ... < ti < ... with ti −→ ∞.
“Almost” (wrt time) means “except a sparse set of time instants”.

Observation 7. The following two definitions are germane for continuous au-
tomata but do not make sense for discrete automata.

Definition 3. The automaton M is complete iff it satisfies the following condi-
tion; Consider a state x ∈ X and an input path ũ; If arbitrary proper prefix ũ′

of ũ is admissible at x, i.e. Ψ(x, ũ′) is defined, so is ũ.

It is important to distinguish metrical aspects of theory, which deal with the
distances between time-instants, from duration-independent aspects that reflect
only the order of time instances.
A stretching of the time-axis R≥0 is an arbitrary 1-1 monotonic mapping ρ :
R≥0 → R≥0. A path w̃ is the ρ−stretching of the path ṽ if

∀t(w̃(t) = ṽ(ρ(t)).

Definition 4. The automaton M is duration-independent if each stretching ρ
of an input path causes the ρ−stretching of the corresponding state-path.

∃-nondeterminism. The formal definitions of the transition-relations are ex-
actly as in the discrete case. However, in continuous time it may happen that two
deterministic automata D, D′ implement the same terminal transition-relation
but different full transition-relations. Hence,
Observation 8. The robustness mentioned earlier for discrete-time automata
fails, in general, for continuous automata. The conclusion: build on full
transition-maps.

Note that some popular versions of nondeterminism, in particular that of
nondeterministic delay ([MP1]), can be easily reformulated in (desugared to) the
∃-track, even though the usual definitions do not appear so.

12 B.A. Trakhtenbrot

4 Realistic Features of Signals

Say that z̃ is an elementary path with duration δ ∈ R>0⋃{∞} iff for some
a, b ∈ Z there holds: z̃(0) = a; z̃(τ) = b for 0 < τ < δ. The corresponding
notation is z̃ =< a • b, δ >. Finite variability (FV) of a path ũ means that it
can be presented as a concatenation of elementary path-components; moreover,
the number of these components is finite (respectively, infinite) if the duration
of ũ is finite (respectively, infinite). M is a FV -automaton iff all its input-paths
have FV . Hence, up to semigroup closure, for FV -automata, it suffices to define
the terminal transition function Ψ only for elementary input-paths. The self-
explanatory notation is Ψ(x, u • u′, δ).

In order to formalize the intuitive expectation about flows and jumps we
assume first that:

1. The input alphabet U is the disjoint sum of UJ (the jump-sub-alphabet with
generic elements jl) and UF (the flow-sub-alphabet with generic elements
fr).

2. On each input-path ũ, the set of jump-instances is sparse.

Since we consider FV -automata, we have only to characterize elementary tran-
sitions of two kinds:

Ψ(x, fi • fs, δ) (pure flow) (∗)

Ψ(x, ji • fs, δ) (flow after jump) (∗∗)

This is done (and checked to be consistent with Ax) as follows:

3. With each f ∈ UF is associated a flow ‖f‖ and, independently of fi (!)

Ψ(x, fi • fs, δ) =def ‖fs‖(x, δ)

.
4. With each j is associated a jump ‖j‖ and

Ψ(x, j • f, δ) =def f(‖j‖(x), δ)

.

Say that M is a jump/flow (j/f)-automaton if it can be specified as above. M is
a flow automaton if UJ is empty. If all the paths of M are right continuous it is
said to be a right-continuous automaton; clearly, this implies that M is a flow
automaton. M is a jump automaton if its only flow is nil.

Two input-paths of M are flow-similar if the set of time-instants where they
differ is sparse, and at each such instant both have flow-values.
Observation 9. (Flow robustness) A jump/flow-automaton M does not distin-
guish input-paths which are flow-similar.

Duration Independence under Finite Variability. In this case an automa-
ton is duration independent if whenever Ψ(q1, a • b, δ) = q2 holds for some

Automata, Circuits, and Hybrids: Facets of Continuous Time 13

duration δ, it holds for arbitrary δ. Hence, the δ argument may be omitted.
Clearly, a jump automaton is duration independent. The following is not trivial:

Proposition 1. ([R]) Every FV -automaton M with finite state-space is dura-
tion independent.

It is worth noting that, even though this result is about FV -automata, the proof
in [R] leaves the world of finite variability and deals with arbitrary paths.

Example (trivial). Modeling a finite-state discrete automaton M with a
duration-independent automaton (actually with a jump automaton MJ).

Consider M with state-space X, input-alphabet A = {a1, ..., ak} and
transition-map nextstateM . First, extend M to M ′ with input alphabet A′ =def

A
⋃{nil} and with additional (to nextstateM) transitions nextstateM ′(x, nil) =

x. Now, the state and input-spaces of MJ are the same as for M ′. Its elementary
transitions mimic those of M ′ in the most natural way: for each u ∈ A′

ΨJ(x, u • nil) = nextstateM ′(x, u) (1)

We confine to this trivial example and mention, in a somehow vague form, a
general fact to be used in the sequel (it holds also for transducers).
Observation 10. In a strong sense, duration-independent automata and trans-
ducers model (and a modeled by) discrete automata and transducers.

5 Circuits

Observation 11. The soundness criterion for discrete-time (see Observation 3)
fails for continuous time. The reason: strong retrospection does not support the
needed fixed-point techniques.

There are sufficient conditions that use additional properties of retrospective
operators like: predictivity, bounded variability of output signals etc. ([PRT,
T1]). Respectively, there are also some specific “anti-anomaly” continuous-time
primitives that differ from delays, but mimic somehow their behavior. Circuits
that make use of such primitives can be considered to some degree as models of
continuous-time hardware ([PRT]).
Observation 12. In continuous time, circuits over ∃-nondeterministic compo-
nents, can be handled according to the discrete-time scenario modulo two pre-
cautions. First, see Observation 11 and the accompanying comments. Second,
provide faithful ∃-implementations for the nondeterministic components.

6 Constraining Continuous Automata

This is a straightforward adaptation of the discrete-time pattern (section 1).
Namely, the format of the enabling E is E(x, a • b), understood as “in the state

14 B.A. Trakhtenbrot

M Con

u

x

h

q

y

u′

etick

u

y 2

1

3

v
btick

π

etick

y v

u

Con

x q

h
I

M

Fig. 1.

Automata, Circuits, and Hybrids: Facets of Continuous Time 15

x of M are allowed (not prohibited) elementary input-paths < x, a•b, δ >”. Fur-
ther, one can consider the associated menuE(x), admissibility regions admE(a •
b), E-safe trajectories and E-safe subautomaton M ′ of M.

The definition of synchronized enabling is preserved, but note that the in-
hibitor D is assumed to be a finite-state, hence duration-independent automaton
(see Observation 10).

In order to handle guards, one considers, in addition to the enabling relation
E, also a guard-relation G, with format G(x, ui, a•b). Here, ui is (in a very precise
sense) the flow that precedes a potential elementary input path < a • b, δ >.
Correspondingly, are considered guard-regions g(ui, a • b). Finally,
Observation 13. With the reservations above, the former Observation 5 is valid
for continuous time as well.

7 Continuous-Time Control

In continuous time, a control circuit C may contain, in addition to the Plant
P and Controller Con, also an interface I. Since P, Con, I are not subjected to
further decomposition, feedback reliability issues are simpler than for hardware-
oriented circuits.

We confine below to control circuits with deterministic (!) plants, that mimic
Sample-and-Hold (SH) architectures from Control Theory. Namely, the values y
outputted by the plant P are available to Con only at some sampling instants
t0 = 0 < t1 < t2 < The controller is updated at each ti and, on the basis of
the information available at ti, it computes the output for the life-time [ti, ti+1).
In Control Theory, it is often assumed that |ti+1 − ti| is constant; in such cases
the similarity with discrete time is quite evident. However, in general one has to
build on appropriately scheduled sampling-instants.

A simple kind of control is selection. Assume a total P and some provisions
F imposed on its input paths. The task is to find appropriate deterministic Con
and I such that the circuit C over < P, Con, I > restricts P to a unique (!)
input-path which meets F , or ascertain that this is impossible. We are going to
illustrate this wrt safe selection. In this case it is assumed that the plant P is
represented explicitly as an automaton M equipped with a measurement h, and
that the requirement F is formulated in terms of an enabling relation E for M ,
exactly as in the previous sections 1 and 5. Correspondingly are understood the
notions E-safe trajectories, and “subautomaton M ′ of M” defined by the pair
< M, E >

Intuitively, a positive solution presumes that the current output of P can
serve as a basis for feedback control, i.e. it is enough informative and it grants
to the potential controller the chance to properly react in real time. Hence, the
assumption:

h(x) = menuEx (h)

Under this condition, the control circuit is required to select a unique trajectory
of M which is E-safe. Actually, the trajectory will have the additional property
of persistence. Namely, no change of the current flow occurs as long as it is

16 B.A. Trakhtenbrot

enabled. Clearly, this means that the circuit C should possess some kind of
“persistence ability”; namely it should be able to properly register and react to
border-crossings of admissibility regions.

An appropriate Sample-and-Hold architecture is depicted in the lower part
of Fig. 1. Here, I is the interface, whereas P is represented via M and h.

The controller Con is a finite-state (hence, a duration-independent) trans-
ducer with input-alphabet V = Y

⋃{nil} and output-alphabet U . The cardinal-
ity of the state-space Q may vary depending on the intended selection strategy.
Con inputs values ∈ Y at the sampling instants and inputs the value nil other-
wise.
Observation 14. Assume that the subautomaton M ′ satisfies two conditions:
finite variability and completeness. Then the circuit selects an input-path ũ with
finite-variability which is both safe and persistent.
Here are some details that characterize the persistence ability of the circuit and
the importance of the completeness (!) assumption about M ′. It turns out
that the interface I is responsible for the appropriate time-management of the
sampling instants. As shown in the middle part of Fig.1, it consists of three
components: (Note the error in the picture: the dashed line directed to 3 should
be directed to 2).

Component 1. This is the transducer Sieve with input y and, in general, with
two more “ticking” inputs etick and btick. In the deterministic architecture one
manages only with btick and

v(t) = y(t) iff btick(t) = tick ; otherwise v(t) = nil

At isolated time-instants Sieve outputs to Con the values ∈ Y to be sampled.

Component 3 implements a strongly retrospective operator; namely, ũ′(t) =
ũ(t − 0)

Component 2. This is the Boundary Detector B which is at the heart of the
“persistence ability”. The role of B is to detect the next time-instant t (if any)
when the current flow ui is not enabled anymore, i.e. when ui /∈ menuE(x(t));
in other words, at t is hit the border of the region adm(ui). According to the
expected persistence ability, only at such instant may occur a fresh sampling. B
implements the operator:

btick(t) = tick iff ũ′(t) /∈ (y(t)); otherwise = nil

(Remind that y(t) = h(x(t)) = menu(x(t)). Hence, unlike the other two com-
ponents, the Boundary Detector B is tailored especially to the concrete plant,
notably to menuE(x), which is just the output y. See that all this works OK
due to the completeness assumption!

8 Hybrids

According to Webster’s Dictionary a hybrid is “something heterogeneous (con-
sisting of dissimilar ingredients or constituents) in origin or composition”.

Automata, Circuits, and Hybrids: Facets of Continuous Time 17

To be more precise we expect that:
(i) The heterogeneous constituents are two agents: the continuous one L and

the discrete (may be even, finite) one D.
(ii) In order to constitute a (hybrid) system, the two should be subjected to

an appropriate composition.
As suggested by our previous exposition it seems that:

a) L should be, in general, a jump/flow automaton or a transducer with an
underlying jump/flow automaton; sometimes one may confine to flow-automata.

b) One should give up the tempting option to draw in discrete automata.
Instead, in accordance with Observation 10, one can use their faithful duration
independent models.

c) For automata, the main composition rule is synchronization with disjoint
memory. For transducers, because the relevance of feedback, it is natural to
use circuits. Actually, one more synchronization-like composition (but with fully
shared memory) seems to be appropriate. We call it “blend”; the definition
appears a bit later.

Proceeding from the assumptions above, we mention now three kinds of hy-
brid systems, to which we refer as H1, H2, H3. Note that the first two (H1
and H2) refer to automata (hence, no involvement of input/output), whereas in
H3 the concern is about transducers (hence, also, the relevance of circuits and
feedback). On the other hand, H2 and H3 have natural counterparts in discrete
time, whereas H1 is based exclusively on continuous-time peculiarities. Here are
all the three:

H3 is a feedback-reliable control circuit.

H2 (see the middle of Fig. 2) is the synchronized enabling (discrete version
in sections 1, the continuous one in section 5). There is an extensive literature
dedicated to infinite-state generators of “safe” trajectories. Most of them con-
verge to the so called “Hybrid Automata” (HA), alleged to be a fundamental
paradigm which combines continuous and discrete dynamics. This model is, in
fact, a particular, disguised case of the H2-concept; unfortunately, the underly-
ing composition is not spelled out explicitly in ([ACHP, ABD*, VdSS]). Here
are some details:

Picture H in Fig. 2 displays a widely accepted way to explain “Hybrid-
Automata” as specific transition systems with labeling for edges (here, gij) and
vertices (admi and fi). The operational semantics characterizes the correspond-
ing safe trajectories, as runs which respect the “invariants” admi and the guards
gij . The activities fi are usually specified by differential equations.

The corresponding H2-model is partially explained in the respective part of
Fig. 2. Here, the inhibitor D is a delay with inputs u1, u2, (the same as of M)
and states s1, s2. On the other side, M is a flow automaton with flows borrowed
from H. Finally, the admissibility regions of N are as follows:

(si, x) ∈ admN (uj) =def x ∈ g(ui, uj) ∧ x ∈ adm(uj)

18 B.A. Trakhtenbrot

H1 is the composition (tentatively called here “blend”) which applies to a
pair < M1, M2 >, where M1 is a jump-automaton and M2 is a right-continuous
automaton (a particular case of flow automaton). The operation produces a
jump/flow automaton M ; all the three have the same state-space X. Intuitively,
M inputs in parallel a jump-path of M1 and a right-continuous path of M2, as
suggested by part H1 in Fig.2, and performs their mixture. Let U1, U2, U be the
corresponding input alphabets. Here U1 =def {j1, ..., jl, ..., jm; nil} and U2 =def

{f1, ...fr, ..., fn}. Then, U =def U1 × U2 , i.e it consists of pairs (jl, fr) ∈ UJ

(these are the jumps of M) and of pairs (nil, fr) ∈ UF (these are the flows of
M).

Definition 5. (†−composition)

• A path z̃ is admissible in M iff its projections are admissible in the respective
components. Hence,

• Elementary input-paths of M have (up to duration) one of the formats:

α =def (jl, fs) • (nil, fs); β =def (nil, fs) • (nil, fs) (2)

• Correspondingly, the transition map ΨM is defined as follows:

ΨM (x, α, δ) = fs[jl(x), δ)]; ΨM (x, β, δ) = fs(x, δ)) (3)

9 Discussion

About the Sample-and-Hold architecture. Section 6 can be generalized in
two orthogonal directions:

(i) Instead of selection consider uniformization. This means that beyond the
plant’s input u fed by the controller, the plant has an additional input e fed by the
environment. On the other hand, the controller is required to guarantee correct
selections in the face of all the behaviors of the environment. This generalization
can be handled via a routine adaptation of selection.

(ii) Instead of deterministic selection consider nondeterministic ones. This
needs a recasting of the deterministic architecture (section 6), in which all three
components were deterministic. In a nondeterministic architecture, the plant is
still deterministic; the ∃-nondeterminism is incarnate in the controller Con (see
the shady input π in the lower Fig, 1) and in the interface I (the shady input
etick). There is a clear difference between:

1. Nondeterministic detection of sampling-instants. In addition to the internal
mechanism of boundary detection (which is deterministic and relies on the
completeness assumption) here are relevant the timing ticks supplied by the
external shady input etick.

2. Nondeterministic choice of the current flow (or flow after jump). This choice
has to be done in accordance with the current available menu; it is fully on
the responsibility of the controller.

Automata, Circuits, and Hybrids: Facets of Continuous Time 19

u

x

M

u

s

D

u

N

x M

s D

H2

j f
x

M2M1

x

j

f

x M

H1

g12g11 g22

g21

u1 u2

adm1

f1

adm2

f2

H

Fig. 2.

20 B.A. Trakhtenbrot

Synthesis of controllers in [ABD*] (it may be consulted for other references).
Here are the main features:

(i) Beyond safety, is handled also the important liveness property called vi-
ability (nonblocking).

(ii) There is no demand that control should be reached via feedback with an
explicitly produced companion-controller. In addition to these basic distinctions
we observe also:

(iii) There is no reference in [ABD*] to completeness of automata and to the
possible impact of this property on the subject.

And now, more details.
Viability requires that each finite trajectory of the safely constrained au-

tomaton should be extendible at infinitum to a safe trajectory. Since, in general,
this is not the case, the following task arises: reinforce the original safety con-
straints into new ones such that the automaton fits viability wrt them. The
authors develop a procedure (Algorithm 1) intended to produce the less restric-
tive reinforcement of this kind. The constrained automaton produced by the
procedure above is called by the authors “controller”, whereas the procedure
itself is identified with the synthesis of the controller.

Further (quotation from [ABD*] follows): “... The termination of the pro-
cedure, however, cannot be guaranteed... Moreover, the implementation is very
complicated... Some aspects of the technique take advantage of special proper-
ties of linear systems. Given this state-of-affairs we must resort to the classical
solution of continuous mathematicians, numerical approximation.”

But, beyond these troubles, one more fact is worth attention. One can show
that the procedure may produce an incomplete automaton even if the original
one is complete. This may happen to be relevant for the next point.

Referring to the determinization of their controller, [ABD*] claim (without
proof): “This can be fixed later ... and the feed-back map will become a func-
tion...” Indeed, this is evident wrt the nondeterministic choice of the current
flow. Moreover, under the assumption that the resulting “controller” is complete,
the techniques of boundary crossings would allow also to fix the nondeterminism
of time-detection. However, as we just mentioned, this argument cannot be used.
Actually, we doubt if this can be cured in some other way.

About Hybrids. Nice names may happen to precede formal concepts and,
eventually, to engender different concepts. Hence, the controversial question:
which of them captures better the intended reality we want to understand and
deserves to preempt this name. By now there are various versions of “Hybrid
System” and the related Control problems.

The conceptual/notational approach in [H] (which may be consulted for fur-
ther references), focuses on “Hybrid Automata”. It differs from that advocated
in this paper as follows:

(i) No consideration of operators/transducers, feedback reliability.
(ii) Use of instantaneous transitions. Remember that, according to Ax, the only

instantaneous transition is associated with ε.

Automata, Circuits, and Hybrids: Facets of Continuous Time 21

(iii) Multiform time. This amounts to breaking the time-axis R≥0 into a se-
quence of closed intervals, which may reduce to single points. Accordingly,
legitimacy is given to “signals” (called in [MP3] “functions which are not re-
ally functions”) that may have different values at the “same” time-instant.
Clearly, this is inconsistent with Ax , whose signals are genuine functions.

(iv) Inclusion of asynchrony in the basic model of Hybrid Automata.
(v) No explicit representation of the hybrid as a pair of interacting components.

The last shortcoming is criticized and remedied in [OD] for timed automata
(a particular case of hybrid automata).

Quotation. “...real-time system can be decomposed into an untimed system
communicating with suitable timers. Both synchronous and asynchronous com-
munications are considered... At first sight it seems that the decomposition...is
already solved by the model of timed automata... However, the main difference...
is that in the timed automata model the clock operations are indivisible cou-
pled with the transitions whereas here we present a clear separation of untimed
system and timers with explicit communication between them”.

In [DN] Hybrid Control Systems are explicitly structured as interacting
plants, controllers and interfaces. However, feedback-reliability issues are not
considered. In [DN] there is no explicit reference to completeness; on the other
side, there is a clear, inspiring presentation of the border-crossing mechanism,
which suggests the importance of this property.

Circuits in [MP1]. In terms comparable with section 4, it seems that the in-
tention is to circuits (synchronous !) of nondeterministic retrospective operators
(the authors use the name “Asynchronous Circuits”). In this case, the subject
could be handled after the scenario from Observation 12; the result would be
that the circuits under consideration are indeed feedback reliable. However, be-
ing absorbed by specific applications, the authors ignore this crucial aspect of
circuitry. What they call “solution” of the relevant system Eq = {Eqi} is, actu-
ally, the relation R =

∧
Eqi (see section 1) irrespectively of the question if Eq

is sound. This deviation from the “circuit”-philosophy is visible already for dis-
crete time. The full scenario would require also to present an ∃-implementation
for the nondeterministic continuous delay considered in [MP1] .

Control Theory. Here, Continuous Automata (Dynamical Systems) are spec-
ified by differential equations. But note that models with discrete time (albeit
with continuous data) are also considered ([S2])

In ([A,S2]) hybrids are treated as circuits of appropriate transducers: plants,
interfaces, controllers. In [A] is used a very non-trivial interface; the invention of
the interface and the check that the circuit is feedback reliable are beyond the
concepts and techniques of classical automata-theory.

In [A,S2] the controller is implemented as a timed automaton. According to
our definitions, this might be interpreted as follows: in addition to the main Plant
and Interface, one uses some auxiliary primitive plants like Timers etc. From this
perspective, the controller is again a finite (and, hence, a duration-independent)
automaton.

22 B.A. Trakhtenbrot

Acknowledgement. Oded Maler was very cooperative and helpful in providing
information on the subject of Hybrids.

References

[AD] Alur, R., Dill, D.: Automata for modeling real-time systems. Proceedings of
ICALP90, LNCS 443 (1990) pp. 332–335.

[AFH] Alur, R., Fix, L., Henzinger, T.: A deterministic class of timed automata.
Proc. CAV’94, LNCS 818, pp. 1-13.

[AH] Alur, R., Henzinger, T.: Logics and models for real time: theory in practice.
LNCS 600 (1992) pp. 74-106.

[ACHP] Alur, A., Courcoubetis, C., Henzinger, T., Pei-Sin, Ho.: Hybrid automata:
approach to the specification and verification of hybrid systems. LNCS 736
(1993) pp. 209-229.

[A] Artstein, Z.: Examples of stabilization with hybrid feedback. LNCS 1066
(1996) pp. 173-185.

[AMP] Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete
and timed systems, in: Hybrid Systems II, LNCS 999, Springer-Verlag, 1995.

[ABD*] Asarin, E., Bournez, O., Dang, Th., Maler, O., Pnueli, A.: Effective synthesis
of switching controllers for linear systems, Proceedings of the IEEE, vol. 88,
No 7, July 2000.

[AMPS] Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata, Proc. IFAC Symp. on System Structure and Control, pp. 469-474,
Elsevier, 1998.

[B] Berry, G.: The constructive semantics of Pure Esterel, Technical Report
(Draft Version 1.2), April 1996.

[Br] Broy, M.: Semantics of finite and infinite networks of concurrent communi-
cating agents. Distributed Computing 2 (1987) 13-31.

[BW] Burks, A.W., Wright, J.B.: Theory of logical nets. Proceedings of the I.R.E.,
1953.

[DN] Davoren, J.M., Nerode, A.: Logics for hybrid systems, Proceedings of the
IEEE, vol. 88, No 7, July 2000.

[H] Henzinger, T.: The theory of hybrid automata. Proceedings of the IEEE
(1996) 278–292.

[HR1] Hirshfeld, Y., Rabinovich, A.: A framework for decidable metric logics, Pro-
ceedings of the ICALP’99 colloquium, Editors J. Wiedermann, P. van Emde
Boas, M. Nielsen, LNCS 1644, Springer-Verlag, 1999, pages 422-432.

[HR2] Hirshfeld, Y., Rabinovich, A.: Quantitative temporal logic, Proceedings of
the CSL colloquium, 1999.

[KT] Kobrinsky, N., Trakhtenbrot, B.A.: Introduction to the Theory of Finite Au-
tomata (Russian edition, 1962), Transl. North Holland, 1965.

[M] Maler, O.: A unified approach for studying discrete and continuous dynamical
systems, Proc. 37th IEEE Conf.Dec. Contr., Tampa, USA, Dec. 1998, pp. 37–
42.

[MP1] Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed
automata. Proceedings CHARME’95, LNCS 987, pp. 189–205.

[MPS] Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for
timed systems, Proceedings of STACS’95, LNCS 900, pp. 229–242.

Automata, Circuits, and Hybrids: Facets of Continuous Time 23

[MP2] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems, Springer-Verlag, 1992.

[MP3] Manna, Z., Pnueli, A.: Models for reactivity. Acta Informatica 30 (1993)
609–678.

[McN] McNaughton R.: Badly timed elements and well timed nets. Technical Report
65-02, Moore-School, 1964.

[MS] Müller O., Scholz P.: Functional specification of real-time and hybrid systems,
LNCS 1201, pp. 273–285, 1997.

[OD] Olderog, E.R., Dierks, H.: Decomposing real-time specifications. Intern.
Symp. COMPOS’97. LNCS 1536, pp. 465–489.

[P] Pardo, D.: Timed Automata: Transducers and Circuits, M.Sc. Thesis, Tel-
Aviv Univ., 1997.

[PRT] Pardo, D., Rabinovich, A., Trakhtenbrot, B.A.: On synchronous circuits over
continuous time, Technical Report, Tel Aviv University, 1997.

[R] Rabinovich, A.: Finite automata over continuous time, Technical Report, Tel
Aviv University, 1996.

[RT] Rabinovich, A., Trakhtenbrot, B.: From finite automata toward hybrid sys-
tems. Proceedings FCT’97, LNCS.

[RW] Ramadge P.J., Wonham W.M.: The control of discrete event systems, Proc.
of the IEEE’77, pp. 81–98

[S1] Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional
Systems, Springer, N.Y., 1990.

[S2] Sontag, E.: Interconnected automata and linear systems. LNCS, No. 1066
(1996) pp. 436–448.

[T1] Trakhtenbrot, B.A.: Automata and hybrid systems. Lecture Notes on a course
at Uppsala University, Fall 1997.

[T2] Trakhtenbrot, B.A.: Automata, Circuits and Hybrids: Facets of Continuous
Time. Work in progress. Manuscript, pp 1-77, Draft March 2001.

[T3] Trakhtenbrot, B.A.: Origins and metamorphose of the trinity: Logics, nets,
automata, Proceedings, LICS’95.

[T4] Trakhtenbrot, B.A.: Automata and their interaction: definitional suggestions,
FCT99, LNCS 1684, pp. 54–89, 1999.

Languages, Rewriting Systems, and Verification
of Infinite-State Systems

Ahmed Bouajjani

Liafa laboratory, University of Paris 7,
Case 7014, 2 place Jussieu, F-75251 Paris Cedex 05, France.

abou@liafa.jussieu.fr

1 Introduction

Verification of complex systems cannot be achieved without combining several
analysis methods and techniques. A widely adopted approach consists in com-
bining abstraction methods with algorithmic verification techniques. Typically,
finite abstractions are built using automatic or semi-automatic methods and
model-checking algorithms are applied on these abstractions in order to verify
the desired properties. However, finding faithful finite abstractions is often hard
since many aspects in the behavior of the system must be hidden or encoded in
a nontrivial and ad-hoc manner. This is particularly true for software systems
since their behavior depends in a very crucial manner on the manipulation of
data structures and variables which are assumed to range over infinite domains
(e.g., unbounded stacks, queues, arrays, counters), or over finite domains whose
sizes are left as parameters. Moreover, many systems are defined as networks
of parametric size, i.e., they are assumed to work for an arbitrary number of
processes running in parallel.

Hence, there is a real need (1) to define models allowing to capture essential
aspects which are beyond the expressive power of finite models (e.g., manipu-
lation of unbounded variables, parametrization), and (2) to develop algorithmic
verification techniques which can be applied to these infinite-state models.

In this paper, we consider models based on rewriting systems and we develop
an algorithmic approach for analyzing automatically such models. In the frame-
work we adopt, configurations of systems are seen as words or vectors of words,
and actions are represented by means of rewriting rules. Different rewriting poli-
cies can be considered, e.g., prefix, cyclic, or factor rewriting. They allow to
model different classes of systems, e.g., pushdown systems, communicating sys-
tems through FIFO channels, or parametrized networks of identical finite-state
processes connected according to a linear topology.

Then, the main problem we address is the problem of computing a represen-
tation of the infinite set of all reachable configurations in a model. Solving this
problem is indeed the kernel of most of the verification methods. In our setting,
this problem relies on computing the closure of a language by a rewriting system,
i.e., given a rewriting system R and a language φ, compute R∗(φ), where R∗ is
the reflexive-transitive closure of the relation induced by R. We present several
closure results concerning different classes of languages and rewriting systems,
and we show the applications of these results in symbolic reachability analysis

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 24–39, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Languages, Rewriting Systems, and Verification of Infinite-State Systems 25

of different infinite-state systems. The results we present in this paper are not
new. Our aim here is to present a general approach for algorithmic verification
of infinite-state systems, and to show in a simple and uniform manner several
results we have established in the last few years.

The paper is organized as follows: In Section 2 we present the principle of
a general algorithmic verification approach based on symbolic reachability anal-
ysis. In Section 3 we define classes of rewriting systems and show their use as
models for various kinds of infinite-state systems. In Section 4 we presents re-
sults on the computability of the closure of languages by rewriting systems, and
show their relevance in verification. Finally, in Section 5, we give a presentation
of related work.

2 Symbolic Reachability Analysis

A system can be modeled as a pair (C, ρ) where C is the set of all possible
configurations of the system, and ρ ⊆ C×C is a binary transition relation between
configurations.

Given a relation ρ, let us denote by ρi the relation obtained by i compositions
of ρ, i.e., ρ0 is the identity relation, and for i ≥ 0, ρi+1 = ρi ◦ ρ. Then, let ρ∗ be
the reflexive-transitive closure of the relation ρ, i.e., ρ∗ =

⋃
i≥0 ρ

i.
Given a relation ρ and a configuration γ, let ρ(γ) = {γ′ ∈ C : (γ, γ′) ∈ ρ}.

Intuitively, ρ(γ) is the set of all immediate successors of the configuration γ, and
ρ∗(γ) is the set of all reachable configurations from γ. These definitions can be
generalized straightforwardly to sets of configurations.

Verification problems, especially for safety properties, can be often reduced
to the reachability analysis problem, i.e., to computing the set of all reachable
configurations starting from a given (possibly infinite) set of initial configurations
φ ⊆ C. In our setting, this consists in computing the set ρ∗(φ). More precisely,
the problem is to construct a finite representation of the set ρ∗(φ), given a finite
representation of the set φ. Then, the central problem we address can be stated
as follows:

Π : identify classes of recursive binary relations R between configurations as
well as classes of finite representation structures S1 and S2 corresponding
to two classes of sets of configurations, such that for every effectively S1-
representable set φ and every relation ρ ∈ R, the set ρ∗(φ) is effectively
S2-representable.

In order to be relevant to system verification, this problem must be ad-
dressed for classes of representation structures enjoying some minimal closure
and decidability properties (e.g., the decidability of the inclusion test). Often,
it is interesting to consider a stronger version of the problem above, where we
require that S1 and S2 are the same class. Of course, few classes of models for
practical infinite-state systems have a decidable reachability problem. Hence,
it is clear that the verification problem of infinite-state systems cannot be re-
duced in general to finding a solution to the problem (Π). However, solutions
to the problem (Π) can be embedded in a more general (or more pragmatic)

26 A. Bouajjani

approach in order to tackle classes of infinite-state systems with an undecid-
able reachability problem. The idea is the following one: if we cannot provide
an algorithm for computing directly the set ρ∗(φ), we adopt a semi-algorithmic
approach (i.e., termination is not guaranteed) based on an iterative exploration
of the reachable configurations. In order to speed up this procedure and help its
termination, we use within this exploration solutions for the problem (Π) con-
cerning subrelations of ρ. That is, at each iteration we compute the ρ-image of
the reachable configurations found so far, as well as, when possible, their images
by transitive closures of some (compositions of) subrelations of ρ. Hence, solu-
tions for the problem (Π), even if they concern restricted classes of relations, can
be relevant for enhancing the iterative reachability analysis procedure, provided
that the computed intermediate sets belong to the same class of representation
structures.

Let us see this in more details. From the definition of the set ρ∗(φ), a pro-
cedure for computing it would be to construct iteratively the non-decreasing
sequence of sets φi =

⋃
0≤j≤i ρ

j(φ), for i ≥ 0, until φk+1 ⊆ φk for some k ≥ 0.
In such a case, we have necessarily φk = ρ∗(φ). Actually, the sequence (φi)i≥0
can be computed by taking

φ0 = φ

φi+1 = φi ∪ ρ(φi)

Of course, in order to be able to apply this procedure, we need a class of
representation structures S such that: (1) φ is S-representable, (2) S is effectively
closed under union and computing the ρ-image, and (3) the inclusion test is
decidable in S.

However, it is obvious that this naive procedure does not terminate in general
(in all nontrivial cases where C is infinite). Therefore, we enhance this procedure
using a fixpoint acceleration technique, according to the terminology used in the
abstract interpretation community [CC77].

Let us first introduce some notation. Given a finite set of relations R, we
denote by Comp(R) the smallest set of relations which contains R and which is
closed under the operations of union (∪) and composition (◦) of relations.

Now, let ρ be a relation and φ be a set of initial configurations representable
in a class of representation structure S. A new reachability analysis procedure
for computing ρ∗(φ) can be defined by considering a decomposition

ρ = ρ′ ∪ ρ1 ∪ . . . ∪ ρm

and by defining a finite set of relations θ1, . . . , θn ∈ Comp({ρ1, . . . , ρm}) such
that it is possible to compute and to represent in S the set θ∗

i (ψ), for each
i ∈ {1, . . . , n} and for every ψ in the class S. Typically, the decomposition of
ρ we consider is extracted from its definition as a finite union of relations, each
of them corresponding to a possible action (or set of actions) in the modeled
system, and very often, the θi’s can be chosen to be the ρi’s themselves.

Languages, Rewriting Systems, and Verification of Infinite-State Systems 27

Then, the new iterative procedure we apply consists in computing the se-
quence of non-decreasing sets (ψi)i≥0 defined as follows:

ψ0 = φ

ψi+1 = ψi ∪ ρ′(ψi) ∪ θ∗
1(ψi) ∪ . . . ∪ θ∗

n(ψi)

until ψk+1 ⊆ ψk for some k ≥ 0. Clearly, we have for every i ≥ 0, φi ⊆ ψi and
ψi ⊆ ⋃

i≥0 ρ
i(φ) = ρ∗(φ). This means that, if this procedure stops, it computes

precisely an S-representation of the set ρ∗(φ).
The procedure described above generates the set of reachable configurations

according to a breadth first search strategy, using additional transitions called
meta-transitions (as in [BW94]), each of them corresponding to iterating an
arbitrary number of times the application of a transition relation θi, for i ∈
{1, . . . , n}. Actually, different search strategies may be adopted for generating
the set of reachable configurations, e.g., a depth first search strategy with priority
to meta-transitions.

Of course, the method proposed above does not guarantee termination. The
reachability analysis procedure terminates only if we can define a suitable finite
set of meta-transitions. This is obviously related to our ability to find solutions
to the problem (Π) stated at the beginning of this section.

3 Models Based on Rewriting Systems

We consider here models which correspond to systems operating on sequential
data structures (such as stacks or queues). In these models, configurations are
vectors of words, and transition relations between configurations are defined by
means of sets of rewriting rules.

3.1 Rewriting Systems

Let Σ be a finite alphabet (set of symbols). For n ≥ 1, an n-dim rewriting rule r
over Σ is a pair 〈x,y〉 where x,y ∈ (Σ∗)n. We denote such a rule by r : x 7→ y.
The left hand side (resp. right hand side) of r, denoted by lhs(r) (resp. rhs(r)),
is the vector x (resp. y).

A n-dim rewriting system is a finite set of n-dim rewriting rules. We consider
hereafter three notions of rewriting relations between vectors of words. Given
an n-dim rewriting system R, the prefix (resp. cyclic, factor) rewriting relation
associated with R is the relation Rp (resp. Rc, Rf) ⊆ (Σ∗)n × (Σ∗)n such that
for every u = (u1, . . . , un),v = (v1, . . . , vn) ∈ (Σ∗)n, (u,v) ∈ Rp (resp. Rc, Rf)
if and only if there exists a rule r : (x1, . . . , xn) 7→ (y1, . . . , yn) ∈ R such that
for every i ∈ {1, . . . , n}, we have respectively,

(Prefix rewriting) ∃wi ∈ Σ∗. ui = xiwi and vi = yiwi,
(Cyclic rewriting) ∃wi ∈ Σ∗. ui = xiwi and vi = wiyi,
(Factor rewriting) ∃wi, w′

i ∈ Σ∗. ui = wixiw
′
i and vi = wiyiw

′
i.

28 A. Bouajjani

3.2 Models of Infinite-State Systems

The models we consider are defined as pairs (C, ρ) where the set of configurations
is C = (Σ∗)n, and the transition relation ρ is one of the rewriting relations R†,
with † ∈ {p, c, f}, for some given rewriting system R.

Automata with unbounded sequential data structures: The very com-
mon models of pushdown systems and FIFO-channel systems can be straight-
forwardly represented in our framework.

Indeed, prefix rewriting models the actions of a system manipulating push-
down stacks, and cyclic rewriting corresponds to operations on FIFO queues (or
communication channels). One additional dimension in the rewriting system can
be used to encode the control states.

For instance, consider a system which manipulates one pushdown stack (resp.
one FIFO queue). A rule r : (a, x) 7→ (b, y) where a, b ∈ Σ and x, y ∈ Σ∗,
represents the action of (1) testing whether the sequence of symbols x can be
removed from the stack (resp. the queue), and if yes, (2) moving from the control
state a to the control state b, and putting the sequence y into the stack (resp.
the queue) after having removed x from it.

In the sequel, we call an n-dim controlled rewriting system any set of (n+ 1)-
dim rules of the form (a,x) 7→ (b,y) where a, b ∈ Σ and x,y ∈ (Σ∗)n.

Parametrized networks: We use factor rewriting for modelling parametrized
systems with an arbitrary number of identical finite-state components (pro-
cesses), connected according to a linear topology.

Let Σ be the finite set of states of each of these components. Then, in order
to reason uniformly about the family of systems with arbitrary number of com-
ponents, we consider that a configuration is a finite word over Σ, the ith element
of the word corresponding to the state of the ith component, and various classes
of languages (e.g., regular languages) can be used to represent sets of config-
urations of arbitrary lengths. Therefore, actions of such parametrized systems
can be represented naturally as rewriting rules, each of them corresponding to
simultaneous moves in some components of the system. The kind of rules we
consider here allow to represent moves involving a finite number of processes
located within a bounded distance from each other. Typically, communication
(rendez-vous) between immediate neighbors can be modeled by rewriting rules
of the form ab 7→ cd, meaning that if two processes i and i + 1 are in states a
and b respectively, then they can move simultaneously to their respective states
c and d.

Take as an example a simple version of the token-passing mutual exclusion
protocol: We assume that processes are arranged linearly. A process who owns
the right to enter the critical section (the token) can transmit it to its right
neighbor. Each process has two possible states, either 1 if it owns the token, or
0 otherwise. We suppose that initial configurations are all those in which the
leftmost process has the token. Since the number of processes is not fixed, the
set of initial configurations is precisely the language 10∗. Then, the transition

Languages, Rewriting Systems, and Verification of Infinite-State Systems 29

relation between configurations, which models the action of passing the token
from left to right, corresponds to the relation Rf , where R = {10 7→ 01}. It is
easy to see that the set of reachable configurations is R∗

f (10∗) = 0∗10∗.

4 Results

We present in this section solutions of the problem (Π) when the class of repre-
sentation structures correspond to (subclasses of) recognizable sets. Let us recall
that an n-dim recognizable set is a finite union of sets of the form L1 × . . .×Ln
where each Li is a regular set (i.e., FSM definable), for i ∈ {1, . . . , n}.

Clearly, the class of recognizable sets enjoys the closure and decision proper-
ties required from symbolic representation structures. Indeed, this class is closed
under all boolean operations, it is also closed under the application of regular
relations (notice that the relation R†, with † ∈ {p, c, f}, is obviously regular for
any rewriting systems R), and its inclusion problem is decidable.

4.1 Prefix Rewriting

The following theorem has been proved several times by authors from different
communities with different motivations (see e.g., [Cau92,BEM97,FWW97]).

Theorem 1. Let R be a 1-dim controlled rewriting system. Then, for every
effectively recognizable set φ, the set R∗

p(φ) is effectively recognizable.

In [BEM97,FWW97], versions of this theorem are used to define verification
algorithms for pushdown systems against different specification logics (temporal
logics and µ-calculi). Reachability analysis and model checking techniques for
pushdown systems have applications in the domain of program analysis [EK99,
ES01].

Unfortunately, there is no algorithm which constructs the set R∗
p(φ) for any 2-

dim rewriting system R and recognizable set φ. This can be shown by a straight-
forward reduction of the Post correspondence problem.

4.2 Cyclic Rewriting

It is well known that a finite automaton equipped with a FIFO queue is as
powerful as a Turing machine. So, the R∗

c image is obviously not computable for
any 1-dim controlled rewriting system. Moreover, such a model can be simulated
very easily by a 1-dim cyclic rewriting system: a rule of the form (q, x) 7→ (q′, y)
can be simulated by the application of a rule qx 7→ yq′ followed by rotation rules
of the form a 7→ a, for all symbols a which are not control states.

Hence, in order to solve the problem (Π) for cyclic rewriting, it is necessary
to restrict the considered class of rewriting systems. A typical restriction is to
consider controlled rewriting systems corresponding to control loops. A control
loop is a set of rules

r1 : (q1,x1) 7→ (q′
1,y1)

· · ·
rm : (qm,xm) 7→ (q′

m,ym)

30 A. Bouajjani

such that, (1) ∀i, j ∈ {1, . . . ,m} with i 6= j, qi 6= qj and q′
i 6= q′

j , (2) ∀i ∈
{1, . . . ,m− 1}, q′

i = qi+1, and (3) q′
m = q1.

Boigelot et al. have shown the following result:

Theorem 2 ([BGWW97]). Let R be a 1-dim control loop. Then, for every
effectively recognizable set φ, the set R∗

c(φ) is effectively recognizable.

For systems of higher dimensions (even for 2-dim systems), the R∗
c image

is not recognizable, in general. Indeed, consider for instance the self-loop R =
{(q, ε, ε) 7→ (q, a, a)}. Then, R∗

c(q, ε, ε) = {(q, an, an) : n ≥ 0} which is a
non-recognizable set.

[BGWW97] provides a characterization of the control loops R such that R∗
c

preserves recognizability, as well as an algorithm which constructs for such loops
a finite automaton representing the R∗

c image of any given recognizable set.
In [BH97] we show that the effect of iterating any control loop can be char-

acterized using representation structures defining a class of non-recognizable
sets enjoying all needed closure and decision properties for symbolic reachability
analysis. These structures, called CQDD’s, correspond to a class of constrained
(products of) deterministic automata. The constraints we consider are expressed
in Presburger arithmetics and concern the number of times transitions of the au-
tomata are taken in the accepting runs. For instance, the set R∗

c(q, ε, ε) above
can be defined as a product of two automata A1 and A2 each of them recognizing
the language a∗, under the constraint imposing that the number of a-transitions
taken in each of the two automata are the same (see [BH97] for more details on
CQDD’s). We have the following result:

Theorem 3 ([BH97]). Let R be a n-dim control loop. Then, for every ef-
fectively CQDD representable set φ, the set R∗

c(φ) is effectively CQDD repre-
sentable.

A similar theorem can be shown for prefix rewriting, i.e., the class of CQDD’s
is closed under R∗

p for any n-dim control loop R.
As mentioned in Section 3, cyclic (controlled) rewriting systems are suitable

for modeling communicating systems through FIFO channels, e.g., communi-
cation protocols. In many cases, the purpose of these protocols is to ensure a
perfect data transfer through unreliable channels. Hence, it is natural in this
context to consider models where channels are lossy in the sense that they can
lose a message at any time. In our setting, the lossiness assumption can be taken
into account by considering a weak cyclic rewriting relation, where configurations
can get smaller according to the subword relation (meaning that some symbols
are lost), before and after any cyclic rewriting step.

Let � ⊆ Σ∗ × Σ∗ be the subword relation, i.e., a1 . . . an � b1 . . . bm if there
exists i1, . . . , in ∈ {1, . . . ,m} such that i1 < . . . < in and ∀j ∈ {1, . . . , n}. aj =
bij . We consider the product generalization of this relation to vectors of words.

LetR be a n-dim rewriting system overΣ. We define the weak cyclic rewriting
relation Rwc ∈ (Σ∗)n×(Σ∗)n) as follows: for every u,v ∈ (Σ∗)n, (u,v) ∈ Rwc if
and only if there exist u′,v′ ∈ (Σ∗)n such that u′ � u, v′ ∈ Rc(u′), and v � v′.

An n-dim language L is downward closed w.r.t. the subword relation if ∀u,v ∈
(Σ∗)n, if v ∈ L and u � v, then u ∈ L. Let L� denote the downward closure

Languages, Rewriting Systems, and Verification of Infinite-State Systems 31

of L, i.e., the smallest downward closed set which includes L. Clearly, for every
rewriting system R and every set φ, the set R∗

wc(φ) is downward closed. Hence,
by showing that every downward closed set w.r.t � is a recognizable set, the
following fact can be deduced.

Theorem 4 ([AČJT96,CFI96]). For every rewriting system R, and every set
φ, the set R∗

wc(φ) is a recognizable set.

Theorem 4 does not say that the set R∗
wc(φ) is constructible, even though it

is recognizable. Actually, we know from the results in [May00] that:

Theorem 5. There is no algorithm which constructs the set R∗
wc(φ) for any

given 1-dim controlled rewriting system R and recognizable set φ.

We can refine Theorem 4 by defining representation structures which cap-
ture precisely the class of downward closed sets. These representation structures
correspond to a particular subclass of regular expressions called simple regular
expressions (SRE for short). Their definition is as follows: Let us call atomic
expression any expression of the form a where a ∈ Σ, of the form A∗ where
A ⊆ Σ. A product is either the empty word ε, of a finite sequence e1 · · · em of
atomic expressions. Then, an SRE is either ∅, or a finite union p1 + · · · + pn of
products. A n-dim SRE set is a finite union of Cartesian products of n SRE sets.
It is very easy to see that every SRE set is downward closed w.r.t. the subword
relation. Conversely, by showing that for every recognizable set L, the set L� is
effectively SRE representable, we obtain the following fact:

Theorem 6 ([ABJ98]). SRE sets are precisely the downward closed sets w.r.t.
the subword relation.

The class SRE has interesting properties which makes it suitable for efficient
reachability analysis of lossy FIFO-channel systems.

Theorem 7 ([ABJ98]). The class of SRE sets is closed under union, inter-
section, and application of regular relations (e.g., rewriting relations). Moreover,
the inclusion problem for SREs can be solved in polynomial time.

Notice that the class of SREs is not closed under complementation. In-
deed, complements of SRE languages are upward closed languages w.r.t. the
subword relation. They correspond to finite unions of languages of the form
Σ∗a1Σ

∗a2 · · · anΣ∗.

Theorem 8 ([ABJ98]). Let R be a n-dim control loop. Then, for every SRE
set φ, it is possible to construct an SRE representation of the set R∗

wc(φ) which
has a polynomial size w.r.t. the size of φ.

Based on the two theorems above, we derive a symbolic reachability analysis
procedure as described in Section 2. This procedure has been implemented and
used to analyze in a fully automatic manner several infinite-state models of
communication protocols such as the alternating bit protocol, the sliding window
protocol, and the bounded retransmission protocol [AAB99,ABS01].

32 A. Bouajjani

Now, it is very easy to construct a model for which computing the effect
of control loops does not help the reachability analysis procedure to terminate.
Consider for instance the system R with two rules r1 : a 7→ bb and r2 : b 7→ aa
corresponding to two self-loops (loops on a single control state q which is omitted
here). It can be seen that R∗

wc(a) = a∗b∗ + b∗a∗ (notice that, due to lossiness,
there cannot be any constraints on the numbers of a and b in the reachable
configurations). However, it is impossible to compute this set by reasoning about
a finite number of iterated compositions of the two rules of R (control loops
corresponding to compositions of the two considered self-loops). To see this, let
us consider the relation corresponding to any of such a loop. This relation can
be written as

θ = {r2}mk
wc ◦ {r1}nk

wc ◦ · · · ◦ {r2}m1
wc ◦ {r1}n1

wc

where the mi’s and ni’s are positive integers. It is can be checked that, for every
word w ∈ Σ∗, θ∗(w) is always a finite language

For instance, let w = babab. Then, we have

{r1}∗
wc(w) = {babb2, bb2, bb4}� = {babb2, bb4}�

{r2}∗
wc(w) = {ababa2, aba2, a2, aba4, a4, a6}� = {ababa2, aba4, a6}�

Notice that the number of possible iterations of the relations {r1}wc and {r2}wc
is always bounded. It depends on the number of occurrences of a’s (resp. b’s) in
the initial word w.

As another example, take θ = {r2}wc ◦ {r1}wc and w = a. Then, we have

θ(w) = {r2}wc({b2}�) = {ba2}�
θ2(w) = θ({ba2, a2, ba, b, a, ε}) = {r2}wc({ab2}�) = {ba2}�

Thus, we have θ∗(a) = {ba2}�.
Since R∗

wc(a) is an infinite set, and the iteration of each relation θ of the form
specified above can only produce a finite set of words, it can be concluded that
the reachability analysis procedure using only meta-transitions like θ does not
terminate in this case.

An interesting question is under which conditions it is possible to compute
the effect of iterating nested control loops. Unfortunately, we have the following
negative result:

Theorem 9 ([ABB01]). There is no algorithm which constructs the set R∗
wc(φ)

for any given 1-dim rewriting system R and any set φ.

This means, that it is even impossible to compute the effect of sets of self-
loops of the form (q, x) 7→ (q, y) where x and y are two words over Σ. To prove
this result, we need rules where the left hand side x is of size 2. However, the
situation is different when this size is assumed to be at most one.

We consider that an n-dim rewriting rule r is context-free if lhs(r) ∈ (Σ ∪
{ε})n. A n-dim context-free rewriting system is a set of n-dim context-free rules.
For instance, the system R = {a 7→ bb, b 7→ aa} considered above is a context-free
system. We have the following result:

Languages, Rewriting Systems, and Verification of Infinite-State Systems 33

Theorem 10 ([ABB01]). Let R be a 1-dim context-free rewriting system.
Then, for every effectively SRE set φ, the set R∗

wc(φ) is effectively SRE.

Using Theorem 5, it is very easy to show that the result above cannot be
extended to 2-dim context-free rewriting systems. Therefore, the question is
under which conditions it is possible to construct the effect of n-dim context-
free systems. We propose hereafter one such condition.

A rewriting systemR is a ring if, for every rule r : (x1, . . . , xn) 7→ (y1, . . . , yn)
in R, ∃i ∈ {1, . . . , n} such that ∀j 6= i. xj = ε and ∀j 6= (i+ 1) mod n. yj = ε.

Thus, each rule r in a ring is either of the form (ε, . . . , ε, xi, ε, . . . , ε) 7→
(ε, . . . , ε, yi+1, ε, . . . , ε) or of the form (ε, . . . , ε, xn) 7→ (y1, ε, . . . , ε). Intuitively,
the each rule in these systems correspond to actions of FIFO-channel systems
where a word x is received from a channel of index i, and a word y is sent to the
channel of index (i+ 1) mod n.

Theorem 11 ([ABB01]). Let R be a n-dim context-free ring. Then, for every
effectively SRE set φ, the set R∗

wc(φ) is effectively SRE.

4.3 Factor Rewriting

As mentioned in Section 3, factor rewriting rules can be used to represent transi-
tions in parametrized systems (networks) with an arbitrary number of identical
finite-state components. An interesting class of rewriting rules which appear
in this context are the so-called semi-commutations: A 1-dim rewriting rule
is a semi-commutation if it is of the form ab 7→ ba where a, b ∈ Σ. A semi-
commutation rewriting system is a set of semi-commutation rules.

Semi-commutations are naturally used to model transitions corresponding to
information exchange between neighbors, e.g., token passing protocols for mutual
exclusion (see Section 3), leader election algorithms, etc. We present later an
example where semi-commutation appear in the model of a lift controller for an
arbitrary number of floors. In that example, semi-commutation rules correspond
to the actions of moving up or down from one floor to its immediate successor.

It is well known that the class of recognizable sets is in general not closed
under R∗

f where R is any semi-commutation system. For instance, consider the
system R = {ab 7→ ba}. Then, it is easy to see that for φ = (ab)∗, the set R∗

f (φ)
is not recognizable.

Therefore, the question is to find a class of representation structures defining
a subclass of recognizable sets which is closed under iterative semi-commutation
rewriting. As an answer to this question, we propose a subclass of regular ex-
pressions called APC (alphabetic pattern constraints). We define APCs exactly
as the SREs introduced above, except that we also allow in APCs atomic ex-
pressions of the form a, where a ∈ Σ (APC are not downward closed w.r.t. �
in general). In other words, APC languages are finite unions of languages of
the form Σ∗

1a1Σ
∗
2 · · · anΣ∗

n+1 where the ai’s are symbols in Σ and the Σi’s are
subsets of Σ. (The class APC coincides with the class of languages on level 3/2
of Straubing’s concatenation hierarchy [PW97].)

The motivation behind the consideration of this particular kind of languages
is that they appear naturally in many specification and verification contexts.

34 A. Bouajjani

First, APC languages can be used to express properties based on specifying
some patterns appearing within configurations. Typically, negations of (some)
safety properties are expressed by an APC defining the set of all bad patterns.
For example, in the case of the token passing protocol mentioned in Section 3,
the set of bad configurations, i.e., all those which do not satisfy the mutual ex-
clusion property, is defined by (0+1)∗1(0+1)∗1(0+1)∗. Thus, since this set has
empty intersection with the set of reachable configurations 0∗10∗, it can be con-
cluded that the mutual exclusion property is satisfied. Furthermore, it turns out
that the reachability sets of many infinite-state systems and parametrized sys-
tems, including communication protocols like the alternation-bit and the sliding
window, and parametrized mutual exclusion protocols such as the token ring,
Szymanski’s, Burns’, or Dijkstra’s protocols, are all expressible as APCs (see
[ABJ98,AAB99,ABJN99,JN00,BJNT00,Tou00]).

It can be shown that the class APC has the following properties.

Theorem 12 ([BMT01]). The class of APCs is closed under union, intersec-
tion, and rewriting (application of single rewriting rules), but it is not closed
under complementation. The inclusion problem for APCs is PSPACE-complete.

The main closure result about APCs is the following:

Theorem 13 ([Tou00,BMT01]). Let R be a semi-commutation rewriting sys-
tem. Then, for every APC set φ, the set R∗

f (φ) is effectively APC.

Actually, this result can be slightly extended to system including symbol
substitutions. We call a symbol substitution rewriting system any set of rules of
the form a 7→ b. First, it is easy to see that APCs are effectively closed under
R∗
f for any symbol substitution rewriting system. The proof of Theorem 13 can

be easily adapted to rewriting systems which are sets of semi-commutations and
symbol substitutions [Tou00].

Let us illustrate the use of these results on a simple example. We consider a
lift controller which has the following behavior: People can arrive at any time to
any floor and declare their will to move up or down. The lift is initially at the
lower floor, and then it keeps moving from the lower floor to the upper one, and
back. In its ascending (resp. descending) phase, it takes all the people who are
waiting for moving up (resp. down) and ignores the others. They are taken into
account in the next phase.

For every n (number of floors), a configuration of this system can be repre-
sented by a word of the form

#x1 · · ·xjyxj+1 · · ·xn#

where y ∈ {a↑, a↓}, and xi ∈ {⊥, b↑, b↓, b↑↓}, for i ∈ {1, . . . , n}. The symbol
corresponding to xi represents the state of the ith floor: xi = b↑↓ if there are
people waiting for moving up and other people (at the same floor) waiting for
moving down, xi = b↑ (resp. xi = b↓) means that there are people waiting at
this floor and all of them want to move up (resp. down), and xi = ⊥ means that
nobody is waiting at this floor. The symbol corresponding to y gives the position

Languages, Rewriting Systems, and Verification of Infinite-State Systems 35

of the lift: in the configuration given above, if y = a↑ (resp. y = a↓) then, the
lift is at floor j + 1 (resp. j), and it is moving up (resp. down).

The set of all initial configurations, for an arbitrary number of floors, is the
set of words φ0 = #a↑ ⊥∗#, which means that initially, the lift is at the lower
floor and there is no requests at any floor. The dynamic of the system can be
modeled by the following rewriting rules:

⊥ 7→ b↑ (1)
⊥ 7→ b↓ (2)
b↑ 7→ b↑↓ (3)
b↓ 7→ b↑↓ (4)

a↑ ⊥ 7→ ⊥a↑ (5)
a↑ b↓ 7→ b↓ a↑ (6)
a↑ b↑ 7→ ⊥a↑ (7)
a↑ b↑↓ 7→ b↓ a↑ (8)
a↑ # 7→ a↓ # (9)
⊥a↓ 7→ a↓ ⊥ (10)
b↑ a↓ 7→ a↓ b↑ (11)
b↓ a↓ 7→ a↓ ⊥ (12)
b↑↓ a↓ 7→ a↓ b↑ (13)

#a↓ 7→ #a↑ (14)

Rules 1, 2, 3, and 4 are symbol substitutions modeling the arrival of users.
Let us call request their corresponding action. Rules 5 and 6 (resp. 10 and 11)
are semi-commutations modeling the moves of the lift upward (resp. downward).
They correspond to the action move-up (resp. move-down). Rules 7 and 8 (resp.
12 and 13) represent the action of taking at some floor the people who want
to move up (resp. down). We call the corresponding actions take-up (resp. take-
down). Finally, rules 9 and 14 represent the actions of switching from the ascend-
ing to the descending phase (action up2down), and vice-versa (action down2up).

Table 1 shows the computations of the reachable configurations of the lift con-
troller according to a depth first search strategy with priority to meta-transitions
(we omit some unimportant steps). The used meta-transitions are request∗ corre-
sponding to the relation {1∪2∪3∪4}∗

f , move-up∗ corresponding to {5∪6}∗
f , and

move-down∗ corresponding to {10 ∪ 11}∗
f . The image by request∗ is easy to com-

pute (APCs are effectively closed under iterated symbol substitution rewriting),
and the images by move-up∗ and move-down∗ are computable by the algorithm
underlying Theorem 13.

As shown in Table 1, the reachability analysis terminates in this case thanks
to the use of meta-transitions. It is worth noting that the reachability analysis
procedure also gives (for free) a finite abstraction of the analyzed infinite-state
model. Indeed, Table 1 defines an abstract reachability graph of the lift controller
which is shown in Figure 1.

36 A. Bouajjani

Table 1. Reachability Analysis of the Lift Controller

φ0 request� #a↑ (⊥ + b↑ +b↓ +b↑↓)�# φ1

φ1 move-up� #(⊥ + b↓)�a↑ (⊥ + b↑ +b↓ +b↑↓)�# φ2

φ2 request� #(⊥ + b↑ +b↓ +b↑↓)�a↑ (⊥ + b↑ +b↓ +b↑↓)�# φ3

φ3 take-up #(⊥ + b↑ +b↓ +b↑↓)�(⊥ + b↓)a↑ (⊥ + b↑ +b↓ +b↑↓)�# ⊆ φ3

φ3 up2down #(⊥ + b↑ +b↓ +b↑↓)�a↓ # φ4

φ4 move-down� #(⊥ + b↑ +b↓ +b↑↓)�a↓ (⊥ + b↑)�# φ5

φ5 request� #(⊥ + b↑ +b↓ +b↑↓)�a↓ (⊥ + b↑ +b↓ +b↑↓)�# φ6

φ6 take-down #(⊥ + b↑ +b↓ +b↑↓)�a↓ (⊥ + b↑)(⊥ + b↑ +b↓ +b↑↓)�# ⊆ φ6

φ6 down2up #a↑ (⊥ + b↑ +b↓ +b↑↓)�# = φ1

Fig. 1. Abstract Reachability Graph of the Lift Controller

5 Related Work

Several papers propose symbolic reachability analysis techniques for infinite-
state systems based on using representations of languages to define sets of con-
figurations. In these works, sets of configurations are represented by means of
various kinds of automata, regular expressions, and formulas of monadic first or
second order logics (see e.g., [BG96,BEM97,BH97,BGWW97,KMM+97,WB98]
[BJNT00,PS00,FIS00]).

Papers such as [KMM+97,WB98,BJNT00,PS00] introduce a uniform verifi-
cation paradigm for infinite-state systems, called regular model-checking, based
on the use of regular languages (finite automata or WS1S formulas) as symbolic
representations, and of regular relations (finite transducers or formulas) as mod-
els of transition relations of systems. The concepts we present is this paper are
very close to those developed for regular model-checking. However, we can make
the following comparison between the two frameworks.

Languages, Rewriting Systems, and Verification of Infinite-State Systems 37

First, we do not require here that the manipulated languages are regular.
For instance, the results of [BH97] show that representation structures defining
non-regular languages can be used and they are needed for some applications.

Moreover, the verification approach adopted in, e.g., [BJNT00,PS00] consists
in constructing (when possible) transitive closures of regular relations, (i.e., given
a regular relation ρ, construct a representation of ρ∗, as a finite transducer for
instance). This problem is more general and of course harder than the problem
(Π) we have considered in this paper (see Section 2), which is to construct the
image of a given set φ by ρ∗. Indeed, there are many cases where ρ∗(φ) is com-
putable for every φ in some class of languages, whereas ρ∗ is not constructible,
or at least, not regular (e.g., for relation induced by semi-commutation rewriting
systems [BMT01]). Nevertheless, in the context of regular model checking, inter-
esting classes of relations for which the transitive closure is computable have been
identified in e.g., [ABJN99,JN00]. Other works propose incomplete procedures
for computing transitive closures of relations [BJNT00,PS00,DLS01].

Also, for the sake of simplicity, we have considered in this paper only special
kinds of rewriting systems (for instance, these rewriting systems cannot define
all the relations considered in [ABJN99,JN00,BJNT00]). Of course, more general
forms of rewriting systems can be used within the framework we present.

The symbolic reachability analysis approach we describe in this paper uses
the concept of meta-transition introduced in [BW94] in order to help termina-
tion. This technique can be seen as a fixpoint acceleration in the context of ab-
stract interpretation [CC77]. However, these works use widening operators which
lead in general to the computation of an upper-approximation of the reachability
set, whereas the results we present in this paper allow to perform exact com-
putations. It is worth noting that widening operations are defined depending
only on the intermediary sets which are generated during the computation of
the reachability set, regardless of the applied actions. In contrast, the approach
we adopt here for acceleration takes into account the applied actions (rewrit-
ing rules) in order to compute the exact effect of their iteration. In [BJNT00,
Tou00], widening techniques on automata and transducers are defined for regular
model-checking.

The use of rewriting systems as models for infinite-state systems has been
considered for instance in [Cau92,Mol96,May98]. These works address different
questions from the one considered here. They are concerned with the decidabil-
ity and the complexity of behavioral equivalences such as bisimulation [Cau92,
Mol96] or model-checking against various propositional temporal logics [May98].
Rewriting systems are also used to model parametrized networks of identical pro-
cesses in [FO97] where rewriting techniques are applied for invariant checking,
but no algorithms for automatic computation of the closure of languages by
rewriting systems are provided.

Finally, we have considered in this paper only rewriting systems on words.
The approach we present can also be extended to rewriting systems on other
structures such as trees, rings, grids, and graphs in general, in order to deal
with wider classes of systems. Let us mention some of the few existing results
on this topic. In [KMM+97], an extension of the regular model-checking frame-
work to the case of tree languages is proposed in order to verify parametrized

38 A. Bouajjani

networks with a tree-like topology. However, this paper does not provide accel-
eration techniques for reachability analysis. In [LS01], tree automata are used to
characterize reachability sets (set of terms) for a class of processes with parallel
and sequential composition which subsumes the class of context-free processes.
Finally, we show in [BMT01] that Theorem 13 about closure under iterated
semi-commutation rewriting can be generalized to the case of rings (circular
words).

References

[AAB99] P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic Verification of
Lossy Channel Systems: Application to the Bounded Retransmission Pro-
tocol. In TACAS’99. LNCS 1579, 1999.

[ABB01] P. Abdulla, L. Boasson, and A. Bouajjani. Effective Lossy Queue Lan-
guages. In ICALP’01. LNCS, Springer-Verlag, 2001.

[ABJ98] P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly Analysis of Systems
with Unbounded, Lossy Fifo Channels. In CAV’98. LNCS 1427, 1998.

[ABJN99] P. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling Global
Conditions in Parametrized System Verification. In CAV’99. LNCS 1633,
1999.

[ABS01] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A Tool for Reach-
ability Analysis of Complex Systems. In CAV’01. LNCS, Springer-Verlag,
2001.

[AČJT96] P. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General Decidability
Theorems for Infinite-State Systems. In LICS’96. IEEE, 1996.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Push-
down Automata: Application to Model Checking. In CONCUR’97. LNCS
1243, 1997.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In CAV’96. LNCS 1102,
1996.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In SAS’97. LNCS 1302, 1997.

[BH97] A. Bouajjani and P. Habermehl. Symbolic Reachability Analysis of
FIFO-Channel Systems with Nonregular Sets of Configurations. In
ICALP’97. LNCS 1256, 1997. Full version in TCS 221 (1/2), pp 221-250,
1999.

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model
Checking. In CAV’00. LNCS 1855, 2000.

[BMT01] A. Bouajjani, A. Muscholl, and T. Touili. Permutation Rewriting and
Algorithmic Verification. In LICS’01. IEEE, 2001.

[BW94] B. Boigelot and P. Wolper. Symbolic Verification with Periodic Sets. In
CAV’94. LNCS 818, 1994.

[Cau92] D. Caucal. On the Regular Structure of Prefix Rewriting. TCS,
106(1):61–86, 1992.

[CC77] P. Cousot and R. Cousot. Static Determination of Dynamic Properties
of Recursive Procedures. In IFIP Conf. on Formal Description of Pro-
gramming Concepts. North-Holland Pub., 1977.

Languages, Rewriting Systems, and Verification of Infinite-State Systems 39

[CFI96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable Chan-
nels Are Easier to Verify Than Perfect Channels. Inform. and Comput.,
124(1):20–31, 1996.

[DLS01] D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In CAV’01.
LNCS, Springer-Verlag, 2001.

[EK99] J. Esparza and J. Knoop. An automata-theoretic approach to interpro-
cedural dataflow analysis. In FOSSACS’99. LNCS 1578, 1999.

[ES01] J. Esparza and S. Schwoon. A BDD-based Model Checker for Recursive
Programs. In CAV’01. LNCS, Springer-Verlag, 2001.

[FO97] L. Fribourg and H. Olsén. Reachability sets of parametrized rings as
regular languages. Electronic Notes in Theoretical Computer Science,
1997.

[FIS00] A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted tran-
sition systems. In CONCUR’00. LNCS 1877, 2000.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to
Model Checking Pushdown Systems. In Infinity’97, 1997.

[JN00] B. Jonsson and M. Nilsson. Transitive Closures of Regular Relations for
Verifying Infinite-State Systems. In TACAS’00. LNCS 1785, 2000.

[KMM+97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. In CAV’97. LNCS 1254,
1997.

[LS01] D. Lugiez, and P. Schnoebelen. The regular viewpoint on PA-processes.
In Theoretical Computer Science. to appear, 2001.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite State Systems. PhD Thesis, Technische Universitaet Muenchen,
April 1998.

[May00] R. Mayr. Undecidable Problems in Unreliable Computations. In
LATIN’00. LNCS 1776, 2000.

[Mol96] F. Moller. Infinite results. In CONCUR’96. LNCS 1119, 1996.
[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parametrized

verification. In CAV’00. LNCS 1855, 2000.
[PW97] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product.

Theory of Computing Systems, 30:383–422, 1997.
[Tou00] T. Touili. Vérification de Réseaux Paramétrés Basée sur des Techniques

de Réécriture. MSc. Thesis (French DEA) report, Liafa Lab., University
of Paris 7, July 2000. http://verif.liafa.jussieu.fr/�touili.

[WB98] P. Wolper and B. Boigelot. Verifying systems with infinite but regular
state spaces. In CAV’98. LNCS 1427, 1998.

Integrating Semantics for Object–Oriented
System Models?

Martin Große–Rhode

Technische Universität Berlin, Germany, mgr@cs.tu-berlin.de,
http://tfs.cs.tu-berlin.de/˜mgr/

Abstract. According to the viewpoint model of software systems devel-
opment abstract models of different views of the systems are constructed.
This separation of concerns reduces the complexity of the development,
but prompts the question for their integration, i.e., the conception of
a collection of heterogeneous models as a complete specification of a
system. The integration can be achieved by using a common semantic
domain for the interpretation of all models, where each viewpoint model,
due to its partiality, admits a set of possible interpretations. In this pa-
per such an integrating semantic domain is sketched and an application
to structure and behaviour models of the Unified Modeling Language is
discussed.

1 Introduction

The viewpoint model of software systems development that is nowadays accepted
as a predominant approach to rational systems development comprises two main
features. First, the development process should be based on models. That means,
abstract representations of the functionality and behaviour of the system are
provided from the very beginning and maintained during the whole life cycle
of the system. This yields a concise documentation of the decisions taken in
each step of the design and reduces the complexity of the development and
maintenance of the system by abstraction from details. Second, these models
should not represent the system in its entirety, but focus on specific aspects,
like the static structure of a component or element of the system, its internal
behaviour or cooperation with other components or elements of the system,
etc. This distinction of viewpoints contributes to the separation of concerns in
the development of the system and thus yields a reduction of its complexity
orthogonal to the contribution of the modelling.

The viewpoint model, introduced in the Reference Model of Open Distributed
Processing RM-ODP [26,23] is most prominently realized by the different dia-
gram languages provided by the Unified Modeling Language UML [3,21], that
has become the de-facto standard in object oriented modelling. It supports the
? This work has been supported by the research project IOSIP (Eh65/10-2) within

the DFG Priority Programme Integration of Software Specification Techniques for
Applications in Engineering (1064)

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 40–60, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Integrating Semantics for Object–Oriented System Models 41

basic distinction of structure and behaviour mentioned above, and adds further
modelling languages for the implementation stage.

The separation of different viewpoints and their (independent) modelling,
however, immediately prompts the question for their interrelations. On the one
hand, each viewpoint model in itself only partially specifies the system, due to
its focus on one aspect. This implies that the system is underspecified by each
of the viewpoint models. In order to derive the complete specification of the
system from the viewpoint models they have to be conceptually integrated and
correspondences of the different models have to be established. On the other
hand, the viewpoints are not completely orthogonal to each other. That means,
certain aspects of the system will be specified by more than one model. Thus
the consistency of the collection of viewpoint models has to be checked. This
becomes even harder since the same aspect is specified in very different ways,
using (paradigmatically) different languages. Thus even a formal definition of
consistency is not obvious. Since by definition the languages will have different
semantic domains one cannot request the existence of a common model as a
criterion for consistency. (See for instance [2] for a discussion in the context of
RM-ODP.)

In the UML the integration of the different models is addressed by the meta-
modelling approach. For the definition of the languages a meta model is given
that is itself a UML class diagram with constraints. The instances of the meta
model are the well-formed models of the UML. Whenever model elements are
instances of the same meta model element they may establish a correspondence
between the models in the sense discussed above. Beyond the problem of self
reference, however, i.e., defining new constructs in terms of yet undefined con-
structs, it is obvious that this approach addresses only the syntactic level. (The
static semantics given by the well-formedness rules is a precondition for the
semantics definition, but not the semantics definition itself.) In particular, con-
sistency can hardly be defined or checked based on this description.

An alternative approach uses an independent semantic domain—an internal
system model or a reference model—where all models can be interpreted. Ob-
viously, such a domain must be sufficiently expressive to support the semantic
interpretation of the different languages. Moreover, it must support composi-
tion operations (representing object collaboration by composition of their state
machines for instance) and refinement or other development operations for the
iterative and traceable development of concrete design models from abstract
requirements specifications. Using a common semantic domain for the interpre-
tation of all models the definitions of consistency and correspondence of collec-
tions of viewpoint models are supported immediately. Basically, consistency can
now be reconstructed as ‘having a common semantic interpretation’. However,
some transformations might be required to achieve this, again due to the dif-
ferent viewpoints. A class diagram for instance specifies collections of objects,
whereas a state machine diagram specifies single objects. Thus appropriate em-
beddings or projections are required that must be provided by the semantic
domain. Furthermore, in a state machine events and actions may occur within

42 M. Große–Rhode

one step, whereas in a sequence diagram send actions and receipt events are
different steps. Accordingly, refining or abstracting operations or relations must
be provided.

An integrating semantics for all models requires to lift the interpretation of
all of them to the level of full system specifications. That means, on the one hand,
that an interpretation of a class diagram for instance that specifies the static
structure is given by system models that also incorporate dynamic behaviour.
Analogously, a state machine diagram that specifies dynamic behaviour must be
interpreted with the structural aspects of data states and operation instances
etc. On the other hand, the partiality of viewpoint models implies that a model
will never represent a unique full system in this sense. Rather, the missing (com-
plementary) information may be interpreted arbitrarily, which yields a set of
interpretations that is admissible from the given point of view. Integration then
consists of relating these sets of locally admissible interpretations of the single
viewpoint models by the appropriate transformations. Their intersection then
yields information about their consistency (non–empty intersection), correspon-
dences (identical images of specification elements in common interpretations),
and global under-specification (more than one model in the intersection).

In this paper a semantic approach is sketched that supports these aims. It is
based on transformation systems that are transition systems where both states
and transitions are labelled by constructs representing the corresponding struc-
tural parts. These are data states (attribute values, etc.) and action structures
(event and action instances, sequences of actions, etc.) for the states and transi-
tions respectively. Composition operations and development relations are defined
for transformation systems corresponding to the requirements on an integrating
semantic domain discussed above. Then the interpretation of class diagrams,
state machine diagrams, and sequence diagrams and their integration is dis-
cussed. The corresponding UML definitions are used, but due to the expository
character of this paper only very few concepts are considered of course. More-
over, full formal semantics are not aimed at, nor shall completely new semantics
be defined in this approach. The idea is rather to use existing (formal) semantics
definitions as far as possible and reconstruct them in the integrating approach
presented here. The discussion on the semantics of the UML for instance is still
quite open, and there are lots of efforts to define precise semantics for specific
modelling languages of the UML. Quite a few approaches on the other hand
address an integrating semantics for all languages. In [4,6] an approach based
on stream processing functions is introduced, stressing also the set semantics
of viewpoint specifications. The approach presented in [28] is based on algebras
as system models. Both are to a certain extent biased in that either behaviour
or structure are stressed, whereas the complementary parts have to be added
or encoded into the offered constructs. One of the ideas of the transformation
system approach is to reconcile these approaches.

A bridge between the meta-modelling approaches and the se-
mantic approaches is built by the pUML group at present (see
http://www.cs.york.ac.uk/puml/), in particular via its activity in the meta

Integrating Semantics for Object–Oriented System Models 43

modelling language development (see [8]). Precise semantics both for individual
languages and the UML as a whole obtained by using other formal methods or
general theoretical investigations are incorporated into the realm of the UML by
meta-modelling them. In [15] for instance the formal definition of generalization
defined in [7] via a transformation of UML models to Z specifications is reflected
in a meta model extension. As mentioned above, further research is necessary
to obtain corresponding results especially for the dynamic models of the UML.

The paper is organized as follows. In the next section transformation systems,
their composition operations and development relations are introduced (see [19,
20] for more detailed presentations). The semantics for class diagrams and state
machine diagrams are discussed in Sect. 3 and Sect. 4 respectively by defining
the corresponding sets of admissible interpretations. For the latter also compo-
sition is discussed, i.e., the construction of systems from objects. An analogous
semantic investigation of sequence diagrams is sketched in Sect. 5. Section 6
concludes.

Acknowledgments. Thanks to the members of the project IOSIP at the TU
Berlin, especially Daniel Parnitzke, Jenni Tenzer, Aliki Tsiolakis, and Mesut
Özhan.

2 Transformation Systems

Transformation systems are used as formal mathematical models for the repre-
sentation of single dynamic entities. These can be whole systems, subsystems,
objects, threads, methods, etc., which means that the granularity of the model
is not prescribed by the semantic domain. Rather, the syntactic entities, i.e.,
the specifications according to their specific modelling techniques determine the
scopes and granularities of the models.

In their formal structure transformation systems reflect the very general dual-
ity of dynamic behaviour and static structure. Basically, a transformation system
is an extended labelled transition system, where both states and transitions are
labelled. That means, operational models are used as first semantic level where
an integration is aspired. In contrast with the denotational semantics introduced
in [1] this yields a more intuitive representation with explicit modelling of the
structural aspects, too. The behavioural part of a transformation system is rep-
resented by an unlabelled transition system, i.e. a transition graph, given by
sets of control states and transitions. These are abstractions, i.e., they are just
elements of a set whose construction does not matter. Control states model the
possibility of state inspections and synchronization points. Transitions model
the atomic, non–interruptible steps of the entity, which can also be used for the
synchronization with other systems in the sense of a synchronous execution of
their steps.

The transition system is labelled then by data states and action structures
for control states and transitions respectively, representing their corresponding
internal structures. It is important to note that these labels are not simply

44 M. Große–Rhode

given by some set, as in usual labelled transition systems. Instead, appropriate
presentation means like signatures for the data states are offered to represent
all structural aspects in the labels, both for states and for transitions. Thereby
also languages are given to state properties of the data states. These enriched
labels yield the required flexibility to focus on the behaviour or the structure
of some entity, depending on the concerned modelling technique that is to be
interpreted.

2.1 Data States, Transformations, and Data Spaces

The general definition of transformation systems is generic w.r.t. the concrete
formal structures used to represent data states and action structures. In the
most simple case a data state is conceived as a list of values for some given list
of attributes (of an object) or program variables (of a procedure or a program).
The signature that is the precondition for this definition is then given by a list
of typed syntactic entities (attributes, program variables), where a fixed set of
types is assumed to be given. This implicitly also yields the language for the
formulation of properties of data states.

Considering partial algebras of a given algebraic signature as data states
instead of lists of values allows the representation of further structural aspects.
For instance, built–in or user defined static data types with their operations can
be made explicit, mutable sets representing creation and deletion of elements,
or parameterized attributes like arrays or abstract queries as promoted in [12]
can be used. The algebraic signature also yields terms and equations or logical
formulas to denote elements and state properties of these data states. Within
the signature static parts like the built–in data types like integers and strings
can be designated. Non–static, mutable constants yield the syntactic entities
corresponding to attributes or program variables as in the list of values–data
states above. The interpretation of these constants in some algebra representing
a specific data state then yields the actual value of the attribute in this state.

Finally, arbitrary other structures can be used s data states, which is made
precise by considering institutions [18] as abstract logical frameworks for data
states. An institution provides signatures, and sets of sentences as well as models
classes (or categories) for the signatures. The latter are related by satisfaction
relations |=Σ that define whether a model M of some signature Σ satisfies a
sentence ϕ, denoted M |=Σ ϕ. Algebraic signatures with total or partial al-
gebras as models and equations or conditional equations as sentences with the
usual definition of satisfaction yield institutions for instance. Other examples are
the above mentioned lists of values for typed syntactic entities as signatures, or
other logical frameworks with signatures, sentences (formulas), models (struc-
tures), and satisfaction relations. In the context of semantics for object–oriented
models system snapshots are used as data state models of appropriate signatures,
representing sets of objects and their links (see Sect. 3).

Corresponding to the data states different action structures can be used as
transition labels in a transformation system, with appropriate signatures, too.
Often single actions are considered, either atomic ones given by some set or

Integrating Semantics for Object–Oriented System Models 45

parameterized actions like operation calls. In the latter case the signature in-
troduces the names of the operations and their parameter type lists. Usually
also an invisible action (often called ε or τ as in process calculi) is considered
to represent internal non–observable steps of the entity. If parallel execution of
actions shall be modelled within single steps sets of actions can be used, where
the empty set would then correspond to the internal action. Another encapsu-
lation is achieved by using strings of actions, representing the sequential but
non–interruptible sequence of actions within one step. This is particularly im-
portant in refinements, when an abstract representation of some computation
step is refined by a sequence of steps in a more concrete model. Other modelling
techniques (like statecharts for instance) use further structure to decorate tran-
sitions, given by triples of events, guards, and action sequences. The duality of
events and actions yields the basis for the composition of such models (cf. the
discussion in Sect. 4), analogous to the duality of input and output actions in
process calculi like CCS [25].

Data states and action structures together constitute the data space of a
transformation system, representing the complete space of possible states and
state changes. Therein the conjoined labels of a transition t : c → d of control
states c and d yield a data state transformation T : C ⇒ D, given by a commenc-
ing data state C (the data state label of c), an action structure T (the label of
t), and an ending data state D (the label of d). The transition t : c → d together
with this transformation T : C ⇒ D is considered as a step of the system.

2.2 Morphisms and Development Relations

Transformation systems can be related by appropriate morphisms, i.e., structure
preserving mappings. Following their formal structure such a morphism is given
by a graph homomorphism to relate the transition graphs and a forgetful func-
tor relating the data spaces. The latter is thereby induced by a corresponding
morphism of the data space signatures. These two mappings must be compatible
with each other in the sense that the labels are preserved up to restriction w.r.t.
the forgeful functor.

These morphism can now also be used to define development relations of
software models that are formally represented as transformation systems. An in-
jective morphism (with appropriate side conditions) S → S′ can be interpreted
as a reduction of S′ by S. The reducing system S may be for instance more
deterministic, i.e., closer to an implementation, and have a finer internal struc-
ture (additional private variables or attributes for instance). Composing the two
morphisms (transition graph homomorphism and data space forgetful functor)
in opposite directions an extension can be modelled. The extending system of-
fers further behaviour but preserves the behaviour of the given system, as in an
inheritance relation (as discussed in [17] for instance). Finally, closure operations
that yield, for instance, sequences of steps as atomic steps again can be used in
combination with the extension relation to define (sequential) refinements.

46 M. Große–Rhode

2.3 Composition of Transformation Systems

The definition of the composition of transformation systems as formal models
of local system components comprises two tasks. First the connection of the
components has to be defined, i.e., the architecture of the system is specified.
Second, the result of the application of the composition operation to the inter-
connected components has to be defined. That means, a single transformation
system must be given that represents a global view on the composed system.
Abstracting thus from the internal architecture of the system structural trans-
parency is supported.

A connection relation for two transformation systems is defined by an identi-
fication relation for their structures and a synchronization relation for their be-
haviours. The former states which parts of the data states and actions are shared
by the two systems. Shared (pervasive) static data types, shared variables, and
commonly executed actions (handshakes, event/action synchronizations, etc.)
are specified here. The synchronization relation states which control states are
compatible with each other in the sense that they can be entered by the two
components at the same time forming one global state. This contains a consis-
tency condition of synchronization and identification relation: synchronous con-
trol states must have identical shared data parts. The synchronization of steps is
represented by the synchronization relation on the transitions. Again, this must
be compatible with the transformational behaviour of the synchronized steps in
the sense that shared parts are transformed in the same way.

The global view of such a connection is then given as follows. The transition
graph is given by all synchronous pairs of control states and transitions of the two
components respectively. That means, it is a subgraph of the cartesian product
of the two local transition graphs. The signature of the global data space is
given by the disjoint union of the local signatures, factorized by the congruence
generated by the identification relation. Correspondingly, a global data space
of a control state (c1, c2) is given by the amalgamation (cf. [13]) of their local
data states. That means, each constant (value), function, and carrier set (type) is
taken from the local data state that provides it. If both contain the corresponding
item due to the sharing expressed by the identification relation the consistency
condition ensures that these coincide, i.e., the amalgamation is well defined. As
global action structure for a transition (t1, t2) the union of the local ones is used,
taking into account the identification of actions according to the identification
relation.

To specify more general architectures, given by arbitrary numbers of com-
ponents and connections, the categorical structure of transformation systems
and morphisms is used. In fact, each connection relation as described above
yields a cospan of morphisms of transformation systems. (Similar spans—called
channels—of formal system models are used in [34,16] to describe architectures
and superposition. The span-cospan duality is due to the fact that specifications
are considered as opposed to models.) The global view of a composed system
is then given by the pullback of the cospan, which also comprises the projec-
tions of the global view to the local components. The general mechanism for

Integrating Semantics for Object–Oriented System Models 47

the composition of transformation systems is accordingly given by representing
the architecture by a diagram of transformation systems, specifying the compo-
nents and their interconnections. The limit of such a diagram then represents
the global view and its projections to the local components as above.

3 Class Diagram Semantics

After this exposition of the semantic domain we can now discuss the interpreta-
tion of software system models.

A class diagram specifies the structure of a collection of objects. That means,
the attributes and the operations of the objects belonging to each of the classes
are introduced as well as the structural relationships of objects of different
classes. The latter are specified by inheritance relations and associations, in-
cluding aggregation and composition. The behaviour of the objects is in general
not constrained by a class diagram. However, object constraints can be added
that have an impact on the behaviour, too, for instance as pre and post condi-
tions of methods. Inside the UML these are formulated in the object constraints
language OCL [32].

In Fig. 1 a class diagram for objects of a network protocol is shown. (The
example is copied from the DHCP protocol [11] and its UML model in [30].)
Servers, clients and IP addresses are introduced. A client can discover a server
and request an IP address for its connection to the network from the server, pro-
vided the latter has offered it. The request is responded by an acknowledgment
(ack) or not (nak), depending on the actual availability of the address.

To define the formal semantics of a class diagram—in the sense discussed in
the introduction—the set of admissible interpretations as transformation systems
has to be given. Since class diagrams focus on the static structure we start with
the discussion of the data states and action structures and their signature.

Each single class C in the class diagram yields a data space signature ΣC as
follows. The class name and each type or class used for an attribute or an oper-
ation yield a sort name. The class sorts will be interpreted as sets of references
to objects of these classes in the data states of the objects. Each attribute of
the class C is translated to a constant of the corresponding sort in ΣC, and for
each operation op with return type t a constant ret op : t is introduced. This
is used in the data states of the active object to represent the return value of
the operation in the state after its execution. Finally, for each operation op with
parameter type list t1, . . . , tn an action name op : t1, . . . , tn is introduced into
the action signature of ΣC.

An association as between classes C and D with role names myD and myC
respectively (like the aServer - aClient association in Fig. 1) yields a further
data space signature Σas with two sorts C and D and a predicate a : C, D. The
action signature is empty. In each system state this models the links between
objects of classes C and D. Furthermore constants myD : set(D) and myC :
set(C) are added to the signatures ΣC and ΣD respectively, if navigation in the
corresponding direction is possible. These represent the references to objects that

48 M. Große–Rhode

Client

- myServer : Server
- myIPAddress : IPAddress

+ connect() : String
+ disconnect() : String
+ offer(offeredIP : IPAddress,
 server : Server)
+ ack(requestedIP : IPAddress
 server : Server)
+ nak()

aServer aClient

0..1 0..*

+ bind()
+ unbind()
+ getBinding() : Boolean

IPAddress

- bound : Boolean = false
- ipAddress : String

- hasFreeIP() : Boolean
- getFreeIP() : IPAddress

+ release(clientIP : IPAddress)
 server : Server)
+ request(requestedIP : IPAddress, client : Client,

Server

+ discover(client : Client)

Fig. 1. Class diagram of a network protocol

are linked to the concerned object via the association as. Finally an inheritance
relation of classes Super and Sub is mapped by adding the items of the signature
ΣSuper to ΣSub and relating the two by a signature inclusion morphism.

In this way the whole class diagram is translated into a diagram of data
space signatures (for details see [29]). Such a diagram is considered as the data
space signature for the transformation systems that constitute the formal se-
mantics of the class diagram. W.r.t. this signature now also the data states and
transformations of an admissible transformation system are discussed.

A data state represents the state of the whole set of objects in the system at
a certain point in time. Thus the following information has to be given.

– How many objects are there for each class?
– What is the state of each object, i.e., what are its attribute values and which

object references does it maintain?
– How are the objects linked?

Formally a system snapshot is given by a tuple (I, A, L, ref) defined as follows.

– I = (IC)C∈C is a family of sets IC indexed over the set C of classes in the
class diagram. The elements of IC are indexes to the objects of class C, that
can be considered as abstract object addresses.

– A = (AC
i)i∈IC ,C∈C is a family of partial algebras AC

i of signature ΣC for
each object index i ∈ IC and class C ∈ C. The algebra AC

i represents the
actual state of the object i of class C by the values of its attributes, its sets
of references, etc. The association i ; AC

i yields the object state associated
to the index (address) i.

Integrating Semantics for Object–Oriented System Models 49

– For each association as a partial algebra L of signature Σas is given, whose
carrier sets are given by the object index sets IC and ID. Thus L is basically
given by a relation on these object index sets, representing the links of objects
in the actual state.

– For each algebra AC
i in A and each class sort D that occurs in ΣC a partial

mapping ref C
i,D : AC

i,D ◦−→ ID is given, collected in the family ref . This
represents the values of the object references the object i maintains internally
in that it yields an object index (address) ref C

i,D(r) ∈ ID of the right type
for each object reference r inside i. Thereby it is required moreover that each
object has a reference to itself, i.e., for each i ∈ IC there is a distinguished
reference self ∈ AC

i,C with ref C
i,C(self) = i.

Note that the internal object references are elements of the algebra AC
i ,

whereas the object indexes obtained by the ref –functions reside outside AC
i .

A system snapshot conforming to the class diagram shown in Fig. 1 is shown
in Fig. 2. Two Server–objects, two IPAddress–objects, and one Client–object

130.149.25.20
false

130.149.25.21
true

S2

{ ip21 }

S1

{ ip20 }

IP2

C1

A*

{ c21 }
{ 0 }
{ 2 }
{ s }

{ }
{ 0 }
A*, B A*, B

{ 0 }

IP1

{ }
{ip20}

{c21}
{ip21}

2
s

{s}

A*, B A*, B
{ 0 } { 0 }

{(S2,C1)}

{(S1,IP1),(S2,IP2)}

L1

L2

-
-

-
- -

-

- -

Fig. 2. Object configuration for the network protocol

50 M. Große–Rhode

are shown. The corresponding index sets are IServer = {S1, S2}, IIPAddress =
{IP1, IP2}, and IClient = {C1} respectively. The graphical presentation of an
object state as partial algebra is explained in Fig. 3 that shows the Client-
signature and object C1 as its instance. The association states are depicted
in Fig. 2 by the algebras (relations) L1 and L2 (the carrier sets are omitted,
since they are given by the index sets). The ref –functions realizing the links by
dereferencing are indicated by the arrows from the reference sets to the objects.
Note that the link of C1 and IP2 is not supported by an association, but by the
attribute myIPAddress : IPAddress.

A*
{0}
{2}
{s}

2
s

-
-

String
Client
IPAddress
Server

ret_connect :String
ref_diconnect : String

myServer : Server
myIPAddress : IPAddress

aServer : Set(Server)

ClientS

{s}

C1

sorts

functions attributes

return values

associations

Fig. 3. State of the Client-object C1 as partial ΣClient-algebra

The ingredients of a system snapshot have to obey the following consistency
conditions.

– For each pair (i, i′) in an association algebra L there must be a reference
r in the object AC

i such that ref C
i (r) = i′ if navigation is possible in this

direction, and vice versa.
– If i ∈ ISub for some class Sub which is a subclass of a class Super then also

i ∈ ISuper and the reduct of ASub
i to the smaller signature ΣSuper coincides

with ASuper
i . That means, each object of the subclass can be considered also

as an object of the superclass, via the same index in another index set.
– Association multiplicities must be respected and for each (component) object

of a class with a composition association to a composite class there must be
a composite object it belongs to.

This defines all admissible data states of a transformation system for the class
diagram.

An action structure for a transformation step from one system snapshot to
another one is given by a set of operation calls. Thus parallel actions are used,

Integrating Semantics for Object–Oriented System Models 51

corresponding to the possible concurrency of the objects in the system. However,
each operation call must be decorated with a target that allows to determine the
object that executes the operation. For that purpose the object indexes are em-
ployed, using the common dot notation i.op(p1, . . . , pn) to indicate that object i
is called to execute its operation op with the actual parameters p1, . . . , pn. With
system snapshots as data states and sets of directed operation calls as action
structures a class diagram yields a data space, i.e., a space of possible system
states and state transformations. Since there is no behaviour specification the set
of admissible interpretations of the class diagram is given by all transformation
systems with this data space. That means, arbitrary transition graphs can be
chosen with labels in this data space.

4 State Machine Semantics

In this section we consider a UML modelling technique for the intra-object be-
haviour. State machines specify how objects of a given class react to operation
calls (or other events in their environment).

Basically, a state machine is a Mealy automaton with events as input and
actions as output. Its transitions may be constrained in addition by guards, i.e.,
boolean expressions specifying conditions on the data state of the object w.r.t.
the parameters of the operation call. State machines may use several further
features, like hierarchical states, parallel regions, history markers etc. Their se-
mantics has been defined in several papers by reducing them to some kind of
labelled transition system (see for instance [24,14,10]), corresponding to the dif-
ferent variants of state charts and state machines (see [31] for a survey). Thus
as a starting point for the definition of the transformation system semantics we
may assume a representation of a first level operational semantics in terms of
appropriate Mealy automata (with guarded transitions) already.

The basic idea of the interpretation of state machines by transformation
systems is to add the data states and action structures in all possible ways,
dual to the interpretation of class diagrams. Although actions are used in state
machines their effect on the data states of the objects is not specified. That
means, a state machine refers to data states and data state transformations via
the actions and the guards, but it does not specify them. This gives rise to a set
of admissible interpretations again.

The first step in the construction of a transformation system for a state
machine is to add data states D to the state machine states s, i.e., to build pairs
(s, D). Such a data state D = (A, I, ref) is given by

– an algebra A representing the state of the concerned object, with signature
ΣC induced by the corresponding class,

– a family I = (IC)C∈C of object indexes as in a system snapshot; these may
be used as object parameters in events and actions,

– ref –functions as above, that point to the object indexes associated by the
object to its internal references.

52 M. Große–Rhode

Note that references can be dereferenced, but the object at this address cannot
be accessed. That means, D represents the state of one object, including a part
of the surrounding system structure, but not the whole system as in a system
snapshot. Thus D can be considered as an incomplete system snapshot with
only one object and several unbound object indexes. The self –reference, its cor-
responding index, and the association with the object state A thereby represent
state machine instances. That means, different data states can be defined using
different object index sets that then represent different instances of the same
state machine, distinguished by the indexes.

The data state as data space label of a control state (s, D) within a transfor-
mation system for the state machine is given by the projection to D. (A similar
construction of states as pairs of control states and data states has been used in
the abstract object model introduced in [33].)

The second step of the construction of admissible transformation system
interpretations of state machines consists in the definition of the transitions.
For that purpose consider first a transition e[g]/a : s1 → s2 in the state
machine with event/operation call e = op(x1, . . . , xn) with formal parame-
ters x1, . . . , xn, guard/boolean expression g, and a synchronous operation call
a = op(p1, . . . , pn) to another object as action, with actual or formal parameters
p1, . . . , pn. Then

– for each data state D1 that satisfies those conditions in g that only refer to
the given object (self),

– and each data state D2

there may be a transition e+[g−]/a+ : (s1, D1) → (s2, D2) in the transition
graph of a transformation system for the state machine, where

– e+ = op(a1, . . . , an) is any instantiation of e by actual parameters,
– g− is a corresponding instantiation of the remaining conditions of g that

have not yet been evaluated, i.e., the ones that refer to other objects via
navigation,

– a+ is the instantiation of a according to the one of e+.

The set of event instances e+ represents the possible operation call instances
as non-determinism in the transition graph. The actual calls will then be se-
lected by other objects from this set. This selection is technically obtained by
the composition of the corresponding state machines resp. the corresponding
transformation system. The technique of representing input actions/events as
sets of choices and communication as selection from this choice is adapted from
process calculi like CCS [25] and LOTOS [5].

The effect of the execution of op(a1, . . . , an) on the data state of the object is
represented by the data states D2. Since the operation semantics is not specified
in the state machine any data state D2 is admissible. The operation may be
non-deterministic, represented by transitions with the same event instance e+

to different output states. For completeness it is required that in each admissible
transformation system there must be a transition for each event instance that
satisfies the guard.

Integrating Semantics for Object–Oriented System Models 53

In addition to the transitions induced by the transitions of the state machine
a transformation system for the state machine should have formal idle transitions
(s, D) → (s, D) for each state (s, D). The idle transitions allow the definition of
global system steps as tuples of steps of the local components. Components not
taking part in a global step formally perform an idle step then (cf. Sect. 4.1).

The action structure of the transition e+[g−]/a+ : (s1, D1) → (s2, D2) is
given by the whole triple e+[g−]/a+, whereby the incoming each operation callis
prefixed by the index of the active object. Each event thus obtains the index of
the object instantiating the state machine and executing the incoming operation
calls. The complete information in the action structure is needed later for the
composition with other transformation systems for state machines. The action
structure of an idle transition is the internal action (empty set or τ).

For a transition e[g]/a1; . . . ; ak : s1 → s2 in the state machine with a se-
quence of asynchronous operation calls a1; . . . ; ak intermediate states are intro-
duced to split the local operation execution (e) from the subsequent calls to
other objects (see Fig. 4). The latter cannot change the data state of the given
object, due to encapsulation, since they do not belong to the operations of the
class.

s1
e[g]/a // s2 s1

e[g]/a1;... ;ak // s2

(s1, D1)
_

���
�
�

e+[g−]/a+
// (s2, D2)

_

���
�
�

(s1, D1)
_

���
�
�

e+[g−] // •_

���
�
�

a+
1 // · · · a+

k // (s2, D2)
_

���
�
�

D1
i.e+[g−]/a+

+3 D2 D1
i.e+

+3 D2
a+
1

+3 · · ·
a+

k

+3 D2

Fig. 4. Synchronous and asynchronous actions with data space attachments

Consider as example the state machines of the Server and IPAddress classes
shown in Fig. 5, that are already Mealy automata. The names of the transitions
represent the different behaviours of the public operations of these classes, de-
pending on the control states of the objects and guards checking the parameters.
The transition request1 from state hf = Has free IPAddresses to hf for instance
has the label

request(reqIP , client , server)[(server = self) and (reqIP .getBinding = false)] /

reqIP .bind(); client .ack(reqIP , self) .

(The complete state machine as well as the one for the Client–class can be found
in [30]). Transitions in a transformation system for the Server–state machine

54 M. Große–Rhode

Has free IP addresses

Has no free IP addresses

Bound

Unbound

bindunbind

release1

request3

request4

getBinding

getBinding

request2

release2

request1discover

Fig. 5. State machines for Server and IPAddress objects

corresponding to the request1 transition are shown in the central column of
Fig. 6. Thereby the local data state DS2 is given by the state of the object S2 as
shown in Fig. 2, with the object index sets {S1, S2}, {IP1, IP2}, {C1} and also
the ref -functions for S2 as in Fig. 2. Note that in this example the operation
request does not change the state of the server, but only triggers further actions.

(u, D0
IP2)

idle

��

(hf, DS2)

request(IP2,C1,S2)

��
[IP2.getBinding()=false]

��

(sel, D0
C1)

/S2.request(IP2,C1,S2)

��
(u, D0

IP2)

bind

��

(hf, DS2)

/IP2.bind

��

(req, D0
C1)

idle

��
(b, DIP2)

idle

��

(hf, DS2)

/C1.ack(IP2,S2)

��

(req, D0
C1)

ack(IP2,S2)

��
(b, DIP2) (hf, DS2) (conf, DC1)

Fig. 6. Synchronous steps of IPAddress, Server, and Client objects

4.1 Composition of State Machines

The collaboration of objects whose behaviour is specified by state machines is
induced by the mutual operation calls, modelled as events and actions. Seman-
tically the corresponding composition of the state machines can be represented
by the composition of transformation systems as discussed in Sect. 2.3. For that
purpose an identification and a synchronization relation must be derived, which
then yields the interconnection of the transformation systems as well as a global
view of the common behaviour of the composition as a single object.

Consider for that purpose the steps of the IPAddress, Server, and Client–
objects shown in Fig. 6. With the identification relation the sharing of pervasive

Integrating Semantics for Object–Oriented System Models 55

static data types like Strings and Booleans is expressed, i.e., they are assumed
to be identical for all objects. There are no shared attributes or actions, corre-
sponding to the object paradigm.

States (s, D) and (s′, D′) are synchronous if the object index sets I and I ′

in the data states D and D′ coincide, i.e., each object refers to the same system
environment. (Furthermore the interpretations of the shared static data types
in the objects must coincide.) Since each object has a reference to itself the
corresponding index i is already associated with the object state Ai. Together
with the union of the ref –functions given for each object in its data state D this
yields the complete set of links in the composed system.

Transitions are synchronous if their commencing and ending states are syn-
chronous and one contains an action a = i.op(p1, . . . , pn) and the other one
contains the complementary event e = i.op(p1, . . . , pn). That means, the call
action is synchronized with the receipt of the call. If the operation call is syn-
chronous this means that the induced actions of the call have to be performed
in the same step and the calling object has to wait until these are finished. In
an asynchronous operation call the calling object just delivers its call to finish
the step. The actions take place in the subsequent steps. Beyond these synchro-
nizations the idle transitions are synchronous with all those transitions whose
commencing and ending states are synchronous with the state of the idle tran-
sition. In Fig. 6 steps of the IPAddress, Server, and Client–objects IP2, S2,
and C1 are shown. In state D′

IP2 the value of the bound attribute is false, after
the execution of the bind–operation in state DIP2 it is true. In the initial state
DC1 of the client the attributes myIPAddress and myServer are yet undefined.
It sends a request to server S2 (initiated by an offer not shown in this cut), waits
for an acknowledgment, and updates its attributes accordingly. The states DIP2,
DS2, and DC1 are the incomplete system snapshots corresponding to the objects
IP2, S2, and C1 as shown in Fig. 2. According to the definition given above all
transitions on the same horizontal layer are thus synchronous with each other.

This composition and synchronization of state machines also allows a com-
parison with the class semantics. Both sets of admissible interpretations are now
sets of transformation systems of the same data space (signature) except that
the action structures of the composed state machine transformation system still
contain the communication information (guards and actions). If a composition
is considered as complete and shall be integrated with the class semantics the
additional composition information has to be hidden, i.e., the labels have to
be projected to the event components. The intersection of the class diagram
and composed state machine semantics then yields the interpretations that are
admissible from both points of view. This excludes for instance all class interpre-
tations that do not offer the operations in the sequences specified by the state
machines, and all (composed) state machine interpretations where a client has
more than one server or IP–addresses are not bound to servers. These constraints
are specified in the class diagram but not in the state machine diagram.

Finally, an abstraction of composed systems given by object collaborations
via state machine compositions or as class diagram semantics can be given, based

56 M. Große–Rhode

on the composition operation for transformation systems. In the global view, i.e.,
the result of the composition operation, the composed system of Fig. 6 looks like
a single object. Its class (structure) is given by the union of the three classes
Server, IPAddress and Client (i.e., the union of their attributes, associations
represented as attributes, and their operations). Each state of the global ob-
ject is given by the amalgamation of the states of the local objects, including
the internal object index sets as a further sort. Its actions (operation execu-
tions) are given by the union of the local actions. According to the internal-
ization of the structure the active objects are no longer visible, i.e., the object
indexes are hidden. The part of the network behaviour of the object composi-
tion S2, IP2, C1 for example is thus given by the sequential operation executions
request(IP2, C1, S2); bind; ack(IP2, S2).

5 Sequence Diagram Semantics

Sequence and collaboration diagrams in the UML specify the interaction of ob-
jects, i.e., the inter-object behaviour, via the exchange of messages. Sequence
diagrams graphically stress the temporal order, whereas collaboration diagrams
show the object structure corresponding to the class diagram. Semantically they
are equivalent. They can be integrated into the transformation system framework
easily, following the constructions and interpretations for collections of objects
in the previous sections.

As starting point for the definition of the set of admissible interpretations we
assume again a transition system semantics, as given for instance in [9,22] for
life sequence charts that are a conservative extension of sequence diagrams.

For the construction of the transformation system semantics consider for
example the sequence diagram in Fig. 7. This yields system snapshots and
transformation steps as follows. The object instances yield object index sets
IClient = {client} and IServer = {server}. Arbitrary data states for the ob-
jects, i.e., ΣClient and ΣServer–algebras, and links (ref -functions) supporting
the message exchanges, can be added. These are not constrained by the se-
quence diagram. Each receipt of a message (=operation call) indicates a step
of the system, given by the execution of the corresponding action. (For sake
of brevity a sequential order of messages with asynchronous operation calls
and message transfer is considered as example here.) Analogous to the con-
struction of state machine transformation systems these transitions can be cou-
pled with arbitrary data state transformations. The corresponding action la-
bels are given by the messages of the sequence diagram, prefixed by the object
instance receiving the message. We obtain thus a sequence of transformation
steps client.connect(); server.discover(client); server.getFreeIP (); . . . describ-
ing a specific view of the system.

For an integration of the set of admissible interpretations of sequence dia-
grams obtained in this way with the class diagram semantics the object instance
names have to be unified. For example, the instance names client and server
used in the sequence diagram should correspond to C1 and S2 chosen in an-

Integrating Semantics for Object–Oriented System Models 57

User

ip = getFreeIP()
offer(ip,server)

request(ip,client,server)

ack(ip,server)

"successfully_connected"

Client
client / aClient:

Server
server / aServer:

connect
discover(client)

Fig. 7. A sequence diagram for the network protocol

other model. This is supported by the definition of system snapshots in the class
diagram transformation systems that may comprise arbitrary object index sets.
In this way correspondences between models developed independently of each
other (by different persons at different sites) for example can be established.

To compare sequence diagrams with state machine diagrams and check their
consistency an appropriate composition of state machine transformation systems
has to be considered, corresponding to the instances defined in the sequence
diagram. Vice versa, projections from the sequence diagram transformation sys-
tems to the single state machine transformation systems can be defined. The
existence of a projection then proves that the sequence diagram is consistent
with the state machines (see [27] for a more detailed discussion). That means,
the scenario specified by the sequence diagram conforms to the capabilities of
the objects as specified by their state machines.

6 Conclusion

Transformation systems have been introduced as elements of an integrating se-
mantics for object oriented system models as given by the different diagrams
of the Unified Modeling Language for instance. According to the separation of
concerns realized by the viewpoint models each one only provides partial infor-
mation about the system. Semantically this under-specification is reflected in
defining sets of admissible interpretations for each model. These are given by
transformation systems as formal mathematical representations of whole sys-
tems, incorporating their structure, behaviour, and internal interaction. The
composition operations for transformation systems support the composition of
components or subsystems, as for example the connection and collaboration of
objects as state machine instances, as well as the abstraction from the internal

58 M. Große–Rhode

structure. That means, structural transparency is supported in the formal model
much more than in most software modelling techniques. Furthermore, refinement
and other development operations and relations have been defined for transfor-
mation systems. Using this integrating formal semantics these can be employed
to formulate corresponding refinement relations for software system models as
rules referring to the syntax of the languages directly.

The heterogeneity of the models is addressed by using one common semantic
domain on the one hand, and semantic transformations corresponding to the
mutual relationships of the models on the other hand. For example, state machine
transformation systems that represent single object instances can be composed
to obtain system models. These can then be compared with interpretations of
sequence diagrams, where the number of objects is fixed. Thereby the structure
that has been needed for the composition (like the distinction of events and
actions and guards that may refer to the other components) must be hidden
by projecting to the relevant parts. Vice versa, the system view taken by class
diagrams comprises system of several objects and (degenerate) systems of single
objects, which allows a comparison with the other types of diagrams.

The semantic interpretation in a common domain supports the definition of
correspondences between different models that may have been developed inde-
pendently of each other. At the same time, the intersection of the (appropriately
transformed) sets of admissible interpretations yields a formal definition of con-
sistency (corresponding to the correspondences established before). Note that
due to the formal approach the sets are large in general, since informal mean-
ings induced by the names used in the models cannot be taken into account.
To reduce these further specification means may be considered, like object con-
straints in the UML. The corresponding abstract syntactic means for the repre-
sentation of properties of transformation systems are introduced in [20], where
also preservation results for development relations and composition operations
are discussed.

The aim of these investigations conforms to the efforts of making more pre-
cise software systems modelling languages as supported by the pUML group
for instance. Although the style and presentation in the orignal contributions is
mathematical and thus does not conform to the UML standards, results can be
achieved that are relevant and could be incorporated in appropriate meta model
extensions. This could be one way to transfer theoretical results into improved
software systems development standards.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. E.A. Boiten, H. Bowman, J. Derrick, P.F. Linington, and M.W.A. Steen. Viewpoint

consistency in ODP. Computer Networks, 34(3):503–537, 2000.
3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language, User

Guide. Addison-Wesley, 1998.
4. R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Systems, views and

models of UML. In Martin Schader and Axel Korthaus, editors, The Unified Mod-
eling Language, Technical Aspects and Applications, pages 93–109. Physica Verlag,
Heidelberg, 1998.

Integrating Semantics for Object–Oriented System Models 59

5. Brinksma, E. (ed.). Information processing systems – Open Systems Interconnec-
tion – LOTOS – A formal description technique based on the temporal ordering
of observational behaviour. ISO 8807, 1989. International Standard.

6. M. Broy and K. Stolen. Specification and Development of Interactive Systems.
FOCUS on Streams, Interfaces, and Refinement. Springer Verlag, 2001.

7. J.-M. Bruel and R.B. France. Transforming UML models to formal specifications.
In P.-A. Muller and J. Bezivin, editors, UML’98–Beyond the Notation. Springer
LNCS, 1998.

8. T. Clark, A. Evans, and S. Kent. The metamodelling language calculus: Founda-
tional semantics for UML. In H. Hussmann, editor, Proc. Fundamental Approaches
to Software Engineering (FASE 2001), LNCS 2029, pages 17–31. Springer Verlag,
2001.

9. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. In
P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proc. 3rd IFIP Int. Conf. on
Formal Methods for Open Object–Based Distributed Systems (FMOODS’99), pages
293–312. Kluwer Academic Publishers, 1999.

10. W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time seman-
tics of STATEMATE designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli,
editors, Proc. COMPOS’97, volume 1536 of LNCS, 1997.

11. R. Droms. Dynamic host configuration protocol. IETF, Networking Group, March
1997. Available at http://www.ietf.org/rfc/rfc2131.txt.

12. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML.
The Catalysis Approach. Object Technology Series. Addison Wesley, 1999.

13. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer Verlag, Berlin, 1985.

14. R. Eshuis and R. Wieringa. Requirements-level semantics for UML statecharts. In
S.F. Smith and C.L. Talcott, editors, Proc. FMOODS 2000, IFIP TC6/WG6.1,
pages 121–140. Kluwer Academic Publishers, 2000.

15. A. Evans and S. Kent. Core meta-modelling semantics of UML: The pUML ap-
proach. In B. Rumpe and R.B. France, editors, Proc. 2nd International Conference
on the UML. Springer LNCS 1723, 1999.

16. J. Fiadeiro and T. Maibaum. Temporal theories as modularisation units for con-
current system specifications. Formal Aspects of Computing, 4(3):239–272, 1992.

17. C. Fischer and H. Wehrheim. Behavioural subtyping relations for object-oriented
formalisms. In T. Rus, editor, Proc. Algebraic Methodology and Software Technol-
ogy (AMAST 2000). Springer LNCS 1816, 2000.

18. J. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39(1):95–146, 1992.

19. M. Große–Rhode. A compositional comparison of specifications of the alternating
bit protocol in CCS and UNITY based on algebra transformation systems. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proc. of the 1st International
Conference on Integrated Formal Methods (IFM’99), York, UK, 28–29 June 1999,
pages 253–272. Springer Verlag, 1999.

20. M. Große–Rhode. Semantic integration of heterogeneous formal specifications via
transformation systems. Technical report, TU Berlin, 2001.

21. Object Management Group. Unified Modeling Language – version 1.3, 2000. Avail-
able at http://www.omg.org/uml.

22. J. Klose and H. Wittke. An automata based interpretation of life sequence charts.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2001), pages 512–527. Springer LNCS 2031, 2001.

http://www.omg.org/uml

60 M. Große–Rhode

23. P.F. Linington. Introduction to the open distributed processing basic reference
model. In J. de Meer, V. Heymer, and R. Roth, editors, Proceedings IFIP
TC6/WG6.4 International Workshop on Open Distributed Processing, pages 3–13,
1991.

24. G. Lüttgen, M. von der Beeck, and R. Cleaveland. A compositional approach to
statecharts semantics. Technical Report NASA/CR-2000-210086, ICASE Report
No. 2000-12, Langley Research Center, 2000.

25. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
26. ITU-T recommendation X.901 – X.904, ISO/IEC standard 10746. Reference Model

of Open Distributed Processing, 1994.
27. M. Özhan. Semantische Konsistenzanalyse von UML Sequenz- und Zustandsdia-

grammen. Technical Report 2001/07, TU Berlin, 2001.
28. G. Reggio, M. Cerioli, and E. Astesiano. Towards a rigoruos semantics of UML

supporting its multiview aproach. In H. Hussmann, editor, Proc. Fundamental
Approaches to Software Engineering (FASE 2001), LNCS 2029, pages 171–186.
Springer Verlag, 2001.

29. J. Tenzer. Translation of UML class diagrams into diagrams of transformation
specifications. Technical Report 2000/15, TU Berlin, FB Informatik, November
2000.

30. A. Tsiolakis. Semantic analysis and consistency checking of UML sequence dia-
grams. Technical Report 2001/06, TU Berlin, 2001.

31. M. von der Beeck. A comparison of Statechart variants. In H. Langmaack, W.-P.
de Roever, and J. Vytopil, editors, Third International School and Symposium on
Formal Techniques in Real-time and Fault-tolerant Systems (FTRTFT’94), pages
128–148. Springer LNCS 863, 1994.

32. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1998.

33. M. Weber. Abstract object systems – a three-layer model of concurrent real-time
object systems. Technical Report 97/12, TU Berlin, 1997.

34. M. Wermelinger and J.L. Fiadeiro. Algebraic software architecture reconfiguration.
In Proc. Software Engineering ESEC/FSE’99, pages 393–409. Springer LNCS 1687,
1999.

Modelling with Partial Orders – Why and Why
Not?

Extended Abstract

Mogens Nielsen

BRICS,? Dept. of Computer Science, University of Aarhus, DK

Abstract. Labelled partial orders in concurrency are a natural and pow-
erful modelling formalism. Recently, there has been a renewed focus on
such models arising in various areas of applications. We survey some re-
sults on interesting problems for partial order based models, focussing
on decidability issues.

Summary

Within Concurrency a multitude of models have been suggested and studied,
for a survey see [WN95]. In the report from the Concurrency Working Group
from ACM Strategic Directions in Computing Research [SDCR], these models
were classified on the basis of the stances they adopt with respect to three basic
dichotomies:

– Intensionality versus Extensionality
– Interleaving versus True Concurrency
– Branching versus Linear Time

Most of the successful research within concurrency has been dealing with
interleaving models, resulting in a great deal of insight and practical tools for
reasoning about concurrent systems. However, a substantial number of results
have been obtained also on so-called true concurrency or noninterleaving models.
Recently, there has been a renewed focus on such models arising in quite differ-
ent areas of applications. It turns out that for most of these applications, the
extensional model is formally some version of labelled partial orders (pomset lan-
guages [P86]) or event structures [WN95]), whereas the intensional models come
in a variety of different shapes (following the interpretation of intensionality and
extensionality from the report mentioned above).

One such example is Message Sequence Charts [MSC97], a widely used for-
malism for describing system requirements at an early stage of development.
MSC’s occur in a number of different software methodologies, and have been
used extensively in e.g. the development of distributed telecommunication soft-
ware. Formally, an MSC is a labelled partial order. The elements of the partial

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 61–63, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

62 M. Nielsen

order represent events in the form of sends and receipts of messages between
different sequentially computing agents p andq , indicated by the labelling p!q
and p?q respectively. The partial order represents the causal order of activity
induced by the sequential ordering of events of the individual agents, combined
with the ordering imposed by the sends and receipts of individual messages. The
most commonly used intensional counterpart of MSC’s is a so-called Message
Sequence Graph, a finite graph generating a collection of MSC’s. They are a
powerful formalism with the consequence that many interesting questions on
their behaviours (MSC’s) become undecidable or untractable, see e.g. [AY99].
Recently, promising attempts have been made in order to identify a notion of reg-
ular MSC languages along with an associated set of reasoning tools [HMKT00].

Another example is recent work on partial order based models for security
protocols, exemplified by the strand space model from [FHG98], the multiset
rewriting model from [CDMLS00], and the Petri net model from [CW01]. As
with MSC’s the underlying extensional model used is a version of labelled par-
tial orders, where the events are again representing the sends and receipts of
messages amongst sequentially communicating agents. The agents either behave
according to given security protocols, or play the role of intruders following
certain (restricted) capabilities with respect to e.g. encryption and decryption.
Compared with MSC’s, the scenarios are simple, since the authentication and
secrecy protocols studied are most often of bounded length. However, the la-
belling is relatively more complex, taking the structure of encrypted messages
into account. the causal dependency amongst

In both examples above, the partial orders in modelling typically arise
in an attempt to represent the causal dependency amongst events of com-
municating asynchronous sequential agents. The same phenomenon occurs in
models for VLSI design, where it has been observed that keeping one global
clock synchronised is usually the bottleneck in a processor design. Hence new
architectures have been proposed and successfully applied, notably the so-
called Globally Asynchronous and Locally Synchronous (GALS) architecture
of [MHKEBLTP98]. A formal timed and partial order based model of the GALS
principles has been studied recently in [NSS01].

So, labelled partial orders occur in many application areas as a natural mod-
elling framework, and the reasoning about such models typically involves rea-
soning about the possible past and future of individual events in a computation,
with the interpretation that past and future is relative to the causal structure
of the computation. As indicated above, there is unfortunate evidence from the-
oretical research on such models that many of the natural questions to ask on
partial order behaviours (of corresponding intensional models) easily become
undecidable or untractable. This is the case for typical problems like model
checking with respect to logics expressing partial order behaviours [AP99] and
equivalence checking [JN00]. We illustrate this by a survey of results, including
the identification of useful special cases which allow algorithmic reasoning.

Acknowledgements. Some of the results reported are based on joint work
with Marcin Jurdcinski, Vladimiro Sassone, Jiri Srba, and Glynn Winskel.

Modelling with Partial Orders – Why and Why Not? 63

References

[SDCR] ACM Strategic Directions in Computing Research, Concurrency
Group Report, www.acm.org/surveys/sdcr, 1997.

[AP99] R. Alur, D. Peled. Undecidability of Partial Order Logics. Infor-
mation Processing Letters 69, 137–143, 1999.

[AY99] R. Alur, M. Yannakakis. Model checking of message sequence
charts. In Proceedings of CONCUR’99, Lecture Notes in Computer
Science 1664, Springer-Verlag, 114–129, 1999.

[CDMLS00] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In proceedings
of 12-th IEEE Computer Security Foundations Workshop, 55–69,
1999.

[FHG98] F. J. T. Fabrega, J. C. Herzog, J. D. Guttman. Strand Spaces:
Why is a security protocol correct? In Proceedings of 1998 IEEE
Symposium on Security and Privacy, 160–171, 1998.

[CW01] F. Crazzolara, G. Winskel. Events in security protocols. BRICS
Report Series RS-01-13, University of Aarhus, Denmark, 2001.

[HMKT00] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thi-
agarajan. On Message Sequence Graphs and finitely generated reg-
ular MSC languages. In Proceedings of ICALP’00, Lecture Notes
in Computer Science 1853, Springer-Verlag, 675–686, 2000.

[JN00] M. Jurdcinski, M. Nielsen. Hereditary history preserving bisimula-
tion is undecidable. In Proceedings of STACS’00, Lecture Notes in
Computer Science 1770, Springer-Verlag, 358–369, 2000.

[MHKEBLTP98] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Berg,
D. Lindqvist, H. Tenhunen, A. Postula. Evaluating benefits of glob-
ally asynchronous locally synchronous VLSI architecture. In Proc.
16th Norchip, 50–57, 1998.

[MSC97] ITU–TS Recommendation Z.120: Message Sequence Chart (MSC).
ITU–TS, Geneva, 1997.

[NSS01] M. Nielsen, V. Sassone, J. Srba. Towards a notion of distributed
time in Petri nets. To appear in Proceedings of International Con-
ference on Application and Theory of Petri Nets 2001, Lecture
Notes in Computer Science, Springer-Verlag, 2001.

[P86] V. R. Pratt. Modelling concurrency with partial orders. Interna-
tional Journal of Parallel programming, 15(1), 33–71, 1986

[WN95] G. Winskel, M. Nielsen Models for Concurrency In Handbook of
Logic in Computer Science, vol 4 , eds. S. Abramsky, D. M. Gabbay,
T. S. E. Maibaum, Oxford University Press, 1–148, 1995.

Theoretical Aspects of Evolutionary Algorithms

Ingo Wegener?

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract. Randomized search heuristics like simulated annealing and
evolutionary algorithms are applied successfully in many different situa-
tions. However, the theory on these algorithms is still in its infancy.
Here it is discussed how and why such a theory should be developed.
Afterwards, some fundamental results on evolutionary algorithms are
presented in order to show how theoretical results on randomized search
heuristics can be proved and how they contribute to the understanding
of evolutionary algorithms.

1 Introduction

Research on the design and analysis of efficient algorithms was quite successful
during the last decades. The very first successful algorithms (Dantzig’s simplex
algorithm for linear programming and Ford and Fulkerson’s network flow al-
gorithm) have no good performance guarantee. Later, research was focused on
polynomial-time algorithms (see Cormen, Leiserson, and Rivest (1990)) and this
type of research has been extended to approximation algorithms (see Hochbaum
(1997)) and randomized algorithms (see Motwani and Raghavan (1995)). Indeed,
designing and implementing an efficient algorithm with a proven performance
guarantee is the best we can hope for when considering an algorithmic pro-
blem. This research has led to a long list of efficient problem-specific algorithms.
Moreover, several paradigms of algorithms have been developed, among them
divide-and-conquer, dynamic programming, and branch-and-bound. There are
general techniques to design and analyze algorithms. However, these paradigms
are successful only if they are realized with problem-specific modules. Besides
these algorithms also paradigms for the design of heuristic algorithms have been
developed like randomized local search, simulated annealing, and all types of
evolutionary algorithms, among them genetic algorithms and evolution strate-
gies. These are general classes of search heuristics with many free modules and
parameters. We should distinguish problem-specific applications where we are
able to choose the modules and parameters knowing properties of the considered
problem and problem-independent realizations where we design a search heuri-
stic to solve all problems of a large class of problems. We have to argue why
one should investigate such a general scenario. One main point is that we obtain
? This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part

of the Collaborative Research Center “Computational Intelligence” (531).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 64–78, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Theoretical Aspects of Evolutionary Algorithms 65

the frame of a general search heuristic where some details may be changed in
problem-specific applications. Moreover, there are at least two situations where
problem-independent algorithms are of particular interest. First, in many appli-
cations, one has not enough resources (time, money, specialists,. . .) to design a
problem-specific algorithm or problem-specific modules. Second, often we have
to deal with “unknown” functions which have to be maximized. This scenario is
called black box optimization. It is appropriate for technical systems with free
parameters where the behavior of the system cannot be described analytically.
Then we obtain knowledge about the unknown function only by “sampling”.
The t-th search point can be chosen according to some probability distribution
which may depend on the first t−1 search points x1, . . . , xt−1 and their function
values f(x1), . . . , f(xt−1). One main idea of all randomized search heuristics is
to “forget” much of the known information and to make the choice of the pro-
bability distribution only dependent on the “non-forgotten” search points and
their f -values.

Our focus is the maximization of pseudo-boolean functions f : {0, 1}n → R

which covers the problems from combinatorial optimization. We investigate and
analyze randomized search heuristics which are designed to behave well on
“many” of the “important and interesting” pseudo-boolean functions. Obviously,
they cannot beat problem-specific algorithms and, also obviously, each rando-
mized search heuristic is inefficient for most of the functions. The problem is to
identify for a given randomized search heuristic classes of functions which are
optimized efficiently and to identify typical functions where the heuristic fails.
Such theoretical results will support the selection of an appropriate search heu-
ristic in applications. One may also assume (or hope) that the search heuristic
behaves well on a function which is “similar” to a function from a class where
it is proved that the heuristic is efficient. Moreover, the proposed results lead
to a better understanding of search heuristics. This again leads to the design
of improved search heuristics and gives hints for a better choice of the parame-
ters of the search heuristic. Finally, analytical results support the teaching of
randomized search heuristics.

In black box optimization the black box (or oracle) answers queries x with
f(x) where f : {0, 1}n → R is the function to be maximized. Since queries
are expensive, the search cost is defined as the number of queries. For a fixed
search heuristic let Xf be the random number of queries until “some good event”
happens. The good event in this paper is that a query point is f -maximal. Then
we are interested in the expected optimization time E(Xf) and the success
probability function s(t) := Prob(Xf ≤ t). This is an abstraction from the real
problem, since obtaining the f -value of some optimal x does not imply that
we know that x is optimal. In applications, we additionally need good stopping
rules.

Our focus is on evolutionary algorithms which have been developed in the
sixties of the last century and which have found many applications during the
last ten years. Evolutionary algorithms are described in many monographs (Fogel
(1995), Goldberg (1989), Holland (1975), Schwefel (1995)) and in a more recent

66 I. Wegener

handbook (Bäck, Fogel, and Michalewicz (1997)). The experimental knowledge
is immense, but the theory on evolutionary algorithms is still in its infancy. One
can find several results on the one-step behavior of evolutionary algorithms, but
these results most often have no implications on the expected optimization time
or the success probability function. The famous schema theorem belongs to this
category. There are even more results using simplifying or even unrealistic as-
sumptions. The building-block hypothesis is such an idealized hypothesis which
has turned out to be wrong in many realistic scenarios. Another idealized ana-
lysis works with “infinite populations”. This makes it possible to apply methods
from statistical dynamics. We claim that it is necessary to develop results on the
expected optimization time and the success probability function which are not
based on any assumptions, in particular, for generic variants of evolutionary al-
gorithms and for “interesting” subclasses of functions. This does not exclude the
investigation of fundamental problems without direct implications for concrete
algorithms. The paper of Rabani, Rabinovich, and Sinclair (1995) is exemplary
for such an approach.

In the rest of the paper, we elucidate our approach with some results. In
Section 2, we introduce the simplest variant of an evolutionary algorithm, the
so-called (1 + 1)EA, and in the following three sections we present results on the
behavior of the (1 + 1)EA. In Section 3, we investigate monotone polynomials
of bounded degree and, in Section 4, the special classes of affine functions and
royal road functions. Section 5 contains an overview of further results on the
(1 + 1)EA and some of its generalizations. In Section 6, we introduce a generic
genetic algorithm which applies a crossover operator and discuss why it is more
difficult to analyze evolutionary algorithms with crossover than evolutionary
algorithms based solely on mutation and selection. Section 7 contains the first
proof that crossover reduces the expected optimization time for some specific
function from exponential to polynomial. We finish with some conclusions.

2 A Simple Evolutionary Algorithm

We describe the simplest variant of an evolutionary algorithm which works with
population size 1 and is based solely on selection and mutation.

Algorithm 1 ((1 + 1)EA).

1.) Initialization: The current string x ∈ {0, 1}n is chosen randomly using the
uniform distribution.

2.) Selection for mutation: The current string x is chosen.
3.) Mutation: The offspring x′ of x is created in the following way. The bits x′

i

are independent and Prob(x′
i = 1 − xi) = pm(n) (this parameter is called

mutation probability).
4.) Selection of the next generation: The new current string equals x′, if f(x′) ≥

f(x), and x, otherwise.
5.) Continue at Step 2 (until some stopping criterion is fulfilled).

Theoretical Aspects of Evolutionary Algorithms 67

The generic value of pm(n) equals 1/n implying that, on average, one bit is
flipped. Then the number of flipping bits is asymptotically Poisson distributed
(with parameter 1). The algorithm can easily be generalized to larger population
size µ. Then Step 2 is not trivial. The number of offsprings can be generalized to
λ. There are many selection schemes for Step 4. The most prominent are (µ+λ)-
selection (the best µ of the µ parents and the λ offsprings are chosen) and (µ, λ)-
selection (the best µ of the λ offsprings are chosen). These two selection schemes
lead to the class of so-called evolution strategies (which have been developed for
continuous search spaces R

n). This explains the notion (1 + 1)EA for Algorithm
1 which can be interpreted as evolution strategy with population size 1. Another
possibility is to interpret Algorithm 1 as a randomized hill climber, since it does
not accept an offspring with a smaller f -value (fitness). A crucial point is that
each x′ ∈ {0, 1}n has a positive probability of being created as an offspring of
x. Hence, the (1 + 1)EA cannot get stuck forever in a non-optimal region. The
analysis of the (1 + 1)EA is interesting, since

– the (1 + 1)EA is for many functions surprisingly efficient,
– the analysis of the (1 + 1)EA reveals many analytical tools for the analysis

of more general evolutionary algorithms, and
– the (1 + 1)EA can be interpreted as evolutionary algorithm and as randomi-

zed hill climber.

The reason for larger populations is that a single search point may randomly
choose “the wrong way” and may reach a region which makes it difficult to find
the optimum. Working with a larger population one hopes that not all individuals
of the current population go into a wrong direction and that some of them find
the optimum efficiently. However, the individuals are not considered indepen-
dently. If the individuals “on the wrong way” have during the following steps a
larger fitness, they may drive out all individuals “on the right way” by selection.
Hence, it is crucial to have a selection scheme which supports “enough” diversity
in the population and which nevertheless eliminates bad individuals. Multi-start
variants of the (1+1)EA cope in many situations with these problems, since the
different runs of the (1 + 1)EA are independent. Performing m(n) runs, each for
t(n) steps, leads to a success probability of 1− (1− s(t(n)))m(n), if s(t(n)) is the
success probability of a single run of the (1 + 1)EA.

3 The (1 + 1)EA on Monotone Polynomials

Pseudo-boolean functions f : {0, 1}n → R have a unique representation as poly-
nomials, i.e.,

f(x) =
∑

A⊆{1,... ,n}
wA ·

∏

i∈A

xi.

The degree of f is the largest size of a set A where wA 6= 0. It is well known
that the maximization of pseudo-boolean polynomials of degree 2 is NP-hard
and Wegener and Witt (2001) have explicitly defined a degree-2 polynomial

68 I. Wegener

where not only the expected optimization time of the (1 + 1)EA is exponential
but also multi-start variants fail, since for some c > 0 the success probability
after 2cn log n steps is 2−Ω(n). Such a function is almost a worst case function
for the (1 + 1)EA, since the expected optimization time for each pseudo-boolean
function is bounded above by nn = 2n log n. This follows, since the probability
to produce an optimal string within one step is always lower bounded by n−n.
We investigate monotone polynomials, i.e., polynomials where all weights wA,
A 6= ∅, are non-negative. The (1 + 1)EA treats zeros and ones in the same
way. Therefore, our results also hold for polynomials which are obtained from
monotone polynomials by replacing some variables xi with xi = 1 − xi. This
includes all affine, i.e., degree-1 functions.

Knowing that a pseudo-boolean function is a monotone polynomial, the maxi-
mization is trivial. The all-one string always is optimal. However our motivation
is black box optimization and we like to investigate the behavior of the (1+1)EA
on monotone polynomials. This subclass of functions is interesting, since we can
investigate the expected run time with respect to natural parameters, namely the
input length n, the degree d, and the number N of terms with non-zero weight.
Moreover, improvements are not always possible by the mutation of a small num-
ber of bits and strings with a large Hamming distance from the optimum may
have much larger f -values than strings close to the optimum. It is easy to see
that the degree is a crucial parameter. Garnier, Kallel, and Schoenauer (1999)
have proved that the (1 + 1)EA has an expected optimization time of Θ(2n)
on the n-degree polynomial x1x2 · · ·xn. For this function we are searching for
a needle, the all-one string 1n, in a big haystack, namely {0, 1}n. It is obvious
that such functions are difficult for black box optimization. The cited result can
be extended to the general case of N = 1.

Lemma 1. The expected optimization time of the (1 + 1)EA on a polynomial
with N = 1 and degree d equals Θ(n2d/d).

Sketch of Proof. W.l.o.g. the polynomial equals x1x2 · · ·xd. The probability
that at least one of the d essential bits flips in one step equals 1 − (1 − 1

n)d =
Θ(d/n). Hence, the expected optimization time is by a factor of Θ(n/d) larger
than the expected number of so-called active steps where one of the essential
bits flips. As long as we have not found an optimal string, each new string is
accepted and we have to analyze a simple Markoff chain. This can be done
by standard arguments following Garnier, Kallel, and Schoenauer (1999). The
expected number of active steps equals Θ(2d) and the upper bound O(2d) holds
for each initial string. 2

This lemma proves that the (1 + 1)EA is efficient in the following black box
scenario. We know that the function f is one of the functions which equals
1 if x1 = a1, . . . , xd = ad for some (a1, . . . , ad) ∈ {0, 1}d and 0 otherwise.
No sampling algorithm can generate a smaller average optimization time than
(2d + 1)/2. We have an additional factor of Θ(n/d) for the so-called passive
steps and only an additional factor of Θ(1) for active steps visiting some d-

Theoretical Aspects of Evolutionary Algorithms 69

prefix which has been visited before. Moreover, for d = ω(log n) we cannot hope
for randomized search heuristics with an expected polynomial optimization time.

The following analysis of the (1+1)EA on low-degree monotone polynomials
shows its efficiency on a large class of interesting functions. Moreover, the proof
presents typical analytical tools.

Theorem 1. The expected optimization time of the (1 + 1)EA on a monotone
polynomial with N non-vanishing terms and degree d ≤ log n is bounded by
O(Nn2d/d), i.e., by O(Nn) for constant d and by O(Nn2/ log n) for all d ≤
log n.

Sketch of Proof. Let A(1), . . . , A(N) be the N sets such that the weights
wA(i) are non-vanishing, i.e., wA(i) > 0, since the polynomial f is monotone. To
simplify the notation we set wi = wA(i) and assume w.l.o.g. that w1 ≥ · · · ≥
wN > 0. A weight wi is called active with respect to the string a, if aj = 1 for
all j ∈ A(i), and wi is called passive otherwise. The (1 + 1)EA can be described
by a Markoff chain on {0, 1}n and we have to estimate the expected time until
we reach a string a such that all weights w1, . . . , wN are active with respect to
a. The f -value of the current string is not decreasing during the search process.

A quite general technique is to partition {0, 1}n into “fitness layers” and to
estimate the expected time to leave a non-optimal layer. The choice of the layers
is crucial. Here we choose N + 1 layers L0, . . . , LN where

Li := {a|w1 + · · · + wi ≤ f(a) < w1 + · · · + wi+1},

if i < N , and LN := {a|f(a) = w1 + · · · + wN} consists of all optimal strings.
The search process leaves each layer at most once. If Ti is an upper bound for
the expected time of leaving Li from an arbitrary a ∈ Li, then T0 + · · · + TN−1
is an upper bound for the expected optimization time of the (1+1)EA on f . We
prove the theorem by proving that Ti = O(n2d/d).

Let a ∈ Li. Then, by definition, there exists some j ≤ i + 1 such that wj is
passive with respect to a. Moreover, if wj gets active while no active wm gets
passive, we leave Li. We assume w.l.o.g. that the monomial belonging to wj

equals x1x2 · · ·xk, k ≤ d. The idea is to compare the “complicated” Markoff
chain M1 which describes the (1+1)EA on f starting with a and stopping when
it leaves Li with the “simple” Markoff chain M2 which describes the (1 + 1)EA
on g(x) := x1x2 · · ·xk starting with a and stopping when it reaches a g-optimal
string.

The analysis of M2 (see Lemma 1) is simple, since each string is accepted
until the process stops. M1 is more complicated, since it is influenced by the other
monomials. Some new strings are not accepted, since some of the active weights
are deactivated. This can even happen for steps increasing the number of ones
in the k-prefix of the string and in the (n − k)-suffix of the string. Nevertheless,
since all weights are non-negative, we do not believe that this will be significant.
In order to simplify the analysis we choose for each m ∈ {0, . . . , k} a string
am = (bm, cm) among the strings in Li with m ones in the k-prefix bm such
that the expected time of M1 to leave Li when starting in am is maximal. Let

70 I. Wegener

M ′
1 be the Markoff chain obtained from M1 by replacing each string in Li with

m ones in the k-prefix with am. Let M ′
2 be the Markoff chain obtained from

M2 by replacing each string with m ones in the k-prefix with am. The expected
stopping time of M ′

2 is by definition of g equal to the expected stopping time
of M2. The advantage is that M ′

1 and M ′
2 are Markoff chains on the small state

space {0, . . . , k} representing the number of ones in the prefix.
It is sufficient to prove that for some constant c′ > 0 the success probability of

M ′
1 within c′n2d/d steps is bounded below by ε > 0, since the expected number

of such phases then is bounded above by ε−1. We analyze one phase of M ′
1 and

estimate the failure probability, namely the probability of not leaving Li.
If wj gets active, it may happen that other weights get passive and we do

not leave Li. However, if wj gets active, exactly all zeros in the k-prefix flip. The
behavior of the bits in the (n − k)-suffix is independent of this event. Hence,
with a probability of (1 − 1

n)n−k ≥ e−1 none of these bits flips implying that
no active weight gets passive and we leave Li. If one suffix bit flips in the step
where wj gets active, this is considered as a failure. If such a failure happens,
the next phase can be handled in the same way, perhaps with another selected
weight wh instead of wj . This failure event decreases the success probability of
one phase at most by a factor of e−1.

We want to compare M ′
1 with M ′

2. In particular, we want to show that M ′
1

has a larger tendency to increase the number of ones in the k-prefix. However,
this is not necessarily true if at least three bits of the k-prefix flip. Replacing
110 with 001 may increase the f -value while the inverse step decreases the f -
value. Therefore, a step with at least three flipping prefix bits is considered as
a failure. The failure probability for one step equals

(
k
3

)
n−3 ≤ d3n−3 and the

failure probability for one phase is bounded above by

c′n2dd−1d3n−3 ≤ c′d2n−1 = o(1),

since d ≤ log n.
Let M ′′

1 and M ′′
2 be the Markoff chains M ′

1 and M ′
2, respectively, under the

assumption that within one phase there is no step with at least three flipping
prefix bits. The success probability of M ′′

1 and M ′′
2 compared with the success

probability of M ′
1 and M ′

2, respectively, is decreased at most by a factor of
1−o(1). Let p1(m, m+d), d ∈ {−2,−1, 0, +1, +2}, be the transition probabilities
of M ′′

1 on the state space {0, . . . , k} and p2(m, m + d) the corresponding values
of M ′′

2 . Then

(1). p1(m, m + d) ≤ p2(m, m + d), if d 6= 0

The reason is that M ′′
2 accepts each new string. Moreover,

(2). p2(m, m + d)e−1 ≤ p1(m, m + d), if d > 0

This can be proved in the following way. Since at most two prefix bits are flipping,
the number of ones in the prefix increases only if all flipping prefix bits flip from
0 to 1. If furthermore no suffix bit flips (probability at least e−1), the new string

Theoretical Aspects of Evolutionary Algorithms 71

is accepted by M ′′
1 . Finally, we have to prove a tendency of M ′′

1 of increasing the
ones in the prefix (in comparison to M ′′

2). We claim that

(3)
p1(m, m + d)
p2(m, m + d)

≥ p1(m, m − d)
p2(m, m − d)

, if 0 ≤ m − d ≤ m + d ≤ k

Let us consider am = (bm, cm), m ≤ k. Let cm be any suffix. If M1 accepts the
mutated string (bm

− , cm) where bm
− is obtained from bm by flipping one (or two)

ones into zeros, then M1 accepts also (bm
+ , cm) where bm

+ is obtained from bm

by flipping one (or two) zeros into ones. Inequality (3) follows, since M2 accepts
(bm

+ , cm) and (bm
− , cm).

The Markoff chain M ′′
2 can be easily analyzed using the methods of Garnier,

Kallel, and Schoenauer (1999) and its generalization in the proof of Lemma 1.
The Markoff chain M ′′

1 has the same asymptotic behavior. Inequality (1) shows
that M ′′

1 may stay longer in some state than M ′′
2 . However, Inequality (2) shows

that the probabilities of going to a larger state are for M ′′
1 at most by a constant

factor smaller than for M ′′
2 . Hence, the effect of staying longer in the same state

has not a big influence. Inequality (3) is the most important one. It shows that
the probability of increasing the state from m to m + d within one step may be
decreased for M ′′

1 compared to M ′′
2 . However, then the probability of decreasing

the state from m to m−d within one step has been decreased at least by the same
factor. This implies that the expected number of active steps (changing the state)
is for M ′′

1 smaller than for M ′′
2 . However, the proof of this claim needs a careful

analysis of the Markoff chain M ′′
1 which is omitted here. By Markoff’s inequality,

we can choose a constant c′ such that the success probability of M ′′
1 within one

phase of length c′n2d/d is at least 1/2. This implies by our considerations that
the success probability of M1 within such a phase is at least 1/(2e) − o(1) which
proves the theorem. 2

We emphasize one main difference between the analysis of general rando-
mized search heuristics and problem-specific algorithms. Most of the problem-
specific algorithms are designed with respect to efficiency and also with respect
to the aim of analyzing the algorithm. For monotone polynomials the randomi-
zed hillclimber flipping in each step exactly one random bit is not less efficient
but much easier to analyze than the (1 + 1)EA. However, this hillclimber has
disadvantages for other functions. It gets stuck in each local maxima while the
(1 + 1)EA can escape efficiently from a local maximum if a string with at least
the same f -value and short Hamming distance to the local maximum exists.

4 The (1 + 1)EA on Affine Functions and Royal Road
Functions

Theorem 1 cannot be improved with respect to d, see Lemma 1 for the case
N = 1. However, our analysis seems to be not optimal for large N . In order to
leave the fitness layer Li we have waited until one specific passive weight is turned
into active. We also may leave Li, since other weights get active. Moreover,

72 I. Wegener

monomials can be correlated positively, e.g., f(x) = 2x1x2 · · ·xd +x2x3 · · ·xd+1.
It takes some time to leave L0, since we have to activate the first monomial.
Afterwards, no step flipping one of the first d bits which all are 1 is accepted.
Hence, the expected time to activate the second monomial is only O(n). Because
of the monotonicity of the polynomials different monomials cannot be correlated
negatively. One may think that the case of independent monomials is the worst
case.

Let n = dm. We consider monotone polynomials with m monomials with
non-vanishing weights. All monomials are of degree d and depend on disjoint
sets of variables. The special case of weights 1 is known as royal road function
(Mitchell, Forrest, and Holland (1992)), since it has been assumed that these
functions are difficult for all evolutionary algorithms without crossover and easy
for genetic algorithms (which are based on crossover).

Theorem 2. The expected optimization time of the (1 + 1)EA on royal road
functions of degree d is bounded by O(n(log n)2d/d).

Sketch of Proof. First, we consider m independent functions each consisting of
one of the monomials of the royal road function with degree d. By Lemma 1 and
Markoff’s inequality, there is a constant c such that the success probability for a
single monomial within cn2d/d steps is at least 1/2. The success probability after
dlog ne + 1 of such phases is at least 1 − 1/(2n) and, therefore, the probability
that all monomials are optimized is at least 1/2. This leads to the proposed
upper bound in the scenario of m independent monomials. However, the (1 +
1)EA considers the m monomials in parallel. This causes only small differences.
Steps where more active monomials are deactivated than passive monomials
are activated are not accepted and monomials may be deactivated if enough
passive monomials are activated. It is not difficult to prove that this increases
the expected optimization time at most by a constant factor. 2

A different proof method for Theorem 2 has been presented by Mitchell,
Holland, and Forrest (1994). The result shows that for royal road functions there
is not much room for improvements by crossover. We have seen in Section 3 that
problem-independent search heuristics cannot be successful on the average with
less than (2d + 1)/2 steps. In particular, the improvement by any general search
heuristic is bounded by a polynomial factor of O(n(log n)/d). The situation gets
more difficult in the case of different weights. Then it is possible that more
monomials get deactivated than activated. In a certain sense we may move far
away from the optimum. This situation has been handled only in the case of
affine functions, i.e., polynomials of degree 1. In this case it is not necessary to
assume non-negative weights, since xi can be replaced with 1 − xi.

Theorem 3. The expected optimization time of the (1+1)EA on affine functions
is bounded by O(n log n). It equals Θ(n log n) if all n degree-1 weights are non-
zero.

Idea of Proof. The full proof by Droste, Jansen, and Wegener (2001) is involved
and long. W.l.o.g. w∅ = 0 and w1 ≥ · · ·wn ≥ 0 where wi := w{i}. The main idea

Theoretical Aspects of Evolutionary Algorithms 73

is to measure the progress of the (1 + 1)EA with respect to the “generic” affine
function

g(x1, . . . , xn) := 2
∑

1≤i≤n/2

xi +
∑

n/2<i≤n

xi.

This function plays the role of a potential function in the analysis of data struc-
tures and algorithms. Then successful steps (x′ 6= x and f(x′) ≥ f(x) for the
given affine function f) are distinguished from unsuccessful steps. The main step
is to prove an upper bound of O(1) on the expected number of successful steps
to increase the g-value (not the f -value) of the current string. The bound on the
number of unsuccessful steps follows then easily. Since the (1 + 1)EA accepts a
string according to its f -value, it is possible that the g-value decreases. The idea
is to design a slower Markoff chain where the g-value increases in one step by not
more than 1 and where the expected gain of the g-value within one successful
step is bounded below by a positive constant. Then a generalization of Wald’s
identity on stopping times can be proved and applied.

The lower bound is an easy application of the coupon collector’s theorem. 2

Up to now we were not successful to generalize this bound to monotone
degree-2 polynomials. Nevertheless, we state the following conjecture.

Conjecture 1. The expected optimization time of the (1 + 1)EA on monotone
polynomials of degree d is bounded by O(n(log n)2d/d).

5 Further Results on the (1 + 1)EA and Its
Generalizations

In Sections 3 and 4, we have tried to present typical methods for the analysis of
the (1 + 1)EA by investigating and analyzing monotone polynomials. Wegener
(2000) presents an overview on more methods. Here we mention shortly furt-
her directions of the research on the (1 + 1)EA and its generalizations. Droste,
Jansen, and Wegener (1998) have investigated the behavior of the (1 + 1)EA
on so-called unimodal functions, where each non-optimal string has a better
Hamming neighbor. In particular, they have disproved that the (1 + 1)EA has
a polynomial expected optimization time on unimodal functions. Wegener and
Witt (2001) have shown for some special degree-2 polynomials and all squares of
affine functions that they are easy for the multi-start variant of the (1 + 1)EA,
although some of them are difficult for the (1 + 1)EA. When optimizing a single
monomial x1x2 · · ·xd we are exploring for a long time the plateau of strings of
fitness 0 and it would be less efficient to accept only strict improvements. Jan-
sen and Wegener (2000b) investigate the problem of exploring plateaus more
generally. They also show that it is sometimes much better to accept only strict
improvements. It has been conjectured that the mutation probability 1/n is at
least almost optimal for the (1 + 1)EA and each f . This has been disproved by
Jansen and Wegener (2000a) who also have shown that it can be even better to
work with a dynamic (1+1)EA which changes its mutation probability following

74 I. Wegener

a fixed schedule. This dynamic variant is analyzed for many functions by Jansen
and Wegener (2001b). Further strategies to change the mutation probability are
discussed by Bäck (1998).

6 A Generic Genetic Algorithm

Evolutionary algorithms based on selection and mutation only are surprisingly
successful. Genetic algorithms are based on selection, mutation, and crossover
and there is a community believing that crossover is the essential operator. The
main variants of crossover for (a, b) ∈ {0, 1}n × {0, 1}n are

– one-point crossover (choose i ∈ {1, . . . , n − 1} randomly and create the
offspring (a1, . . . , ai, bi+1, . . . , bn)) and

– uniform crossover (choose c ∈ {0, 1}n randomly and create the offspring
d = (d1, . . . , dn) where di = ai, if ci = 0 and di = bi, if ci = 1).

In order to apply crossover we need a population of size larger than 1. The
main problem is to combine fitness-based selection with the preservation of
enough diversity such that crossover has a chance to create strings different from
those in the population. In the following it is sufficient to require that selection
chooses x with at least the same probability as x′ if f(x) ≥ f(x′). This implies
the same selection probabilities for x and x′ if f(x) = f(x′). Many genetic al-
gorithms replace a population within one step with a possibly totally different
new population. It is easier to analyze so-called steady-state genetic algorithms
where in each step only one offspring is created and perhaps exchanged with one
member from the current population.

Algorithm 2 (Steady-state GA).

1) Initialization: The s(n) members of the current population are chosen ran-
domly and independently.

2) Branching: With probability pc(n), the new offspring is created with cross-
over (Steps 3.1, 3.2, 3.3) and with the remaining probability, the new
offspring is created without crossover (Steps 4.1, 4.2).

3.1) Selection for crossover and mutation: A pair of strings (x, y) from the cur-
rent population is chosen.

3.2) Crossover: z′ is the result of crossover on (x, y).
3.3) Mutation: z is the result of mutation of z′. Go to Step 5.
4.1) Selection for mutation: A string x from the current population is chosen.
4.2) Mutation: z is the result of mutation of x.
5) Selection of the next generation: Add z to the current population and let

W be the multi-set of strings in the enlarged population which have the
minimal f -value and let W ′ be the set of strings in W which have the largest
number of copies in W . Eliminate randomly one string from W ′ from the
population to obtain the new population.

6) Continue at Step 2 (until some stopping criterion is fulfilled).

Theoretical Aspects of Evolutionary Algorithms 75

The analysis of genetic algorithms is even more difficult than the analysis of
evolutionary algorithms without crossover. Although the crossover operator is in
the focus of research since fourty years, there was no example known where cros-
sover decreases the expected optimization time from exponential to polynomial.
Experiments (Forrest and Mitchell (1993)) show that the (1 + 1)EA is for the
royal road functions even faster than genetic algorithms. Watson (2000) presents
a function where crossover probably helps. This is established by experiments
and by a proof under some assumptions but not by a rigorous proof.

7 Real Royal Road Functions and the Crossover Operator

Jansen and Wegener (2001a) present the first example where crossover prova-
bly decreases the expected optimization time from exponential to polynomial.
Because of the history and the many discussions on the royal road functions
they have called their functions real royal road functions. For a ∈ {0, 1}n let
|a| = a1 + · · ·+an and let b(a) be the block size of a, i.e. the length of the longest
block consisting of ones only (the largest l such that ai = ai+1 = · · · = ai+l−1 = 1
for some i). Then

Rn,m(a) :=

2n2 if a = (1, 1, . . . , 1)
n|a| + b(a) if |a| ≤ n − m

0 otherwise.

For a proof of the following lemma see Jansen and Wegener (2001a).

Lemma 2. Evolutionary algorithms without crossover need with a probability
exponentially close to 1 exponentially many steps to optimize the real royal road
function Rn,dn/3e and with a probability of 1−n−Ω(log n) superpolynomially many
steps to optimize Rn,dlog ne.

Theorem 4. Let s(n) = n, m = dn/3e and pc a positive constant less than
1. Then the expected optimization time of the steady-state GA with one-point
crossover on Rn,m is bounded by O(n4).

Sketch of Proof. Here we use the proof technique to describe intermediate
aims and to estimate the expected time until the aim is reached. The advantage
is that we can use afterwards the assumption that the last aim has been reached.
Aim 1: All strings of the population have exactly n − m ones or we have found
the optimum.

This aim is reached in an expected number of O(n2) steps. It is very unlikely
to start with strings with more than n − m and less than n ones. The expected
time to eliminate all these strings is O(1). If we then do not find the optimum, we
only have an expected waiting time of O(n/m) = O(1) to increase the number
of ones in the population. This is due to steps with mutation only. If the selected
string has less than n − m ones, there is a good chance to increase the number

76 I. Wegener

of ones by a 1-bit mutation. If the selected string has exactly n − m ones, there
is a good chance to produce a replica.
Aim 2: All strings of the population have exactly n − m ones and a block size of
n − m or we have found the optimum.

This aim is reached in an expected number of O(n3 log n) steps. If we do not
find the optimum, we only have to increase the sum of the block lengths of the
strings of the current population. If not all strings have the same block length,
it is sufficient to produce a replica of a string with a non-minimal block length.
Otherwise, certain 2-bit mutations increase the block length.
Aim 3: All strings of the population have exactly n − m ones, a block size of
n − m, and each of the m + 1 different strings with this property is contained in
the population or we have found the optimum.

This aim is reached in an expected number of O(n4) steps. If we do not find
the optimum, there is always at least one string in the current population such
that a 2-bit mutation creates a string with n − m ones and block size n − m
which was not in the population before.
Aim 4: The optimum is found.

This aim is reached in an expected number of O(n2) steps. This is the only
phase where crossover is essential. With a probability of at least pc(n)/n2 cros-
sover is chosen as search operator and 1n−m0m and 0m1n−m are selected. Then,
with a probability of at least 1/3, one-point crossover creates 1n and finally,
with a probability of at least e−1, mutation preserves 1n and we have found the
optimum. 2

Uniform crossover is less efficient for these functions. The probability of crea-
ting 1n from 1n−m0m and 0m1n−m is only 2−2m. This leads to a polynomial
expected optimization time only if m = O(log n). Hence, crossover reduces the
expected optimization time for some functions only from superpolynomial to
polynomial. Jansen and Wegener (2001a) have presented a more complicated
function where uniform crossover decreases the expected optimization time from
exponential to polynomial.

One may ask what happens if we replace in the definition of Rn,m the value
of b(a) by 0. Then the size of the plateau of the second-best strings increases
from m + 1 to

(
n
m

)
and it is much harder to generate enough diversity. Jan-

sen and Wegener (1999) have investigated this function. With uniform crossover
and the very small crossover probability pc(n) = 1/(n log3 n) they could prove a
polynomial expected optimization time for m = O(log n). This proof is techni-
cally much more involved than the proof of Theorem 4 and its counterpart for
uniform crossover. Altogether, we have only made the first steps of analyzing
genetic algorithms with crossover.

Conclusions

We have argued why one should investigate and analyze different forms of rando-
mized search heuristics, among them evolutionary algorithms. The differences in

Theoretical Aspects of Evolutionary Algorithms 77

the analysis of problem-specific algorithms and general search heuristics for black
box optimization have been discussed. Then our approach has been presented by
analyzing some evolutionary algorithms on subclasses of the class of monotone
polynomials and by proving for the first time that crossover can decrease the
expected optimization time significantly.

References

1. Bäck, T. (1998). An overview of parameter control methods by self-adaptation in
evolutionary algorithms. Fundamenta Informaticae 32, 51–66.

2. Bäck, T., Fogel, D. B., and Michalewicz, Z. (Eds.) (1997). Handbook of Evolutionary
Computation. Oxford Univ. Press, Oxford.

3. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algo-
rithms. MIT Press.

4. Droste, S., Jansen, T., and Wegener, I. (1998). On the optimization of unimodal
functions with the (1 + 1) evolutionary algorithm. Proc. of PPSN V (Parallel
Problem Solving from Nature), LNCS 1648, 13-22.

5. Droste, S., Jansen, T., and Wegener, I. (2001). On the analysis of the (1 + 1)
evolutionary algorithm. To appear: Theoretical Computer Science.

6. Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press.

7. Forrest, S., and Mitchell, M. (1993). Relative building-block fitness and the
building-block hypothesis. Proc. of FOGA’ 1993 (2nd Workshop Foundations of
Genetic Algorithms), Morgan Kaufmann.

8. Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7, 173–203.

9. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

10. Hochbaum, D. S. (Ed.) (1997). Approxiamtion Algorithms for NP-Hard Problems.
PWS Publ. Co.

11. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University
of Michigan Press.

12. Jansen, T., and Wegener, I. (1999). On the analysis of evolutionary algorithms
– a proof that crossover really can help. Proc. of ESA’99 (European Symp. on
Algorithms), LNCS 1643, 184–193.

13. Jansen, T., and Wegener, I. (2000a). On the choice of the mutation probability for
the (1 + 1)EA. Proc. of PPSN VI (Parallel Problem Solving from Nature), LNCS
1917, 89–98.

14. Jansen, T., and Wegener, I. (2000b). Evolutionary algorithms – how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. To
appear: IEEE Trans. on Evolutionary Computation.

15. Jansen, T., and Wegener, I. (2001a). Real royal road functions – where crossover
provably is essential. To appear: GECCO’2001.

16. Jansen, T., and Wegener, I. (2001b). On the analysis of a dynamic evolutionary
algorithm. Submitted: ESA’2001.

17. Mitchell, M., Forrest, S., and Holland, J. H. (1992). The Royal Road function for
genetic algorithms: Fitness landscapes and GA performance. Proc. of 1st European
Conf. on Artificial Life, 245–254, MIT Press.

78 I. Wegener

18. Mitchell, M., Holland, J. H., and Forrest, S. (1994). When will a genetic algo-
rithm outperform hill climbing. In J. Cowan, G. Tesauro, and J. Alspector (Eds.):
Advances in Neural Information Processing Systems. Morgan Kaufman.

19. Motwani, R., and Raghavan, P. (1995). Randomized Algorithms. Cambridge Univ.
Press.

20. Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational view of
population genetics. Random Structures and Algorithms 12, 314–334.

21. Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.
22. Watson, R. A. (2000). Analysis of recombinative algorithms on a non-separable

building-block problem. Proc. of FOGA’2000 (6. Workshop Foundations of Genetic
Algorithms), to appear.

23. Wegener, I. (2000). On the expected runtime and the success probability of evolu-
tionary algorithms. Proc. of WG’2000 (26. Workshop on Graph-Theoretic Concepts
in Computer Science), LNCS 1928, 1–10.

24. Wegener, I., and Witt, C. (2001). On the analysis of a simple evolutionary al-
gorithm on quadratic pseudo-boolean functions. Submitted: Journal of Discrete
Algorithms.

Improvements of the Alder–Strassen Bound:
Algebras with Nonzero Radical

Markus Bläser

Institut für Theoretische Informatik, Med. Universität zu Lübeck
Wallstr. 40, 23560 Lübeck, Germany

blaeser@tcs.mu-luebeck.de

Abstract. Let C(A) denote the multiplicative complexity of a finite
dimensional associative k-algebra A.
For algebras A with nonzero radical radA, we exhibit several lower bound
techniques for C(A) that yield bounds significantly above the Alder–
Strassen bound. In particular, we prove that the multiplicative complex-
ity of the multiplication in the algebras k[X1, . . . , Xn]/ Id+1 (X1, . . . , Xn)
is bounded from below by 3 · (

n+d
n

) − (
n+dd/2e

n

) − (
n+bd/2c

n

)
, where

Id(X1, . . . , Xn) denotes the ideal generated by all monomials of degree
d in X1, . . . , Xn. Furthermore, we show the lower bound C(Tn(k)) ≥
(2 1

8 − o(1)) dim Tn(k) for the multiplication of upper triangular matri-
ces.

1 Introduction

A fundamental problem in algebraic complexity theory is the question about
the costs of multiplication, say of matrices, triangular matrices, polynomials, or
power series, just to mention a few. To be more specific, let A be a finite dimen-
sional associative k-algebra with unity 1. By fixing a basis of A, say v1, . . . , vN ,
we can define a set of bilinear forms corresponding to the multiplication in A. If
vµvν =

∑N
κ=1 α

(κ)
µ,νvκ for 1 ≤ µ, ν ≤ N with structural constants α(κ)

µ,ν ∈ k, then
these constants and the identity

(
N∑

µ=1

Xµvµ

)(
N∑

ν=1

Yνvν

)

=
N∑

κ=1

bκ(X,Y)vκ

define the desired bilinear forms b1, . . . , bN . The multiplicative complexity of
b1, . . . , bN is the smallest number of essential multiplications and divisions nec-
essary and sufficient to compute b1, . . . , bN from the indeterminates X1, . . . , XN

and Y1, . . . , YN .
According to Strassen [15], we may reformulate the problem over infinite

fields as follows: the multiplicative complexity of b1, . . . , bN is the smallest num-
ber ` of products pλ = uλ(Xi, Yj) · vλ(Xi, Yj) with linear forms uλ and vλ in
the Xi and Yj such that the linear span of p1, . . . , p` contains b1, . . . , bN . (The
restriction to infinite fields is not critical for this work, since we are concerned

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 79–91, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

80 M. Bläser

with lower bounds.) From this characterization, it follows that the multiplicative
complexity of b1, . . . , bN does not depend on the choice of v1, . . . , vN , thus we
may speak about the multiplicative complexity of (the multiplication in) A. For
a modern introduction to algebraic complexity theory, we recommend [8].

A fundamental lower bound for the multiplicative complexity is the so-called
Alder–Strassen bound (1) (see Section 1.2). Recently, this bound has been im-
proved for a large class of semisimple1 algebras [6] as shown in (2). The main
contributions of this work are improvements of the Alder–Strassen bound for
algebras with nonzero radical, like upper triangular matrices.

Closely related to the multiplicative complexity is the bilinear complexity
(or rank). Here the products pλ = uλ(Xi) · vλ(Yj) are bilinear products, that
is, products of linear forms uλ in the Xi and linear forms vλ in the Yj . (Note
that b1, . . . , bN are bilinear forms.) The multiplicative complexity is clearly a
lower bound for the bilinear complexity and it is easy to show that twice the
multiplicative complexity is an upper bound for the bilinear complexity (see e.g.
[8, Eq. 14.8]). Therefore, we usually want to derive upper bounds for the bilinear
complexity and lower bounds for the multiplicative complexity.

While the difference between multiplicative and bilinear complexity seems
to be minor at a first glance, it is much harder to cope with the multiplica-
tive complexity when dealing with lower bounds. The main reason is the fact
that the bilinear complexity of a tensor of a bilinear map (see below for a def-
inition) is invariant under permutations whereas the multiplicative complexity
might not, see also [8, Chap. 14.2] for a further discussion. For instance, if we
consider bilinear complexity, then the bound (2) holds also for any algebra with
nonzero radical, provided that the semisimple quotient algebra A/ radA fulfils
the corresponding premises [4,5]. On the other hand, there are examples given
in [6, Sect. 6] that show that the novel methods from [6] for the multiplicative
complexity do not apply to algebras with nonzero radical.

1.1 Model of Computation

For proving lower bounds, a coordinate-free definition of multiplicative complex-
ity is often more appropriate than the one given above, see e.g. [8, Chap. 14.1].
In the following, if V is a vector space, let V ∗ denote the dual space of V , i.e.,
the vector space of all linear forms on V .

Definition 1. Let k be a field, U , V , and W finite dimensional vector spaces
over k, and φ : U × V → W a bilinear map.

1. A sequence β = (f1, g1, w1, . . . , f`, g`, w`) with fλ, gλ ∈ (U×V)∗ and wλ ∈ W
is called a quadratic computation for φ over k of length ` if

φ(u, v) =
∑̀

λ=1

fλ(u, v)gλ(u, v)wλ for all u ∈ U, v ∈ V .

1 For a finite dimensional associative k-algebra A with unity, the radical radA is the
intersection of all maximal twosided ideals of A. An algebra A is called semisimple
if radA = {0}, see [9,14] for more details.

Improvements of the Alder–Strassen Bound 81

2. The length of a shortest quadratic computation for φ is called the multiplica-
tive complexity of φ and is denoted by C(φ).

3. If A is a finite dimensional associative k-algebra with unity, then the mul-
tiplicative complexity of A is defined as the multiplicative complexity of the
multiplication map of A, which is a bilinear map A×A → A, and is denoted
by C(A).

If we require that fλ ∈ U∗ and gλ ∈ V ∗ in the above Definition 1, we get
bilinear computations and bilinear complexity (also called rank). We denote the
bilinear complexity of a bilinear map φ by R(φ) and the bilinear complexity of
an associative algebra A by R(A). We have C(φ) ≤ R(φ) ≤ 2 · C(φ) for any
bilinear map φ. Except for trivial cases, the second inequality is always strict,
see [12].

1.2 Previous Results

The best general lower bound for the multiplicative complexity of an associative
algebra A is due to Alder and Strassen [1], they show

C(A) ≥ 2 dimA− t , (1)

where t is the number of maximal twosided ideals in A. This has recently been
improved for a large class of semisimple algebras by Bläser [6]: if A is semisimple
and if in the decomposition ofA ∼= A1×· · ·×At into simple factorsAτ = Dτ

nτ ×nτ

with division algebra Dτ , each Aτ is noncommutative, then

C(A) ≥ 5
2 dimA− 3(n1 + · · · + nt). (2)

Specifically, the multiplicative complexity of n × n–matrix multiplication is at
least 5

2n
2 − 3n. While the lower bound (2) also holds for algebras with nonzero

radical in the case of bilinear complexity [4,5] provided that A/ radA fulfils the
above condition, examples are presented in [6, Sec. 6] that show that those meth-
ods do not transfer to the multiplicative complexity for algebras with nonzero
radical.

1.3 New Results

The starting point of our work is the above observation that the results from [4,
5] for the bilinear complexity do not transfer to the multiplicative complexity if
A has nonzero radical. As our main contribution, we improve the Alder-Strassen
bound (1) for various classes of algebras with nonzero radical.

As our first main result, we obtain the lower bound

C(A) ≥ dimA+ dim(radA)m + dim(radA)n − dim(radA)n+m−1.

for any n,m > 0 (Theorem 1). This bound works very well for algebras with
“growing” radical, that means, 2 dim(radA)m is much larger than dim radA

82 M. Bläser

where m is the smallest natural number such that (radA)2m−1 = {0}. As an
example, we apply this bound to the algebras k[X1, . . . , Xn]/ Id+1 (X1, . . . , Xn)
where Id(X1, . . . , Xn) denotes the ideal generated by all monomials of degree
d in X1, . . . , Xn. Furthermore, we obtain a sequence of explicitly given alge-
bras An with C(An) ≥ (3 − o(1)) dimAn. To our knowledge, this is the best
lower bound known for a concrete algebra. (For existential results of algebras of
high complexity, see [7].)

More complicated is the case of algebras with “nongrowing” radical, the most
important one is probably the algebra of upper triangular n×n–matrices Tn(k).
We deal with this in Section 5. Our second main result is Lemma 7. This lemma
provides a way to prove lower bounds above the Alder Strassen bound for alge-
bras A with “nongrowing” radical. Here, C(A) is estimated from below by the
multiplicative complexity of a bilinear map ψ obtained from the multiplication
in A by restricting to some subspaces. After that, C(ψ) can be estimated using
techniques introduced in [6]. In Section 6, we apply this method to the algebra
of upper triangular matrices and get the lower bound

C(Tn(k)) ≥ (2 1
8 − o(1)) dim Tn(k).

This is the first bound for Tn(k) significantly above the Alder–Strassen bound.
Prior to this, we only knew that the Alder–Strassen bound could be improved
by an additive amount of one for n ≥ 3 [11], that is, Tn(k) is not an algebra of
minimal rank.

2 Preliminaries

For the reader’s convenience, we compile some preliminaries to which we will
refer frequently in the subsequent sections. In the first part of this section, we
present an alternative characterization of multiplicative complexity, the so-called
“tensorial notion” and state the relevant results. In the second part, we briefly
review the lower bound techniques used by Alder and Strassen to prove their
lower bound. These techniques basically are sophisticated refinements of the
substitution method due to Pan [13].

2.1 Characterizations of Multiplicative Complexity

In the previous section, we have introduced the multiplicative complexity of a
bilinear map in terms of computations. A second useful characterization of mul-
tiplicative complexity is the so-called “tensorial notion” (see [8, Chap. 14.4] for
the bilinear complexity). With a bilinear map φ : U ×V → W , we may associate
a coordinate tensor (or tensor for short) which is basically a “three-dimensional
matrix”: we fix bases u1, . . . , um of U , v1, . . . , vn of V , and w1, . . . , wp of W .
There are unique scalars tµ,ν,ρ ∈ k such that φ(uµ, vν) =

∑p
ρ=1 tµ,ν,ρwρ for all

1 ≤ µ ≤ m, 1 ≤ ν ≤ n. Then t = (tµ,ν,ρ) ∈ km×n×p is the tensor of φ (with
respect to the chosen bases). On the other hand, any given tensor also defines

Improvements of the Alder–Strassen Bound 83

a bilinear map after choosing bases. We define the multiplicative complexity of
the tensor t by C(t) := C(φ). In the same way, the bilinear complexity of t is
R(t) := R(φ). (This is in both cases well-defined.)

With each tensor t = (tµ,ν,ρ), we may associate three sets of matrices, the
slices of t. The matrices Qµ = (tµ,ν,ρ)1≤ν≤n,1≤ρ≤p ∈ kn×p with 1 ≤ µ ≤ m
are called the 1-slices of t, the matrices Sν = (tµ,ν,ρ)1≤µ≤m,1≤ρ≤p ∈ km×p with
1 ≤ ν ≤ n the 2-slices, and finally Tρ = (tµ,ν,ρ)1≤µ≤m,1≤ν≤n ∈ km×n with
1 ≤ ρ ≤ p are called the 3-slices of t. When dealing with bilinear complexity, it
makes no difference which of the three sets of slices we consider. In the case of
multiplicative complexity, however, the 3-slices play a distinguished role.

Lemma 1. Let k be a field and t be a tensor with 3-slices T1, . . . , Tp ∈ km×n.
Then C(t) ≤ ` if and only if there are (column) vectors uλ, vλ ∈ km+n for
1 ≤ λ ≤ ` such that with Pλ := uλ · v>

λ ∈ k(m+n)×(m+n)

(
0 T1
T>

1 0

)

, . . . ,

(
0 Tp
T>
p 0

)

∈ lin{P1 + P>
1 , . . . , P` + P>

` } . (3)

Here, T> denotes the transpose of a matrix T and lin{. . .} denotes the linear
span. A proof of this lemma is straight forward (see for instance [12, Thm. 3.2]).

If T1, . . . , Tp are the 3-slices of a tensor t, we will occasionally write
C(T1, . . . , Tp) instead of C(t) and R(T1, . . . , Tp) instead of R(t). By multiply-
ing (3) with

(
X 0
0 Y >

)

and
(
X> 0
0 Y

)

from the left and right, respectively, it follows from Lemma 1 that if X ∈ km×m

and Y ∈ kn×n are invertible matrices, then

C(T1, . . . , Tp) = C(X · T1 · Y, . . . ,X · Tp · Y) . (4)

2.2 The Lower Bound Techniques of Alder and Strassen

Beside the original paper of Alder and Strassen, [10, Chap. IV.2] and [8, Chap. 17]
are excellent treatments of the results of Alder and Strassen. We have taken the
term “separate” and the extension lemma from there, but everything is also
contained in the work of Alder and Strassen [1].

Definition 2. Let U , V , W be vector spaces and β = (f1, g1, w1, . . . , f`, g`, w`)
be a quadratic computation for a bilinear map φ : U × V → W . Let U1 ⊆ U ,
V1 ⊆ V , and W1 ⊆ W be subspaces. The computation β separates (U1, V1,W1),
if there is a set of indices I ⊆ {λ | wλ /∈ W1} such that after possibly exchanging
some of the fλ with the corresponding gλ, we have (U1 ×V1)∩⋂i∈I ker fi = {0}.

The latter condition is equivalent to the condition that (fi|U1×V1)i∈I generate
the dual space (U1 × V1)∗.

84 M. Bläser

If φ : U × V → W is a bilinear map and U1 ⊆ U and V1 ⊆ V are subspaces,
then (u+U1, v+V1) 7→ φ(u, v)+W̃ defines a bilinear map U/U1×V/V1 → W/W̃
where W̃ := lin{φ(U1, V)} + lin{φ(U, V1)}. This map is called the quotient of φ
by U1 and V1 and is denoted by φ/(U1 ×V1). We have the following lower bound.
(See [8, Lem. 17.17] where also a proof is given.)

Lemma 2. Let U , V , and W be vector spaces and β = (f1, g1, w1, . . . , f`, g`, w`)
be a quadratic computation for some bilinear map φ : U × V → W . Let U1 ⊆ U ,
V1 ⊆ V , and W1 ⊆ W be subspaces such that β separates (U1, V1,W1). Let π be
an endomorphism of W such that W1 ⊆ kerπ. Then

` ≥ C((π ◦ φ)/(U1 × V1)) + dimU1 + dimV1 + #{λ | wλ ∈ W1}.

If φ is the multiplication map of an associative algebra A and I is a twosided
ideal of A, then φ/(I× I) is the multiplication map of the quotient algebra A/I.

Corollary 1. Let A be an algebra and I ⊆ A a twosided ideal. Let β be a
quadratic computation for A of length ` that separates (I, I, {0}). Then ` ≥
C(A/I) + 2 dim I.

To achieve good lower bounds by means of Lemma 2, one has to find an
optimal bilinear computation which separates a “large” triple. An important
tool to solve this task is the following “extension lemma”, see [8, Lem. 17.18].

Lemma 3 (Alder and Strassen). Let U , V , W be vector spaces and β be
a quadratic computation for a bilinear map φ : U × V → W . Let U1 ⊆ U2 ⊆ U ,
V1 ⊆ V , and W1 ⊆ W be subspaces such that β separates (U1, V1,W1). Then β
separates also (U2, V1,W1), or there is some u ∈ U2 \ U1 such that φ(u, V) ⊆
lin{φ(U1, V1)} +W1.

In the course of their proof, Alder and Strassen first deal with the radical of
an algebra A and then turn to the semisimple quotient algebra A/ radA. The
following lemma contains the first of the two important statements established
by Alder and Strassen, see [1, Lem. 2] or [8, Prop. 17.20].

Lemma 4 (Alder and Strassen). Let β be a quadratic computation for an
associative algebra A. Then β separates (radA, radA, {0}).

3 Lower Bounds: “Growing” Radicals

In this section, we develop a method that works very well if the radical of an
algebra A “grows”, more precisely, 2 dim(radA)m is much larger than dim radA
where m is the smallest natural number such that (radA)2m−1 = {0}. This
method has already been applied to the bilinear complexity, see [4,5]. In contrast
to the “hard” case (in Section 5), we do not loose anything when extending this
method to the multiplicative complexity.

We build upon the following lower bound which is given in [2, Lem. 2].

Improvements of the Alder–Strassen Bound 85

Lemma 5. Let A be an associative algebra. If U, V ⊆ radA are vector spaces,
then

C(A) ≥ dimU + dimV + min
X⊕(U×V)

=A×A

{dim lin{xx′ | (x, x′) ∈ X}}.

To put this lemma into effective use, we have to estimate the dimension of
the subspaces lin{xx′ | (x, x′) ∈ X} in the above Lemma 5. This is done through
the following lemma.

Lemma 6. Let A be an associative algebra and m,n > 0 be natural numbers.
For any vector space X such that X ⊕ ((radA)m × (radA)n) = A×A,

lin{xx′ | (x, x′) ∈ X} + (radA)m+n−1 = A.

Proof. For the ease of notation, if Y ⊆ A×A is a vector space, let Ŷ denote the
vector space lin{yy′ | (y, y′) ∈ Y }.

For 0 ≤ µ < m and 0 ≤ ν < n, let Xµ,ν ⊆ X be a vector space such that
Xµ,ν⊕((radA)m×(radA)n) = (radA)µ×(radA)ν . Such an Xµ,ν exists, because
X ⊕ ((radA)m × (radA)n) = A× A. As X ∩ ((radA)m × (radA)n) = {0}, it is
also unique. Furthermore, Xµ,ν ⊆ Xµ′,ν′ for µ′ ≤ µ and ν′ ≤ ν.

For any (u, v) ∈ (radA)µ × (radA)ν , there are (a, b) ∈ (radA)m × (radA)n

such that (u, v) + (a, b) ∈ Xµ,ν . Thus (u+ a)(v+ b) ∈ X̂µ,ν . But (u+ a)(v+ b) ∈
uv+(radA)µ+ν+1. Letting (u, v) run through all elements of (radA)µ×(radA)ν ,
we get

X̂µ,ν + (radA)µ+ν+1 = (radA)µ+ν . (5)

We now prove by backward induction in µ+ ν that

X̂µ,ν + (radA)m+n−1 = (radA)µ+ν for all µ < m, ν < n.

For µ = ν = 0, this is the claim of the lemma.
The induction start (µ = m− 1, ν = n− 1) follows directly from (5). For the

induction step, let µ and ν be given such that µ + ν < m + n − 2. We assume
that µ < m− 1, the case ν < n− 1 follows completely alike. By substituting the
induction hypothesis X̂µ+1,ν +(radA)m+n−1 = (radA)µ+ν+1 into (5), we obtain
X̂µ,ν + X̂µ+1,ν + (radA)m+n−1 = (radA)µ+ν . Now the claim follows from the
fact that Û ⊆ V̂ if U ⊆ V . ut

Combining the last lemma with Lemma 5 shows the following lower bound.

Theorem 1. Let A be a an associative algebra. For all m,n > 0,

C(A) ≥ dimA+ dim(radA)m + dim(radA)n − dim(radA)n+m−1.

86 M. Bläser

4 Multiplying Multivariate Power Series

For indeterminates X1, . . . , Xn, let Id(X1, . . . , Xn) denote the ideal
generated by all monomials of degree d. Let Pn,d be the algebra
k[X1, . . . , Xn]/ Id+1 (X1, . . . , Xn). The multiplication in Pn,d can be inter-
preted as the multiplication of n–variate power series where we only compute
with the coefficients of the monomials with degree at most d. For the algebras
Pn,d, the methods of the preceding section give a nice lower bound. The below
theorem follows at once from Theorem 1 and the fact that the dimension of
dimPn,d is

(
n+d
n

)
.

Theorem 2. For any n > 0 and d > 0,

C(Pn,d) ≥ 3 · (n+d
n

)− (n+dd/2e
n

)− (n+bd/2c
n

)
.

Remark 1. If we keep d > 1 fixed, then C(Pn,d) ≥ (3 − o(1)) dimPn,d (as a
function in n). This gives a sequence of explicitly given algebras such that the
multiplicative complexity comes arbitrarily close to three times the dimension
of the algebra. This is the the best we can expect from currently known lower
bounds techniques for bilinear problems. To our knowledge, this is the first lower
bound of this kind.

5 Lower Bounds: The Hard Case

Throughout the remainder of this section, we use the following notations: as
usual, A is an associative algebra. We denote its multiplication map by φ. We
assume that we have a decomposition A = I ⊕ X ⊕ Y (as vector spaces) with
vector spaces X and Y and a twosided ideal I. Furthermore, I2 = {0} and
Y · I = {0}. Moreover, let U ⊆ X and V ⊆ Y be vector spaces such that for all
projections π of A onto I ⊕ U ⊕ V , the bilinear map π ◦ φ is 1–concise, that is,
its left kernel {a ∈ A | π ◦ φ(a,A) = {0} } equals {0}.

Our general plan looks as follows: using Lemma 2, we reduce the proof of a
lower bound for C(φ) to the proof of a lower bound for C(φ|X×I) where φ|X×I
denotes the restriction of φ to X × I. This reduction works for any algebra with
the above decomposition property. After that, we have to estimate C(φ|X×I)
individually. This is done in the next section for the particularly important case
of upper triangular matrices. The main result of this section is the following
lower bound.

Lemma 7. With the notations from above,

C(A) ≥ C(φ|X×I) + dimA+ dimY − dimU − dimV.

Proof. Let β = (f1, g1, w1, . . . , f`, g`, w`) be a quadratic computation for A. Since
w1, . . . , w` generate A, we may assume that lin{w`−m+1, . . . , w`}⊕I⊕U⊕V = A
where m = dimA − dim I − dimU − dimV . Let π denote the projection along

Improvements of the Alder–Strassen Bound 87

lin{w`−m+1, . . . , w`} onto I⊕U ⊕V . Then β′ = (f1, g1, w′
1, . . . , f`′ , g`′ , w

′
`′) with

w′
λ = π(wλ) and `′ = `−m is a quadratic computation for π ◦ φ.

We claim that β′ separates (A, {0}, {0}). If this was not the case, then there
would be an a ∈ A \ {0} by Lemma 3 such that

π ◦ φ(a,A) ⊆ φ({0}, {0}) + {0} = {0}
contradicting the assumption that π ◦ φ is 1–concise.

From the definition of “separate”, it follows that β′ also separates (I ⊕
Y, {0}, {0}). In other words, f1|(I⊕Y)×{0}, . . . , f`′ |(I⊕Y)×{0} generate ((I ⊕ Y) ×
{0})∗ after possibly exchanging some of the fλ with the corresponding gλ.

Let ψ = (π ◦ φ)|A×I . Obviously β̂ = (f̂1, ĝ1, w′
1, . . . , f̂`′ , ĝ`′ , w

′
`′) with f̂λ =

fλ|A×I and ĝλ = gλ|A×I is a quadratic computation for ψ.
As (I⊕Y)×{0} ⊆ A×I, f̂λ|(I⊕Y)×{0} = (fλ|A×I)|(I⊕Y)×{0} = fλ|(I⊕Y)×{0}.

From this, we get that also β̂ separates (I ⊕ Y, {0}, {0}). Lemma 2 now yields
the lower bound

`′ ≥ C(ψ/(I ⊕ Y) × {0}) + dim I + dimY. (6)

By the definition of “quotient” in Section 2.2, ψ/(I ⊕ Y) × {0} is a bilinear
map A/(I⊕Y)×I → (I⊕U⊕V)/W̃ that maps (a+(I⊕Y), b) to π◦φ(a, b)+W̃
where W̃ = lin{π ◦ φ(A, {0})} + lin{π ◦ φ(I ⊕ Y, I)}. (For a vector space Z, we
identify Z/{0} with Z.) Since I2 = {0} and Y ·I = {0} by assumption, W̃ = {0}.
For x+ I ⊕ Y ∈ A/(I ⊕ Y) and t ∈ I,

ψ/(I ⊕ Y) × {0}(x+ I ⊕ Y, t) = π ◦ φ(x, t) = xt,

since x · t ∈ I. Thus, the following diagram commutes

A/(I ⊕ Y) × I
ψ/(I⊕Y)×{0}−−−−−−−−−→ I ⊕ U ⊕ V

h×id

y

x

X × I
φ−−−−→ I

where h : A/(I ⊕ Y) → X denotes the canonical isomorphism. Hence we obtain
C(ψ/(I ⊕ Y) × {0}) ≥ C(φ|X×I).

Exploiting `′ = ` − m and choosing β to be an optimal computation, the
claim of the lemma follows from (6). ut

6 Multiplication of Upper Triangular Matrices

We now apply the results of the preceding section to the algebra Tn(k) of upper
triangular n × n–matrices with entries from k. For the sake of simplicity, we
assume that n is even.

In the following, let ei,j ∈ Tn(k) denote the matrix that has a one in posi-
tion (i, j) and zeros elsewhere for 1 ≤ i ≤ j ≤ n. The radical R of Tn(k) equals

88 M. Bläser

I

Rn/2+1
X

Y
V

Fig. 1. The decomposition of Tn(k)

the linear span of all ei,j with i < j, that is, R is the set of all matrices with
purely zeros on the diagonal. More general, the power Rh equals the linear span
of all ei,j with i+ h ≤ j.

We will first step down from Tn(k) to the quotient A = Tn(k)/Rn/2+1. By
Corollary 1, we obtain

C(Tn(k)) ≥ C(A) + 2 dimRn/2+1 = C(A) + 1
4n

2 − 1
2n. (7)

The multiplication in A corresponds to the multiplication of upper triangular
matrices where we do not compute the entries in the positions (i, j) with i +
n/2 + 1 ≤ j. We use this representation in the following.

Next, we have to instantiate I, X, Y , U , and V . For the remainder of this
section, let m = n/2. We choose (see Figure 1 for an illustration)

I = lin{ei,j | i ≤ m and j > m}, X = lin{ei,j | i ≤ m and j ≤ m},
Y = lin{ei,j | i > m and j > m}, U = {0},
V = lin{em+1,n, em+2,n, . . . , en,n}.

Obviously, A = I ⊕X ⊕ Y . A straightforward calculation shows that I2 = {0}
and Y · I = {0} (in A). Moreover, to fulfil the assumptions of Lemma 7, we have
to show that for any projection π onto I⊕U⊕V = I⊕V , π◦φ is 1–concise, where
φ denotes the multiplication map of A. So for each ei,j ∈ A, we have to find an
element a ∈ A such that π(ei,j · a) 6= 0. We consider three cases: if ei,j ∈ I, that
is, i ≤ m and j > m, then ei,j ·ej,j = ei,j ∈ I, thus π(ei,j) = ei,j 6= 0. If ei,j ∈ X,
i.e., i ≤ m and j ≤ m, then ei,j · ej,m+1 = ei,m+1 ∈ I. If finally ei,j ∈ Y , that is,
i > m and j > m, then ei,j · ej,n = ej,n ∈ V , thus π(ei,j · ej,n) = ej,n 6= 0. The
1-conciseness of π ◦ φ follows from this.

It remains to estimate C(φ|X×I). Our aim is to use the following lemma
which is proven in [6, Lemma 4]. In what follows, [B,C] := BC − CB denotes
the Lie product of two matrices.

Lemma 8. Let k be a field. Let t be a tensor with 3-slices IN , B, C ∈ kN×N .
Then C(t) ≥ N + 1

2 rk[B,C].

Improvements of the Alder–Strassen Bound 89

To utilize this lemma, we have to determine the tensor of φ|X×I : for a clearer
presentation, we choose the basis

e1,1, . . . , e1,m
︸ ︷︷ ︸
first group

, . . . , ei,i, . . . , ei,m
︸ ︷︷ ︸
ith group

, . . . , em,m
︸ ︷︷ ︸

mth group

for X (in this row-wise order) and the basis

e1,m+1, . . . , em,m+1
︸ ︷︷ ︸

first group

, . . . , ej,m+j , . . . , em,m+j
︸ ︷︷ ︸

jth group

, . . . , em,n
︸︷︷︸

mth group

for I (column-wise ordering). The third basis (again for I, since Φ|X×I is a
mapping X × I → I) equals the second basis (but we forget about the groups).
We denote the 3–slice of the tensor of φ|X×I that corresponds to ei,m+j by Ti,j
for j ≤ i ≤ m. The Ti,j are matrices of size M ×M where M = 1

2m(m+ 1). We
associate a block structure with the Ti,j ’s induced by the above groups of the
first and second basis.

In Ti,j , the only positions with nonzero entries are in the block at position
(i, j), that is, in the positions whose rows and columns correspond to the vectors
of the ith and jth group of the above two bases, respectively.

An easy calculation shows that the entries of Ti,j within these positions equal
(
Zi−j,j
Ij

)

(8)

where Iκ denotes the κ× κ–identity matrix and Zµ,ν denotes the zero matrix of
size µ×ν. In particular, the 3–slices are linearly independent. From a macroscopic
point of view with respect to the above block structure, the Ti,j are block lower
triangular matrices “of the form ei,j” with the above matrix (8) as the only
nonzero entry (instead of a one).

By Lemma 1, the fact that C(φ|X×I) ≤ ` is equivalent to the existence of
rank one matrices P1, . . . , P` such that

(
0 Ti,j
T>
i,j 0

)

∈ lin{P1 + P>
1 , . . . , P` + P>

` } for i ≤ j ≤ m.

We now exploit the Steinitz exchange to save one product for each tensor Tµ,ν
with µ ≥ ν + 2: there are matrices S1, . . . , Sm and Q1, . . . , Qm−1 in lin{Tµ,ν |
µ ≥ ν + 2} such that after a suitable permutation of the P1, . . . , P`

(
0 Tµ,µ

T>
µ,µ 0

)

−
(

0 Sµ
S>
µ 0

)

,

(
0 Tν,ν−1

T>
ν,ν−1 0

)

−
(

0 Qν
Q>
ν 0

)

∈

lin{P1 + P>
1 , . . . , P`−s + P>

`−s} for 1 ≤ µ ≤ m, 1 ≤ ν ≤ m− 1, (9)

where s = 1
2m(m+ 1) −m− (m− 1). Thus we have killed s products.

90 M. Bläser

Let λ1, . . . , λm ∈ k be pairwise distinct. Define

E = T1,1 − S1 + · · · + Tm,m − Sm,

B = λ1(T1,1 − S1) + · · · + λm(Tm,m − Sm),
C = T2,1 −Q1 + · · · + Tm,m−1 −Qm−1.

From (9), we obtain

C(φ|X×I) ≥ s+ C(E,B,C). (10)

With respect to the above block structure, E has solely identity matrices on the
main diagonal and zero matrices one the first subdiagonal. The matrix B has
λµ multiples of identity matrices on the main diagonal and also zero matrices
on the first subdiagonal. The matrix C has zero matrices on the diagonal and
“nearly” identity matrices, more precisely, a line of zeros with an identity matrix
(as depicted in (8)) one the first subdiagonal.

The matrix E is invertible. By (4),

C(E,B,C) = C(IM , BE−1, CE−1). (11)

Due to the structure of E, E−1 also has solely identity matrices on the main di-
agonal and zero matrices on the first subdiagonal. Thus, BE−1 has λµ multiples
of identity matrices on the main diagonal and zero matrices on the first subdi-
agonal. In the same way, CE−1 has zero matrices on the diagonal and “nearly”
identity matrices on the first subdiagonal. Some easy algebra shows that due to
this structure, the Lie product [BE−1, CE−1] has zero matrices in the blocks on
the main diagonal and the matrix

(λj+1 − λj)
︸ ︷︷ ︸

6= 0

·
(
Z1,j
Ij

)

in the (j + 1, j)–block (on the first subdiagonal) for 1 ≤ j ≤ m− 1. Hence, the
rank of [BE−1, CE−1] is at least 1 + 2 + · · · +m− 1 = 1

2 (m− 1)m.
Together with (10), (11), and Lemma 8, the last statement implies the fol-

lowing lower bound.

Lemma 9. With the notations from above, C(φ|X×I) ≥ 5
4m

2 − 5
4m+ 1.

Exploiting (7) and then bounding C(A) by Lemma 7 and Lemma 9, we obtain
the following lower bound.

Theorem 3. For even n, the multiplicative complexity of the multiplication of
upper triangular matrices of size n× n has the lower bound

C(Tn(k)) ≥ 17
16n

2 − 3
8n+ 1 ≥ (2 1

8 − o(1)) dim Tn(k).

Remark 2. For odd n, the same approach also yields (2 1
8 − o(1)) dim Tn(k) as a

lower bound. A quick solution goes a follows: simply embed Tn−1(k) into Tn(k)
and apply the above theorem. We only loose an additive amount of O(n) ≤
o(dim Tn(k)).

Improvements of the Alder–Strassen Bound 91

References

1. A. Alder and V. Strassen. On the algorithmic complexity of associative algebras.
Theoret. Comput. Sci., 15:201–211, 1981.

2. Markus Bläser. Bivariate polynomial multiplication. In Proc. 39th Ann. IEEE
Symp. on Foundations of Comput. Sci. (FOCS), pages 186–191, 1998.

3. Markus Bläser. Lower bounds for the multiplicative complexity of matrix multi-
plication. Comput. Complexity, 8:203–226, 1999.

4. Markus Bläser. Untere Schranken für den Rang assoziativer Algebren. Dissertation,
Universität Bonn, 1999.

5. Markus Bläser. Lower bounds for the bilinear complexity of associative algebras.
Comput. Complexity, 9:73–112, 2000.

6. Markus Bläser. A 5
2n

2–lower bound for the multiplicative complexity of n×n–
matrix multiplication. In Proc. 18th Int. GI–MIMD Symp. on Theoret. Aspects of
Comput. Sci. (STACS), Lecture Notes in Comput. Sci. 2010, pages 99–110, 2001.

7. Werner Büchi. Über eine Klasse von Algebren minimalen Rangs. Dissertation,
Universität Zürich, 1984.

8. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complexity
Theory. Springer, 1997.

9. Yurij A. Drozd and Vladimir V. Kirichenko. Finite Dimensional Algebras. Springer,
1994.

10. Hans F. de Groote. Lectures on the Complexity of Bilinear Problems. Lecture
Notes in Comput. Science 245. Springer, 1986.

11. Joos Heintz and Jacques Morgenstern. On associative algebras of minimal rank. In
Proc. 2nd Applied Algebra and Error Correcting Codes Conf. (AAECC), Lecture
Notes in Comput. Sci. 228, pages 1–24. Springer, 1986.

12. Joseph Ja’Ja’. On the complexity of bilinear forms with commutativity. SIAM J.
Comput., 9:717–738, 1980.

13. Victor Ya. Pan. Methods for computing values of polynomials. Russ. Math. Surv.,
21:105–136, 1966.

14. Richard S. Pierce. Associative Algebras. Springer, 1982.
15. Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202,

1973.
16. Volker Strassen. Algebraic complexity theory. In J. van Leeuven, editor, Handbook

of Theoretical Computer Science Vol. A, pages 634–672. Elsevier Science Publishers
B.V., 1990.

On Generating All Minimal Integer Solutions for
a Monotone System of Linear Inequalities?

E. Boros1, K. Elbassioni2, V. Gurvich1, L. Khachiyan2, and K. Makino3

1 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003;
{boros,gurvich}@rutcor.rutgers.edu

2 Department of Computer Science, Rutgers University, 110 Frelinghuysen Road,
Piscataway NJ 08854-8003; elbassio@paul.rutgers.edu,leonid@cs.rutgers.edu

3 Division of Systems Science, Graduate School of Engineering Science, Osaka
University, Toyonaka, Osaka, 560-8531, Japan; makino@sys.es.osaka-u.ac.jp

Abstract. We consider the problem of enumerating all minimal integer
solutions of a monotone system of linear inequalities. We first show that
for any monotone system of r linear inequalities in n variables, the num-
ber of maximal infeasible integer vectors is at most rn times the number
of minimal integer solutions to the system. This bound is accurate up
to a polylog(r) factor and leads to a polynomial-time reduction of the
enumeration problem to a natural generalization of the well-known du-
alization problem for hypergraphs, in which dual pairs of hypergraphs
are replaced by dual collections of integer vectors in a box. We provide
a quasi-polynomial algorithm for the latter dualization problem. These
results imply, in particular, that the problem of incrementally generating
minimal integer solutions of a monotone system of linear inequalities can
be done in quasi-polynomial time.

Keywords: Integer programming, complexity of incremental algorithms,
dualization, quasi-polynomial time, monotone discrete binary functions,
monotone inequalities, regular discrete functions.

1 Introduction

Consider a system of r linear inequalities in n integer variables

Ax ≥ b, x ∈ C = {x ∈ Z
n | 0 ≤ x ≤ c}, (1)

where A is a rational r×n-matrix, b is a rational r-vector, and c is a non-negative
integral n-vector some or all of whose components may be infinite. We assume
that (1) is a monotone system of inequalities: if x ∈ C satisfies (1) then any
vector y ∈ C such that y ≥ x is also feasible. For instance, (1) is monotone if the
? The research of the first and third authors was supported in part by the Office

of Naval Research (Grant N00014-92-J-1375), and the National Science Foundation
(Grant DMS 98-06389). The research of the third and forth authors was supported
in part by the National Science Foundation (Grant CCR-9618796).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 92–103, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On Generating All Minimal Integer Solutions 93

matrix A is non-negative. Let us denote by F = FA,b,c the set of all minimal
feasible integral vectors for (1), i.e. y ∈ F if there is no solution x of (1) such that
x ≤ y, x 6= y. In particular, we have {x ∈ C | Ax ≥ b} =

⋃
y∈F{ x ∈ C | x ≥ y}.

In this paper, we are concerned with the problem of incrementally generating F :

GEN(FA,b,c,X): Given a monotone system (1) and a set X ⊆ FA,b,c of minimal
feasible vectors for (1), either find a new minimal integral vector satisfying
(1), or show that X = FA,b,c.

The entire set F = FA,b,c can be constructed by initializing X = ∅ and iteratively
solving the above problem |F|+ 1 times.

If A is a binary matrix, and b, c are vectors of all ones, then F is the set
of (characteristic vectors of) all minimal transversals to the hypergraph defined
by the rows of A. In this case, problem GEN(FA,b,c,X) turns into the well-
known hypergraph dualization problem: incrementally enumerate all the minimal
transversals (equivalently, all the maximal independent sets) for a given hyper-
graph (see, e.g., [3,10]). Some applications of the hypergraph dualization problem
are discussed in [1,7,9]. The case where A is binary, c is the vector of all ones and
b is arbitrary, is equivalent with the generation of so-called multiple transversals
[5]. If A is integral and c = +∞, the generation of F can also be regarded as the
computation of the Hilbert basis for the ideal {x ∈ Z

n | Ax ≥ b, x ≥ 0}. One
more application of problem GEN(FA,b,c,X) is related to stochastic program-
ming, more precisely to the generation of minimal p-efficient points for a given
probability distribution of a discrete random variable ξ ∈ Z

n. An integer vector
y ∈ Z

n is called p-efficient, if Prob(ξ ≤ y) ≥ p. It is known that for every prob-
ability distribution and every p > 0 there are finitely many minimal p-efficient
points, furthermore that for r-concave probability distributions these points are
exactly the minimal integral points of a corresponding convex monotone system
(see, e.g., [14]).

Let J∗ = {j | cj =∞} and J∗ = {1, . . . , n} \ J∗ be, respectively, the sets of
unbounded and bounded integer variables in (1). Consider an arbitrary vector
x = (x1, . . . , xn) ∈ FA,b,c such that xj > 0 for some j ∈ J∗. Then it is easy to
see that

xj ≤ max
i:aij>0

⌈
bi −

∑
k∈J∗ min{0, aik}ck

aij

⌉

< +∞. (2)

Since the bounds of (2) are easy to compute, and since appending these
bounds to (1) does not change the set FA,b,c, we shall assume in the sequel that
all components of the non-negative vector c are finite, even though this may not
be the case for the original system. This assumption does not entail any loss of
generality and allows us to consider FA,b,c as a system of integral vectors in a
finite box. We shall also assume that the input monotone system (1) is feasible,
i.e., FA,b,c 6= ∅. For a finite and non-negative c this is equivalent to Ac ≥ b.

94 E. Boros et al.

Let A be a collection of integral vectors in C and let A+ = {x ∈ C | x ≥
a for some a ∈ A} and A− = {x ∈ C | x ≤ a for some a ∈ A} denote the ideal
and filter generated by A. Any element in C \A+ is called independent of A. Let
I(A) be the set of all maximal independent elements for A, then for any finite
box C we have the decomposition:

A+ ∩ I(A)− = ∅, A+ ∪ I(A)− = C. (3)

In particular, if A is the set F = FA,b,c of all minimal feasible integral vectors
for (1), then the ideal F+ is the solution set of (1), while the filter C \ F+ is
generated by the set I(F) of all maximal infeasible integral vectors for (1):

{x ∈ C | Ax 6≥ b} =
⋃

y∈I(F)

{y}−.

It is known that the problem of incrementally generating all maximal infeasible
vectors for (1) is NP-hard even if c is the vector of all ones and the matrix A is
binary:

Proposition 1 (c.f. [12]). Given a binary matrix A and a set X ⊆ I(FA,b,c)
of maximal infeasible Boolean vectors for Ax ≥ b, x ∈ {0, 1}n, it is NP-complete
to decide if the set X can be extended, that is if I(FA,b,c) \ X 6= ∅.

In contrast to that, we show in this paper that the problem of incrementally
generating all minimal feasible vectors for (1) is unlikely to be NP-hard.

Theorem 1. Problem GEN(FA,b,c,X) can be solved in quasi-polynomial time
poly(|input|) + to(log t), where t = max{n, r, |X |}.

It was conjectured in [11] that problem GEN(FA,b,c,X) cannot be solved in
polynomial time unless P=NP.

To prove Theorem 1, we first bound the number of maximal infeasible vectors
for (1) in terms of the dimension of the system and the number of minimal
feasible vectors.

Theorem 2. Suppose that the monotone system (1) is feasible, i.e., Ac ≥ b.
Then for any non-empty set X ⊆ FA,b,c we have

|I(X) ∩ I(FA,b,c)| ≤ r
∑

x∈X
p(x), (4)

where p(x) is the number of positive components of x. In particular,

|I(X) ∩ I(FA,b,c)| ≤ rn|X |,

which for X = FA,b,c leads to the inequality |I(FA,b,c)| ≤ rn|FA,b,c|.

On Generating All Minimal Integer Solutions 95

It should be mentioned that the bounds of Theorem 2 are sharp for r = 1, e.g.,
for the inequality x1 + . . .+xn ≥ n. For large r, these bounds are accurate up to
a factor poly-logarithmic in r. To see this, let n = 2k and consider the monotone
system of r = 2k inequalities of the form

xi1 + xi2 + · · ·+ xik
≥ 1, i1 ∈ {1, 2}, i2 ∈ {3, 4}, . . . , ik ∈ {2k − 1, 2k},

where x = (x1, . . . , xn) ∈ C = {x ∈ Z
n | 0 ≤ x ≤ c}. For any positive inte-

gral vector c, this system has 2k maximal infeasible integral vectors and only k
minimal feasible integral vectors, i.e.,

|I(FA,b,c)| = rn

2(log r)2
|FA,b,c|.

Needless to say that in general, |FA,b,c| cannot be bounded by a polynomial
in r, n, and |I(FA,b,c)|. For instance, for n = 2k the system of k inequalities
x1 + x2 ≥ 1, x3 + x4 ≥ 1,. . . , x2k−1 + x2k ≥ 1 has 2k minimal feasible binary
vectors and only k maximal infeasible binary vectors.

Let us add finally that if the number of inequalities in (1) is fixed, then
|FA,b,c| can also be polynomially bounded by |I(FA,b,c)|, and accordingly, the
set of all maximal infeasible integer vectors for (1) can be generated in quasi-
polynomial time. In other words, Proposition 1 cannot hold for r = const unless
any problem in NP can be solved in quasi-polynomial time. Furthermore, for
systems with fixed number of non-zero coefficients per inequality and bounded
box size, problem GEN(FA,b,c,X) can be efficiently solved in parallel (see [4]).

We prove Theorem 2 in Section 2, and then use this theorem in the next
section to reduce problem GEN(FA,b,c,X) to a natural generalization of the
hypergraph dualization problem. Our generalized dualization problem replaces
hypergraphs by collections of integer vectors in a box.

Theorem 3. GEN(FA,b,c,X) is polynomial-time reducible to the following
problem:

DUAL(C,A,B): Given an integral box C, a family of vectors A ⊆ C, and a
collection of maximal independent elements B ⊆ I(A), either find a new
maximal independent element x ∈ I(A) \ B, or prove that B = I(A).

Note that for C = {0, 1}n, problem DUAL(C,A,B) turns into the hypergraph
dualization problem. Other applications of the dualization problem on boxes can
be found in [2,6,13]. In Section 4 we extend the hypergraph dualization algorithm
of [8] to problem DUAL(C,A,B) and show that the latter problem can be solved
in quasi-polynomial time:

Theorem 4. Given two sets A, and B ⊆ I(A) in an integral box C = {x ∈
Z

n | 0 ≤ x ≤ c}, problem DUAL(C,A,B) can be solved in poly(n, m)+mo(log m)

time, where m = |A|+ |B|.
Clearly, Theorem 1 follows from Theorems 3 and 4. The special cases of

Theorems 2 and 3 for Boolean systems x ∈ {0, 1}n can be found in [5].

The remainder of the paper consists of the proofs of Theorems 2, 3 and 4 in
Sections 2, 3, 4 respectively.

96 E. Boros et al.

2 Bounding the Number of Maximal Infeasible Vectors

In this section we prove Theorem 2. We first need some notations and definitions.
Let C = {x ∈ Z

n | 0 ≤ x ≤ c} be a box and let f : C → {0, 1} be a discrete
binary function. The function f is called monotone if f(x) ≥ f(y) whenever
x ≥ y and x, y ∈ C. We denote by T (f) and F (f) the sets of all true and all false
vectors of f , i.e.,

T (f) = {x ∈ C|f(x) = 1} = (min[f])+, F (f) = {x ∈ C|f(x) = 0} = (max[f])−,

where min[f] and max[f] are the sets of all minimal true and all maximal false
vectors of f , respectively.

Let σ ∈ Sn be a permutation of the coordinates and let x, y be two n-vectors.
We say that y is a left-shift of x and write y �σ x if the inequalities

k∑

j=1

yσj
≥

k∑

j=1

xσj

hold for all k = 1, . . . , n. A discrete binary function f : C → {0, 1} is called
2-monotonic with respect to σ if f(y) ≥ f(x) whenever y �σ x and x, y ∈ C.
Clearly, y ≥ x implies y �σ x for any σ ∈ Sn, so that any 2-monotonic function
is monotone.

The function f will be called regular if it is 2-monotonic with respect to
the identity permutation σ = (1, 2, ..., n). Any 2-monotonic function can be
transformed into a regular one by appropriately re-indexing its variables. To
simplify notations, we shall state Lemma 1 below for regular functions, i.e., we
fix σ = (1, 2, ..., n) in this lemma.

For a given subset A ⊆ C let us denote by A∗ all the vectors which are left-
shifts of some vectors of A, i.e., A∗ = {y ∈ C | y � x for some x ∈ A}. Clearly,
T (f) = (min[f])∗ for a regular function f (in fact, the subfamily of right-most
vectors of min[f] would be enough to use here.)

Given monotone discrete functions f and g, we call g a regular majorant of
f , if g(x) ≥ f(x) for all x ∈ C, and g is regular. Clearly, T (g) ⊇ (min[f])∗ must
hold in this case, and the discrete function h defined by T (h) = (min[f])∗ is the
unique minimal regular majorant of f .

For a vector x ∈ C, and for an index 1 ≤ k ≤ n, let the vectors x(k] and x[k)

be defined by

x
(k]
j =

{
xj for j ≤ k,
0 otherwise,

and

x
[k)
j =

{
xj for j ≥ k,
0 otherwise.

Let us denote by e the n-vector of all 1’s, let ej denote the jth unit vector,
j = 1, ..., n, and let p(x) denote the number of positive components of the vector
x ∈ C.

On Generating All Minimal Integer Solutions 97

Lemma 1. Given a monotone discrete binary function f : C → {0, 1} such that
f 6≡ 0, and a regular majorant g ≥ f , we have the inequality

|F (g) ∩max[f]| ≤
∑

x∈min[f]

p(x). (5)

Proof. Let us denote by h the unique minimal regular majorant of f . Then
we have F (g) ∩ max[f] ⊆ F (h) ∩ max[f], and hence it is enough to show the
statement for g = h, i.e. when T (g) = (min[f])∗.

For a vector y ∈ C\{c} let us denote by l = ly the index of the last component
which is less than cl, i.e., l = max{j | yj < cj} ∈ {1, . . . , n}. We claim that for
every y ∈ F (h) ∩max[f] there exists an x ∈ min[f] such that

y = x(l−1] + (xl − 1)el + c[l+1), (6)

where l = ly. To see this claim, first observe that y 6= c because y ∈ F (f) and
f 6≡ 0. Second, for any j with yj < cj we know that y + ej ∈ T (f), by the
definition of a maximal false point. Hence there exists a minimal true-vector
x ∈ min[f] such that x ≤ y + el for l = ly. We must have x(l−1] = y(l−1], since
if xi < yi for some i < l, then y ≥ x + ei − el � x would hold, i.e. y � x would
follow, implying y ∈ (min[f])∗ and yielding a contradiction with y ∈ F (h) =
C \ (min[f])∗. Finally, the definition of l = ly implies that y[l+1) = c[l+1). Hence,
our claim and the equality (6) follow.

The above claim implies that

F (h) ∩max[f] ⊆ {x(l−1] + (xl − 1)el + c[l+1) | x ∈ min[f], xl > 0},

and hence (5) and thus the lemma follow. ut

Lemma 2. Let f : C → {0, 1} be a monotone discrete binary function such that
f 6≡ 0 and

x ∈ T (f) ⇒ αx
def= α1x1 + . . . αnxn ≥ β, (7)

where α = (α1, . . . , αn) is a given real vector and β is a real threshold. Then

|{x ∈ C | αx < β} ∩max[f]| ≤
∑

x∈min[f]

p(x).

Proof. Suppose that some of the weights α1, . . . , αn are negative, say α1 <
0, . . . , αk < 0 and α[k+1) ≥ 0. Since αx ≥ β for any x ∈ T (f) and since f is
monotone, we have x ∈ T (f) ⇒ α[k+1)x ≥ β − α(k]c(k]. For any x ∈ C we also
have {x | αx < β} ⊆ {x | α[k+1)x < β − α(k]c(k]}. Hence it suffices to prove the
lemma for the non-negative weight vector α[k+1) and the threshold β − α(k]c(k].
In other words, we can assume without loss of generality that the original weight
vector α is non-negative.

98 E. Boros et al.

Let σ ∈ S
n be a permutation such that ασ1 ≥ ασ2 ≥ · · · ≥ ασn

≥ 0. Then
the threshold function

g(x) =
{

1 if αx ≥ β,
0 otherwise.

is 2-monotonic with respect to σ. By (7), we have g ≥ f for all x ∈ C, i.e., g
majorates f . In addition, F (g) = {x ∈ C | αx < β}, and hence Lemma 2 follows
from Lemma 1. ut

We are now ready to show inequality (4) and finish the proof of Theorem
2. Given a non-empty set X ⊆ FA,b,c, consider the monotone discrete function
f : C → {0, 1} defined by the condition min[f] = X . Since (1) is monotone, any
true vector of f also satisfies (1):

x ∈ T (f) ⇒ ak1x1 + . . . + aknxn ≥ bk

for all k = 1, . . . , r. In addition, f 6≡ 0 because X 6= ∅. Thus, by Lemma 2 we
have the inequalities

|{x | ak1x1 + . . . + aknxn < bk} ∩max[f]| ≤
∑

x∈X
p(x) (8)

for each k = 1, ..., r. Now, from max[f] = I(X) we deduce that

I(FA,b,c) ∩ I(X) ⊆
r⋃

k=1

{x | ak1x1 + . . . + aknxn < bk} ∩max[f],

and thus (4) and the theorem follow by (8).

3 Generating Minimal Integer Solutions via Integral
Dualization

The proof of Theorem 3 has two ingredients. First, we show that given a mono-
tone system (1), the sets I(FA,b,c) and FA,b,c can be jointly enumerated by iter-
atively solving the dualization problem DUAL(C,A,B) introduced in Theorem
3. Second, we invoke Theorem 2 and argue that since the number of maximal in-
feasible vectors is relatively small, the generation of FA,b,c polynomially reduces
to the joint generation of I(FA,b,c) and FA,b,c.

3.1 Joint Generation of Dual Subsets in an Integral Box

Let F = FA,b,c be the set of minimal integral vectors for (1), and consider the
following problem of jointly generating all points of F and I(F):

GEN(F , I(F),A,B): Given two explicitly listed collections A ⊆ F and B ⊆
I(F), either find a new point in (F \ A) ∪ (I(F) \ B), or prove that these
collections are complete: (A,B) = (F , I(F)).

On Generating All Minimal Integer Solutions 99

Proposition 2. Problem GEN(F , I(F),A,B) can be solved in time poly(n,
|A|, |B|, log ‖c‖∞) + Tdual, where Tdual denotes the time required to solve prob-
lem DUAL(C,A,B).

Proof. The reduction is via the following Algorithm J :
Step 1. Check whether B ⊆ I(A). If there is an x ∈ B \ I(A), then x 6∈ F+

because x ∈ B ⊆ I(F). This and the inclusion A ⊆ F imply that x 6∈ A+. Since
x 6∈ I(A), we can find a coordinate j ∈ {1, . . . , n} for which y = x + ej 6∈ A+.
By the maximality of x in C \ F+, y belongs to F+ and therefore, there must
exist a z ∈ F such that z ≤ y. Since z 6∈ A+, we have z ∈ F \A, i.e., z is a new
minimal integral vector in F which can be found in poly(n, |A|, |B|, log ‖c‖∞)
time by performing coordinate binary searches on the box {z ∈ Z

n | 0 ≤ z ≤ y}.
Step 2 is similar to the previous step: we check whether A ⊆ I−1(B), where

I−1(B) is the set of integral vectors minimal in C \B−. If A contains an element
that is not minimal in C \ B−, we can find a new point in I(F) \ B and halt.

Step 3. Suppose that B ⊆ I(A) andA ⊆ I−1(B). Then (A,B) = (F , I(F))⇔
B = I(A). (To see this, assume that B = I(A), and suppose on the contrary
that there is an x ∈ F \ A. Since x 6∈ A = I−1(B) and x 6∈ B− ⊆ I(F)−, there
must exist a y ∈ I−1(B) = A ⊆ F such that y ≤ x. Hence we get two distinct
elements x, y ∈ F such that y ≤ x, which contradicts the definition of F . The
existence of an x ∈ I(F) \ B leads to a similar contradiction.) To check the
condition B = I(A), we solve problem DUAL(C,A,B). If B 6= I(A), we obtain
a new point x ∈ I(A) \ B. By (3), either x ∈ F+, or x ∈ I(F)− and we can
decide which of these two cases holds by checking the feasibility of x for (1). In
the first case, we obtain a new point y ∈ {x}− ∩ (F \ A) by performing binary
searches on the coordinates of the box {y ∈ Z

n | 0 ≤ y ≤ x}. In the second
case, a new point in {x}+ ∩ (I(F) \ B) can be obtained by searching the box
{y ∈ Z

n | x ≤ y ≤ c}. ut
Let F ⊆ C be an arbitrary antichain, i.e., a system of integral vectors such

that x 6≤ y for any two distinct elements x, y ∈ F . It is easy to see that Algorithm
J and Proposition 2 can be used for any class of antichains F defined by a
polynomial-time membership oracle for F+.

3.2 Uniformly Dual-Bounded Antichains

Extending the definition of dual-bounded hypergraphs in [5], we say that (a class
of antichains) F ⊆ C is uniformly dual-bounded if there exists a polynomial p
such that, for any nonempty subset X ⊆ F , we have

|I(F) ∩ I(X)| ≤ p(|X |).

Proposition 3. Suppose that F is uniformly dual-bounded and there exists
a polynomial-time membership oracle for F+. Then problem GEN(F) is
polynomial-time reducible to problem DUAL(C,A,B).

100 E. Boros et al.

Proof. Given a set X in F , we repeatedly run Algorithm J until it either pro-
duces a new element in F \ X or proves that X = F by generating the entire
family I(F). By Step 1, as long as Algorithm J outputs elements of I(F), these
elements also belong to I(X), and hence the total number of such elements does
not exceed p(|X |). ut

By Theorem 2, the set of minimal integral solutions to any monotone sys-
tem of linear inequalities is uniformly-dual bounded, and hence Theorem 3 is a
corollary of Proposition 3.

4 Dualization in Products of Chains

Let C def= C1 × . . . × Cn be an integer box defined by the product of n chains
Ci = [li : ui] where li, ui ∈ Z are, respectively, the lower and upper bounds of
chain Ci. Given an antichain A ⊆ C, and an antichain B ⊆ I(A), we say that B
is dual to A if B = I(A), i.e., B contains all the maximal elements of C \ A+.
If C is the unit cube, we obtain the familiar notion of dual hypergraphs, where
I(A) becomes the complementary set of the transversal hypergraph of A. In this
section, we show how to extend the hypergraph dualization algorithm of [8] to
arbitrary systems A of integral vectors in a box C.

As in [8], we shall analyze the running time of the algorithm in terms of the
“volume” v = v(A,B) def= |A||B| of the input problem. In general, a given problem
will be decomposed into a number of subproblems which we solve recursively.
Since we have assumed that B ⊆ I(A), (3) implies that the following condition
holds for the original problem and all subsequent subproblems:

a 6≤ b, for all a ∈ A, b ∈ B. (9)

Let R(v) = R(v(A,B)) denote the number of subproblems that have to be
solved in order to solve the original problem, and let m denote |A| + |B|, and
[n] def= {1, . . . , n}. We start with the following proposition that provides the base
case for recursion.

Proposition 4. Suppose min{|A|, |B|} ≤ const, then problem DUAL(C,A,B)
is solvable in polynomial time.

Proof. Let us assume without loss of generality that B = {b1, . . . , bk}, for some
constant k. For t ∈ [n]k and i ∈ [n], let It

i = {j ∈ [k] | tj = i}. Then C = A+∪B−

if and only if for every t ∈ [n]k for which

bj
i 6= ui, for all i ∈ [n], j ∈ It

i , (10)

there exists an a ∈ A such that

ai ≤ max{bj
i + 1 | j ∈ It

i} if It
i 6= ∅, and ai = li otherwise. (11)

To see this, assume first that C = A+ ∪ B− and consider any t ∈ [n]k such that
(10) holds. Let x ∈ C be defined by taking xi = max{bj

i + 1 | j ∈ It
i} if It

i 6= ∅,

On Generating All Minimal Integer Solutions 101

and xi = li otherwise. Then x ∈ C\B− and hence x ∈ A+, implying that there is
an a ∈ A satisfying (11). On the other hand, let us assume that for every t ∈ [n]k

satisfying (10), there is an a ∈ A for which (11) holds. Consider an x ∈ C \ B−,
then there must exist, for every j ∈ [k], a tj ∈ [n], such that xtj ≥ bj

tj
+ 1.

Clearly t = (t1, . . . , tk) ∈ [n]k satisfies (10), and therefore, there is an a ∈ A
such that ai ≤ max{bj

i + 1 | j ∈ It
i} ≤ xi if It

i 6= ∅, and ai = li otherwise. This
gives x ∈ A+. ut
Remark. Having found an x ∈ C \ (A+ ∪ B−), it is always possible to extend
it to a maximal point with the same property in O(nm log m) time as follows.
Let Qi = {ai − 1 | a ∈ A} ∪ {xi, ui}, i = 1, . . . , n, and assume that this list
is kept in sorted order for each i. For i = 1, . . . , n, we iterate xi ← max{z ∈
Qi | (x1, . . . , xi−1, z, xi+1, . . . , xn) 6∈ A+}. Then the resulting point x is maximal
in C \ (A+ ∪ B−).

Now given two integral antichains A,B that satisfy the necessary duality
condition (9), we proceed as follows:

Step 1. If min{|A|, |B|} ≤ 2, the duality of A and B can be tested in O(n3m)
time using Proposition 4.
Step 2. For each k ∈ [n]:

1. if ak > uk for some a ∈ A (bk < lk for some b ∈ B), then a (respectively,
b) can be clearly discarded from further consideration;

2. if ak < lk for some a ∈ A (bk > uk for some b ∈ B), we set ak ← lk
(respectively, bk ← uk). Note that the duality condition (9) continues to hold
after such replacements.

Thus we may assume for next steps that A,B ⊆ C.
Step 3. Let ao ∈ A, bo ∈ B. By (9), there exists an i ∈ [n], such that ao

i > bo
i .

Assume, with no loss of generality, that i = 1 and set C′
1 ← [ao

1 : u1], C′′
1 ← [l1 :

ao
1 − 1]. (Alternatively, we may set C′′

1 ← [l1 : bo
1] and C′

1 ← [bo
1 + 1 : u1].) Define

A′′ = {a ∈ A | a1 < ao
1}, A′ = A \ A′′, εA

1 = |A′|
|A| ,

B′ = {b ∈ B | b1 ≥ ao
1}, B′′ = B \ B′, εB

1 = |B′′|
|B| .

Observe that εA
1 > 0 and εB

1 > 0 since ao ∈ A′ and bo ∈ B′′.
Denoting by C′ = C′

1 × C2 × . . . × Cn, and C′′ = C′′
1 × C2 × . . . × Cn the two

half-boxes of C induced by the above partitioning, it is then easy to see that A
and B are dual in C if and only if

A,B′ are dual in C′, and (12)
A′′,B are dual in C′′. (13)

Step 4. Define ε(v) = 1/χ(v), where χ(v)χ(v) = v = v(A,B). If min{εA
1 , εB

1 } >
ε(v), we use the decomposition rule given above, which amounts to solving re-
cursively two subproblems (12), (13) of respective volumes:

v(A,B′) = |A||B′| = |A|(1− εB
1)|B| = (1− εB

1)v(A,B) ≤ (1− ε(v))v,
v(A′′,B) = |A′′||B| = (1− εA

1)|A||B| = (1− εA
1)v(A,B) ≤ (1− ε(v))v.

102 E. Boros et al.

This gives rise to the recurrence

R(v) ≤ 1 + R((1− εB
1)v) + R((1− εA

1)v) ≤ 1 + 2R((1− ε(v))v).

Step 5. Let us now suppose that εB
1 ≤ ε(v). In this case, we begin by solving

subproblem (12). If A,B′ are not dual in C′, we get a point x maximal in C′ \
[A+ ∪ (B′)−], and we are done. Otherwise we claim that

A′′,B are dual in C′′ ⇐⇒ ∀a ∈ Ã : A′′,B′′ are dual in C′′(a), (14)

where Ã = {a ∈ A | a1 ≤ ao
1}, and C′′(a) = C′′

1 × [a2 : u2]× . . .× [an : un].

Proof of (14). The forward direction does not use (12). Suppose that there is
an x ∈ C′′(a) \ [(A′′)+ ∪ (B′′)−] for some a ∈ Ã, then xi ≥ ai, for i = 2, . . . , n. If
x ∈ (B′)−, i.e., x ≤ b for some b ∈ B′, then by the definition of B′, b1 ≥ ao

1. On
the other hand, a ∈ Ã implies that a1 ≤ ao

1. But then,

(a1, a2, . . . , an) ≤ (ao
1, x2, . . . , xn) ≤ (b1, b2, . . . , bn),

which contradicts the assumed duality condition (9). This shows that x ∈ C′′ \
[(A′′)+ ∪ (B′ ∪ B′′)−].

For the other direction, let x ∈ C′′ \ [(A′′)+ ∪ B−]. Since x 6∈ (B′)− and
x = (x1, x2, . . . , xn) < y

def= (ao
1, x2, . . . , xn), the vector y is also not covered by

B′. Thus y ∈ C′ \ (B′)−. We conclude therefore, assuming (12), that y ∈ A+, i.e.,
there is an a ∈ A such that a ≤ y. But this implies that a ∈ Ã and hence that
x ∈ C′′(a) \ [(A′′)+ ∪ (B′′)−] for some a ∈ Ã. ut

It follows by (14) that, once we discover that (12) holds, we can reduce the
solution of subproblem (13) to solving |Ã| subproblems, each of which has a
volume of v(|A′′|, |B′′|) ≤ εB

1 v(A,B). Thus we obtain the recurrence

R(v) ≤ 1 + R((1− εB
1)v) + |A|R(εB

1 v) ≤ R((1− εB
1)v) +

v

2
R(εB

1 v),

where the last inequality follows from |A| ≤ v/3 and v ≥ 9.
Step 6. Finally, if εA

1 ≤ ε(v) < εB
1 , we solve subproblem (13), and if we discover

that A′′,B are dual in C′′, we obtain the following rule, symmetric to (14):

A,B′ are dual in C′ ⇐⇒ ∀b ∈ B̃ : A′,B′ are dual in C′(b),

where B̃ = {b ∈ B | b1 ≥ ao
1 − 1}, and C′(b) = C′

1 × [l2 : b2]× . . .× [ln : bn]. This
reduces our original problem into one subproblem of volume ≤ (1 − εA

1)v, plus
|B̃| subproblems, each of volume at most εA

1 v, thus giving the recurrence

R(v) ≤ 1 + R((1− εA
1)v) + |B|R(εA

1 v) ≤ R((1− εA
1)v) +

v

2
R(εA

1 v).

Using induction on v ≥ 9, it can be shown that the above recurrences imply
that R(v) ≤ vχ(v) (see [8]). As χ(m2) < 2χ(m) and v(A,B) < m2, we get
χ(v) < χ(m2) < 2χ(m) ∼ 2 log m/ log log m. Let us also note that every step
above can be implemented in at most O(n3m) time, independent of the chains
sizes |Ci|. This establishes the bound stated in Theorem 4.

On Generating All Minimal Integer Solutions 103

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast discovery
of association rules, In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R.
Uthurusamy eds., Advances in Knowledge Discovery and Data Mining, 307-328,
AAAI Press, Menlo Park, California, 1996.

2. J. C. Bioch, Dualization, decision lists and identification of monotone discrete
functions, Annals of Mathematics and Artificial Intelligence 24 (1998) 69-91.

3. J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive
Boolean functions, Information and Computation 123 (1995) 50-63.

4. E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, An incremental RNC al-
gorithm for generating all maximal independent sets in hypergraphs of bounded
dimension. DIMACS Technical Report 2000-21, Rutgers University. To appear in
Parallel Processing Letters.

5. E. Boros, V. Gurvich, L. Khachiyan and K.Makino, Generating partial and multiple
transversals of a hypergraph, In: Automata, Languanges and Programming, 27th
International Colloquium, ICALP 2000 (Montanari, J.D.P. Rolim and E. Welzl,
eds.), pp. 588-599 (Springer Verlag, Berlin, Heidelberg, New York, July 2000). An
extended version of this paper is to appear in SIAM J. Computing.

6. Y. Crama, P. L. Hammer and T. Ibaraki, Cause-effect relationships and partially
defined boolean functions, Annals of Operations Research 16 (1988) 299-326.

7. T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM Journal on Computing, 24 (1995) 1278-1304.

8. M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone
disjunctive normal forms, J. Algorithms, 21 (1996) 618-628.

9. D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen, Data mining, hy-
pergraph transversals and machine learning. In: Proceedings of the 16th ACM-
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
(1997) pp. 12-15.

10. D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating all maximal
independent sets, Information Processing Letters, 27 (1988) 119-123.

11. E. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms, SIAM Journal on
Computing, 9 (1980) 558-565.

12. K. Makino and T. Ibaraki, Interor and exterior functions of Boolean functions,
Discrete Applied Mathematics, 69 (1996) 209-231.

13. Mangasarian, Mathematical programming in machine learning, in G. Di. Pillo and
F. Giannessi eds. Nonlinear Optimization and Applications (Plenum Publishing,
New York, 1996) 283-295.

14. A. Prékopa, Stochastic Programming, (Kluwer, Dordrecht, 1995).

Division Is in Uniform TC0

William Hesse?

Department of Computer Science
University of Massachusetts

Amherst, MA 01002
FAX: (001) 413 545-1249
whesse@cs.umass.edu

Abstract. Integer division has been known since 1986 [4,13,12] to be in
slightly non-uniform TC0, i.e., computable by polynomial-size, constant
depth threshold circuits. This has been perhaps the outstanding natural
problem known to be in a standard circuit complexity class, but not
known to be in its uniform version. We show that indeed division is in
uniform TC0. A key step of our proof is the discovery of a first-order
formula expressing exponentiation modulo any number of polynomial
size.

1 Introduction

The exact complexity of integer division has been harder to pin down than the
complexities of addition, subtraction, and multiplication. In 1986, Beame, Cook,
and Hoover showed that iterated multiplication, and thus division, could be per-
formed by Boolean circuits of logarithmic depth (NC1 circuits) [4]. In 1987,
Reif showed that these circuits could be implemented as constant depth circuits
containing threshold gates (TC0 circuits) [12,13]. Since then, the remaining is-
sue has been the complexity of constructing these circuits. Division is the only
prominent natural problem whose computation uses non-uniform circuits, cir-
cuits which require a non-trivial amount of computation for their construction.

The division problem discussed in this paper is the division of two n-bit
integers, given in binary, yielding their integer quotient, also in binary. A related
problem is the multiplication of n n-bit integers, computing their product as
a binary integer. These problems are easily reduced to each other, so that a
uniform circuit for one yields a uniform circuit for the other.

In this paper, we construct uniform constant depth circuits for division and
iterated multiplication. We work within the framework of descriptive complexity,
and show that there is a first-order formula using majority quantifiers that ex-
presses division. This implies that there is an FO-uniform TC0 circuit performing
division [3]. First-order (FO) uniformity, equivalent to DLOGTIME uniformity,
is the strongest uniformity requirement found to be generally applicable. A key
step focuses on the one step of the TC0 division computation not previously
known to be expressible by a first order formula with majority quantifiers (an
? Supported by NSF grant CCR-9877078.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 104–114, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Division Is in Uniform TC0 105

FO(M) formula). This is the problem of finding powers in the finite field Zp,
the integers modulo a prime, where p has O(log n) bits. We show that there is a
first-order formula without majority quantifiers computing powers in Zp. Thus
this subproblem is in FO, and can be computed with uniform AC0 circuits.

2 Definitions

We will express division as a predicate DIVISION(X,Y, i) which is true if and
only if bit i of bX/Y c is 1. We denote numbers with n or nO(1) bits by capital
letters, and numbers with O(log n) bits by lowercase letters. We also refer to
numbers with O(log n) bits as small, and those with nO(1) bits as large. We
will always note the size of numbers with (log n)O(1) bits explicitly. The iterated
multiplication problem will be written as the predicate IMULT(A1, . . . , An, i)
which is true if bit i of

∏n
j=1Aj is 1; i ranges from 0 to n2, and so has 2 log n

bits.
Though the size of the input to division is 2n+log n and the input to iterated

multiplication has size n2+2 logn, we will consider the input size, for all problems
in this paper, to be n, as the circuit complexity classes and descriptive complexity
classes we consider are closed under a polynomial change in the input size.

In this paper we produce simple logical formulas expressing these predicates.
A problem is in the complexity class FO (first order) if the predicate correspond-
ing to the decision problem can be expressed by a first order formula interpreted
over a finite universe, the set of natural numbers 0, . . . , n. The inputs to the
problem are encoded as relations over the universe, and are available to be used
in the formula. The fixed numeric relations < and BIT are also available1. For
example, the n bits of the input X to DIVISION are represented by the values of
a unary predicate X() on the elements of the universe: X(1), X(2), . . . , X(n). An
n2 bit input can be represented by a binary predicate, so the inputs A1, . . . , An
to IMULT are represented as a binary predicate A. Short inputs to a problem,
like i, the index of the result bit queried, may be represented by a constant in
the range 0, . . . , n, which can also be regardedas a free variable. Since an FO or
FO(M) formula over the universe 1, . . . , nk can be simulated by an equivalent
formula over the universe 1, . . . , n, DIVISION and IMULT with inputs X, Y ,
and Ai having nk bits, encoded by k-ary relations over 0, . . . n, are in the same
descriptive complexity class as DIVISION and IMULT with n-bit inputs.

DIVISION and IMULT are provably not in FO, as parity is FO reducible to
them, and parity is not in FO [8,9]. They will be shown to be in the class FO(M),
problems described by first-order logic plus the majority quantifier. The majority
quantifier (Mx) can appear anywhere that an (∃x) or a (∀x) can appear. The
formula (Mx)ϕ(x) is true iff ϕ(j) is true for more than half the values 0 ≤ j ≤ n.
These quantifiers let us count the number of 1 bits in a string of length n; the
counting quantifiers (∃!i x) are definable in terms of (Mx). These quantifiers are
1 Following [10], we consider FO to include ordering and BIT. The BIT predicate

allows us to look at the bits of numbers. BIT(i, x) is true if bit i of the number x
written in binary is 1. This is equivalent to having addition and multiplication on
numbers between 0 and n.

106 W. Hesse

analogous to gates with n inputs that output 1 iff at least i of their inputs are
1, called threshold gates. We see next how an FO(M) formula is equivalent to a
circuit containing threshold gates.

A TC0 circuit is a constant-depth, polynomial-size circuit with AND, OR,
NOT, and threshold gates with arbitrary fanin. If the type of each gate and the
connections between gates can be computed by a deterministic logtime Turing
machine, or equivalently by an FO formula, then the circuit is FO-uniform.
The equivalence of FO-uniform TC0 circuits and FO(M) formulas is shown by
Barrington, Immerman, and Straubing in [3]. The Boolean function computed
by an FO-uniform TC0 circuit can be computed by an FO(M) formula, a first
order formula using majority quantifiers, ordering, and BIT. The converse also
holds; any FO(M) formula can be turned into a uniform TC0 circuit. Here and
throughout the paper, uniform will mean FO-uniform.

TC0 is contained in the circuit complexity class NC1, which contains all prob-
lems decided by Boolean circuits containing NOT gates, and AND and OR gates
with two inputs, with nO(1) gates, n inputs, and depth O(log n). TC0 contains
the class AC0 of constant depth polynomial size circuits without threshold gates.
FO-uniform AC0 circuits are equivalent to FO formulas with only existential and
universal quantifiers, no majority quantifiers [3].

3 Previous Work

As stated in the introduction, Beame, Cook, and Hoover, et. al. gave NC1 cir-
cuits deciding DIVISION and IMULT in 1986 [4]. They also gave a polynomial
time algorithm for constructing the n’th circuit. Reif showed how to convert these
to constant-depth threshold circuits a year later [13,12]. Immerman and Landau
then observed that the construction was logspace uniform given the product of
the first n3 primes, implying that the full construction was TC1 uniform [11].

These circuits were based on finding the remainders of the inputs on division
by a set of small primes. The value of a number modulo a set of primes uniquely
determines its value modulo the product of those primes. This is referred to as
the Chinese remainder representation (CRR). The circuits work by converting
the inputs to CRR, computing iterated products in that representation, and con-
verting the output to binary. In the later 1990s, Chiu, Davida, and Litow devised
new ways of computing in CRR that reduced the complexity of converting from
CRR into binary [5,6]. These steps allowed them to construct logspace-uniform
and NC1-uniform TC0 circuits for division and iterated multiplication.

Allender and Barrington reinterpreted those results in the framework of de-
scriptive complexity, and showed that the only difficulty in expressing iterated
multiplication and division in FO(M) was the difficulty of raising numbers to
a power modulo a small prime [2]. The current paper completes this effort by
showing that this power predicate lies in FO. As division is complete for FO(M)
via FO Turing reductions, it is unlikely that the complexity of division can be
further reduced.

Division Is in Uniform TC0 107

4 Division Reduces to POW

The key problem examined by this paper is POW, the predicate expressing
exponentiation modulo a prime. For a small prime p, and small arguments a, r,
and b,

POW(a, r, b, p) ⇐⇒ ar ≡ b (mod p) .

To be exact, we have a family of problems POWk log n(a, r, b, p) for k = 1, 2, . . .,
where the inputs to POWk log n have size k log n. An input with k log n bits can be
represented by a k-tuple of variables taking values in 0, . . . , n. Thus POWk log n is
a 4k-ary numeric relation. Though the inputs have O(log n) bits, we consider the
descriptive complexity of this problem as if it had input size n. We ask whether
this predicate can be represented by FO or FO(M) formulas over the universe
0, . . . , n.

Allender, Barrington, and the author showed that DIVISION and IMULT
are in FO(M) if and only if POW is in FO(M) [2]. They did this by showing
that DIVISION and IMULT are FO-Turing reducible to POW. A version of
this proof, with additional simplifications, is in the full version of this paper.
The predicate POW is used to convert inputs from binary to CRR, and to find
discrete logarithms in the multiplicative group Z∗

p of integers mod p for primes
p in the CRR basis.

FO-Turing reducibility in descriptive complexity classes is formally defined
using generalized quantifiers in [10]. In the case of an FO-Turing reduction to
POW, we shall not use this full formal definition, but a simpler characterization
of FO-Turing reducibility to a relation. In the case of POW(a, r, b, p), which
could be considered as a primitive numeric relation of arity 4k (if the inputs
have k log n bits), we can express FO(M) Turing reducibility to POW by simply
saying a predicate ϕ is FO(M) Turing reducible to POW if and only if there is
an FO(M) formula with numeric relations ≤, BIT , and POW that expresses ϕ.
This is equivalent to saying ϕ ∈ FO(M,POW). Clearly, if POW is in FO(M),
then FO(M,POW)= FO(M). We replace all uses of POW in a formula ϕ with the
equivalent FO(M) formula. This is all we shall need to use about the reduction
from DIVISION and IMULT to POW.

5 POW Is FO-Turing Reducible to IMULTO(log n) and
DIVISIONO((log n)2)

We now show that we can produce an FO formula deciding POW, provided that
we allow the formula to use the results of certain smaller IMULT and DIVISION
problems. These problems will have inputs constructed by FO formulas from
the inputs to POW, or from the outputs of other small IMULT and DIVISION
problems. This can be characterized as an FO-Turing reduction from POW to
these smaller versions of IMULT and DIVISION. Later we will show that these
smaller versions of IMULT and DIVISION are in FO(M), and then show that
they are in FO.

108 W. Hesse

The scaled versions of IMULT and DIVISION have (log n)O(1)-bit inputs. We
still consider them as having input size n, however, so we shall define them as

IMULT(log n)k(A1, . . . , An, j) =

IMULT(A1, . . . , An, j) ∧ (∀i)Ai < 2(log n)k ∧ (∀i > (log n)k)Ai = 1

DIVISION(log n)k(X,Y, i) = DIVISION(X,Y, i) ∧X < 2(log n)k ∧ Y < 2(log n)k

.

Thus we only have to give correct answers to the problems when the inputs
are small. An FO Turing reduction to these problems is more complicated than
an FO(M) Turing reduction to POW because the inputs to these problems have
ω(log n) bits and so must be given as relations, not as first-order variables. We
shall only point out where these problems are used in our first-order expression
for POW, and state the implications if we have FO or FO(M) expressions for
them.

To show that POW is in FO, we will prove a more general lemma about
finding powers in groups. This is interesting in its own right, and necessary
for the extension to finding powers modulo prime power moduli. We consider a
group to be given in FO if group elements are labeled by elements of the universe
and the product operation is given by an FO formula. Note that the identity
element and inverse operation can be defined in FO from the product operation.
We can also continue to use arithmetic operations on the universe, considered
as the numbers 0, . . . , n.

Lemma 1. Finding small powers in any group of order n is FO Turing-reducible
to finding the product of log n elements.

Proof. Suppose we want to find ar, where a is an element of a group of order n.
We will compute a set of elements a1, . . . , ak and exponents u, u1, . . . , uk such
that

ar = auau1
1 · · · auk

k

and ui < 2 logn, u < 2(log n)2.

Step 1. We choose a set of k = o(log n) primes d1, . . . , dk, such that di < 2 logn
and di is relatively prime to n, for all i. We choose them such that n < D =
d1d2 · · · dk < n2. We can do this with a first order formula by choosing the first
D > n such that D is square-free, D and n are relatively prime, and all prime
factors of D are less than 2 logn. We can decide, given D, whether a number is
one of our di or not. To compute the number k from D, and to find our list di as
a relation between i and di, requires, for each prime p0 < 2 logn, counting the
number of primes p dividing D which are less than p0. We can do this using the
BITSUM predicate, which counts the number of one bits in a logn bit number:
BITSUM(x, y) is true if the binary representation of x contains y ones. This is
shown to be in FO in [3].

Step 2. We calculate ai = abn/dic as follows:
First we calculate ni = n mod di. Compute a−1 using the inverse operation.

We find a−ni by multiplying ni copies of a−1 together. This is one place where
our Turing reduction to multiplication of logn group elements is used.

Division Is in Uniform TC0 109

We can find abn/dic by observing that

(abn/dic)di = abn/dicdi = an−(n mod di) = an−ni = a−ni .

Observe that there is exactly one group element x such that xdi = a−ni : Let d−1
i

be the multiplicative inverse to di mod n, i.e. that did−1
i = mn+ 1 for some m.

Then
x = xmn+1 = (xdi)d

−1
i = (a−ni)d

−1
i .

Thus we can find ai = abn/dic as the value of x in the expression

(∃x) xdi = a−ni

We compute xdi using multiplication of logn elements. We could not compute
abn/dic directly as (a−ni)d

−1
i since d−1

i is not necessarily O(log n).

Step 3. Now we find the exponents u,u1, . . . ,uk such that auau1
1 · · · auk

k = ar.
Since ai = abn/dic,

au1
1 · · · auk

k = a

(∑k

i=1
uibn/dic

)

,

and since ar = auau1
1 · · · auk

k = a

(
u+

∑k

i=1
uibn/dic

)

,

u ≡ r −
k∑

i=1

uib n
di

c (mod n) .

Thus, to make the final correction term au computable, we must make u as
small as possible, and so we want to make

∑k
i=1 uibn/dic mod n as close to r as

possible. To approximate r as a linear combination of bn/dic, we use the Chinese
remainder theorem.

Compute f = brD/nc. This step requires r to have O(log n) bits. Using the
Chinese remainder theorem, if we let Di = D/di, and let ui = fD−1

i mod di,
then

k∑

i=1

uiDi ≡ f (mod D) . Let m be s.t.
k∑

i=1

uiDi = f +mD .

We can calculate ui in FO, since we can guess the possibilities for D−1
i in

FO. Calculating u from the ui involves a sum of k small numbers, which, since
k < log n, is in FO. This, again, uses the fact that BITSUM is in FO.

We now show that u < (log n)2. We calculate the difference between r and∑
uibn/dic:

k∑

i=1

uib n
di

c =
k∑

i=1

uin

di
−

k∑

i=1

(
uin

di
− uib n

di
c)

=
n

D

k∑

i=1

uiDi −
k∑

i=1

ui(
n

di
− b n

di
c)

110 W. Hesse

=
n

D
(f +mD) −

k∑

i=1

ui(
n

di
− b n

di
c)

=
n

D
brD
n

c + nm−
k∑

i=1

ui(
n

di
− b n

di
c)

= r − n

D
(
rD

n
− brD

n
c) + nm−

k∑

i=1

ui(
n

di
− b n

di
c) , so

u = r −
k∑

i=1

uib n
di

c mod n =
n

D
(
rD

n
− brD

n
c) +

k∑

i=1

ui(
n

di
− b n

di
c) .

The quantity y − byc is always between 0 and 1, and since n/D < 1, ui <
2 logn, and k < log n, we see that u < 2(log n)2 + 1. Thus we can calculate au
using two rounds of multiplying logn group elements.

Thus we have described group elements ai and numbers u, ui such that
auau1

1 · · · auk

k = ar and the computation of auau1
1 · · · auk

k is FO Turing reducible
to the product of logn group elements. ut

Because FO is closed under polynomial change in input size, and the product
of log(nk) = k log n group elements is FO reducible to the product of logn group
elements, we have

Corollary 1. Finding powers in any group of order nk is FO Turing-reducible
to finding the product of log n elements.

Representing a group of order nk means representing elements as k-tuples of
universe elements, and representing the product operation in FO.

We now apply this to the integers modulo p, where p = O(nk) is a prime. The
multiplicative group Z∗

p contains the p−1 integers 1, . . . , p−1, and multiplication
in this group is clearly first-order definable from multiplication and addition on
0, . . . , n. If a in POW(a, r, b, p) is zero, then we only need to check that b is zero.
Otherwise, we find ar in the multiplicative group Z∗

p . The product of logn group
elements can be computed with IMULTk log n and DIVISIONk log2 n, so we have
the main lemma of this section:

Lemma 2. POW is FO-Turing reducible to IMULTO(log n) and DIVI-
SIONO((log n)2).

6 DIVISION(log n)O(1) and IMULT(log n)O(1) Are in FO(M)

Since our end result is that DIVISION and IMULT are in FO(M), it should
be no surprise that the logarithmically smaller versions DIVISION(log n)O(1) and
IMULT(log n)O(1) are in FO(M). We will prove that these smaller versions are in
FO(M) by reducing them to POWO(log log n), and showing that POWO(log log n)
is in FO.

Division Is in Uniform TC0 111

Just as we have introduced scaled versions of IMULT and DIVISION, we use
a scaled version of POW:

POWk log log n(a, r, b, p) = POW(a, r, b, p) ∧ a, r, b, p < 2k log log n

The FO(M) Turing reduction of IMULTnO(1) to POW = POWO(log n)
shown by Allender et. al [2] scales to become an FO(M) Turing reduction of
IMULT(log n)O(1) to POWO(log log n). This can be seen as follows: consider the
FO(M) reduction on the problem with (logn)O(1) input size, which is a Turing re-
duction using FO(M) formulas over the universe with (logn)O(1) elements to the
correspondingly scaled version of POW, POWO(log log n). But any FO(M) formula
over the smaller universe can be simulated by an FO(M) formula over the larger
universe, so this is an FO(M) reduction from IMULT(log n)O(1) to POWO(log log n).

Showing that POWO(log log n) is in FO can be done directly. Suppose the
modulus p, the exponent r, and the base a all have fewer than k log logn bits.
The numbers ai = abr/2ic mod p, with i ranging from 0 to k log logn can be
guessed simultaneously, since there are k log logn of them, each with k log logn
bits. An existential choice of a number x from 0 to n − 1 can be thought of as
a non-deterministic simultaneous guess of log n bits, so we can certainly simul-
taneously guess (k log logn)2 bits. There is exactly one choice of the numbers
a1, . . . , ak log log n such that the following conditions hold:

ak log log n = abr/2k log log nc = a0 = 1 and (∀i) ai ≡ a2
i+1a

ri (mod p) ,

where ri is bit i of r.
Extracting the numbers ai out of our logn bit choice x and checking that

they meet the above conditions can be done with an FO formula. Extracting a0
gives us ar mod p.

Thus we have concluded that POWO(log log n) is in FO. Since we have an
FO(M) Turing reduction from IMULT(log n)O(1) and DIVISION(log n)O(1) to
POWO(log log n), we can conclude

Theorem 1. IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO(M).

7 DIVISION and IMULT Are in FO(M)

Since we have an FO Turing reduction from POW to IMULTO(log n) and
DIVISIONO(log2 n), we can conclude that we have an FO(M) formula for POW.
Finally, using the FO(M) Turing reduction from IMULT and DIVISION to
POW, we arrive at our main result.

Theorem 2. Iterated multiplication of n n-bit numbers and division of 2 n-bit
numbers is in FO(M).

By the equivalence of FO(M) to FO-uniform TC0, we have

Corollary 2. Iterated multiplication of n n-bit numbers and division of 2 n-bit
numbers is in FO-uniform TC0.

As both of these classes are closed under polynomial change in the input size,
these results also hold for inputs with nO(1) bits.

112 W. Hesse

8 POW Is in FO

An additional result of the theorem that IMULT and DIVISION are in FO(M),
is that IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO. This is because any
FO(M) formula over a universe 0, . . . , log n has an equivalent FO formula over
the universe 0, . . . , n.

The fact that FO is closed under the introduction of counting quantifiers with
polylogarithmic bounds is established in [1,7]. Since IMULT(log n)O(1) is equiva-
lent to IMULT with input size (logn)O(1), it is expressed by an FO(M) formula
over 0, . . . , log n. Therefore, IMULT(log n)O(1) is expressed by an FO formula, and
similarly DIVISION(log n)O(1) is in FO, and we have

Theorem 3. IMULT(log n)O(1) and DIVISION(log n)O(1) are in FO.

This theorem gives us a tight bound on the size of cases of IMULT that are
in FO. Since we know that PARITYf(n) is in FO iff f(n) = (log n)O(1), from
H̊astad [9], and PARITY is easily FO many-one reducible to multiplication of
two numbers, which is FO many-one reducible to IMULT of the same size, we
can conclude that IMULTf(n) is in FO iff f(n) = (logn)O(1).

Since our proof that POW was in FO(M) included an FO Turing reduction
from POW to DIVISIONO((log n)2) and IMULTO(log n), and we now have FO for-
mulas expressing DIVISIONO((log n)2) and IMULTO(log n), we can now conclude
that POW is in FO. Since the restriction that the inputs to POW have O(log n)
bits is equivalent to requiring that the inputs be in the range 0, . . . , n, we have
our second main result.

Theorem 4. The predicate POW(a, r, b, p) which is true iff ar ≡ b (mod p),
with p prime, can be expressed by an FO formula over the universe 0, . . . , n, if
a, r, b, p ≤ n.

This result can be extended to exponentiation modulo any small number n,
not just modulo a prime. We can see that the equation

ar ≡ b (mod n)

is true if and only if it is true modulo all the prime power factors of n:

ar ≡ b (mod pi) ∀pi|n .

We can show that for a relatively prime to pi, a is in the group Z∗
pi , and the

above proof can be applied. If p divides a, then if r > log n, ar ≡ 0 (mod pi).
If r ≤ log n, then IMULT(log n)O(1) can be applied. Since the prime power factors
of a small number n can be found in FO, we have

Corollary 3. The predicate ar ≡ b (mod n), with the inputs written in unary,
is in FO.

Finally, note that the property that any predicate expressible in FO over the
universe 0, . . . , nk is expressible in FO over 0, . . . , n lets us conclude that the
predicate ar ≡ b(mod n) is in FO if the inputs have O(log n) bits, but not that
it is in FO with inputs of (logn)O(1) bits. This is different from the results we
have for IMULT(log n)O(1) and DIVISION(log n)O(1) .

Division Is in Uniform TC0 113

9 Conclusions

Our main theorem states that division and iterated multiplication are in fully
uniform TC0. This is significant on its own and also because it eliminates the
most important example of a problem known to be in a circuit complexity class,
but not known to be in the corresponding uniform complexity class.

We also proved that exponentiation modulo a number is in FO when the
inputs have O(log n) bits. This result was quite unexpected, since the problem
was previously not even known to be in FO(M). It remains unknown if exponen-
tiation modulo a number with (logn)O(1) bits is in FO, or even in FO(M).

Finally, we have found a tight bound on the size of division and iterated
multiplication problems that are in FO. We now know that these problems are
in FO if and only if their inputs have (logn)O(1) bits. Instances of the problems
with larger inputs are known not to be in FO.

Acknowledgments. These results were found while working on [2] with Eric
Allender and David Mix Barrington, who generously urged me to publish them
separately.

References

1. M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations.
In ACM Symposium on Theory of Computing (STOC ’84), pages 471–474, 1984.
ACM Press.

2. E. Allender, D. A. Mix Barrington, and W. Hesse. Uniform circuits for division:
Consequences and problems. To appear in Proceedings of the 16th Annual IEEE
Conference on Computational Complexity (CCC-2001), 2001. IEEE Computer So-
ciety.

3. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990.

4. P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and
related problems. SIAM Journal on Computing, 15(4):994–1003, 1986.

5. A. Chiu, G. Davida, and B. Litow. NC1 division. online at
http://www.cs.jcu.edu.au/∼bruce/papers/crr00 3.ps.gz.

6. G. I. Davida and B. Litow. Fast Parallel Arithmetic via Modular Representation.
SIAM Journal of Computing, 20(4):756–765, 1991.

7. R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Science,
36(2-3):239–250, 1985.

8. M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. In 22nd Annual Symposium on Foundations of Computer Science, 260–
270, 1981. IEEE.

9. J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, 6–20, 1986.

10. N. Immerman. Descriptive Complexity. Springer-Verlag, New York, 1999.
11. N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-

mation and Computation, 116(1):103–116, 1995.

114 W. Hesse

12. J. H. Reif. On threshold circuits and polynomial computation. In Proceedings,
Structure in Complexity Theory, Second Annual Conference, pages 118–123, IEEE
Computer Society Press.

13. J. H. Reif and S. R. Tate. On threshold circuits and polynomial computation.
SIAM Journal on Computing, 21(5):896–908, 1992.

A Framework for Index Bulk Loading and
Dynamization

Pankaj K. Agarwal?, Lars Arge??,
Octavian Procopiuc? ? ?, and Jeffrey Scott Vitter†

Center for Geometric Computing, Dept. of Computer Science,
Duke University, Durham, NC 27708-0129, USA.

{pankaj,large,tavi,jsv}@cs.duke.edu

Abstract. In this paper we investigate automated methods for exter-
nalizing internal memory data structures. We consider a class of balanced
trees that we call weight-balanced partitioning trees (or wp-trees) for in-
dexing a set of points in R

d. Well-known examples of wp-trees include kd-
trees, BBD-trees, pseudo-quad-trees, and BAR-trees. Given an efficient
external wp-tree construction algorithm, we present a general framework
for automatically obtaining a dynamic external data structure. Using this
framework together with a new general construction (bulk loading) tech-
nique of independent interest, we obtain data structures with guaranteed
good update performance in terms of I/O transfers. Our approach gives
considerably improved construction and update I/O bounds for e.g. ex-
ternal kd-trees and BBD-trees.

1 Introduction

Both in the database and algorithm communities, much attention has recently
been given to the development of I/O-efficient external data structures for in-
dexing point data. A large number of external structures have been developed,
reflecting the many different requirements put on such structures; small size, ef-
ficient query and update bounds, capability of answering a wide range of queries
(mainly range and proximity queries), and simplicity. See recent surveys [2,14,
? Supported by Army Research Office MURI grant DAAH04–96–1–0013, by a Sloan

fellowship, by NSF grants ITR–333–1050, EIA–9870724 and CCR–9732787 and by
a grant from the U.S.-Israeli Binational Science Foundation.

?? Supported in part by the National Science Foundation through ESS grant EIA–
9870734, RI grant EIA–9972879 and CAREER grant EIA–9984099. Part of this
work was done while visiting BRICS, University of Aarhus, Denmark.

? ? ? Supported by the National Science Foundation through research grant EIA–9870734
and by the Army Research Office through MURI grant DAAH04–96–1–0013. Part
of this work was done while visiting BRICS, University of Aarhus, Denmark.

y Supported in part by the National Science Foundation through research grants
CCR–9877133 and EIA–9870734 and by the Army Research Office through MURI
grant DAAH04–96–1–0013. Part of this work was done while visiting BRICS, Uni-
versity of Aarhus, Denmark.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 115–127, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

116 P.K. Agarwal et al.

27]. The proposed data structures can roughly be divided into two classes, namely
simple and practical (often heuristics based) structures, for which worst-case
query performance guarantees can only be given in the static case (if at all), and
theoretically optimal but usually complicated dynamic structures. The first class
of structures are often external versions of well-known simple internal memory
structures.

In this paper, we develop a general mechanism for obtaining efficient exter-
nal data structures from a general class of simple internal memory structures,
such that the external structures are efficient in the dynamic case. Part of our
result is a new general index construction (bulk loading) technique which is of
independent interest.

1.1 Computational Model and Previous Results

In this paper we analyze data structures in the standard two-level external mem-
ory model defined by the following parameters [1,18]: N , the number of input
elements, M , the number of elements that fit in main memory, and B, the num-
ber of elements that fit in one disk block, where N � M and 1 ≤ B ≤ M/2.
One I/O operation (or simply I/O) in this model consists of reading one block of
contiguous elements from disk into main memory or writing one block from main
memory to disk. The measure of performance of an algorithm or data structure is
the number of I/O operations it performs and the maximum disk space (blocks)
it uses. For notational simplicity, we use n = N/B and m = M/B to denote the
input size and memory size in units of data blocks.

Aggarwal and Vitter [1] developed algorithms for sorting a set of N elements
in external memory in optimal Θ(n logm n) I/Os. Subsequently, I/O-efficient
algorithms have been developed for large number of problems. Recently, many
provably efficient (and often optimal) external data structures have also been de-
veloped. Ideally, an external data structure should use linear space, O(n) blocks,
and answer a query in O(logB N+K/B) I/Os, where K is the number of elements
reported by the query. These bounds are obtained by the B-tree data structure
for one-dimensional range searching [8,11]. For two-dimensional range search-
ing, O(

√
n + K/B) is the best obtainable query bound with linear space [26].

Structures that use more than linear space are often infeasible in practical ap-
plications. Below we discuss the known external memory data structures most
relevant to this paper. See [27,2] for complete surveys of known results.

One main challenge in the design of external data structures is obtaining
good query performance in a dynamic environment. Early structures, such as the
grid file [20], the various quad-trees [21,23], and the kdB-tree [22], were poorly
equipped to handle updates. Later structures tried to employ various (heuristic)
techniques to preserve the query performance and space usage under updates.
They include the LSD-tree [16], the buddy tree [24], the hB-tree [19], and R-tree
variants (see [14] and the references therein). These data structures are often
the methods of choice in practical applications because they use linear space
and reportedly perform well in practice. However, in a dynamic environment,
the query time is high in the worst-case. The hB-tree (or holey brick tree),

A Framework for Index Bulk Loading and Dynamization 117

for example, is based on the statically query-efficient kdB-tree, which combines
the spatial query capabilities of the kd-tree [9] with the I/O-efficiency of the
B-tree. While nodes in a kdB-tree represent rectangular regions of the space,
nodes in an hB-tree represent so-called “holey bricks,” or rectangles from which
smaller rectangles have been cut out. This allows for the underlying B-tree to be
maintained during updates (insertions). Unfortunately, a similar claim cannot
be made about the underlying kd-tree, and thus good query-efficiency cannot be
maintained.

Recently, a number of theoretical worst-case efficient dynamic external data
structures have been developed. The cross-tree [15] and the O-tree [17], for exam-
ple, both use linear-space, answer range queries in the optimal number of I/Os,
and they can be updated I/O-efficiently. However, their practical efficiency has
not been investigated, probably because a theoretical analysis shows that their
average query performance is close to the worst-case performance. By contrast,
the average-case performance of the kd-tree (and the structures based on it) is
much better than the worst-case performance [25]. Other linear-space and query
and update optimal external data structures have been designed for special types
of range queries, like 2- or 3-sided two-dimensional range queries and halfspace
range queries (see e.g. [2,4]). The practical efficiency of these structures still has
to be established.

In the database literature, the term bulk loading is often used to refer to
the process of constructing an external data structure. Since bulk loading an
index using repeated insertion is often highly non-efficient [3], the development
of specialized bulk loading algorithms has received a lot of attention recently.
Most work on bulk loading has concentrated on the R-tree (see [3,12] and the
references therein).

1.2 Our Results

In Section 2 of this paper, we define a class of linear-space trees for indexing
a set of points in R

d. These so-called wp-trees generalize known internal mem-
ory data structures like kd-trees [9], pseudo-quad-trees [21], BBD-trees [7], and
BAR trees [13]. We also show how a wp-tree can be efficiently mapped to ex-
ternal memory, that is, how it can be stored in external memory using O(n)
blocks such that a root-to-leaf path can be traversed I/O-efficiently. In Sec-
tion 3, we then design a general technique for bulk loading wp-trees. Using this
technique we obtain the first I/O-optimal bulk loading algorithms for kd-trees,
pseudo-quad-trees, BBD-trees and BAR-trees. Our algorithms use O(n logm n)
I/Os while previously known algorithms use at least Ω(n log2 n) I/Os. Finally,
in Section 4, we describe several techniques for making a wp-tree dynamic. Our
techniques are based on dynamization methods developed for internal mem-
ory (partial rebuilding and the logarithmic method) but adapted for external
memory. Together with our external bulk loading technique, they allow us to
obtain provably I/O-efficient dynamic versions of structures like the kd-trees,
pseudo-quad-trees, BBD-trees, and BAR-trees. Previously, no such structures
were known.

118 P.K. Agarwal et al.

2 The wp-Tree Framework

In this section, we introduce wp-trees and show how they can mapped to external
memory. To simplify the presentation, we discuss our results in R

2. They can all
easily be generalized to higher dimensions.

Definition 1 A (β, δ, κ) weight-balanced partitioning tree (or wp-tree) on a set
S of N points in R

2 satisfies the following constraints:

1. Each node v corresponds to a region rv in R
2, called the extent of v. The

extent of the root node is R
2;

2. Each non-leaf node v has β ≥ 2 children corresponding to a partition of rv

into β disjoint regions;
3. Each leaf node v stores exactly one point p from S inside rv;
4. Let w(v) be the weight of node v, defined as the number of data points

stored in the subtree rooted at v, and let v(κ) be the κ’th ancestor of v.
Then w(v) ≤ δw(v(κ)) for all nodes v and v(κ).

The wp-tree generalizes a number of internal memory data structures used to
index point data sets: kd-trees [9], pseudo-quad-trees [21], BBD-trees [7], and
BAR-trees [13] are all wp-trees.

Condition 4 (the weight condition) insures that wp-trees are balanced; only
a constant number of partition steps (κ) is required to obtain regions containing
a fraction (δ) of the points.

Lemma 1. The height of a wp-tree is at most κ(log1/δ N + 1) − 1.

We want to store a wp-tree on disk using O(n) disk blocks so that a root-to-
leaf path can be traversed I/O-efficiently. Starting with the root v we fill disk
blocks with the subtree obtained by performing a breadth-first search traversal
from v until we have traversed at most B nodes. We recursively block the tree
starting in the leaves of this subtree. The blocked wp-tree obtained in this way
can be viewed as a fanout Θ(B) tree with each disk block corresponding to a
node. We call these nodes block nodes in order to distinguish them from wp-
tree nodes. The leaf block nodes of the blocked wp-tree are potentially underfull
(contain less than Θ(B) wp-tree nodes), and thus O(N) blocks are needed to
block the tree in the worst case. To alleviate this problem, we let certain block
nodes share the same disk block. More precisely, if v is a non-leaf block node, we
reorganize all v’s children that are leaf block nodes, such that at most one disk
block is non-full. This way we only use O(n) disk blocks. Since each non-leaf
block node contains a subtree of height O(log2 B) we obtain the following.

Lemma 2. A blocked wp-tree T is a multi-way tree of height O(logB N). It can
be stored using O(n) blocks.

2.1 The Restricted wp-Tree

The wp-tree definition emphasizes the structure of the tree more than the geom-
etry of the partitioning. The dynamization methods we will discuss in Section 4

A Framework for Index Bulk Loading and Dynamization 119

can be applied to any wp-tree. However, without specifying the properties of
the partitioning, we cannot quantify the update and query I/O-bounds obtained
using these methods. Therefore we now restrict the definition of a wp-tree by
adding geometric constraints on the extent of a node and the partitioning meth-
ods used. On the one hand the resulting class of restricted wp-trees is general
enough to encompass many interesting data structures, and on the other hand
it is restrictive enough to allow us to prove general bulk loading, update, and
query bounds.

Definition 2 A restricted (β, δ, κ) wp-tree is a (β, δ, κ) wp-tree in which each
node v satisfies the following constraints:

1. The extent rv of v is the region lying between two convex polygons; rv =
bO \ bI . The inner polygon bI must be completely inside the outer polygon
bO, and the orientations of edges forming bI and bO must be taken from a
constant set of directions D.

2. The extents of the β children of v are obtained from rv by applying the
following cut rules a constant number of times:
a) A geometric cut (`). A geometric cut is a line ` along a direction e ∈ D

not intersecting bI .
b) A rank cut (e, α). A rank cut is a line ` along a direction e ∈ D. Let `′

be the line along e such that αw(v) of the w(v) points corresponding to
v are to the left of `′. Then ` is the closest line to `′ not intersecting the
interior of bI .

c) A rectangle cut. A rectangle cut can be applied to v only if bI and bO are
both fat rectangles (i.e., the aspect ratio is at most 3) and 2bI ⊂ bO. A
rectangle cut is a fat rectangle b′ such that bI ⊂ b′ ⊂ bO and both b′ \ bI

and bO \ b′ contain at most 2w(v)/3 points.

2.2 Examples of Restricted wp-Trees

Like wp-trees, restricted wp-trees generalize internal memory data structures
like kd-trees, BBD-trees, pseudo-quad-trees, and BAR-trees. Below we further
discuss kd-trees and BBD-trees. In the full paper we show how pseudo-quad-trees
and BAR-trees are also captured by the restricted wp-tree definition.
The kd-tree. Introduced by Bentley [9], the kd-tree is a classical structure
for answering range (or window) queries. It is a binary tree that represents a
recursive decomposition of the space by means of hyperplanes orthogonal to the
coordinate axes. In R

2 the partition is by axes-orthogonal lines. Each partition
line divides the point-set into two equal sized subsets. On even levels of the tree
the line is orthogonal to the x-axis, while on odd levels it is orthogonal to the
y-axis. These partitions are rank cuts (e, 1/2), where e is orthogonal to the x- or
y-axis. Thus the kd-tree is a restricted (2, 1/2, 1) wp-tree.
The BBD-tree. The balanced box decomposition tree, or BBD-tree, was intro-
duced by Arya et al [7] for answering approximate nearest-neighbor queries. Like
the kd-tree, the BBD-tree is a binary tree representing a recursive decomposition

120 P.K. Agarwal et al.

���
���
���
���

��
��
��

��
��
��

O low childb

bI

high child outer childbO

b

(a) (b)

b
inner child

I

Fig. 1. BBD-tree partitions. (a) Split node. (b) Shrink node.

of the space. The region associated with a BBD-tree node is the set theoretic
difference of two fat rectangles, bI and bO (with bI included in bO). More pre-
cisely, a BBD-tree consists of two types of nodes: split nodes and shrink nodes.
In a split node, the partition is done using an axis-orthogonal line that cuts the
longest side of bO so that the resulting rectangles are fat and bI lies entirely
inside one of them—refer to Figure 1(a). In a shrink node v, the partition is
done using a box rather than a line. This box b lies inside bO, contains bI , and
determines the extent of the two children: b \ bI is the extent of the inner child
and bO \ b is the extent of the outer child—refer to Figure 1(b). While split
nodes reduce the geometric size, the box b used in shrink nodes is chosen so as
to reduce the number of points by a factor of 1.5. By alternating split nodes
and shrink nodes, both the geometric size and the number of points associated
with each node decrease by a constant factor as we descend a constant number
of levels in the BBD-tree (see [7] for details). It is easy to see that the split node
uses a geometric cut and the shrink node uses a rectangle cut. In the full paper
we show that a BBD-tree is a restricted (2,2/3,3) wp-tree.

3 Bulk Loading Restricted wp-Trees

In this section we describe an optimal algorithm for bulk loading (constructing)
a blocked restricted wp-tree.

It is natural to bulk load a wp-tree using a top-down approach. For example,
to construct a kd-tree on N points in R

2 we first find the point with the median
x-coordinate in O(n) I/Os [1]. We then distribute the points into two sets based
on this point and proceed recursively in each set, alternating between using
the median x-coordinate and y-coordinate to define the distribution. This way
each level of the wp-tree is constructed in a linear number of I/Os, so in total
we use O(n log2 n) I/Os to bulk load the tree. This is a factor of log2 m larger
than the optimal O(n logm n) bound (the sorting bound). Intuitively, we need to
construct Θ(log2 m) levels of the wp-tree in a linear number of I/Os—instead of
just one—in order to obtain this bound. Doing so seems difficult because of the
way the points are alternately split by x- and y-coordinates. Nevertheless, below
we show how to bulk load a blocked restricted wp-tree, and thus a kd-tree, in
O(n logm n) I/Os.

A Framework for Index Bulk Loading and Dynamization 121

To simplify the presentation, we present our restricted wp-tree bulk load-
ing algorithm only for the case where β = 2 and where D contains the two
directions orthogonal to the coordinate axes. The details of the general algo-
rithm will be given in the full paper. Let S be a set of N points in R

2. The
first step in constructing a blocked wp-tree for S is to sort the N points twice:
once according to their x-coordinate, and once according to their y-coordinate.
Call the resulting ordered sets Sx and Sy, respectively. Next a recursive proce-
dure Bulk load is called on Sx and Sy. Bulk load builds a subtree of height
Θ(log2 m) in each recursive call, The main idea in the algorithm is to impose a
grid on the set of input points and count the number of points in each grid cell.
The grid counts allow us to compute partitions without reading all the points.
More precisely, Bulk load starts by dividing the current region (initially R

2)
into t = Θ(min{m,

√
M}) vertical slabs and t horizontal slabs, each containing

N/t points—refer to Figure 2(a). These slabs form a t × t grid. Note that the
grid size t2 is at most M , and thus the grid can fit into internal memory. The
number of points in each grid cell is then computed and stored in a matrix A
in main memory. All three types of cuts can now be computed efficiently using
A. A rank cut (e, α) for a node v, for example, is computed by first finding the
slab Ek along e containing the cutting line. This can be done without perform-
ing I/Os. The exact cutting line can then be computed in O(N/(Bt)) I/Os by
scanning the points in Ek. After a subtree T of height Θ(log2 t) is built, Sx and
Sy are distributed into t sets each, corresponding to the leaves of T and the rest
of the tree is built by calling Bulk load recursively. The detailed Bulk load
procedure is given below.

procedure Bulk load(Sx, Sy, v)
1. Divide Sx into t sets, corresponding to t vertical slabs X1, . . . , Xt, each containing

|Sx|/t points. Store the t+ 1 boundary x-coordinates in memory.
2. Divide Sy into t sets, corresponding to t horizontal slabs Y1, . . . , Yt, each contain-

ing |Sy|/t points. Store the t+ 1 boundary y-coordinates in memory.
3. The vertical and horizontal slabs form a grid. Let Ci,j be the set of points in the

grid cell formed at the intersection of the ith horizontal slab and the jth vertical
slab. Create a t × t matrix A in memory. Scan Sx and compute the grid cell
counts: Ai,j = |Ci,j |, 1 ≤ i, j ≤ t.

4. Let u=v.
5. a) If u is partitioned using a geometric cut orthogonal to the x-axis, determine

the slab Xk containing the cut line ` using the boundary x-coordinates. Next
scan Xk and, for each cell Cj,k, 1 ≤ j ≤ t, compute the counts of “subcells”
C<

j,k and C>
j,k obtained by splitting cell Cj,k at `—refer to Figure 2(b). Store

these counts in main memory by splitting the matrix A into A< and A>,
containing the first k columns and the last (t−k+1) columns ofA, respectively
(column k from matrix A appears in both A< and A>). Then let A<

j,k = |C<
j,k|

and A>
j,1 = |C>

j,k|, 1 ≤ j ≤ k. Go to 5.(d).
b) If u is partitioned using a rank cut orthogonal to the x-axis, first determine

the slab Xk containing the cut line ` using A, then scan Xk to determine the
exact position of the cut line. Next split A into A< and A> as above. A cut
orthogonal to the y-axis is handled similarly. Go to 5.(d).

122 P.K. Agarwal et al.

Xk kX

{

}Yj
C j,k

{
(a) (b)

C j,k
<

C j,k
>

Fig. 2. Finding the median using the grid cells. (a) Slab Xk contains N/t points.
(b) A< and A> are computed by splitting Xk along `.

c) If u is partitioned using a rectangle cut, use the following algorithm to deter-
mine the sides of b0. Let ` be a line orthogonal to the longest side of bO that
cuts bO into two fat rectangles and does not intersect bI . Using only the grid
cell counts, decide whether any of the two new regions contains more than
2w(u)/3 points. If this is the case, then repeat the process in that region.
Otherwise, the region with the largest number of points becomes b0. Scan the
(up to) four slabs that contain the sides of b0 and compute the counts of the
“subcells”. These counts will be stored in A<, the cell count matrix for b0 \bI ,
and A>, the cell count matrix for bO \ b0. Go to 5.(d).

d) Create a new wp-tree node for each of the two regions constructed. For each
of these two nodes, determine its partition by repeating step 5, in which the
role of A is played by A< or A>. Stop when reaching level log2 t.

6. Scan Sx and Sy and distribute the N points into t pairs of sets (Si
x, S

i
y), corre-

sponding to the t leaves vi of T .
7. For each pair of sets (Si

x, S
i
y) do the following. If (Si

x, S
i
y) fits in memory, then

construct the remaining wp-tree nodes. Otherwise, recursively call Bulk load on
(Si

x, S
i
y, vi).

Theorem 1. A blocked restricted wp-tree can be bulk loaded in O(n logm n)
I/Os.

Proof. First note that sorting the points takes O(n logm n) I/Os. Once sorted,
the points are kept sorted throughout the recursive calls to the Bulk load pro-
cedure. Next note that the choice of t = Θ(min{m,

√
M}) = O(

√
m) means

that the original t × t count matrix A fits in memory. In fact, since each of the
2log2 t = t nodes built in one call to Bulk load adds at most t counts, all count
matrices produced during one such call fit in memory.

Now consider one call to Bulk load. Steps 1, 2 and 3 of Bulk load are linear
scans of the input sets Sx and Sy using O(n) I/Os. Step 6 can also be performed
in O(n) I/Os since Sx and Sy are distributed into t = Θ(min{m,

√
M}) = O(m)

sets (which means that one block for each of the sets can be maintained in
memory during the distribution). Step 5 (recursively) computes a subtree of
height log2 t, using a different algorithm for each of the three partition types.

A Framework for Index Bulk Loading and Dynamization 123

A geometric or rank cut (Step 5.(a) or 5.(b)) can be computed in O(|Sx|/t)
I/Os since slab Xk is scanned at most three times. Similarly, a rectangle cut
(Step 5.(c)) can also be computed in O(|Sx|/t) I/Os. The details of this argument
will be given in the full paper. It can also be proven that a rectangle cut always
exists [7]. Summing up over the 2log2 t = O(t) nodes built, we obtain that Step 5
can be performed in O(n) I/Os.

Since a subtree of height Θ(log2 t)=Θ(log2 m) can be built in a linear number
of I/Os (one call to Bulk load), the cost of building the entire blocked restricted
wp-tree is O(n log2 n

log2 m) = O(n logm n) I/Os.

Corollary 1. A kd-tree, BBD-tree, BAR-tree or pseudo-quad-tree can be bulk
loaded in O(n logm n) I/Os.

4 The Dynamization Framework

In this section we present a framework for making wp-trees dynamic. We present
three methods: the first one takes advantage of the weight balancing property of
wp-trees and uses partial rebuilding to maintain the tree balanced [6,21], and the
other two methods are based on the so-called logarithmic method [10,21]. All
three methods take advantage of the improved bulk loading bounds obtained
in the previous section. While the methods are not new, we show how their
application to blocked restricted wp-trees produces new dynamic data structures
for indexing points in R

2 that are competitive with or better than existing data
structures in terms of I/O performance. The choice of method for a given data
structure depends on its update and query bounds as well as the application the
external structure is to be used in.

4.1 Partial Rebuilding

In the definition of a (β, δ0, κ) wp-tree, the weight condition is satisfied by any
δ > δ0. This method of relaxing the weight condition allows us to perform
updates with good amortized complexity. A node v is said to be out of balance
if there is another node u such that u(κ) = v and w(u) > δw(v). In other words,
a node is out of balance if one of its descendants is too heavy. A node v is said
to be perfectly balanced if all nodes u such that u(κ) = v satisfy w(u) ≤ δ0w(v).

In order to allow dynamic updates on a blocked wp-tree, we employ a partial
rebuilding technique, used by Overmars [21] to dynamically maintain quad-trees
and kd-trees balanced, and first adapted to external memory by Arge and Vit-
ter [6]. When inserting a new point into the data structure, we first insert it in
the appropriate place among the leaves, and then we check for nodes on the path
to the root that are out of balance. If v is the highest such node, we rebuild the
whole subtree rooted at v into a perfectly balanced tree. In the full paper we
prove the following.

124 P.K. Agarwal et al.

Theorem 2. Let T be a blocked restricted wp-tree on N points. We can in-
sert points into T in O

(1
B (logm n)(log2 n) + logB n

)
I/Os, amortized, and delete

points from T in O(logB n) I/Os, worst case. Point queries take O(logB n) I/Os,
worst case.

As n goes to infinity, the first additive term dominates the insertion bound. In
practice, however, we expect the behavior to be consistent with the second term,
O(logB n), because the value of B is in the thousands, thus cancelling the effect
of the log2 n factor in the first term for all practical values of n.

4.2 Logarithmic Methods

The main idea in the logarithmic method [10,21] is to partition the set of input
objects into log2 N subsets of increasing size 2i, and build a perfectly balanced
data structure Ti for each of these subsets. Queries are performed by querying
each of the log2 N structures and combining the answers. Insertion is performed
by finding the first empty structure Ti, discarding all structures Tj , 0 ≤ j < i,
and building Ti from the new object and all the objects previously stored in Tj ,
0 ≤ j < i. One can adapt the method to external memory by letting the ith
subset contain either 2i blocks of points or Bi points. We call the two resulting
methods the logarithmic method in base 2 and the logarithmic method in base B,
respectively.
Logarithmic method in base 2. As mentioned, the ith subset contains 2i

blocks, or B · 2i points, 0 ≤ i ≤ log2 n. Queries are performed by combining the
answers from the log2 n structures. Insertions are performed as in the internal
memory case, but we need to maintain a block in internal memory. All insertions
go into this block until the block is full, at which time the rebuilding is performed
using all points in the block. In the full paper we prove the following.

Theorem 3. A forest of perfectly balanced blocked restricted wp-trees for index-
ing N points can be maintained such that insertions take O

(1
B (logm n)(log2 n)

)

I/Os, amortized, deletions take O((logm n)(log2 n)) I/Os, worst case, and point
queries take O((logB n)(log2 n)) I/Os, worst case.

Note that, for realistic values of n, m and B, we need less than one I/O, amor-
tized, to insert a point This should be compared to the (at least) O(logB n) used
in the partial rebuilding method. However, the deletion and point query bounds
of this method are worse than the bounds obtained using partial rebuilding.
Logarithmic method in base B. Arge and Vahrenhold used the logarithmic
method in base B to obtain an I/O-efficient solution to the dynamic point loca-
tion problem [5]. Following closely the ideas of Arge and Vahrenhold, we obtain
the following.

Theorem 4. A forest of perfectly balanced blocked restricted wp-trees for index-
ing N points can be maintained such that insertions take O ((logm n)(logB n))
I/Os, amortized, deletions take O(logB n) I/Os, amortized, and point queries
take O(log2

B n) I/Os, worst case.

A Framework for Index Bulk Loading and Dynamization 125

The insertion bound of the base B method is a factor of B
log2 B worse than

the bound obtained using the base 2 method. The deletion bound, however, is
improved by a factor of log2 n.

4.3 Applications

We now briefly state the results we obtain when using the three dynamization
methods on our two running examples, kd-trees and BBD-trees.

The kd-tree. In the full paper we show how we can exploit a property of the
kd-tree partitioning method to obtain worst-case bounds on the number of I/Os
needed to perform a range query. We obtain the following.

Theorem 5. Using partial rebuilding, a dynamic external kd-tree can be de-
signed, which answers range queries in O(

√
N

log1/δ 2
/
√

B + K/B) I/Os in
the worst case, where K is the number of points reported. Each insertion
takes O

(1
B (logm n)(log2 n) + logB n

)
I/Os, amortized, and each deletion takes

O(logB n) I/Os, worst case. Using the logarithmic method in base 2 (or in base
B), a structure with an O(

√
n + K/B) worst-case range query bound can be de-

signed. In this case insertions take O
(1

B (logm n)(log2 n)
)

I/Os, amortized (or
O((logm n)(logB n)) I/Os, amortized), and deletions take O ((logm n)(log2 n))
I/Os, worst case (or O(logB n) I/Os, amortized).

Using the logarithmic methods, the query bound of the dynamic structure is
the same as the bound for the static structure, although a logarithmic number
of trees are queried in the worst case. This is true in general for a structure
with polynomial query bound, because the cost to search each successive struc-
ture is geometrically decreasing. If the query bound on the static structure is
polylogarithmic (as in our next example), the bound on the dynamic structure
increases.

The BBD-tree. The BBD-tree can be used to answer (1 + ε)-approximate
nearest neighbor queries [7]. Using our dynamization methods we obtain the
following.

Theorem 6. Using partial rebuilding a dynamic external BBD-tree can
be designed, which answers a (1 + ε)-approximate nearest neighbor query
in QBBD(N) = O(c(ε)(logm n)(log2 n)/B + logB n) I/Os, where c(ε) =
2
⌈
1 + 12

ε

⌉2 [7]. Insertions take O
(1

B (logm n)(log2 n) + logB n
)

I/Os, amor-
tized, and deletions take O(logB n) I/Os, worst case. Using the logarithmic
method in base 2 (or in base B), the query bound increases to QBBD(N) log2 n
(or QBBD(N) logB n). Insertions take O

(1
B (logm n)(log2 n)

)
I/Os, (or

O((logm n)(logB n)) I/Os), amortized, and deletions take O ((logm n)(log2 n))
I/Os, worst case (or O(logB n) I/Os, amortized).

126 P.K. Agarwal et al.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31:1116–1127, 1988.

2. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets. Kluwer Academic
Publishers, 2001. (To appear).

3. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations
on dynamic R-trees. In Proc. Workshop on Algorithm Engineering, LNCS 1619,
pages 328–347, 1999.

4. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and op-
timal range search indexing. In Proc. ACM Symp. Principles of Database Systems,
pages 346–357, 1999.

5. L. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. In Proc.
ACM Symp. on Computational Geometry, pages 191–200, 2000.

6. L. Arge and J. S. Vitter. Optimal dynamic interval management in external mem-
ory. In Proc. IEEE Symp. on Foundations of Comp. Sci., pages 560–569, 1996.

7. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM, 45(6):891–923, Nov. 1998.

8. R. Bayer and E. McCreight. Organization and maintenance of large ordered in-
dexes. Acta Informatica, 1:173–189, 1972.

9. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, Sept. 1975.

10. J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244–251,
1979.

11. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.
12. M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with

low stabbing number. In Proc. Annual European Symposium on Algorithms, pages
167–178, 2000.

13. C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced aspect ratio trees:
Combining the advantages of k-d trees and octrees. In Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 300–309, N.Y., Jan.
17–19 1999. ACM-SIAM.

14. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

15. R. Grossi and G. F. Italiano. Efficient cross-trees for external memory. In J. Abello
and J. S. Vitter, editors, External Memory Algorithms and Visualization. American
Mathematical Society, 1999.

16. A. Henrich, H.-W. Six, and P. Widmayer. Paging binary trees with external bal-
ancing. In Proc. Graph-Theoretic Concepts in Computer Science, LNCS 411, pages
260–276, 1989.

17. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. International Conference on Database The-
ory, LNCS 1540, pages 257–276, 1999.

18. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading MA, second edition, 1998.

19. D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method
with good guaranteed performance. ACM Transactions on Database Systems,
15(4):625–658, 1990.

A Framework for Index Bulk Loading and Dynamization 127

20. J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable, symmet-
ric multikey file structure. ACM Transactions on Database Systems, 9(1):38–71,
1984.

21. M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes Comput. Sci. Springer-Verlag, Heidelberg, West Germany, 1983.

22. J. Robinson. The K-D-B tree: A search structure for large multidimensional dy-
namic indexes. In Proc. SIGMOD Intl. Conf. on Management of Data, pages
10–18, 1981.

23. H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley,
MA, 1990.

24. B. Seeger and H.-P. Kriegel. The buddy-tree: An efficient and robust access
method for spatial data base systems. In Proc. International Conf. on Very Large
Databases, pages 590–601, 1990.

25. Y. V. Silva Filho. Average case analysis of region search in balanced k-d trees.
Inform. Process. Lett., 8:219–223, 1979.

26. S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure for
range searching in secondary memory. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 378–387, 1995.

27. J. S. Vitter. External memory algorithms and data structures. In J. Abello and
J. S. Vitter, editors, External Memory Algorithms and Visualization, pages 1–38.
American Mathematical Society, 1999.

A Characterization of Temporal Locality and Its
Portability across Memory Hierarchies

Gianfranco Bilardi1? and Enoch Peserico2??

1 Dipartimento di Elettronica ed Informatica, Università di Padova, Via Gradenigo
6/A, 35131 Padova, Italy. bilardi@dei.unipd.it

2 MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, USA. enoch@theory.lcs.mit.edu

Abstract. This paper formulates and investigates the question of
whether a given algorithm can be coded in a way efficiently portable
across machines with different hierarchical memory systems, modeled as
a(x)-HRAMs (Hierarchical RAMs), where the time to access a location
x is a(x).
The width decomposition framework is proposed to provide a machine-
independent characterization of temporal locality of a computation by
a suitable set of space reuse parameters. Using this framework, it is
shown that, when the schedule, i.e. the order by which operations are
executed, is fixed, efficient portability is achievable. We propose (a) the
decomposition-tree memory manager, which achieves time within a loga-
rithmic factor of optimal on all HRAMs, and (b) the reoccurrence-width
memory manager, which achieves time within a constant factor of opti-
mal for the important class of uniform HRAMs.
We also show that, when the schedule is considered as a degree of freedom
of the implementation, there are computations whose optimal schedule
does vary with the access function. In particular, we exhibit some compu-
tations for which any schedule is bound to be a polynomial factor slower
than optimal on at least one of two sufficiently different machines. On
the positive side, we show that relatively few schedules are sufficient to
provide a near optimal solution on a wide class of HRAMs.

1 Introduction

In recent years, the importance of the memory hierarchy has grown considerably,
and is projected to continue growing in the future, as a result of technological de-
velopments [MV99] as well as some fundamental physical constraints [BP97-99].
A number of studies, e.g., [AACS87,ACS87,ACS90,ACFS94,V98,FLPR99], have
investigated models of computation that explicitly capture at least some of the
hierarchical aspects of modern memory systems, proposing novel algorithms and

? Supported in part by the Italian National Research Council, and by the Italian
Ministry of University and Research.

?? Supported in part by DARPA under the Air Res. Lab contract F30602-99-2-0511.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 128–139, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Characterization of Temporal Locality and Its Portability 129

compiler code restructuring techniques [W95] to achieve optimal performance on
those models.

Designing efficient algorithms for the memory hierarchy is made difficult by
the fact that performance is affected in various ways by the structure of the
hierarchy, (e.g., by the number, size, and speed of the various levels): in fact,
a priori, the optimal implementation of an algorithm might depend upon it
in a way that makes it impossible to achieve optimal performance on different
machines with the same code. In the outlined scenario, we formulate the following
question: To what extent can a program be made efficiently portable across a class
of machines with different memory hierarchies?

In [BP00], we outline a general approach toward an analytical formulation
of the above question, as a prerequisite for a quantitative study of the issue.
Intimately related to the investigation of portability is the machine-independent
characterization of those properties of a computation, such as various forms of
locality and parallelism, that determine its execution time on a memory hierar-
chy. Of paramount importance among these properties is temporal locality which,
informally speaking, allows a computation to be carried out by accessing only
a small set of memory locations at a time. In this paper, we substantiate the
technical feasibility of the approach proposed in [BP00] by an investigation on
the portability of sequential programs across hierarchies where temporal locality
is essentially the key factor of performance. We obtain quantitative characteriza-
tions of temporal locality and of its portability across memory hierarchies. The
focus on sequential temporal locality is justified by its relevance and by the need
to gain insights on the general issues in a relatively simple setting. It remains
desirable to extend the analysis to include space locality and parallelism.

In Section 2, we define the H-RAMs, the class of target machines considered
in our study. They are essentially uniprocessors with a random access memory
where an access to memory location x takes time a(x), with a(x) being a generic
non-negative, non-decreasing function of x. H-RAMs differ significantly from
“real” machines in a number of ways (e.g., they lack block transfer) but we feel
they are an excellent model for capturing and isolating the issues of temporal
locality. We then define the notion of computation dag, by which we model
a computation as a set of operations and their data dependencies. Informally,
a computation admits many implementations which differ along two important
dimensions: (i) the order of execution of the operations, and (ii) the way data are
mapped to memory locations during execution. In the next sections we examine
the impact of each dimension on the portability of the implementation.

In Section 3, we assume that the operation schedule has been fixed, and
we consider how to best manage memory for that schedule. First, we introduce
the key notion of W -width decomposition of a schedule τ and the corresponding
parameter rτ (W), called the space reuse, which informally corresponds to the
number of subcomputations, each using approximately W space, into which τ
can be partitioned. The parameters rτ (2`), (where ` = 0, . . . , dlog Se and S is the
minimum space required to execute τ) are sufficient to characterize the optimal
execution time of τ on a wide class of HRAMs, wielding the first quantitative

130 G. Bilardi and E. Peserico

characterization of the qualitative notion of temporal locality. We provide lower
bounds matched, within a logarithmic factor, by the decomposition-tree memory
management strategy, and within a constant factor on a wide class of machines,
by the reoccurrence-width strategy. Neither of these strategies takes into account
the access function a(x), indicating that, for a fixed operation schedule, efficient
portability is indeed achievable.

In Section 4, we turn our attention to the impact of the operation schedule.
Several interesting cases of computations (such as some algorithms for FFT,
matrix multiplication, and sorting) are known to admit optimal schedules for
classes of uniform HRAMs [AACS87,FLPR99]. However, our main findings are
on the negative side: by developing ideas formulated in [P98], we show that,
at least for some computations, the optimal schedule is different on different
machines, both in the case of recomputation (multiple executions of the same
operations are allowed) and of no recomputation. In each case we also provide
lower bounds to the loss of time performance that any schedule suffers on at
least one machine of a reasonable class. These results require a novel approach to
analyze tradeoffs between the number of accesses in different regions, tradeoffs
not captured by previous lower bound techniques for the memory hierarchy
[HK81,S97,BP97-99,BPD00].

One consequence of our results is that, to obtain generally portable code,
such code must be somehow parametrized with parameters adaptable to those
of the memory hierarchy, either statically, by a compiler, or dynamically, like in
the systems FFTW [FJ98], ATLAS [WD], and PHiPAC [BACD97]. While we
take some preliminary steps to estimate the size of the parameter space of the
code as a function of the acceptable loss of performance, this remains largely an
uncharted and promising territory for further investigations.

2 Models of Machines and Computations

We shall model machines as Hierarchical Random Access Machines (HRAMs), a
model very close to the HMM of [AACS87] and to the H-RAM of [BP97-99]. An
HRAM consists of a serial processor, a program memory, and a data memory.
Both memories are random access and consist of locations with addresses ranging
over the nonnegative integers. Program memory is assumed to be very fast, with
access time subsumed within the processor cycle. Data memory is hierarchical,
with an access to address x taking a(x) units of time. The access function a(·)
satisfies 0 ≤ a(x) ≤ a(x + 1), for any x ≥ 0. To stress the role of the access
function, we shall use the notation a(x)-HRAM for the machine. It is also quite
useful to introduce the cumulative access function A(x) =

∑x−1
y=0 a(y), for x ≥ 1,

with A(0) = 0.
As it emerged since some of the early investigations [ST85,AACS87], com-

parison between upper and lower bounds on HRAM execution time often leads
to consideration of the ratio a(y)/a(x) of access times for a suitably bounded
value of the ratio y/x of the corresponding addresses, motivating the following
definition.

A Characterization of Temporal Locality and Its Portability 131

Definition 1. For given real parameters ξ, α ≥ 1, an access function a(x) or
the corresponding a(x)-HRAM is said to be (ξ, α)-uniform if a(ξx) ≤ αa(x), for
any x.

We now turn our attention to computations, which we model as computation
dags (+ and Σ denote the union operation restricted to disjoint sets).

Definition 2. A computation directed acyclic graph (CDAG) is a 4-tuple C =
(I, V, E, O) of finite sets such that: (1) I ∩V = ∅; (2) E ⊆ (I +V)×V is the set
of arcs; (3) G = (I + V, E) is a directed acyclic graph with no isolated vertices;
(4) I is called the input set; (5) V is called the operation set and all its vertices
have one or two incoming arcs; (6) O ⊆ I + V is called the output set.

Informally, with each vertex in I + V we associate a value. For a vertex in I,
the value is externally supplied and hence considered an input to the computa-
tion. For a vertex in V , the value is the result of an operation whose operands
are provided by the predecessors of that vertex. We have restricted the number
of operands to be one or two. The set O defines which values, among all the
ones being input or computed, form the desired output set. The main advantage
of the CDAG model for the present investigation is that it specifies neither the
order in which the operations have to be executed nor the memory locations
where data have to be stored, which we consider degrees of freedom for the im-
plementation. Furthermore, hierarchy related space complexity issues have been
extensively investigated using the CDAG model ([S97]).

3 Memory Management for a Fixed Operation Schedule

In this section, we consider a computation modeled by a CDAG C = (I, V, E, O),
together with a given feasible schedule τ of its operations. For simplicity, we de-
velop the analysis for a schedule without recomputation, modeled as a topological
sorting τ = (v1, . . . , vN) of the elements of V , that is, whenever (vi, vj) ∈ E, then
i < j. All the results of the present section are readily generalized to schedules
with recomputation.

Given τ , a program computing C must still choose in which memory loca-
tions, over the course of the computation, the values involved will be stored, the
objective being a minimization of the running time over HRAMs with as wide a
range of access functions a(x) as possible.

We begin by studying some lower limits that any memory map has to satisfy
for a given schedule.

3.1 Lower Bounds

The intuition that, at any given time, at least one memory location must be used
for each value already available and yet needed leads to the following definition
and to the subsequent propositions.

132 G. Bilardi and E. Peserico

Definition 3. For 0 ≤ i ≤ N , the width at i of a schedule τ = (v1, . . . , vN) of
a CDAG C = (I, V, E, O) is the quantity Wτ (i) = |Zτ (i)|, where

Zτ (i) = {u ∈ I ∪ {v1, . . . , vi} : (u ∈ O) ∨ (∃j > i : (u, vj) ∈ E)}.

The width of a schedule τ = (v1, . . . , vN) is the quantity Wτ = maxi Wτ (i).

Next, we begin to develop the relationship between width, space, and time.

Proposition 1. The amount Sτ of space needed by any HRAM execution of
CDAG C according to schedule τ satisfies Sτ ≥ Wτ .

Proposition 2. The time Tτ needed by an a(x)-HRAM execution of CDAG C

according to schedule τ satisfies Tτ ≥∑Wτ −1
h=0 a(h) = A(Wτ).

The analysis embodied by Propositions 1 and 2 can be refined by partitioning a
computation of C into contiguous subcomputations and considering their sepa-
rate accesses. Next, we review the notion of topological partition [BP97-99] and
we formalize the notion of subcomputation.

Definition 4. The sequence (V1, V2, . . . , Vq) of nonempty subsets of V is called
a topological partition of CDAG C = (I, V, E, O) if V =

∑q
h=1 Vh and E ⊆

(∪q
h=1 ∪q

k=h+1 (I + Vh) × Vk).

Definition 5. Let (V1, V2, . . . , Vq) be a topological partition of CDAG
C = (I, V, E, O). Then, for h = 1, 2, . . . , q, the subcomputation of C induced
by Vh is the CDAG Ch = (Ih, Vh, Eh, Oh), where:

Ih = {u /∈ Vh : ∃v ∈ Vh s.t. (u, v) ∈ E},

Oh = {u ∈ Ih + Vh : u ∈ O ∨ (∃v /∈ Vh s.t. (u, v) ∈ E)},

Eh = E ∩ ((Ih + Vh) × Vh).

Proposition 3. With the notation of Definition 5, let τh be a schedule for sub-
computation Ch, for h = 1, 2, . . . , q, and let the concatenation τ =< τ1, . . . , τq >
be the corresponding schedule for C. Then, for any S ≥ 0, the number Q(S) of
accesses to locations with address x ≥ S made by any HRAM execution of C
according to schedule τ satisfies Q(S) ≥∑q

h=1(Wτh
− S).

Proposition 4. With the notation of Proposition 3, the running time of any
execution of C according to schedule τ on an a(x)-HRAM satisfies

Tτ ≥
q∑

h=1

Wτh
−1∑

i=0

a(i) =
q∑

h=1

A(Wτh
). (1)

Of particular interest for our developments are topological partitions where
all the subcomputations, except possibly for the last one, have nearly the same
width. These partitions, to be defined next, will enable us to derive tight lower
and upper bounds on computation time.

A Characterization of Temporal Locality and Its Portability 133

Definition 6. Given a CDAG C = (I, V, E, O), we say that < τ1, . . . , τq > is
the W -width decomposition of a schedule τ for C if (i) τ =< τ1, . . . , τq >, (ii)
Wτh

≤ W for h = 1, 2, . . . , q, and (iii) Wτ+
h

> W for h = 1, 2, . . . , q − 1, where

τ+
h is obtained by appending to τh the next operation in τ .

All subcomputations in a W -width decomposition, except possibly for the
last one, are full in the sense that their width is at least W − 2. The number
rτ (W) ∈ {q − 1, q} of full subcomputations, hereafter referred to as the space
reuse (at W), gives the following valuable information on the access complexity:

Qτ (W/2 − 2) ≥ (W/2)rτ (W). (2)

This bound follows easily from Proposition 3 by setting S = W/2−2, q = rτ (W),
and Wτh

−S = W −(W/2−2) > W/2. Let H be the smallest integer greater than
two such that Wτ ≤ 2H . For 2 < ` < H, let n` = rτ (2`) be the number of full
subcomputations in the 2`-width decomposition of τ . Also, let 2n2 = |E| + |V |.
It turns out that n`’s closely characterize the temporal locality properties of a
schedule, as the next result shows from the lower bound perspective.

Theorem 1. Let τ be a schedule for CDAG C and let n` be defined as above,
for ` = 2, 3, . . . , H. Then, the time of any execution of C according to schedule
τ on an a(x)-HRAM satisfies the bound

Tτ ≥
H−1∑

`=2

(n` − 2n`+1)2`−1a(2`−1 − 2). (3)

3.2 Efficient Strategies for Memory Management

We now turn our attention to constructive ways of defining a memory map for
a given schedule τ = (v1, v2, . . . , vN) of computation C. It can be easily shown
that the lower bound given by Proposition 1 is tight, i.e., Sτ = Wτ . However,
when the objective is the minimization of execution time on an H-RAM, it is
crucial not only to reduce the overall space, but also to bias the utilization
of space toward the smaller, faster locations. We have developed two memory
managers. The first, named the decomposition-tree memory manager, uses a
variant of the topological-separator proposed in [BP97-99] that yields a tighter
control of space, essential for our present purposes.

Decomposition-Tree Memory Management

1. Partition τ into two subschedules τ0 and τ1.
2. Reorganize the inputs of τ so that the inputs of τ0 lie in the address range

[0, ..., Wτ0 −1], and the remaining inputs of τ lie in the range [Wτ0 , ..., Wτ −1].
3. Recursively execute τ0 within the address range [0, ..., (Wτ0 − 1)].
4. Reorganize data in memory so that the inputs of τ1 lie in the address range

[0, ..., Wτ1 − 1], and the remaining data in the range [Wτ1 , ..., Wτ − 1].
5. Recursively execute τ1 within the address range [0, ..., (Wτ1 − 1)].

134 G. Bilardi and E. Peserico

The formal description of the algorithm and its analysis we leave for the final
version of the paper. They lead to the following result:

Theorem 2. The balanced, binary decomposition-tree strategy for memory
management yields an a(x)-HRAM program P which correctly executes CDAG
C = (V, E, I, O) with schedule τ in optimal space Sτ = Wτ and time

Tτ ≤ (4dlog Ne + 2)T opt
τ , (4)

where T opt
τ denotes the minimum time achievable on an a(x)-HRAM.

Theorem 2 makes no restrictive assumption on the access function a(x) mod-
eling HRAM delays. Independence of the access function poses rather stringent
constraints on the memory manager, as it implies that no address x ≥ Wτ = Sτ

can be used (otherwise, there would be no way to relate the corresponding access
to T opt

τ). However, stronger results can be obtained if we restrict our attention
to uniform HRAMs, which are both physically and technologically sound. In this
direction, we develop an alternate memory management strategy which achieves
optimality to within a constant factor on uniform HRAMs. Unlike the tree-
decomposition approach, the strategy presented below relocates data in memory
only in correspondence with operations that involve those data, at an address
(approximately) proportional to the amount of space needed by the subcompu-
tation intervening between the current operation and the next operation where
that value occurs as an operand.

Let H be the integer such that 2H−1 < Wτ ≤ 2H . We define memory region
M2 = {0, 1} and, for ` = 3, . . . , H, memory region M` = {2` − 6, . . . , 2`+1 − 7},
of size 2`.

We shall say “store in region M`” as an abbreviation for “store in the
location of smallest address among those currently available in M`.” We
shall also use the shorthand wτ (u|@vk) to indicate the width of the subcom-
putation between the two consecutive occurrences vi and vj of u, with i ≤ k < j.

Reoccurrence-Width Memory Management

1. Input. We assume that the inputs u0, u1, . . . , u|I|−1 are originally available
at the |I| lowest memory locations. For each h = |I|−1, . . . , 1, 0, move input
uh to the smallest region of size at least wτ (u|@v0), excluding M2.

2. Operations. For k = 1, 2, . . . , N , do:
(i) Load: Move the operand(s) of vk to location 0 (and 1), in M2.
(ii) Compute: Execute operation vk storing the result in M`, with
` = max(3, dlog wτ (vk|@vk)e).
(iii) Relocate: Move each operand u of vk subsequently needed in the com-
putation to M`, with ` = max(3, dlog wτ (u|@vk)e).

3. Output. The outputs z0, z1, . . . , z|O|−1 are now stored in non decreasing order
of the quantity ` = max(3, dlog wτ (zh|@vN+1)e). For each h = 0, 1, . . . , |O|−
1, move output zh to location h.

A somewhat complex analysis establishes the correctness of the above strat-
egy and provides an upper bound to the resulting HRAM running time, in terms
of the access function a(x) (and the related A(x) =

∑x−1
y=0 a(x)) characterizing

A Characterization of Temporal Locality and Its Portability 135

the machine and in terms of the parameters n`’s characterizing the computation.
The resulting upper bound is also compared to the lower bound of Theorem 1
thus establishing the optimality, to within a constant factor, of the reoccurrence-
width strategy, for a wide class of access functions.

Theorem 3. The reoccurrence-width strategy yields an a(x)-HRAM program P
which executes CDAG C = (V, E, I, O) with schedule τ in time

Tτ ≤
H−1∑

`=2

(n` − 2n`+1)2`+1a(2`+2 − 7) + A(|I|) + A(|O|). (5)

If T opt
τ denotes the minimum time achievable on an a(x)-HRAM, we have:

Tτ ≤ (4γ(Wτ) + 1)T opt
τ . (6)

where γ(Wτ) = max`∈{3,...,H−1}(a(2`+2 − 7)/a(2`−1 − 2)) .

For most functions a(x) of interest, the quantity a(8x + 9)/a(x), and hence the
quantity γ(Wτ) in Relation 6, is bounded above by a constant. E.g., if a(x)
is (25/2, α)-uniform, then γ(Wτ) ≤ α. In the interesting case where a(x) =
a0

√
x + 1 modeling speed-of-light delays in planar layouts, we obtain γ(Wτ) ≤√

26/3 < 3.

4 Optimal Schedule and Memory Access Function

Some CDAGs, such as those corresponding to matrix multiplication and of the
radix-2 FFT, do admit a portable schedule that is simultaneously (near) optimal
for all machines (in a wide class); it is natural to ask whether any CDAG does
[P98,FLPR99]. Below, we answer this question negatively by exhibiting CDAGs
for which it can be shown that there are HRAM pairs such that, for any schedule,
at least on one of the two machines, time performance is significantly suboptimal,
i.e. by a factor polynomial (with exponent between 0 and 1) in the number N of
operations. It is quite possible that a given CDAG admits a portable schedule if
recomputation is allowed but it does not when recomputation is disallowed, and
vice versa. For this reason, we deal with the two cases separately.

Theorem 4. Let M0 denote a 1-HRAM (the standard RAM) and M1/2 denote
a

√
x-HRAM. For infinitely many N , there exists a CDAG C(N) of N oper-

ations such that the running time of any schedule, allowing recomputation, is
suboptimal by a factor Ω(N1/6) on M0 or on M1/2.

Space limitations force us once more to leave the proof to the full version of the
paper, but we will attempt to convey an idea of the line of argument. The CDAG
C(N) is actually the member RN1/6

N5/6 of a family whose generic element Rr
c has

one input and N = rc − 1 operation nodes. The nodes of Rr
c are connected as

a linear chain which can be visualized as folded into r rows of c columns each,
with additional arcs connecting nodes that are consecutive in a column. Figure 1
illustrates R4

6. Intuitively, on machine M0, the best schedule is the one that per-
forms no recomputation. On machine M1/2, instead, a better schedule computes

136 G. Bilardi and E. Peserico

v0

3 333
0v 33

5v4v3v2v1v

222222
2v 5v4v3v1v0v

111111
5v4v3v2v1v0v

1
0v 2

0v 3v0
0

4 v0
5v0

Fig. 1. The CDAG R4
6

.

node vi
j by first recomputing the entire column above it from the column above

the previous node (and from v0
0 if j = 0), using only O(r) memory locations for

the whole computation. Our analysis shows that the class of all schedules can be
partitioned into two subclasses depending on whether (according to a suitable
technical measure) the amount of recomputation being performed is above or
below a certain threshold. It is then shown that a schedule above (respectively,
below) the threshold is bound to incur a significant time loss on M0 (respectively,
M1/2). We observe that Rr

c can be viewed as the CDAG describing the process-
ing performed during N − 1 steps by a simple type of digital filter of order c. It
appears quite likely that similar behaviours will be exhibited by other natural
CDAGs. A similar result can be obtained when ruling out recomputation:

Theorem 5. Let Mα denote an xα-HRAM. Given any pair α and β of real
numbers with 0 ≤ α < β < 1, for infinitely many N , there exists a CDAG
Cα,β(N) of N operations such that the running time of any schedule τα,β(N)
with no recomputation is suboptimal by a factor Ω(N

αβ(β−α)
24) on Mα or on Mβ.

The CDAG Cα, β(N) referred to in the statement of Theorem 5, belongs to a
family of CDAGs Gp

m,n an element of which is illustrated in Figure 2. Informally,
Gp

m,n consists of p almost disjoint isomorphic subgraphs, only sharing a set of n
inputs i0, ..., in−1. Subgraph h has a backbone consisting of a long chain:

(jh, uh
0 , ..., uh

n−1, v
h
0 , ..., vh

mn−1, w
0
n−1, ..., w

h
n−1),

with jh as an input and wh
n−1 as the designated output. In addition, vh

k−1 takes
ik%n as an input, and wh

k takes uh
n−k as an input. For convenience, we shall refer

to the three portions of the operation chain as to the the u-chain, the v-chain,
and the w-chain, respectively.

A key property is that, between the computation of the first and of the last
vertex of each v-chain, all the values of the corresponding u-chain must reside
in memory, since they will be needed for the computation of the w-chain. Then,
the following tradeoffs arises: as the number of v-chains simultaneously under
execution increases, the space and time to store and retrieve the corresponding
u-chains increases, while the time to access the i inputs can be made to decrease,
since - once accessed - such an input can be used to advance the computation of

A Characterization of Temporal Locality and Its Portability 137

i 0 i 1 i 2 i 3

v0 v0 v0
1 2 3v 0

0

v0 v0 v0v 0
4 5 6 7

v0 v0 v0v 0
8 9 10 11

v v v1 2 3v 0
1 1 1 1

v v vv 1 1 1 1
4 5 6 7

1 2 30u 0 u 0 u 0 u 0

1 2 30
1 1 1 1u u u u

j 0

j 1

v v vv 1 1 1 1
8 9 10 11

w0 w0 w0 w0
3 2 1 0

w w w w1 1 1 1
3 2 1 0

Fig. 2. The CDAG G2
3,4

.

several v-chains. Ultimately, it turns out that the optimal point in this tradeoff
changes with the access function of the HRAM, with the optimal number of
v-chains under simultaneous execution decreasing for machines with “steeper”
access functions. The systematic, quantitative analysis of the above tradeoff is
rather subtle and left for the full version of the paper.

Theorems 4 and 5 do not rule out the possibility of a parametrized program
which, when the parameters are selected (perhaps by a knowledgeable compiler
or run-time system) as a function of a(x) achieves optimal performance. The next
results explore the question of how many different schedules have to be generated,
as the parameters span over their range, in order to achieve a performance within
a given factor from optimal on any machine from a suitable class.

Definition 7. A set of schedules T = {τ1, . . . , τr} of a given a CDAG C is said
to be s-optimal with respect to a class H of HRAMs if, for any M ∈ H, there
is a τ ∈ T such that C can be executed on M with schedule τ in time within a
factor s of optimal.

Theorem 6. Let H(ξ, s) be the class of the (ξ,
√

s)-uniform HRAMs. Let C(ξ, s)
be the set of CDAGs C such that no optimal schedule of C on any HRAM in
H(ξ, s) requires more than N space. Then we have:

– (Upper Bound.) For any C ∈ C(ξ, s), there is a set T of schedules s-optimal
with respect to H(ξ, s) with size |T | ≤ 2dlogξNe ≈ N1/ log ξ.

– (Lower Bound.) There is a constant K such that, for any s ≥ 1, there
is an infinite sequence of CDAGs C(N) in C(ξ, s) of N operations such
that any set of schedule T s-optimal with respect to H(ξ, s) has size |T | ≥
NK/(log s+log log N), for any ξ.

138 G. Bilardi and E. Peserico

From Theorem 6 we see that, although a CDAG might well admit an ex-
ponential number of schedules, a suitable polynomial subset of them always
contains one with performance within a constant factor of optimal. We remark
that the proof of the preceding upper bound result (left to the full version of the
paper) exploits approximability properties of the access function a(x), making
no use of any special structure of the relevant CDAGs. We also show that, at
least for some CDAGs, this number of schedules can not be substantially re-
duced. The detailed description and analysis of such CDAGs is again left to the
full version, but the key idea is to consider CDAGs composed by a family of
Θ(log N/(log s + log log N)) sets of graphs of the type introduced in Theorems
4 and 5. By careful tuning of the parameters, we can make the asymptotic time
requirements of the execution of different sets on an a(x)-HRAM depend only
on the behaviour of a(x) on different, disjoint intervals of addresses, forcing in
turn, if s-optimality is to be achieved, a different schedule of the global CDAG
according to whether a(x) is sufficiently “steep” or not on each interval. The
dependence of the size of s-optimal sets of schedules upon the structure of the
CDAG is a very interesting problem and certainly deserves investigation.

5 Conclusions

We have proposed the width framework leading to a quantitative definition of
temporal locality which enables performance estimates for an algorithm on dif-
ferent hierarchical systems. Then, we have explored the efficient portability of
a fixed implementation of an algorithm on the spectrum of different systems.
We have found that the exploitation of the inherent temporal locality of an
algorithm through the memory management is quite amenable to a machine-
independent optimization. Instead, the optimization of the operation schedule
generally requires some knowledge of the target memory system.

This work can be extended in several directions. More general memory mod-
els need to be considered, to include block transfer, pipelined accesses, and par-
allel memories. Indeed, the width framework has already proven useful in the
investigation of sequential, pipelined hierarchies [BEP01]. More flexible models
of portability are also of interest, where the code is allowed to somehow adapt to
the machine. The previous section touches on such issues, but a systematic in-
vestigation of “parametrized” algorithms remains desirable. A final observation,
for which we are indebted to Peter M. Kogge, is that several of our results could
be reinterpreted by viewing a(x) as the energy required to retrieve the content
of location x, a metric of interest in the context of low power computing.

References

[AACS87] A. Aggarwal, B. Alpern, A.K. Chandra, M. Snir. A Model for Hierarchical
Memory. Proc. 19th ACM Symp. Theory of Computing., (1987), 305–314.

[ACS87] A. Aggarwal, A.K. Chandra and M. Snir. Hierarchical Memory with Block
Transfer. Proc. 28th Symp. Foundations of Comp. Science, (1987), 204–216.

[ACFS94] B. Alpern, L. Carter, E. Feig and T. Selker. The Uniform Memory Hierarchy
Model of Computation. Algorithmica, vol. 12, (1994), 72-129.

A Characterization of Temporal Locality and Its Portability 139

[ACS90] A. Aggarwal, A.K. Chandra and M. Snir. Communication Complexity of
PRAMs. Theoretical Computer Science, vol.71, 3-28, 1990.

[BACD97] J.Bilmes, K.Asanovic, C.Chin and J.Demmel. Optimizing matrix multiply
using PHiPAC: a portable, high-performance, Ansi C coding methodology.
International Conference on Supercomputing, (1997).

[BEP01] G.Bilardi, K.Ekanadham, P.Pattnaik Computational power of pipelined
memory hierarchies. 13th ACM Symp. Par. Algorithms and Architectures,
(2001).

[BP00] G.Bilardi, E.Peserico. An Approach towards an Analytical Characteriza-
tion of Locality and its Portability. Proc. of International Workshop on
Innovative Architectures 2000, IEEE CS Press, (2001).

[BP97-99] G.Bilardi, F.Preparata Processor-time tradeoffs under bounded-speed mes-
sage propagation. Part I: Upper bounds. Theory of Computing Systems, vol.
30, 523-546, 1997. Part II: Lower bounds. Theory of Computing Systems,
vol. 32, 531-559, 1999.

[BPD00] G. Bilardi, A. Pietracaprina, and P. D’Alberto. On the space and access
complexity of computation dags. 26th Workshop on Graph-Theoretic Con-
cepts in Comp. Science (2000).

[FJ98] M.Frigo and S.G.Johnson. FFTW: An Adaptive Software Architecture for
the FFT. ICASSP, (1998), 1381-1384.

[FLPR99] M. Frigo, C.E. Leiserson, H. Prokop and S. Ramachandran. Cache-
Oblivious Algorithms. Proc. 40th Symp. Foundations of Comp. Science,
(1999).

[HK81] J.W. Hong and H.T. Kung. I/O Complexity: The Red–Blue Pebble Game.
Proc. 13th ACM Symp. Theory of Computing, (1981), 326–333.

[HP96] J.L. Hennessy and D.A. Patterson, Computer Architecture A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, 1996.

[MV99] V. Milutinovic and M. Valero (Guest Eds.) Special Issue on Cache Memory
and Related Problems. IEEE Transactions on Computers, 1999.

[P90] S.S. Przybylski. Cache and Memory Hierarchy Design. A Performance
Directed Approach. Morgan Kaufmann Publishers, Inc. Palo Alto, CA 1990.

[P98] E. Peserico. Performance Optimization on Hierarchical Memory. Laurea
Thesis, Dip. di Elettronica ed Informatica, Università di Padova, July 1998.

[S97] J.E. Savage. Models of Computation. Exploring the Power of Computing
Addison-Wesley, Reading, MA, 1998.

[ST85] D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and
Paging Rules. Communications of the ACM, vol. 28(2) 202-208, 1985.

[V98] J.S. Vitter. External Memory Algorithms. Invited paper in Proc. 6th Euro-
pean Symp. on Algorithms, (G.Bilardi et al. Eds.), Springer Verlag, (1998),
1–25.

[W95] M.Wolfe High Performance Compilers for Parallel Computing. Addison-
Wesley, 1995.

[WD] R.C.Whaley and J.J.Dongarra. Automatically Tuned Linear Algebra Soft-
ware. http://www.netlib.org/atlas/index.html

The Complexity of Constructing Evolutionary
Trees Using Experiments

Gerth Stølting Brodal1,?, Rolf Fagerberg1,?,
Christian N.S. Pedersen1,?, and Anna Östlin2,??

1 BRICSy, Department of Computer Science, University of Aarhus, Ny Munkegade,
DK-8000 Århus C, Denmark. {gerth,rolf,cstorm}@brics.dk

2 Department of Computer Science, Lund University, Box 118, S-221 00 Lund,
Sweden. Anna.Ostlin@cs.lth.se

Abstract. We present tight upper and lower bounds for the problem
of constructing evolutionary trees in the experiment model. We describe
an algorithm which constructs an evolutionary tree of n species in time
O(nd logd n) using at most ndd/2e(log2dd/2e−1 n + O(1)) experiments for
d > 2, and at most n(log n + O(1)) experiments for d = 2, where d is the
degree of the tree. This improves the previous best upper bound by a fac-
tor Θ(log d). For d = 2 the previously best algorithm with running time
O(n log n) had a bound of 4n log n on the number of experiments. By
an explicit adversary argument, we show an Ω(nd logd n) lower bound,
matching our upper bounds and improving the previous best lower bound
by a factor Θ(logd n). Central to our algorithm is the construction and
maintenance of separator trees of small height, which may be of inde-
pendent interest.

1 Introduction

The evolutionary relationship for a set of species is commonly described by an
evolutionary tree, where the leaves correspond to the species, the root corre-
sponds to the most recent common ancestor for the species, and the internal
nodes correspond to the points in time where the evolution has diverged in dif-
ferent directions. The evolutionary history for a set of species is rarely known,
hence estimating the true evolutionary tree for a set of species from obtainable
information about the species is of great interest. Estimating the true evolu-
tionary tree computationally requires a model describing how to use available
information about species to estimate aspects of the true evolutionary tree. Given
a model, the problem of estimating the true evolutionary tree is often referred
to as constructing the evolutionary tree in that model.
? Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).
?? Partially supported by TFR grant 1999-344.

y Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 140–151, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Complexity of Constructing Evolutionary Trees Using Experiments 141

a b c

(a, b, c)

a b

c

((a, b), c)

a c

b

((a, c), b)

b c

a

((b, c), a)

Fig. 1. The four possible outcomes of an experiment for three species a, b and c

In this paper we study the problem of constructing evolutionary trees in
the experiment model proposed by Kannan, Lawler and Warnow in [6]. In this
model the information about the species is obtained by experiments which can
yield the evolutionary tree for any triplet of species, cf. Fig. 1. The problem of
constructing an evolutionary tree for a set of n species in the experiment model
is to construct a rooted tree with no unary internal nodes and n leaves labeled
with the species such that the topology of the constructed tree is consistent
with all possible experiments involving the species. Hence, the topology of the
constructed tree should be such that the induced tree for any three species is
equal to the tree returned by an experiment on those three species.

The relevance of the experiment model depends on the possibility of per-
forming experiments. A standard way to express phylogenetic information is by
a distance matrix. A distance matrix for a set of species is a matrix where en-
try Mij represents the evolutionary distance between species i and j, measured
by some biological method (see [6] for further details). For three species a, b
and c where Mab < min{Mac, Mbc} it is natural to conclude that the least com-
mon ancestor of a and b is below the least common ancestor of a and c, i.e. the
outcome of an experiment on a, b and c can be decided by inspecting Mab, Mac

and Mbc. The consistency of experiments performed by inspecting a distance
matrix depends entirely on the distance matrix. Kannan et al. in [6] define a
distance matrix as noisy-ultrametric if there exists a rooted evolutionary tree
such that for all triplets of species a, b and c it holds that Mab < min{Mac, Mbc}
if and only if the least common ancestor of a and b is below the least common
ancestor of a and c in the rooted evolutionary tree. Hence, if a noisy-ultrametric
distance matrix for the set of species can be obtained, it can be used to per-
form experiments consistently. Another and more direct method for performing
experiments is DNA-DNA hybridization as described by Sibley and Ahlquist
in [9]. In this experimental technique one measures the temperature at which
single stranded DNA from two different species bind together. The binding tem-
perature is correlated to the evolutionary distance, i.e. by measuring the binding
temperatures between DNA strands from three species one can decide the out-
come of the experiment by deciding which pair of the three species bind together
at the highest temperature.

Kannan et al. introduce and study the experiment model in [6] under the as-
sumption that experiments are flawless in the sense that they do not contradict

142 G.S. Brodal et al.

each other, i.e. it is always possible to construct an evolutionary tree for a set
of species that is consistent with all possible experiments involving the species.
They present algorithms for constructing evolutionary trees with bounded as
well as unbounded degree, where the degree of a tree is the maximum number
of children for an internal node. For constructing binary evolutionary trees they
present three different algorithms with running times O(n log n), O(n log2 n)
and O(n2) respectively, using 4n log n, n log3/2 n and n log n experiments re-
spectively, where log n denotes log2 n. For constructing an evolutionary tree of
degree d they present an algorithm with running time O(n2) using O(dn log n)
experiments. Finally, for the general case they present an algorithm with run-
ning time O(n2) using O(n2) experiments together with a matching lower bound.
Kao, Lingas, and Östlin in [7] present a randomized algorithm for constructing
evolutionary trees of degree d with expected running time O(nd log n log log n).
They also prove a lower bound Ω(n log n + nd) on the number of experiments.
The best algorithm so far for constructing evolutionary trees of degree d is due
to Lingas, Olsson, and Östlin, who in [8] present an algorithm with running time
O(nd log n) using the same number of experiments.

In this paper we present the first tight upper and lower bounds for the prob-
lem of constructing evolutionary trees of degree d in the experiment model.
We present an algorithm which constructs an evolutionary tree for n species
in time O(nd logd n) using at most ndd/2e(log2dd/2e−1 n + O(1)) experiments
for d > 2, and at most n(log n + O(1)) experiments for d = 2, where d is the
degree of the constructed tree. The algorithm is a further development of an
algorithm from [8]. Our construction improves the previous best upper bound
by a factor Θ(log d). For d = 2 the previously best algorithm with running time
O(n log n) had a bound of 4n log n on the number of experiments. The improved
constant factors on the number of experiments are important because experi-
ments are likely to be expensive in practice, cf. Kannan et al. [6]. By an explicit
adversary argument, we show an Ω(nd logd n) lower bound, matching our upper
bounds and improving the previous best lower bound by a factor Θ(logd n).

Our algorithm also supports the insertion of new species with a running
time of O(md logd(n + m)) using at most mdd/2e(log2dd/2e−1(n + m) + O(1))
experiments for d > 2, and at most m(log(n+m)+O(1)) experiments for d = 2,
where n is the number of species in the tree to begin with, m is the number
of insertions, and d is the maximum degree of the tree during the sequence
of insertions. Central to our algorithm is the construction and maintenance of
separator trees of small height. These algorithms may be of independent interest.
However, due to lack of space we have omitted the details on separator trees.
For further details we refer the reader to the full version of the paper [5].

The rest of this paper is organized as follows. In Sect. 2 we define separator
trees and state results on the construction and efficiently maintenance of sepa-
rator trees of small height. In Sect. 3 we present our algorithm for constructing
and maintaining evolutionary trees. In Sect. 4 and 5 the lower bound is proved
using an explicit adversary argument. The adversary strategy used is an exten-
sion of an adversary used by Borodin, Guibas, Lynch, and Yao [3] for proving

The Complexity of Constructing Evolutionary Trees Using Experiments 143

a trade-off between the preprocessing time of a set of elements and membership
queries, and Brodal, Chaudhuri, and Radhakrishnan [4] for proving a trade-off
between the update time of a set of elements and the time for reporting the
minimum of the set.

2 Separator Trees

In this section we define separator trees and state results about efficient algo-
rithms for their constructing and maintenance. For further details see [5].

Definition 1. Let T be an unrooted tree with n nodes. A separator tree ST
for T is a rooted tree on the same set of nodes, defined recursively as follows:
The root of ST is a node u in T , called the separator node. The removal of u
from T disconnects T into disjoint trees T1, . . . , Tk, where k is the number of
edges incident to u in T . The children of u in ST are the roots of separator trees
for T1, . . . , Tk.

Clearly, there are many possible separator trees ST for a given tree T . An
example is shown in Fig. 2.

d

c

a

e f

b

g

i

h

e

c

a b d

f

g

h i

Fig. 2. A tree T (left) and a separator tree ST for T (right)

For later use, we note the following facts for separator trees:

Fact 1 Let ST be a separator tree for T , and let v be a node in T . If Sv denotes
the subtree of ST rooted at v, then:

1. The subgraph Tv induced by the nodes in Sv is a tree, and Sv is a separator
tree for Tv.

2. For any edge from T with exactly one endpoint in Tv, the other endpoint is
an ancestor of v in ST , and each ancestor of v can be the endpoint of at
most one such edge.

The main point of a separator tree ST is that it may be balanced, even
when the underlying tree T is not balanced for any choice of root. The notion
of balanced separator trees is contained in the following definition, where the
size |T | of a tree T denotes the number of nodes in T , and where Ti refers to the
trees T1, . . . , Tk from Definition 1.

144 G.S. Brodal et al.

Definition 2. A separator tree is a t-separator tree, for a threshold t ∈ [1/2, 1],
if |Ti| ≤ t|T | for each Ti and the separator tree for each Ti is also a t-separator
tree.

In [5] we first give a simple algorithm for constructing 1/2-separator trees
in time O(n log n). We then improve the running time of the algorithm to O(n)
by adopting additional data structures. We note that a 1/2-separator tree has
height at most blog nc.

We also consider dynamic separator trees under the insertion of new nodes
into a tree T and its corresponding separator tree ST , and show how to maintain
separators trees with small height in logarithmic time per insertion. Our methods
for maintaining balance and height in separator trees during insertions of new
nodes are based on rebuilding of subtrees, and are inspired by methods of An-
dersson and Lai described in [1,2] for maintaining small height in binary search
trees. We first show how the linear time construction algorithm for 1/2-separator
trees leads to a simple algorithm for keeping separator trees well balanced. The
height bound achieved by this algorithm is O(log n), using O(log n) amortized
time per update. We then use a two-layered structure to improve the height
bound to log n + O(1) without sacrificing the time bound. The improved con-
stant factor in the height bound is significant for our use of separator trees for
maintaining evolutionary trees in the experiment model, since the number of
experiments for an insertion of a new species will turn out to be proportional
to the height of the separator tree. Furthermore, this height bound is within an
additive constant of the best bound possible, as trees exist where any separator
tree must have height at least blog nc, e.g. a tree which is a single path.

Finally, we extend the separator trees with a specific ordering of the children,
facilitating our use of separator trees in Sect. 3 for finding insertion points for
new species in evolutionary trees. The basic idea is to speed up the search in the
separator tree by considering the children of the nodes in decreasing size-order.
This ensures a larger reduction of subtree size in the case that many children
have to be considered before the subtree to proceed the search in is found. Our
main result about separator trees is summarized in the following theorem.

Theorem 1. Let T be an unrooted tree initially containing n nodes. After O(n)
time preprocessing, an ordered separator tree for T can in time O(m log(n+m))
be maintained during m insertions in a way such that the height is bounded by
log(n + m) + 5 and such that for any path (v1, v2, . . . , v`) from the root v1 to a
node v` in the separator tree, the followings holds

∏

di≤2

2 ·
∏

di>2

di < 16d(n + m) , (1)

where di is the number which vi+1 has in the ordering of the children of vi,
for 1 ≤ i < `, and d is max{d1, . . . , d`−1}.

The Complexity of Constructing Evolutionary Trees Using Experiments 145

3 Algorithm for Constructing and Maintaining
Evolutionary Trees

In this section we describe an algorithm for constructing an evolutionary tree T
in the experiment model for a set of n species in time O(nd logd n), where d
is the degree of the tree. Note that d is not known by the algorithm in ad-
vance. The algorithm is a further development of an algorithm by Lingas et al.
in [8]. Our algorithm also supports the insertion of new species with running
time O(md logd(n + m)) using at most mdd/2e(log2dd/2e−1(n + m) + O(1)) ex-
periments for d > 2, and at most m(log(n + m) + O(1)) experiments for d = 2,
where n is the number of species in the tree to begin with, m is the number
of insertions, and d is the maximum degree of the tree during the sequence of
insertions.

The construction algorithm inserts one species at the time into the tree in
time O(d logd n) until all n species have been inserted. The search for the inser-
tion point of a new species a is guided by a separator tree ST for the internal
nodes of the evolutionary tree T for the species inserted so far. The search starts
at the root of ST . In a manner to be described below, we decide by experiments
which subtree, rooted at a child of the root in ST , the search should continue
in. This is repeated recursively until the correct insertion point in T for a is
found. We keep links between corresponding nodes in ST and T for switching
between the two trees. To facilitate the experiments, we for each internal node
in T maintain a pointer to an arbitrary leaf in its subtree. When inserting a new
internal node in T this pointer is set to point to the new leaf which caused the
insertion of the node.

We say that the insertion point of a is incident to a node v, if

1. a should be inserted directly below v, or
2. a should split an edge which is incident to v by creating a new internal node

on the edge and make a a leaf below the new node, or
3. if v is the root of T , a new root of T should be created with a and v as its

two children.

The invariant for the search is the following. Assume we have reached node v
in the separator tree for the internal nodes in T , and let Sv be the internal nodes
of T which are contained in the subtree of ST rooted at v (including v). Then
the insertion point of the new species a is incident to a node in Sv.

Let v be the node in ST for which we want to decide if the insertion point
for the new species a is in the subtree above v in T ; if it is in a subtree rooted
at a child of v in T ; or if a should be inserted as a new child of v. We denote by
u1, . . . , uk the children of v in T , where u1, . . . , uk′ are nodes in distinct subtrees
T1, . . . , Tk′ below v in ST , whereas uk′+1, . . . , uk are leaves in T or are nodes
above v in ST . The order of the subtrees T1, . . . , Tk′ below v in ST is given
by the ordered separator tree ST and determines the order of u1, . . . , uk′ . The
remaining children uk′+1, . . . , uk of v may appear in any order.

We perform at most dk/2e experiments at v. The i’th experiment is on the
species a, b and c, where b and c are leaves in T below u2i−1 and u2i respectively.

146 G.S. Brodal et al.

The leaves b and c can be located using the pointers stored at u2i−1 and u2i.
Note that the least common ancestor of b and c in T is v. If k is odd then the
species b and c in the dk/2e’th experiment is chosen as leaves in T below uk
and u1 respectively, and note that the two leaves are distinct because k ≥ 2 by
definition. There are four possible outcomes of the i’th experiment corresponding
to Fig. 1:

1. (a, b, c) implies that the insertion point for a is incident to a descendent of uj ,
where b and c are not descendents of uj , or a is a new leaf below v.

2. ((a, b), c) implies that the insertion point for a is incident to a descendent of
u2i−1, since the least common ancestor of a and b is below v in T .

3. ((a, c), b) is symmetric to the above case and the insertion point of a is
incident to a descendent of u2i (u1 for the dk/2e’th experiment if k odd).

4. ((b, c), a) implies that the insertion point of a is in the subtree above v, since
the least common ancestor of a and b is above v. If v is the present root of T ,
a new root should be created with children a and v.

We perform experiments for increasing i until we get an outcome difference
from Case 1, or until we have performed all dk/2e experiments all with outcome
cf. Case 1. In the latter case species a should be inserted directly below v in T as
a new child. In the former case, when the outcome of an experiment is different
from Case 1, we know in which subtree adjacent to v in T the insertion point
for species a is located. If there is no corresponding subtree below v in ST , then
we have identified the edge incident to v in T which the insertion of species a
should split. Otherwise we continue recursively searching for the insertion point
for species a at the child of v in ST which roots the separator tree for the
subtree adjacent to v which has been identified to contain the insertion point
for a. When the insertion point for species a is found, we insert one leaf and at
most one internal node into T , and ST is updated according to Theorem 1.

Lemma 1. Given an evolutionary tree T for n species with degree d, and
a separator tree ST for T according to Theorem 1, then a new species a
can be inserted into T and ST in amortized time O(d logd n) using at most
dd/2e(log2dd/2e−1 n + O(1)) experiments for d > 2, and at most log n + O(1)
experiments for d = 2.

Proof. Let v1, . . . , v` be the nodes in ST (and T) visited by the algorithm while
inserting species a, where v1 is the root of ST and vj+1 is a child of vj in ST .
Define di by vi+1 being the di’th child of vi in ST , for 1 ≤ i < `.

For d = 2 we perform exactly one experiment at each vi. The total number of
experiments is thus bounded by the height of the separator tree. By Theorem 1
it follows that the number of experiments is bounded by log n + O(1). In the
following we consider the case where d ≥ 3.

For i < `, let xi denote the number of experiments performed at node vi. We
have xi ≤ dd/2e and di ≥ 2xi − 1, since each experiment considers two children
of vi in T and the first experiment also identifies if a should be inserted into the
subtree above vi. At v` we perform at most dd/2e experiments.

The Complexity of Constructing Evolutionary Trees Using Experiments 147

For d1, . . . , d`−1 we from Theorem 1 have the constraint
∏
di≤2 2 ·∏di>2 di ≤

16dn, since |ST | ≤ n−1. To prove the stated bound on the worst case number of
experiments we must maximize

∑`
i=0 xi under the above constraints. We have

log(16dn) ≥
∑

di≤2

1 +
∑

di>2

log di

≥
∑

xi=1

1 +
∑

xi>1

log di

≥
∑

xi=1

xi +
∑

xi>1

xi
1
xi

log(2xi − 1)

≥ 1
dd/2e log(2dd/2e − 1)

`−1∑

i=1

xi ,

where the second inequality holds since xi > 1 implies di ≥ 3. The last inequality
holds since for f(x) = 1

x log(2x − 1) we have 1 > f(2) > f(3) and f(x) is
decreasing for x ≥ 3, i.e. f(x) is minimized when x is maximized.

We conclude that
∑`−1
i=1 xi ≤ dd/2e log2dd/2e−1(16dn), i.e. for the total num-

ber of experiments we have
∑`
i=1 xi ≤ dd/2e(log2dd/2e−1(16dn) + 1).

The time needed for the insertion is proportional to the number of experi-
ments performed plus the time to update ST . By Theorem 1 the total time is
thus O(d logd n). ut

From Lemma 1 and Theorem 1 we get the following bounds for constructing
and maintaining an evolutionary tree under the insertion of new species in the
experiment model.

Theorem 2. After O(n) preprocessing time an evolutionary tree T for n species
can be maintained under m insertions in time O(dm logd(n + m)) using at most
mdd/2e(log2dd/2e−1(n+m)+O(1)) experiments for d > 2, and at most m(log(n+
m) + O(1)) experiments for d = 2, where d is the maximum degree of the tree
during the sequence of insertions.

4 Adversary for Constructing Evolutionary Trees

To prove a lower bound on the number of experiments required for construct-
ing an evolutionary tree of n species with degree at most d, we describe an
adversary strategy for deciding the outcome of experiments. The adversary is
required to give consistent answers, i.e. the reported outcome of an experiment
is not allowed to contradict the outcome of previously performed experiments.
A construction algorithm is able to construct an unambiguous evolutionary tree
based on the performed experiments when the adversary is not able to answer
any additional experiments in such a way that it contradicts the constructed evo-
lutionary tree. The role of the adversary is to force any construction algorithm

148 G.S. Brodal et al.

to perform provably many experiments in order to construct an unambiguous
evolutionary tree.

To implement the adversary strategy for deciding the outcome of experiments
in a consistent way, the adversary maintains a rooted infinite d-ary tree, D, where
each of the n species are stored at one of the nodes, allowing nodes to store sev-
eral species. Initially all n species are stored at the root. For each experiment
performed, the adversary can move the species downwards by performing a se-
quence of moves, where each move shifts a species from the node it is currently
stored at to a child of the node.

By deciding the outcome of experiments, the adversary reveals information
about the evolutionary relationships between the species to the construction al-
gorithm performing the experiments. The distribution of the n species on D
represents the information revealed by the adversary (together with the for-
bidden and conflicting lists introduced below). The evolutionary tree T to be
established by the construction algorithm will be a connected subset of nodes
of D including the root. Initially, when all species are stored at the root, the
construction algorithm has no information about the evolutionary relationships.
The evolutionary relationships revealed to the construction algorithm by the
current distribution of the species on D corresponds to the tree formed by the
paths from the root of D to the nodes storing at least one species. More pre-
cisely, the correspondence between the final evolutionary tree T and the current
distribution of the species on D is that if v is a leaf of T labeled a then species a
is stored at some node on the path in D from the root to the node v.

Our objective is to prove that if an algorithm computes T , then the n species
on average must have been moved Ω(logd n) levels down by the adversary, and
that the number of moves by the adversary is a fraction O(1/d) of the number
of experiments performed. These two facts imply the Ω(nd logd n) lower bound
on the number of experiments required.

To control its strategy for moving species on D, the adversary maintains
for each species a a forbidden list F(a) of nodes and a conflicting list C(a) of
species. If a is stored at node v, then F(a) is a subset of the children c1, . . . , cd
of v, and C(a) is a subset of the other species stored at v. If ci ∈ F(a), then a is
not allowed to be moved to child ci, and if b ∈ C(a) then a and b must be moved
to two distinct children of v. It will be an invariant that b ∈ C(a) if and only if
a ∈ C(b). Initially all forbidden and conflicting lists are empty. The adversary
maintains the forbidden and conflicting lists such that the size of the forbidden
and conflicting lists of a species a is bounded by the invariant

|F(a)| + |C(a)| ≤ d − 2 . (2)

The adversary uses the sum |F(a)|+|C(a)| to decide when to move a species a
one level down in D. Whenever the invariant (2) becomes violated because
|F(a)| + |C(a)| = d− 1, for a species a stored at a node v, the adversary moves a
to a child ci /∈ F(a) of v. Since |F(a)| ≤ d − 1, such a ci /∈ F(a) is guaranteed
to exist. When moving a from v to ci, the adversary updates the forbidden and
conflicting lists as follows: For all b ∈ C(a), a is deleted from C(b) and ci is

The Complexity of Constructing Evolutionary Trees Using Experiments 149

inserted into F(b). If ci was already in F(b), the sum |F(b)| + |C(b)| decreases by
one, if ci was not in F(b) the sum remains unchanged. Finally, F(a) and C(a)
are assigned the empty set.

For two species a and b, we define their least common ancestor, LCA(a, b),
to be the least common ancestor of the two nodes storing a and b in D. We
denote LCA(a, b) as fixed if it cannot be changed by future moves of a and b
by the adversary. If LCA(a, b) is fixed then the least common ancestor of the
two species a and b in T is the node LCA(a, b). If a is stored at node va and b
is stored at node vb, it follows that LCA(a, b) is fixed if and only if one of the
following four conditions is satisfied.

1. va = LCA(a, b) = vb and a ∈ C(b) (and b ∈ C(a)).
2. va 6= LCA(a, b) = vb and ci ∈ F(b), where ci is the child of vb such that the

subtree rooted at ci contains va.
3. va = LCA(a, b) 6= vb and ci ∈ F(a), where ci is the child of va such that the

subtree rooted at ci contains vb.
4. va 6= LCA(a, b) 6= vb.

In Case 1, species a and b are stored at the same node and cannot be moved
to the same child because a ∈ C(b), i.e. LCA(a, b) is fixed as the node which
currently stores a and b. Cases 2 and 3 are symmetric. In Case 2, species a is
stored at a descendant of a child ci of the node storing b, and b cannot be moved
to ci because ci ∈ F(b), i.e. LCA(a, b) is fixed as the node which currently stores b.
Finally, in Case 4, species a and b are stored at nodes in disjoint subtrees, i.e.
LCA(a, b) is already fixed.

The operation Fix(a, b) ensures that LCA(a, b) is fixed as follows:

1. If va = LCA(a, b) = vb and a /∈ C(b) then insert a into C(b) and insert b
into C(a).

2. If va 6= LCA(a, b) = vb and ci /∈ F(b), where ci is the child of vb such that
the subtree rooted at ci contains va, then insert ci into F(b).

3. If va = LCA(a, b) 6= vb and ci /∈ F(a), where ci is the child of va such that
the subtree rooted at ci contains vb, then insert ci into F(a).

Otherwise Fix(a, b) does nothing. If performing Fix(a, b) increases |F(a)| such
that |F(a)| + |C(a)| = d − 1, then a is moved one level down as described above.
Similarly, if |F(b)|+ |C(b)| = d−1 then b is moved one level down. After perform-
ing Fix(a, b) we thus have that |F(a)|+ |C(a)| ≤ d−2 and |F(b)|+ |C(b)| ≤ d−2,
which ensures that the invariant (2) is not violated.

When the construction algorithm performs an experiment on three species
a, b and c, the adversary decides the outcome of the experiment based on the
current distribution of the species on D and the content of the conflicting and
forbidden lists. To ensure the consistency of future answers, the adversary first
fix the least common ancestors of a, b and c by applying the operation Fix three
times: Fix(a, b), Fix(a, c) and Fix(b, c). After having fixed LCA(a, b), LCA(a, c),
and LCA(b, c), the adversary decides the outcome of the experiment by examin-
ing LCA(a, b), LCA(a, c), and LCA(b, c) in D as described below. The four cases
correspond to the four possible outcomes of an experiment cf. Fig. 1.

150 G.S. Brodal et al.

1. If LCA(a, b) = LCA(b, c) = LCA(a, c) then return (a, b, c).
2. If LCA(a, b) 6= LCA(b, c) = LCA(a, c) then return ((a, b), c).
3. If LCA(a, c) 6= LCA(a, b) = LCA(b, c) then return ((a, c), b).
4. If LCA(b, c) 6= LCA(a, b) = LCA(a, c) then return ((b, c), a).

5 Lower Bound Analysis

We will argue that the above adversary strategy forces any construction algo-
rithm to perform at least Ω(nd logd n) experiments before being able to conclude
unambiguously the evolutionary relationships between the n species.

Theorem 3. The construction of an evolutionary tree for n species requires
Ω(nd logd n) experiments, where d is the degree of the constructed tree.

Proof. We first observe that an application of Fix(a, b) at most increases the
size of the two conflicting lists, C(a) and C(b), by one, or the size of one of the
forbidden list, F(a) or F(b), by one. If performing Fix(a, b) increases the sum
|F(a)| + |C(a)| to d − 1, then species a is moved one level down in D and F(a)
and C(a) are emptied, which causes the overall sum of the sizes of forbidden and
conflicting lists to decrease by d−1. This implies that a total of k Fix operations,
starting with the initial configuration where all conflicting and forbidden lists are
empty, can cause at most 2k/(d − 1) moves. Since an experiment involves three
Fix operations, we can bound the total number of moves during m experiments
by 6m/(d − 1).

Now consider the configuration, i.e. the distribution of species and the content
of conflicting and forbidden lists, when the construction algorithm computing
the evolutionary tree terminates. Some species may have nonempty forbidden
lists or conflicting lists. By forcing one additional move on each of these species
as described in Sect. 4, we can guarantee that all forbidden and conflicting lists
are empty. At most n additional moves must be performed.

Let T ′ be the tree formed by the paths in D from the root to the nodes
storing at least one species. We first argue that all internal nodes of T ′ have at
least two children. If a species has been moved to a child of a node, then the
forbidden list or conflicting list of the species was nonempty. If the forbidden list
was nonempty, then each of the forbidden subtrees already contained at least one
species, and if the conflicting list was nonempty there was at least one species on
the same node that was required to be moved to another subtree, at the latest
by the n additional moves. It follows that if a species has been moved to a child
of a node then at least one species has been moved to another child of the node,
implying that T ′ has no node with only one child.

We next argue that all n species are stored at the leaves of T ′ and that each
leaf of T ′ stores either one or two species. If there is a non-leaf node in T ′ that
still contains a species, then this species can be moved to at least two children
already storing at least one species in the respective subtrees, implying that the
adversary can force at least two distinct evolutionary trees which are consistent
with the answers returned. This is a contradiction. It follows that all species

The Complexity of Constructing Evolutionary Trees Using Experiments 151

are stored at leaves of T ′. If a leaf of T ′ stores three or more species, then an
experiment on three of these species can generate different evolutionary trees,
which again is a contradiction. We conclude that each leaf of T ′ stores exactly
one or two species, and all internal nodes of T ′ store no species. It follows that T ′

has at least n/2 leaves.
For a tree with k leaves and degree d, the sum of the depths of the leaves is at

least k logd k. Since each leaf of T ′ stores at most two species, the n species can
be partitioned into two disjoint sets of size dn/2e and bn/2c such that in each
set all species are on distinct leaves of T ′. The sum of the depths of all species is
thus at least dn/2e logddn/2e + bn/2c logdbn/2c ≥ n logd(n/2). Since the depth
of a species in D is equal to the number of times the species has been moved one
level down in D, and since m experiments generate at most 6m/(d − 1) moves
and we perform at most n additional moves, we get the inequality

n logd(n/2) ≤ 6m/(d − 1) + n ,

from which the lower bound m ≥ (d − 1)n(logd(n/2) − 1)/6 follows. ut

References

1. A. Andersson. Improving partial rebuilding by using simple balance criteria. In
Proc. 1st Workshop on Algorithms and Data Structures (WADS), volume 382 of
Lecture Notes in Computer Science, pages 393–402. Springer-Verlag, 1989.

2. A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In Proc. 2nd
Scandinavian Workshop on Algorithm Theory (SWAT), volume 447 of Lecture Notes
in Computer Science, pages 111–121. Springer-Verlag, 1990.

3. A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao. Efficient searching using
partial ordering. Information Processing Letters, 12:71–75, 1981.

4. G. S. Brodal, S. Chaudhuri, and J. Radhakrishnan. The randomized complexity of
maintaining the minimum. Nordic Journal of Computing, Selected Papers of the 5th
Scandinavian Workshop on Algorithm Theory (SWAT), 3(4):337–351, 1996.

5. G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity of
constructing evolutionary trees using experiments. Technical Report BRICS-RS-01-
1, BRICS, Department of Computer Science, University of Aarhus, 2001.

6. S. K. Kannan, E. L. Lawler, and T. J. Warnow. Determining the evolutionary tree
using experiments. Journal of Algorithms, 21:26–50, 1996.

7. M. Y. Kao, A. Lingas, and A. Östlin. Balanced randomized tree splitting with
applications to evolutionary tree constructions. In Proc. 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pages 184–196, 1999.

8. A. Lingas, H. Olsson, and A. Östlin. Efficient merging, construction, and mainte-
nance of evolutionary trees. In Proc. 26th Int. Colloquium on Automata, Languages
and Programming (ICALP), volume 1644 of Lecture Notes in Computer Science,
pages 544–553. Springer-Verlag, 1999.

9. C. G. Sibley and J. E. Ahlquist. Phylogeny and classification of birds based on the
data of DNA-DNA-hybridization. Current Ornithology, 1:245–292, 1983.

Hidden Pattern Statistics

Philippe Flajolet1, Yves Guivarc’h2,
Wojciech Szpankowski3, and Brigitte Vallée4

1 Algorithms Project, INRIA-Rocquencourt, 78153 Le Chesnay, France
2 IRMAR, Université de Rennes I, F-35042 Rennes Cedex, France

3 Dept. Computer Science, Purdue University, W. Lafayette, IN 47907, U.S.A
4 GREYC, Université de Caen, F-14032 Caen Cedex, France

Abstract. We consider the sequence comparison problem, also known
as “hidden pattern” problem, where one searches for a given subsequence
in a text (rather than a string understood as a sequence of consecutive
symbols). A characteristic parameter is the number of occurrences of
a given pattern w of length m as a subsequence in a random text of
length n generated by a memoryless source. Spacings between letters of
the pattern may either be constrained or not in order to define valid
occurrences. We determine the mean and the variance of the number
of occurrences, and establish a Gaussian limit law. These results are
obtained via combinatorics on words, formal language techniques, and
methods of analytic combinatorics based on generating functions and
convergence of moments. The motivation to study this problem comes
from an attempt at finding a reliable threshold for intrusion detections,
from textual data processing applications, and from molecular biology.

1 Introduction

String matching and sequence comparison are two basic problems of pattern
matching known informally as “stringology”. Hereafter, by a string we mean
a sequence of consecutive symbols. In string matching, given a pattern w =
w1w2 . . . wm (of length m) one searches for some/all occurrences of w (as a
block of consecutive symbols) in a text Tn of length n. The algorithms by Knuth–
Morris–Pratt and Boyer–Moore [7] provide efficient ways of finding such occur-
rences. Accordingly, the number of string occurrences in a random text has been
intensively studied over the last two decades, with significant progress in this
area being reported [3,9,10,15,16,17,24]. For instance Guibas and Odlyzko [9,
10] have revealed the fundamental rôle played by autocorrelation vectors and
their associated polynomials. Régnier and Szpankowski [16,17] established that
the number of occurrences of a string is asymptotically normal under a diver-
sity of models that include Markov chains. Nicodème, Salvy, and Flajolet [15]
showed generally that the number of places in a random text at which a ‘motif’
(i.e., a general regular expression pattern) terminates is asymptotically normally
distributed.

In sequence comparisons, we search for a given pattern W = w1w2 . . . wm in
the text Tn = t1t2 . . . tn as a subsequence, that is, we look for indices 1 ≤ i1 <

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 152–165, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Hidden Pattern Statistics 153

i2 < · · · < im ≤ n such that ti1 = w1, ti2 = w2, · · ·, tim
= wm. We also say that

the word w is “hidden” in the text; thus we call this the hidden pattern problem.
For example, date occurs as a subsequence in the text hidden pattern, in
fact four times, but not even once as a string. We can impose an additional
set of constraints D on the indices i1, i2, . . . , im to record a valid subsequence
occurrence: for a given family of integers dj (dj ≥ 1, possibly dj = ∞), one
should have (ij+1 − ij) ≤ dj . In other words, the allowed lengths of the “gaps”
(ij+1−ij −1) should be < dj . With # representing a ‘don’t-care-symbol’ (similar
to the unix ‘?’-convention) and the subscript denoting a strict upper bound on
the length of the associated gap, a typical pattern may look like

ab#2r#ac#a#d#4a#br#a;
there, # abbreviates #∞ and #1 is omitted; the meaning is that ‘ab’ should
occur first contiguously, followed by ‘r’ with a gap of < 2 symbols, followed
anywhere later in the text by ‘ac’, etc. The case when all the dj ’s are infinite
is called the unconstrained problem; when all the dj ’s are finite, we speak of the
constrained problem. The case where all dj reduce to 1 gives back classical string
matching as a limit case.

Motivations. Our original motivation to study this problem came from in-
trusion detection in the area of computer security. The problem is important
due to the rise of attacks on computer systems. There are several approaches
to intrusion detections, but, recently the pattern matching approach has found
many advocates, most notably in [2,14,25]. The main idea of this approach is
to search in an audit file (the text) for certain patterns (known also as signa-
tures) representing suspicious activities that might be indicative of an intrusion
by an outsider, or misuse of the system by an insider. The key to this approach
is to recognize that these patterns are subsequences because an intrusion sig-
nature specification requires the possibility of a variable number of intervening
events between successive events of the signature. In practice one often needs
to put some additional restrictions on the distance between the symbols in the
searched subsequence, which leads to the constrained version of subsequence
pattern matching. The fundamental question is then: How many occurrences of
a signature (subsequence) constitute a real attack? In other words, how to set a
threshold so that we can detect only real intrusions and avoid false alarms? It
is clear that random (unpredictable) events occur and setting the threshold too
low will lead to an unrealistic number of false alarms. On the other hand, setting
the threshold too high may result in missing some attacks, which is even more
dangerous. This is a fundamental problem that motivated our studies of hidden
pattern statistics. By knowing the most likely number of occurrences and the
probability of deviating from it, we can set a threshold such that with a small
probability we miss real attacks.

Molecular biology provides another important source of applications [18,23,
24]. As a rule, there, one searches for subsequences, not strings. Examples are
in abundance: split genes where exons are interrupted by introns, starting and
stopping signal in genes, tandem repeats in DNA, etc. In general, for gene search-
ing, the constrained hidden pattern matching (perhaps with an exotic constraint
set) is the right approach for finding meaningful information. The hidden pattern

154 P. Flajolet et al.

problem can also be viewed as a close relative of the longest common subsequence
(LCS) problem, itself of immediate relevance to computational biology and still
surrounded by mystery [20].

We, computer scientists and mathematicians, are certainly not the first who
invented hidden words and hidden meaning [1]. Rabbi Akiva in the first century
A.D. wrote a collection of documents called Maaseh Merkava on secret mys-
ticism and meditations. In the eleventh century Spanish Solomon Ibn Gabirol
called these secret teachings Kabbalah. Kabbalists organized themselves as a
secret society dedicated to study of the ancient wisdom of Torah, looking for
mysterious connections and hidden truth, meaning, and words in Kaballah and
elsewhere (without computers!). Recent versions of this activity are knowledge
discovery and data mining, bibliographic search, lexicographic research, textual
data processing, or even web site indexing. Public domain utilities like agrep,
grappe, webglimpse (developed by Manber and Wu [26], Kucherov [13], and
others) depend crucially on approximate pattern matching algorithms for subse-
quence detection. Many interesting algorithms, based on regular expressions and
automata, dynamic programming, directed acyclic word graphs, digital tries or
suffix trees have been developed; see [5,8,13,26] for a flavour of the diversity of
approaches.

In all of the contexts mentioned above, it is of obvious interest to discern what
constitutes a meaningful observation of pattern occurrences from what is merely
a statistically unavoidable phenomenon (noise!). This is precisely the problem
addressed here. We establish hidden pattern statistics—i.e., precise probabilistic
information on number of occurrences of a given pattern w as a subsequence in
a random text Tn generated by a memoryless source, this in the most general
case (covering the constrained and unconstrained versions as well as mixed sit-
uations). Surprisingly enough and to the best of our knowledge, there are no
results in the literature that address the question at this level of generality. An
immediate consequence of our results is the possibility to set thresholds at which
appearance of a (subsequence) pattern starts being meaningful.

Results. Let Ωn be the number of occurrences of a given pattern W as a
subsequence in a random text of length n generated by a memoryless source
(i.e., symbols are drawn independently). We investigate the general case where
we allow some of the gaps to be restricted, and others to be unbounded. Then the
most important parameter is the quantity b defined as the number of unbounded
gaps (the number of indices j for which dj = ∞) plus 1; the product D of all
the finite constraints dj plays also a rôle. We obtain the mean, the variance, all
moments, and finally a central limit law. Precisely, we prove in Theorem 1 that
the number of occurrences has mean and variance given by

E[Ωn] ∼ nb

b!
D π(W), Var[Ωn] ∼ σ2(W) n2b−1

where π(W) is the probability of W, and σ2(W) is a computable constant that
depends explicitly (though intricately) on the structure of the pattern W and the
constraints. Then we prove the central limit law by moment methods, that is, we
show that all centered moments (Ωn −E[Ωn])/nb− 1

2 converge to the appropriate

Hidden Pattern Statistics 155

moments of the Gaussian distribution (Theorem 2). We stress that, except in
the constrained case, the difficulty of the analysis lies in a nonlinear growth of
the mean and the variance so that many standard approaches to establishing
the central limit law tend to fail.

For the unconstrained problem, one has b = m, and both the mean and
the variance admit pleasantly simple closed forms. For the constrained case,
one has b = 1, while the mean and the variance become of linear growth. To
visualize the dependency of σ2(W) of W, we observe that, when all the dj

equal 1, the problem reduces to traditional string matching that was extensively
studied in the past as witnessed by the (incomplete) list of references: [3,9,10,
15,16,17,24]. It is well known that for string matching the variance coefficient
is a function of the so-called autocorrelation of the string. In the general case
of hidden pattern matching, the autocorrelation must be replaced by a more
complex quantity that depends on the way pairs of constrained occurrences may
intersect (cf. Theorem 1).

Methodology. The way we approach the probabilistic analysis is through a
formal description of situations of interest by means of regular languages. Ba-
sically such a description of contexts of one, two, or several occurrences gives
access to expectation, variance, and higher moments, respectively. A systematic
translation into generating functions is available by methods of analytic com-
binatorics deriving from the original Chomsky-Schützenberger theorem. Then,
the structure of the implied generating functions at the pole z = 1 provides the
necessary asymptotic information. In fact, there is an important phenomenon
of asymptotic simplification where the essentials of combinatorial-probabilistic
features are reflected by the singular forms of generating functions. For instance,
variance coefficients come out naturally from this approach together with, for
each case, a suitable notion of correlation; higher moments are seen to arise from
a fundamental singular symmetry of the problem, a fact that eventually carries
with it the possibility of estimating moments. From there Gaussian laws eventu-
ally result by basic moment convergence theorems. Perhaps the originality of the
present approach lies in such a joint use of combinatorial-enumerative techniques
and of analytic-probabilistic methods.

2 Framework

We fix an alphabet A := {a1, a2, . . . , ar}. The text is Tn = t1t2 · · · tn. A particu-
lar matching problem is specified by a pair (W,D): the pattern W = w1 · · ·wm

is a word of length m; the constraint D = (d1, . . . , dm−1) is an element of
(N+ ∪ {∞})m−1.

Positions and occurrences. An m-tuple I = (i1, i2, . . . , im) (1 ≤ i1 <
i2 < · · · < im) satisfies the constraint D if ij+1 − ij ≤ dj , in which case it is
called a position. Let Pn(D) be the set of all positions subject to the separation
constraint D, satisfying furthermore im ≤ n. An occurrence of pattern W in the
text Tn of length n subject to the constraint D is a position I = (i1, i2, . . . , im)
of Pn(D) for which ti1 = w1, ti2 = w2, . . . , tim

= wm. For a text Tn of length n,

156 P. Flajolet et al.

the number of occurrences Ωn(D) (of w) subject to the constraint D is then a
sum of characteristic variables

Ωn(D) =
∑

I∈Pn(D)

XI , with XI := [[w occurs at position I in Tn]], (1)

where [[B]] = 1 if the property B holds, and [[B]] = 0 otherwise (Iverson’s nota-
tion).

Blocks and aggregates. In the general case, the subset F of indices j
for which dj is finite (dj < ∞) has cardinality m − b with 1 ≤ b ≤ m. The
two extreme values of b, namely, b = m and b = 1, thus describe the (fully)
unconstrained and the (fully) constrained problem respectively. The subset U of
indices j for which dj is unbounded (dj = ∞) has cardinality b − 1. It separates
the pattern W into b independent subpatterns that are called the blocks and
are denoted by W1,W2, . . .Wb. All the possible dj “inside” Wr are finite and
form the subconstraint Dr. In the example described in the introduction, one
has b = 6 and the six blocks are

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.
In the same way, an occurrence I = (i1, i2, . . . , im) of W subject to constraint
D gives rise to b subpositions I [1], I [2], . . . I [b], the rth term I [r] being an occur-
rence of Wr subject to constraint Dr. The rth block B[r] is the closed segment
whose end points are the extremal elements of I [r], and the aggregate of position
I, denoted by α(I), is the collection of these b blocks. In the example of the
introduction, the position

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60)
satisfies the constraint D and gives rise to six subpositions,

I [1] = (6, 7, 9), I [2] = (18, 19), I [3] = 22, I [4] = (30, 33), I [5] = (50, 51), I [1] = 60;
accordingly, the resulting aggregate α(I) is formed with six blocks,
B[1] = [6, 9], B[2] = [18, 19], B[3] = [22], B[4] = [30, 33], B[5] = [50, 51], B[6] = [60].

Probabilistic model. We consider a memoryless source that emits symbols
of the text independently and denote by pα (0 < pα < 1) the probability of
the symbol α ∈ A being emitted. For a given length n, a random text , denoted
by Tn is drawn according to the product probability on An. For instance, the pat-
tern probability π(W) is defined by π(W) =

∏n
i=1 pwi

, a quantity that surfaces
throughout the analysis. Under this randomness model, the quantity Ωn(D) be-
comes a random variable that is itself a sum of correlated random variables XI

(defined in (1)) for all allowable I ∈ Pn(D).

Generating functions. We shall consider throughout this paper structures
superimposed on words. For a class V of structures and given a weight function c
(induced by the probabilities of individual letters), we introduce the generating
function

V (z) ≡
∑

n

Vnzn :=
∑

υ∈V
c(υ)z|υ|,

Hidden Pattern Statistics 157

where the size |υ| is the number of letters involved in the structure. Then1,
Vn = [zn]V (z) is the total weight of all structures of size n. The collection of
occurrences is described by means of regular expressions extended with disjoint
unions, and Cartesian products. It is then known that disjoint unions and Carte-
sian products correspond respectively to sums and products of generating func-
tions; see [19,21] for a general framework. Such correspondences make it possi-
ble to translate symbolically combinatorial descriptions into generating function
equations and a great use is made of this in what follows. All the resulting gen-
erating functions turn out to be rational, of the form V (z) = (1 − z)−(k+1)P (z)
for some integer k ≥ 0 and polynomial P , so that

Vn := [zn]
1

(1 − z)k+1 P (z) =
nk

k!
P (1)

(

1 + O(
1
n

)
)

. (2)

3 Mean and Variance Estimates of the Number of
Occurrences

Mean value analysis. The first moment analysis is easily obtained by describ-
ing the collection of all occurrences in terms of formal languages. Let O be the
collection of all occurrences of W as a hidden word. Each occurrence can be
viewed as a “context” with an initial string, then the first letter of the pattern,
then a separating string, then the second letter, etc. The collection O is then
described by

O = A?×{w1}×A<d1 ×{w2}×A<d2 ×. . .×{wm−1}×A<dm−1 ×{wm}×A?. (3)

There, for d < ∞, A<d denotes the collection of all words of length strictly less
d, i.e., A<d :=

⋃
i<d Ai, whereas, for d = ∞, A<∞ denotes the collection of all

finite words, i.e., A<∞ := A? =
⋃

i<∞ Ai. The associated generating functions
are

Ad(z) = 1 + z + z2 + · · · + zd−1 =
1 − zd

1 − z
, A∞(z) = 1 + z + z2 + · · · =

1
1 − z

.

We now weight each occurrence by the quantity π(w) = E[XI], so that the
generating function O(z) of O coincides with the generating function of the
expectations E[Ωn],

O(z) =
∑

n≥1

E[Ωn] zn =
(

1
1 − z

)b+1

×
(

m∏

i=1

pwi
z

)

×
(
∏

i∈F

1 − zdi

1 − z

)

, (4)

and, with π(W) the probability of the pattern W, one finds from (2) and (4):

E[Ωn] = [zn]O(z) =
nb

b!

(
∏

i∈F
di

)

π(W)
(

1 + O

(
1
n

))

.

1 The notation [zn]f(z) represents the coefficient of zn in the series f(z).

158 P. Flajolet et al.

Variance analysis. For variance and higher moment analysis, it is essential
to work with centred random variables defined as
YI := XI − E[XI] = XI − π(W), Ξn(D) := Ωn(D) − E[Ωn(D)] =

∑

I∈Pn(D)

YI .

The second moment of the centred variable Ξn(D) equals the variance of Ωn(D)
and with the centred variables defined above one has

E[Ξ2
n(D)] =

∑

I,J∈Pn(D)

E[YIYJ].

There are two kinds of pairs (I, J) according as they intersect or not. When
I and J do not intersect, the corresponding random variables YI and YJ are
independent, and the corresponding covariance E[YIYJ] reduces to 0. It is thus
sufficient to consider intersecting subsets I and J . Suppose that there exist two
occurrences of pattern W at positions I and J which intersect at ` distinct places,
the k-th intersection point being the rk-th in the natural ordering of I and the
sk-th in the natural ordering of J . (This is only possible if, for all k, 1 ≤ k ≤ `,
one has wrk

= wsk
.) We then denote by WI∩J the subpattern of W that occurs

at position I ∩ J , and by π(WI∩J) the probability of this subpattern. Since
the expectation E[XIXJ] equals π(W)2/π(WI∩J), the expectation E[YIYJ] =
E[XIXJ] − π(w)2 involves a correlation number e(I, J)

E[YIYJ] = π2(W) e(I, J), with e(I, J) =
1

π(WI∩J)
− 1. (5)

In this case, we take the pair of occurrences relative to (I, J) as weighted by
E[YIYJ], and consider the collection O2 of pairs of intersecting occurrences. The
associated generating function O2(z) coincides with the generating function of
the expectations E[YIYJ], that is,

O2(z) =
∑

n≥1

zn
∑

I,J∈Pn(D),
I∩J 6=∅

E[YIYJ] =
∑

n≥1

znE[Ξ2
n(D)].

We now need to estimate O2(z) as z → 1. First, define the aggregate α(I, J)
to be the system of blocks obtained by merging together all intersecting blocks
of the two aggregates α(I) and α(J). The number of blocks β(I, J) of α(I, J)
plays a fundamental rôle here, since it measures the degree of freedom of pairs.
Since I and J intersect, there exists at least one block of α(I) that intersects
a block of α(J), so that β(I, J) is at most equal to 2b − 1. Next, we group
the sets I, J according to the value of β(I, J) and write O[p]

2 for the collection
of intersecting pairs (I, J) of occurrences for which β(I, J) equals 2b − p. Since
there is a fundamental translation invariance, we introduce a notion of full pairs:
a pair (I, J) of Pq(D) × Pq(D) is full if the aggregate α(I, J) completely covers
the interval [1, q]. (Clearly, the possible values of q are finite.) Then the collection
O[p]

2 is isomorphic to (A?)2b−p+1 ×B[p]
2 , where B[p]

2 is the subset of full pairs such
that β(I, J) equals 2b − p. The generating function of O[p]

2 is accordingly

O
[p]
2 (z) =

(
1

1 − z

)2b−p+1

× B
[p]
2 (z).

Hidden Pattern Statistics 159

Here, B
[p]
2 (z) is the generating function of the collection B[p]

2 and from our earlier
discussion, it is a polynomial of degree at most 2d(m−1)+1, with d = maxi∈F di.
Now, an easy dominant pole analysis entails that [zn]O[p]

2 = O(n2b−p). This
proves that the dominant contribution to the variance is given by [zn]O[1]

2 , which
is of order O(n2b−1). Then, the variance E[Ξ2

n] involves the constant B
[1]
2 (1)

that is the total weight of the collection B[1]
2 ; the polynomial B

[1]
2 (z) is itself the

generating function of the collection B[1]
2 , conceptually an extension of Guibas

and Odlyzko’s autocorrelation polynomial.
Since the standard deviation is of an order, O(nb−1/2), that is smaller than

the mean, O(nb), concentration of distribution holds, via a well-known argument
based on Chebyshev’s inequalities. In summary:

Theorem 1. Consider a general constraint D and the number of occurrences
Ωn ≡ Ωn(D). The mean and variance of Ωn satisfy

E[Ωn] =
π(W)

b!

(∏

j∈F
dj

)

nb

(

1 + O(
1
n

)
)

,

Var[Ωn] = σ2(W)n2b−1
(

1 + O(
1
n

)
)

,

where F is the set of j such that dj < ∞, and the “variance coefficient” σ2(W)
involves the autocorrelation κ(W)

σ2(W) =
π2(W)

(2b − 1)!
κ2(W) with κ2(W) :=

∑

(I,J)∈B[1]
2

(
1

π(WI∩J)
− 1
)

. (6)

The set B[1]
2 is the collection of all pairs of occurrences (I, J) that satisfy three

conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r, s) with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth block C [s]

of α(J) intersect.

Computation of the variance. The computation of the autocorrelation
κ(W) reduces to b2 computations of correlations κ(Wr,Ws), relative to pairs
(Wr,Ws) of blocks. Note that each correlation of the form κ(Wr,Ws) involves
a totally constrained problem and can be evaluated by dynamic programming.
Precisely, one has

κ2(W) = D2
∑

1≤r,s≤b

1
DrDs

(
r + s − 2

r − 1

)(
2b − r − s

b − r

)

κ(Wr,Ws), (7)

where κ(Wr,Ws) is the sum of the e(I, J) taken over all full intersecting pairs
(I, J) formed with an occurrence I of Wr subject to constraint Dr and an oc-
currence J of Ws subject to constraint Ds. Let us explain the formula (7) in
words: for a pair (I, J) of the set B[1]

2 , there is a single pair (r, s) of indices with
1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth block C [s] of α(J)

160 P. Flajolet et al.

intersect. Then, there exist r + s − 2 blocks before the block α(B[r], C [s]) and
2b − r − s blocks after it. We then have three different degrees of freedom: (i)
the relative order of blocks B[i](i < r) and blocks C [j](j < s), and similarly the
relative order of blocks B[i](i > r) and blocks C [j](j > s); (ii) the lengths of the
blocks (there are Dj possible lengths for the jth block); (iii) finally the relative
positions of the blocks B[r] and C [s].

In the unconstrained problem, the parameter b equals m, and each block Wr

is reduced to the symbol wr. Then the “ correlation coefficient” κ2(W) simplifies
to

κ2(W) :=
∑

1≤r,s≤m

(
r + s − 2

r − 1

)(
2m − r − s

m − r

)

Γ (r, s)
(

1
pwr

− 1
)

, (8)

where the “autocorrelation matrix” Γ of pattern W is defined by Γ (r, s) :=
[[wr = ws]].

4 Central Limit Laws

Our goal is to prove that Ωn appropriately normalized tends to the standard
normal distribution. We consider the following normalized random variable

Ξ̃n :=
Ξn

nb−1/2 =
Ωn − E[Ωn]

nb−1/2 ,

where b is the number of blocks of the constraint D. We shall show that Ξ̃n

behaves asymptotically as a normal variable with mean 0 and standard devia-
tion σ. By the classical moment convergence theorem (Theorem 30.2 of [4]) this
is established once all moments of Ξ̃n are known to converge to the appropriate
moments of the standard normal distribution. We remind the reader that if G
is a standard normal variable (i.e., a Gaussian distributed variable with mean 0
and standard deviation 1), then for any integral s ≥ 0

E[G2s] = 1 · 3 · · · (2s − 1), E[G2s+1] = 0. (9)

We shall accordingly distinguish two cases based on the parity of r, r = 2s and
r = 2s + 1, and prove that

E[Ξ2s+1
n] = o(n(2s+1)(b−1/2)), E[Ξ2s

n] ∼ σ2s (1 · 3 · · · (2s − 1)) n2sb−s, (10)

which implies Gaussian convergence of Ξ̃n.

Theorem 2. The random variable Ωn asymptotically follows a Central Limit
Law:

lim
n→∞ Pr

{
Ωn − E[Ωn]
√

Var[Ωn]
≤ x

}

=
1√
2π

∫ x

−∞
e−t2/2 dt (11)

Proof. The proof below is combinatorial; it basically reduces to grouping and
enumerating adequately the various combinations of indices in the sum that
expresses E[Ξr

n]. Once more, Pn(D) is formed of all the positions of [1, n] subject

Hidden Pattern Statistics 161

to the constraint D and P(D) =
⋃

n Pn(D). Then totally distributing the terms
in Ξr

n(D) yields

E[Ξr
n] =

∑

(I1,...,Ir)∈Pr
n(D)

E[YI1 · · ·YIr
]. (12)

An r-tuple of sets (I1, . . . , Ir) in Pr(D) is said to be friendly if each Ik intersects
at least one other I`, with ` 6= k and we let Q(r)(D) be the set of all friendly
collections in Pr(D). For Pr, Q(r), and their derivatives below, we add the
subscript n each time the situation is particularized to texts of length n. If
(I1, . . . , Ir) does not lie in Q(r)(D), then E[YI1 · · ·YIr] = 0, since at least one
of the YI ’s is independent of the other factors in the product and the YI ’s have
been centred, E[YI] = 0. One can thus restrict attention to friendly families and
get the basic formula

E[Ξr
n] =

∑

(I1,...,Ir)∈Q(r)
n (D)

E[YI1 · · ·YIr], (13)

where the expression involves fewer terms than in (12). From there, we proceed in
two stages. First, restrict attention to friendly families that give rise to the dom-
inant contribution and introduce a suitable subfamily Q(r)

? ⊂ Q(r); in so doing,
moments of odd order appear to be negligible. Next, for even order r, the family
Q(r)

? involves a symmetry and it suffices to consider another smaller subfamily
Q(r)

?? ⊂ Q(r)
? that corresponds to a “standard” form of occurrence intersection;

this last reduction precisely gives rise to the even Gaussian moments.

Odd moments. Given (I1, . . . , Ir) ∈ Q(r), one defines the aggregate
α(I1, I2, . . . , Ir) as the aggregation (in the sense of the variance calculation
above) of α(I1) ∪ · · · ∪ α(Ir). Next, the number of blocks of (I1, . . . , Ir) is the
number of blocks of the aggregate α(I1, . . . , Ir); if p is the total number of inter-
secting blocks of the aggregate α(I1, . . . , Ir), the aggregate α(I1, I2, . . . Ir) has
rb − p blocks. Like previously, we say that the family (I1, . . . , Ir) of Q(r)

q is full
if the aggregate α(I1, I2, . . . Ir) completely covers the interval [1, q]. In this case,
the length of the aggregate is at most rd(m − 1) + 1, and the generating func-
tion of full families is a polynomial Pr(z) of degree at most rd(m − 1) + 1 with
d = maxj∈F dj . Then, the generating function of families of Q(r) whose block
number equals k is of the form

(
1

1 − z

)k+1

× Pr(z),

so that the number of families of Q(r)
n whose block number equals k is O(nk). This

observation proves that the dominant contribution to (13) arises from friendly
families with a maximal block number. It is clear that the minimum number of
intersecting blocks of any element of Q(r) equals equals dr/2e, since it coincides
exactly with the minimum number of edges of a graph with r vertices which
contains no isolated vertex. Then the maximum block number of a friendly

162 P. Flajolet et al.

family equals rb − dr/2e. In view of this fact and the remarks above regarding
cardinalities, we immediately have

E
[
Ξ2s+1

n

]
= O

(
n(2s+1)b−s−1

)
= o

(
n(2s+1)(b−1/2)

)

which establishes the limit form of odd moments in (10).

Even moments. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(2s) with an intersecting block
number equal to s, whose set we denote by Q(2s)

? . In such a family, each subset Ik

intersects one and only one other subset I`. Furthermore, if the blocks of α(Ih)
are denoted by B

[u]
h , 1 ≤ u ≤ b, there exists only one block B

[uk]
k of α(Ik) and only

one block B
[u`]
` that contains the points of Ik ∩ I`. This defines an involution

τ such that τ(k) = ` and τ(`) = k for all pairs of indices (`, k) for which
Ik and I` intersect. Furthermore, given the symmetry relation E[YI1 · · ·YI2s

] =
E[YIρ(1) · · ·YIρ(2s)] it suffices to restrict attention to friendly families of Q(2s)

? for
which the involution τ is the standard one with cycles (1, 2), (3, 4), etc; for such
“standard” families whose set is denoted by Q(2s)

?? , the pairs that intersect are
thus (I1, I2), . . . , (I2s−1, I2s). Since the set K2s of involutions of 2s elements has
cardinality K2s = 1 · 3 · 5 · · · (2s − 1), the equality

∑

Q(2s)
?n

E[YI1 · · ·YI2s] = K2s

∑

Q(2s)
??n

E[YI1 · · ·YI2s], (14)

entails that we can work now solely with standard families.
The class of occurrences relative to standard families is A? × (A?)2sb−s−1 ×

B[s]
2s × A?, and involves the collection B[s]

2s of all full friendly 2s-tuples of occur-
rences with a number of blocks equal to s. Since B[s]

2s is exactly a shuffle of s copies
of B[1]

2 (as introduced in the study of the variance), the associated generating
function is

(
1

1 − z

)2sb−s+1

(2sb − s)!

(
B

[1]
2 (z)

(2b − 1)!

)s

,

where B
[1]
2 (z) is the already introduced autocorrelation polynomial. Upon taking

coefficients, we obtain the estimate

∑

Q(2s)
??n

E[YI1 · · ·YI2s] ∼ n(2b−1)sσ2s. (15)

In view of the formulæ (12), (13), (14), and (15) above, this yields the estimate
of even moments and leads to the second relation of (10). (Note that the even
Gaussian moments eventually come out of the number of involutions, which
corresponds to a fundamental symmetry present in the problem.) This completes
the proof of Theorem 2.

Hidden Pattern Statistics 163

5 Conclusion

As a test case, we took the full text of Hamlet where all nonalphabetic characters
are suppressed. This gives us a (rather unpoetical looking) text that has one long
line with 30,316 words and n = 120, 057 alphabetical characters: “who s there
nay answer me stand and unfold yourself long live the king bernardo he you
come most carefully upon your hour [. . .]”. The pattern is “The law is Gaussian”
[w = thelawisgaussian] and its mirror image w̃, corresponding to m = 16. Based
on the empirical distribution of letter frequencies in the text, we anticipate the
pattern to appear 1.330 1048 times as a subsequence, while the observed counts
are 1.365 1048 and 1.388 1048, a deviation of less than 4% from what is expected.
Similarly, if we bound the separation distance between any two letters by d,
analysis predicts that the pattern might start occurring near d = 10, while its
presence is unlikely for smaller values, d < 10. In fact, w starts occurring at
d = 14 while w̃ starts at d = 13—a deviation of some 30–40% from what the
model predicts. Here is a table of observed versus predicted values when d varies:

w = thelawisgaussian w̃ = naissuagsiwaleht
d Expected (E) Occurred (Ω) Ω/E Occurred (Ω) Ω/E

13 9.195E+01 0 0.00 18 0.19
14 2.794E+02 693 2.47 371 1.32
20 5.886E+04 124,499 2.11 41,066 0.69
50 5.482E+10 76,146,232,395 1.38 48,386,404,680 0.88
∞ 1.330E+48 1.36554E+48 1.03 1.38807E+48 1.04

This (together with many other experiments) shows a fair fit between the the-
oretical model and the observed data even though the text chosen is far from
being “random”.

Extensions. For the constrained case where all the distances are finite, based
on finite state models and the de Bruijn graph, it is possible to obtain local
limit laws (i.e., a direct estimation of probability densities), a characterization
of the speed of convergence to the asymptotic limit (it is n−1/2), as well as large
deviation estimates (that are exponentially small); see the full paper. For the
unconstrained case, the corresponding problems appear to be related to products
of random matrices and to the difficult case of random walks on nilpotent Lie
groups; see Guivarc’h’s paper [11] for context and references. Finally, preliminary
investigations indicate that the methods developed here apply to Markovian
sources and more generally to all dynamical sources in the sense of Vallée [6,22].

Acknowledgments. We thank M. Atallah (Purdue U.) for introducing us to the
intrusion detection problem that motivated this study. This research was supported in
part by sponsors of CERIAS at Purdue under contract 1419991431A, by the Alcom-
FT Project (# IST-1999-14186) of the European Union, and by NSF Grant C-CR
9804760.

164 P. Flajolet et al.

References

1. A. Aczel, The Mystery of the Aleph. Mathematics, the Kabbalah, and the Search
for Infinity, Four Walls Eight Windows, New York, 2000.

2. A. Apostolico and M. Atallah, Compact Recognizers of Episode Sequences, Sub-
mitted to Information and Computation.

3. E. Bender and F. Kochman, The Distribution of Subword Counts is Usually Nor-
mal, European Journal of Combinatorics, 14, 265-275, 1993.

4. P. Billingsley, Probability and Measure, Second Edition, John Wiley & Sons, New
York, 1986.

5. L. Boasson, P. Cegielski, I. Guessarian, and Yuri Matiyasevich, Window-
Accumulated Subsequence Matching Problem is Linear, In Proceedings of the Eigh-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems: PODS 1999, ACM Press, 327–336, 1999.

6. J. Clément, P. Flajolet, and B. Vallée, Dynamical Sources in Information Theory:
A General Analysis of Trie Structures, Algorithmica, 29, 307–369, 2001.

7. M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New
York, 1994.

8. G. Das, R. Fleischer, L. G asieniec, D. Gunopulos, and J. Kärkkäinen, Episode
Matching, In Combinatorial Pattern Matching, 8th Annual Symposium, Lecture
Notes in Computer Science vol. 1264, 12–27, 1997.

9. L. Guibas and A. M. Odlyzko, Periods in Strings, J. Combinatorial Theory Ser.
A, 30, 19–43, 1981.

10. L. Guibas and A. M. Odlyzko, String Overlaps, Pattern Matching, and Nontran-
sitive Games, J. Combinatorial Theory Ser. A, 30, 183–208, 1981.

11. Y. Guivarc’h, Marches aléatoires sur les groupes, Fascicule de probabilités, Publ.
Inst. Rech. Math. Rennes, 2000.

12. D. E. Knuth, The Art of Computer Programming, Fundamental Algorithms, Vol.
1, Third Edition, Addison-Wesley, Reading, MA, 1997.

13. G. Kucherov and M. Rusinowitch, Matching a Set of Strings with Variable Length
Don’t Cares, Theoretical Computer Science 178, 129–154, 1997.

14. S. Kumar and E.H. Spafford, A Pattern-Matching Model for Intrusion Detection,
Proceedings of the National Computer Security Conference, 11–21, 1994.

15. P. Nicodème, B. Salvy, and P. Flajolet, Motif Statistics, European Symposium on
Algorithms, Lecture Notes in Computer Science, No. 1643, 194–211, 1999.

16. M. Régnier and W. Szpankowski, On the Approximate Pattern Occurrences in
a Text, Proc. Compression and Complexity of SEQUENCE’97, IEEE Computer
Society, 253–264, Positano, 1997.

17. M. Régnier and W. Szpankowski, On Pattern Frequency Occurrences in a Marko-
vian Sequence, Algorithmica, 22, 631-649, 1998.

18. I. Rigoutsos, A. Floratos, L. Parida, Y. Gao and D. Platt, The Emergence of
Pattern Discovery Techniques in Computational Biology, Metabolic Engineering,
2, 159-177, 2000.

19. R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms,
Addison-Wesley, Reading, MA, 1995.

20. J. M. Steele, Probability Theory and Combinatorial Optimization, SIAM, Philadel-
phia, 1997.

21. W. Szpankowski, Average Case Analysis of Algorithms on Sequences, John Wiley
& Sons, New York, 2001.

Hidden Pattern Statistics 165

22. B. Vallée, Dynamical Sources in Information Theory: Fundamental Intervals and
Word Prefixes, Algorithmica, 29, 262–306, 2001.

23. A. Vanet, L. Marsan, and M.-F. Sagot, Promoter sequences and algorithmical
methods for identifying them, Res. Microbiol., 150, 779-799, 1999.

24. M. Waterman, Introduction to Computational Biology, Chapman and Hall, London,
1995.

25. A. Wespi, H. Debar, M. Dacier, and M. Nassehi, Fixed vs. Variable-Length Patterns
For Detecting Suspicious Process Behavior, J. Computer Security, 8, 159-181, 2000.

26. S. Wu and U. Manber, Fast Text Searching Allowing Errors, Comm. ACM, 35:10,
83–991, 1995.

Combinatorics and Algorithms on
Low-Discrepancy Roundings of a Real Sequence

Kunihiko Sadakane, Nadia Takki-Chebihi, and Takeshi Tokuyama1

Graduate School of Information Sciences, Tohoku University,
tokuyama@dais.is.tohoku.ac.jp

Abstract. In this paper, we discuss the problem of computing all the
integral sequences obtained by rounding an input real valued sequence
such that the discrepancy between the input sequence and each output
integral sequence is less than one. We show that the number of such
roundings is n + 1 if we consider the discrepancy with respect to the
set of all subintervals, and give an efficient algorithm to report all of
them. Then, we give an optimal method to construct a compact graph
to represent the set of global roundings satisfying a weaker discrepancy
condition.

1 Introduction

For a given real number α, its rounding is either bαc or dαe. Given a sequence
a = (ai)1≤i≤n of real numbers, its rounding is an integral sequence b = (bi)1≤i≤n
such that each entry bi is a rounding of ai. Without loss of generality, we can
assume that each entry of a is in the closed interval [0, 1]. Thus, the rounding
of a becomes a binary array.

There are 2n possible roundings of a given a, and we would like to compute
good-quality roundings with respect to a given criterion. The problem is not only
combinatorially interesting but also related to coding theory, data compression,
computer vision, operations research, and Monte Carlo simulation.

In order to give a criterion to determine quality of roundings, we define a
distance in the space A of all [0, 1]-valued sequences of n real numbers. For an
element a ∈ A, let a(I) =

∑
i∈I ai be the sum of entries of a whose indices

are located in an interval I ⊂ [1, n]. We fix a family of F of intervals. The l∞
distance between two elements a and a′ in A with respect to F is defined by

DistF∞(a,a′) = max
I∈F

|a(I) − a′(I)|.

DistF∞(a, b) is the rounding error of a rounding b of a given [0, 1]-valued se-
quence a measured by using the distance. The supremum of the optimal rounding
error supa∈A minb∈B DistF∞(a, b) is called the inhomogeneous discrepancy of A
with respect to the family F [3]. Here, B is the set of all binary valued sequences
of length n. The most popular case is where F is the set In of all integral subin-
tervals of [1, n], and the discrepancy of with respect to In is sometimes called
the 1-dimentional discrepancy in the literature.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 166–177, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Combinatorics and Algorithms on Low-Discrepancy Roundings 167

Abusing the notation, we often call the error DistF∞(a, b) the discrepancy
between a and b with respect to F .

We say that a rounding b of a is an F-global rounding if DistF∞(a, b) < 1
holds; in other words, b is a global rounding of a if and only if b[I] is a rounding
of a[I] for every I ∈ F . It is known that for any F , an F-global rounding exists.
On the other hand, for any constant ε > 0, there exists an input a which has no
rounding with a discrepancy less than 1 − ε even if we consider the family of all
intervals of length 2 [1].

There are two classical algorithms each of which computes an F-global round-
ing (the output sequence depends on the algorithm): One is the error-diffusion
algorithm, and the other is Viterbi’s decoding algorithm (outlines are given in
the appendix). Moreover, Asano et al. [1] have recently shown that for any given
input sequence a, a binary sequence b minimizing the discrepancy can be com-
puted in time O(

√
n|F| log2 n), where |F| is the cardinality of F , and hence

O(n2).
A major defect of the above algorithms is that each of them outputs only

one particular F-global rounding. This lack of flexibility causes some serious
problems in some applications such as image processing. Therefore, it is desired
to design efficient algorithms to output either (1) all F-global roundings or (2)
a system so that one can efficiently select a given number of F-global roundings
uniformly random from the set of all global roundings.

In this paper, we consider the family Ik consisting of all intervals of length
at most k in [1, n]. The family is natural and important in several applications.
We first consider the special case where k = n, and show that we can report all
In-global roundings in O(n2) time. This implies that the number of In global
roundings is bounded by a polynomial; indeed, it is at most n + 1, and exactly
n+ 1 under a non-degeneracy condition. Next, we give an O(nk) time algorithm
to output an acyclic network with O(nk) nodes so that the set of all Ik-global
roundings equals the set of all directed s-t paths in the network. As byproducts,
we show that several optimization rounding problems that can be solved in
O(2kqn) time by using Viterbi’s dynamic programming algorithm can be solved
in O(kqn) if we restrict the solution space to the set of Ik global roundings. Here,
q is the time to do some basic operations depending on problems. This includes
an improved O(nk) time complexity of computing the rounding b minimizing
DistIk∞ (a, b).

The present paper mainly focuses on theoretical aspect of the problem; how-
ever, our motivation comes from digital halftoning, which is one of the most
fundamental techniques in image processing. An intensity image can be con-
sidered as a [0, 1]-valued n × n array A where each entry ai,j corresponds to
a brightness level (gray level) of the (i, j) pixel of the pixel grid. For a color
image, we consider an overlay of three such matrices representing red, green,
and blue color components, respectively. The digital halftoning is to compute
a binary n × n array B “approximating” A. The intention of this method is
to convert a given image which consists of several bits for brightness levels into
a binary image having only black and white pixels. This kind of technique is

168 K. Sadakane, N. Takki-Chebihi, and T. Tokuyama

indispensable to print an image on an output device that produces black dots
only, such as facsimiles and laser printers. The problem is not easy; for example,
neither simple rounding nor randomized rounding (round each entry ai,j to 1
with probability ai,j) generates a good halftoning image.

Up to now, a large number of methods and algorithms for digital halftoning
have been proposed (see, e.g., [8,4,9,10]). The ordered dither method [10] and the
two-dimensional error diffusion method [4] are quite popular methods. By the
nature of the problem, we need help of human’s decision to judge the quality of
halftoning; however, a nice mathematical measurement for automatically evalu-
ating the quality is desired. Discrepancy is a nice mathemetical measurement for
the halftoning [11]. However, two dimensional rounding problem minimizing the
discrepancy is NP-hard, and even its approximation is theoretically difficult [1,
2].

The concept and algorithms for global roundings given in this paper will
be useful tools for designing nice halftoning methods. Every Ik-global rounding
(for a suitable k) gives a good quality rounding for each row. However, if we
further consider the side-effect, it is not wise to round each row independently
and combine them, since it often causes some systematic patterns (that do not
exist in the input image) in the output image: Such a pattern is called a regular
pattern created by a rounding.

We can avoid generating regular patterns if we have many candidate global
roundings for each row and select a suitable one considering the relation to the
neighbor rows. Even a random choice of a global rounding works well in our
preliminary experiments: Compared to the randomized rounding, the method
to choose a global rounding randomly in each row decreases the randomness,
and hence tends to keep features of the original image better. Moreover, we can
consider several bicriteria optimization problems to compute global a rounding
of each row that simultaneously minimizes two-dimensional side effects.

2 Structure of the Set of Global Roundings

2.1 Preliminaries

Let S(a,F) be the set of all F-global roundings of a, and let N(a,F) = |S(a,F)|
be the number of different roundings. The discrepancy satisfies the monotonicity
by definition; i.e., DistF∞(a, b) ≥ DistJ∞(a, b) if F ⊃ J . Therefore, S(a,F) ⊂
S(a,J) if F ⊃ J .

For a sequence c of length n, let c(≤ k) be its prefix of length k. Thus, a(≤ k)
is the prefix of the input sequence a of length k. Abusing the notation, we say
that a binary sequence of length k is a F-global rounding of a prefix of a if it is
a global rounding of a(≤ k) with respect to F(≤ k) = {I ∩ [1, k] : I ∈ F}. The
following lemma is trivial, but useful:

Lemma 1. The prefix of length k of a F-global rounding b of a is a F-global
rounding of the prefix a(≤ k) of a. Moreover, for every F-global rounding c of
a prefix a(≤ k), its prefix of length ` < k is a F-global rounding of the prefix
a(≤ `).

Combinatorics and Algorithms on Low-Discrepancy Roundings 169

Definition 1. A family F is called prefix-complete if for any m ≤ n and for
any I ∈ F , I ∩ [1, m] ∈ F .

We mainly consider prefix-complete families in this paper. Obviously, Ik,
which we focus on, is a prefix-complete family.

2.2 Rounding Graph

Definition 2. A rounding graph of a with respect to F is a directed acyclic
graph G with a source node such that each edge contains either 0 or 1 as a label,
every path from its source to a sink gives a global rounding (if we read the labels
at edges on the path sequentially) of a, and every global rounding appears as such
a path.

There may be several different rounding graphs for a set of global roundings.
We first consider one particular rounding graph (indeed, a binary tree) of an
input sequence a with respect to a prefix-complete family F of intervals. The
graph is often called the keyword tree in the literature [6], if we consider the set
of global roundings as a set of binary keywords. See Figure 1 for an example.

The construction is as follows: We denote b • 0 and b • 1 as the sequence
obtained by appending 0 and 1 to the end of b, respectively. We consider a
node v(c) associated with an integral sequence c, and let V (a,F) = {v(c) :
c is a F-global rounding of a prefix of a}. Here, we use a convention that ∅ is a
global rounding of the empty “prefix” of length 0 of a. Consider a graph T̃ (a,F),
which has V (a,F) as its node set, and has an arc from v(c) to v(d) if and only if
either d = c•0 or d = c•1: the arc has 0 (resp. 1) as its label in the former (resp.
latter) case. The following lemma is immediately obtained from the construction
and the definition of a prefix-complete family:

Lemma 2. T̃ (a,F) is a binary directed tree rooted at v(∅) such that if we read
the labels at edges on the path from v(∅) to a node v(c) sequentially, we have the
binary string c.

The depth of the tree T̃ (a,F) is n by the construction, and we ignore the
leaves at shallower levels, if any. In precise, let T (a,F) be the induced subgraph
of T̃ (a,F) consisting of nodes on the paths from leaves of level n towards the
root. T (a,F) is a rounding graph, since the set of paths from the root to leaves
of depth n is exactly the set of F-global roundings. Note that the size of the tree
may be exponential in general.

3 In-Global Roundings

3.1 Combinatorial Results

We consider the case where F = In. If N(a,F) is very large (say, exponential
in n), we have no hope to report all the F-global roundings in polynomial time.
The following lemma is easy to prove, but it was a surprising discovery for the
authors:

170 K. Sadakane, N. Takki-Chebihi, and T. Tokuyama

0

1

0

1

1

0

0

1

0

10

1

0

0

0.4 0.4 0.4 0.4a

G

Fig. 1. The rounding graph T (a,F), where F = In and a = (0.4, 0.4, 0.4, 0.4).

Lemma 3. For any real sequence a of length n, N(a, In) ≤ n + 1.

Proof. We prove the lemma by induction on n. If n = 1, the lemma is
trivial. Suppose that the statement holds for each sequence of length less than
n. For each rounding b ∈ S(a, In), we can observe that b(≤ n − 1) ∈ S(a(≤
n − 1), In−1). A pair of binary sequences b and b′ is called a prefix-sharing pair
if b(≤ n − 1) = b′(≤ n − 1). We claim that there is at most one prefix-sharing
pair in S(a, In).

Assume that the claim is false. Thus, we have b, b′, c, c′ ∈ S(a, In) such that
b(≤ n−1) = b′(≤ n−1), c(≤ n−1) = c′(≤ n−1), and b(≤ n−1) 6= c(≤ n−1).
We can assume that the last entries of b and c are 1, while those of b′ and c′

are 0 entries. Since b(≤ n − 1) 6= c(≤ n − 1), there exists an interval [j, n − 1]
such that b([j, n− 1]) 6= c([j, n− 1]). From the definition of the global rounding,
|b([j, n−1])−c([j, n−1])| = 1 and without loss of generality, we can assume that
b([j, n − 1]) = c([j, n − 1]) + 1. Thus, b([j, n]) − c′([j, n)] = 2; however, because
of the definition of a global rounding, b([j, n]) < a([j, n]) + 1 and c′([j, n]) >
a([j, n]) − 1 and hence b([j, n]) < c′([j, n]) + 2. This gives a contradiction.

From this claim, we have N(a, In) ≤ N(a(≤ n − 1), In−1) + 1 ≤ {(n − 1) +
1} + 1 = n + 1, and the lemma is proved. 2

Definition 3. A real sequence a is called non-degenerate if a(I) is non-integral
for every interval I ∈ In.

Lemma 4. T (a, In) = T̃ (a, In), and if the sequence a is non-degenerate,
N(a, In) = n + 1.

Proof. First, we show that for any k ≤ n − 1 and any sequence b ∈ S(a(≤
k), Ik), either b • 0 or b • 1 is a member of S(a(≤ k + 1), Ik+1). This implies
that there is no leaf in T̃ (a, In) in a level with depth k ≤ n − 1, and hence
T (a, In) = T̃ (a, In).

Assume that there exists b ∈ S(a(≤ k), Ik) such that neither b • 0 nor
b • 1 is a member of S(a(≤ k + 1), Ik+1). Thus, there exist indices i ≤ k and
j ≤ k such that b([i, k]) + 1 ≥ a([i, k + 1]) + 1 and b([j, k]) ≤ a([j, k + 1]) − 1.
Therefore, if i < j, we have b([i, j −1]) ≥ 1+a([i, j −1]), and otherwise, we have

Combinatorics and Algorithms on Low-Discrepancy Roundings 171

b([j, i − 1]) ≤ −1 + a([j, i − 1]). This is a contradiction, since |a(I) − b(I)| < 1
for every interval I.

Next, we show that if a is non-degenerate, there always exists b ∈ S(a(≤
k), Ik) such that both of b • 0 and b • 1 are members of S(a(≤ k + 1), Ik+1). For
the purpose, we use a variant of the error diffusion algorithm (see Appendix)
processed in a reverse order starting from k to compute a sequence b such that
0 ≥ b([j, k]) − a([j, k + 1]) > −1 for every j = k − 1, k − 2, . . . , 2, 1. It is
not difficult to see that there always exists such a sequence. Because of our
assumption that a(I) is not integral, this implies that both of b • 0 and b • 1 are
in S(a(≤ k + 1), Ik+1). Thus, |S(a(≤ k + 1), Ik+1)| ≥ |S(a(≤ k), Ik)| + 1, and
we have N(a, In) ≥ n + 1. Combined with the previous lemma, the inequality
must be an equality. 2

These two lemmas imply that, if we apply a symbolic perturbation method
to modify the input sequence a such that a(I) is non-integral for every I, we
can always have exactly n + 1 global roundings of a with respect to In.

One natural question is whether we can obtain a polynomial bound of the
number of binary sequences if we relax the discrepancy bound. The answer is
negative: suppose that we consider the relaxed condition DistIn∞ (a, b) ≤ 1, in-
stead of DistIn∞ (a, b) < 1. Consider the input sequence a of even length whose
every entry is 0.5. Then, we can observe that every binary sequences satisfying
that b2i−1 + b2i = 1 for i = 1, 2, . . . n/2 are included in the solution set. There
are 2n/2 such sequences.

3.2 Algorithm for Reporting all In-Global Roundings

For the family In of all intervals, we compute all n + 1 sequences. We indeed
construct the rounding graph T = T (a, In) in O(n2) time and O(n) working
space (ignoring the space to store the tree). The tree T is a binary tree of height
n with at most n + 1 leaves, and it has Θ(n2) nodes.

For simplicity, we simply call a global rounding for an In-global round-
ing in this subsection. For each global rounding c of a prefix (say, a(≤ i))
of a, let diff (c) = a([1 , i]) − c([1 , i]). We define maxdiff (c) = max{diff (d) :
d is a prefix of c} and mindiff (c) = min{diff (d) : d is a prefix of c}.

Starting from ∅, we construct the tree from top to bottom, increasing the
depth one by one. The level which is under construction in the algorithm is
called the current level. If the current level has a depth i, we construct nodes
corresponding to global roundings of a(≤ i). We compute diff (c), maxdiff (c),
and mindiff (c) for the nodes in the current level of the tree by using the infor-
mation of the previous level. Note that maxdiff (c) < mindiff (c) + 2 holds.

Suppose that the current level is at depth i, and let v(c) be a node of T with
depth i − 1 (the level with depth i − 1 has been already constructed). We want
to decide whether c•0 and/or c•1 are global roundings of a(≤ i). The following
result is obtained in a routine way from the definition of a global rounding:

Lemma 5. Let c̃ be either c • 0 or c • 1. The sequence c̃ is a global rounding of
a(≤ i) if and only if maxdiff (c) − 1 < diff (c̃) < mindiff (c) + 1 .

172 K. Sadakane, N. Takki-Chebihi, and T. Tokuyama

Since diff (c • 0) = diff (c) − a(i) and diff (c • 1) = diff (c) + 1 − a(i), they
can be computed in O(1) time. Thus, we can decide in O(1) time whether c̃ is
a global rounding or not. it is easy to see that maxdiff (c̃) and mindiff (c̃) can
be computed in O(1) time. Hence, we spend O(1) time to creating a node in the
graph T . Thus, the time complexity of our algorithm is O(n2). Since we only
use the information stored in the (i − 1)-th revel to compute the i-th level, we
use O(n) working space (ignoring the space to store the output).

3.3 Compact Rounding Graph for a Smaller Family of Intervals

In some applications, we do not care very long intervals. Hence, instead of In,
we would like to consider Ik for k < n. Unfortunately, the number of Ik-global
roundings is Ω((k+1)bn/2kc), and hence exponential in n/2k. Therefore, it is too
expensive to report all the Ik-global roundings explicitly. Instead, we construct
a rounding graph of size O(nk), so that we can generate global roundings in a
uniformly random fashion.

Let us learn from the following simple example: Consider a fixed input a =
(0.4, 0.4, . . . , 0.4) consisting of n entries with a value 0.4. A binary string is an I2-
global rounding of a if and only if it contains no two consecutive entries 1, 1. Such
binary sequences correspond to vertices of Fibonacci cube [7], and the number of
such sequences equals the (n + 2)-th Fibonacci number; Hence it is exponential.
However, we have a compact rounding graph with 2n + 1 nodes illustrated in
the left drawing of the Figure 2. If we consider I3, we have a rounding graph in
the right drawing.

(GJH�FRUUHVSRQGLQJ�WR���

(GJH�FRUUHVSRQGLQJ�WR���

(GJH�FRUUHVSRQGLQJ�WR���

(GJH�FRUUHVSRQGLQJ�WR���

Fig. 2. Rounding graphs for I2 (left drawing) and I3 (right drawing).

Theorem 1. For any input sequence a, we can construct its rounding graph
with at most nk + 1 − [k(k + 1)/2] nodes representing the set of all Ik-global
roundings.

The rest of this subsection is devoted to the proof of the above theorem. The
proof is constructive, and similar to the construction of a BDD (bounded decision
diagram) from a decision tree. First, we consider the tree T = T̃ (a, Ik) defined

Combinatorics and Algorithms on Low-Discrepancy Roundings 173

in the previous section. We say two sequences c and c′ are (k−1)-similar to each
other if they have the same length ` ≥ k − 1, and they have the same suffix of
length k − 1. The equivalence class of a sequence c under the (k − 1)-similarlity
is denoted by class(c). In this subsection, we concentrate on the family Ik, and
hence simply write “global roundings” for Ik-global roundings.

Two nodes v(c) and v(c′) in T are called similar to each other if c and c′ are
(k − 1)-similar. The following claim is easy to verify:

Claim A: If v and v′ in T are similar, there is an one-to-one matching
between the set of descendants of v and that of v′ such that each matching
nodes are similar to each other.

We fold the tree T to obtain a graph G(a, Ik) such that similar nodes are
identified and unified into a single node of G(a, Ik). The edges of T is also
unified without causing conflict because of Claim A. Inherited fom T , The graph
G(a, Ik) is a layered directed acyclic graph with n+1 layers. From the definition
of similarity, the unified edges should have the same label. Due to Claim A, all
the outgoing edge with a same label must be unified; thus, each node has at
most two outgoing edges. Also, each edge has a label 0 or 1 inherited from T
without causing any conflict.

From Lemma 3.1, there are at most k different binary sequences which is
a global rounding of a subsequence ai, ai+1, ..., ai+k−2 with respect to Ik−1.
Hence, at each layer of T , there are at most k different suffixes of the sequences
associated to node in the layer. Hence, there are at most k nodes in each layer
of G. We can also easily see that the first i-th layer has at most i + 1 nodes for
i ≤ k − 1. This proves the theorem.

3.4 Algorithm to Compute a Compact Rounding Graph

We want to compute G(a, Ik) efficiently. Since, Ik is prefix complete, we can
apply a similar sweeping strategy to the case of In.

Each node of G(a, Ik) corresponds to an equivalence class of a prefix of a,
and wrote as v(c), where c is the representative of the equivalence class, which
is the lexicographically smallest member (in other words, the smallest member
if we regard binary sequences as integers in binary forms) in the class.

Starting from ∅, we construct G(a, Ik) from the source to sinks, increasing
the level (i.e., depth) one by one. If the current level has depth i, we construct
vertices corresponding equivalence classes of the global roundings of a(≤ i). As
we have shown in the previous subsection, there are at most k such equivalence
classes. We maintain diff (c), maxdiffk (c), and mindiffk (c) for the representative
c of the equivalence class corresponding to each node in the current level of the
graph by using the information of the previous level. Let L(m) be the set of
representatives of the equivalence classes corresponding to nodes of the m-th
level of G(a, Ik).

Let `(c) be the length of a sequence c. We define maxdiffk (c) = max{diff (d) :
d is a prefix of c such that `(d) ≥ `(c) − k + 1 } and mindiffk (c) = min{diff
(d) : d is a prefix of c such that `(d) ≥ `(c) − k + 1 }.

174 K. Sadakane, N. Takki-Chebihi, and T. Tokuyama

Lemma 6. If c = (c1, c2, . . . , cm) is a prefix of a global rounding with respect
to Ik, c • cm+1 (cm+1 = 1 or 0) is a prefix of a global rounding if and only if
maxdiffk−1 (c) + am+1 − 1 < cm+1 < mindiffk−1 (c) + am+1 + 1

Hence, we can select all the global roundings among {c • 0 : c ∈ L(m)} and
{c • 1 : c ∈ L(m)} in O(k) time. Thus, we can construct G(a, Ik) in O(nk + nq)
time if the following operations can be done in O(q) amortized time for each
level: (1): Classify the set of global roundings among {c • 0 : c ∈ L(m)}∪{c • 1 :
c ∈ L(m)} into equivalence classes, and choose representatives. (2): Compute
information of diff , mindiffk and maxdiffk for all representatives in L(m + 1).

In order to implement the operation (1), we consider a tree T (m) from the
set of representatives c in L(m). The tree has a leaf l(c) for each c ∈ L(m),
and each edge has either 0 or 1 as its label, and the path from the root to l(c)
gives the suffix of length k − 1 of c in the reverse order. For example, if k = 4
and c = 0, 0, 1, 1, 0, 1, 1, the path from the root gives the sequence 1, 1, 0. It is
clear that T (m) has O(k2) edges. From T (m), we can construct T (m + 1) by
making two copies of T (m), joining them at a new root with edges of labels 0
and 1 respectively, remove leaves which do not correspond to global roundings,
and upgrades each other leaf to its parent’s place. If two leaves are upgraded to
the same position (i.e., if they have the same parent), we know that these two
leaves are corresponding to sequences with a same equivalence class.

In order to attain the O(k) time complexity, we use a compressed form H(m)
of T (m). Since T (m) has only k leaves, it has at most k−1 branching nodes. The
vertex set of H(m) consists of the root, leaves, and branching points of T (m).
We unite each path between consecutive branching points in T (m) to have an
edge of H(m). A label sequence associated with a path in T (m) associated with
an edge in H(m) is stored into a cell with O(k) space. Each edge of H(m) has
a pointer to the cell containing the label sequence associated with the path in
T (m). Instead of updating T (m), we update H(m) into H(m + 1). The copying
and modifying the structure of H(m) into H(m + 1) can be done in O(k) time.
We create two cells associated with edges adjacent to the new root. Only at
most O(k) cells storing label sequences are updated, and an update of the label
sequences is either removing the last bit of the sequence, or appending sequences
in two cells; Hence, each such operation can be done in O(1) time. Thus, we can
do the operation (1) in O(k) time.

The operation (2) can be implemented in O(k log k) time by using a dynamic
tree data structure. Instead, we do it in O(k) amortized time without using
a complicated data structure. We say a level m a major-event level if m is a
multiple of k. Other levels are called minor-event levels. At each major-event
level, we construct the history of the past k levels used in the following minor-
event levels. In precise, consider a major-event level where m = jk. For the
representative c of each node in the current level, we consider its prefixes c(≤ i)
for (j − 1)k < i ≤ jk, and compute intmin(c[s, jk]) = mins≤i≤jk diff (c(≤ i))
and intmax(c[s, jk]) = maxs≤i≤jk diff (c(≤ i)) for each (j − 1)k < s ≤ jk. This
computation can be done from right to left in O(k) time for each c, and hence
O(k2) time for each major-event level.

Combinatorics and Algorithms on Low-Discrepancy Roundings 175

At a minor-event level L(m), if jk is the previous major-event level,
we compute localmin(c) = minjk<i≤m diff (c(≤ i)) and localmax(c) =
maxjk<i≤m diff (c(≤ i)). Since localmin(c) = min{localmin(c(≤ m −
1)), diff (c)} (analogous formula holds for localmax), they can be com-
puted in O(1) time for each c. We can observe that mindiffk (c) =
min{localmin(c), intmin(c[m − k + 1 , jk])}, and we can use the same intmin
value for the ancestor of c at the previous major-event level. Analogous formula
holds for maxdiffk (c). Hence, the computation at a minor level is O(k). Thus,
the amortized time complexity per a level is O(k). Hence, we have obtained the
following theorem:

Theorem 2. The graph G(a, Ik) can be constructed in O(nk) time using O(k2)
working space.

We can compute for every node v(c) of G(a, Ik) the number n(v(c)) of global
roundings of a that have c as their prefix. This can be done in O(nk) time by
using a dynamic programming procedure. By using this information, we can
generate global roundings uniformly random by walking on the directed acyclic
graph G(a, Ik) (directed from the source to sinks) using n(v(c)) as the proba-
bility for choosing the next branch (i.e., next bit of the rounding).

4 Fast Viterbi-Type Algorithms and Bicriteria
Optimization

Let us review the Viterbi’s algorithm (see Appendix) in a general form. For each
integral subinterval J = [i+1, i+k] ⊂ [1, n] of length k, let us consider a function
fJ assigning a real value fJ(a,x) for each pair of a real sequence a ∈ [0, 1]n and
a binary sequence x ∈ {0, 1}n of length n. The function fJ is called local if
fJ(a,x) is determined by the entries of a and x located in the interval J .

Consider a commutative semigroup operation ⊕ satisfying the monotonicity,
i.e., if x1 ≥ y1 and x2 ≥ y2 then x1 ⊕ x2 ≥ y1 ⊕ y2. Examples of such operations
are +, max, min, and taking the Lp norm (|x1|p + |x2|p)1/p. Let us consider the
sum (under the ⊕ operation) F (a,x) =

⊕n−k
i=0 f[i+1,i+k](a,x), and would like to

find a binary sequence x minimizing F (a,x).
Viterbi’s dynamic programming algorithm can be applied to the above prob-

lem. It is easy to see the following: Suppose that fJ(a,x) is local and computable
in O(q) amortized time if we run the dynamic programming. Then, the binary
sequence x minimizing F (a,x) can be computed in O(2knq) time. If we further
combine our global rounding condition, we have the following:

Theorem 3. Under the assumption as above, the global rounding sequence x of
a with respect to Ik minimizing F (a,x) can be computed in O(knq) time.

Proof. We need to keep k + 1 binary sequences instead of 2k sequences in the
dynamic programming, because G(a, Ik) has at most k + 1 nodes in a level. 2

176 K. Sadakane, N. Takki-Chebihi, and T. Tokuyama

Corollary 1. The rounding minimizing the L∞ rounding error with respect to
Ik can be computed in O(kn) time.

Proof. We set f[i+1,i+k](a,x) to be the maximum of the absolute difference
between a([i + s, i + k]) and x([i + s, i + k]) over s = 1, 2, . . . , k. It is easy to see
that fJ(a,x) can be computed in O(1) amortized time by using data structures
given in previous sections. 2

For a family of interval F , we can consider a nonnegative valued function
w on F and define the weighted lp distance DistF,wp (a, b) = (

∑
I∈F |a(I) −

b(I)|pw(I))1/p between a and its rounding b. Although a weighted lp distance is
a nice measure of quality of a rounding if we choose suitable w and p, it is time
consuming to compute the optimal rounding with respect to this measure [2].
However, if we restrict the solution space to the set of global roundings with
respect to Ik, we have the following:

Corollary 2. Given any weight function w, the global rounding minimizing the
weighted lp error with respect to Ik can be computed in O(k2n) time.

5 Remarks on Digital Halftoning Applications

From the viewpoint of practical applications, our main target is digital halfton-
ing: We would like to approximate a [0, 1]-valued matrix A with a binary matrix
B. One natural formulation is that we define DistF∞(A,B) = maxR∈F |A(R) −
B(R)| for a family F of subarrays, and find B minimizing this distance. However,
this problem is NP-hard, and even an approximation algorithm with a provable
constant approximation ratio is difficult to design [1]. One heuristics method
is to round rows one by one, considering the relations to roundings of previous
rows. Here, we must keep the rounding of the current row to be similar to the in-
put sequence (the global rounding property certifies it) to reduce the side-effect
of roundings of forthcoming rows, and also minimize the two-dimensional error
effect in the part of the matrix rounded so far (together with the current row).
For the purpose, the bicriteria method given in the preceding section will be
suitable. Our experimental results will be reported elsewhere.

References

1. T. Asano, T. Matsui, and T. Tokuyama: “On the complexity of the optimal round-
ing problems of sequences and matrices,” Proceedings of SWAT00, LNCS1851
(2000), pp. 476-489.

2. T. Asano et al, “Digital Halftoning: Formulation as a combinatorial optimization
problem and approximation algorithms based on network flow”, working paper,
2000 November.

3. J. Beck and V. T. Sös, Discrepancy Theory, in Handbook of Combinatorics Volume
II, (ed. R.Graham, M. Grötschel, and L Lovász) 1995, Elsevier.

4. R. W. Floyd and L. Steinberg: “An adaptive algorithm for spatial gray scale,” SID
75 Digest, Society for Information Display (1975), pp. 36–37.

Combinatorics and Algorithms on Low-Discrepancy Roundings 177

5. H. N. Gabow and R. E. Tarjan: “Faster scaling algorithms for network problems,”
SIAM J. Comp., 18 (1989), pp. 1013–1036.

6. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer science and
computational biology, Cambridge U.P. 1997.

7. W. J. Hsu, “Fibonacci cubes – a new interconnection topology,” IEEE Trans.
Parallel and Distributed Systems, 4 (1993) pp.2–12.

8. D. E. Knuth: “Digital halftones by dot diffusion,” ACM Trans. Graphics, 6-4
(1987), pp. 245–273.

9. J. O. Limb: “Design of dither waveforms for quantized visual signals,” Bell Syst.
Tech. J., 48-7 (1969), pp. 2555–2582.

10. B. Lippel and M. Kurland: “The effect of dither on luminance quantization of
pictures,” IEEE Trans. Commun. Tech., COM-19 (1971), pp.879-888.

11. V. Rödl and P. Winkler: “Concerning a matrix approximation problem”, Crux
Mathmaticorum, 1990, pp. 76–79.

Appendix: Algorithms for Computing a Global Rounding

Error diffusion algorithm. Let a = (a1, a2, . . . , an) be our input sequence
such that 0 ≤ aj ≤ 1 for all j ∈ {1, 2, . . . , n}. The error diffusion algorithm
computes a binary sequence b from b1 to bn greedily in an incremental fashion
in linear time. We always keep the difference δj =

∑j
i=1(ai − bi) if we have

already computed b1 through bj , and determine bj+1 to be 1 if δj + aj+1 > 0.5
and to be 0 otherwise. It can be easily seen that −0.5 < δj ≤ 0.5 always holds,
and hence for any interval I, |∑i∈I(ai − bi)| < 0.5 − (−0.5) = 1.

Viterbi’s decoding algorithm is a dynamic programming algorithm that com-
putes a rounding b of a sequence a minimizing DistF∞(a, b) for a given F ⊂ Ik.

For each binary pattern P of length k, the algorithm computes real num-
bers m0(P, i) and m(P, i) for i = k, k + 1, . . . , n. The number m0(P, i) is the
discrepancy (with respect to F) between P and the subsequence of a consisting
of entries from ai−k+1 to ai.

We compute m(P, i) for all patterns P and all k ≤ i ≤ n by a dynamic
programming procedure: As initialization, we consider the first k entries of a,
and set m(P, k) = m0(P, k). Then, we sweep the sequence from left to right to
update the rounding error by
m(P, i) = max{m0(P, i), min{m(P+, i − 1), m(P−, i − 1)}}. Here, P+ and P−

are the patterns by removing the last (i.e., rightmost) bit and appending 1 and
0 to the left of P , respectively. It can be seen that minP {m(P, n)} attains the
minimum of DistF∞(a, b) over all binary sequences, and the sequence b can be
computed by backtracking the dynamic programming process. The time com-
plexity of this algoirthm is O(2k(|F| + n)).

We remark that the original Viterbi’s decoding algorithm deals with the L1
measure instead of the L∞ measure.

Network type algorithm. Asano et al.[1] applied the negative cycle detection
algorithm [5] on a network to devise a polynomial time algorithm to compute the
rounding sequence b minimizing DistF∞(a, b) in O(min{k2n log n, n2.5 log2 n})
time, where k is the maximum length of the intervals of F .

All-Pairs Shortest Paths Computation in the
BSP Model

Alexandre Tiskin

No Institute Given

Abstract. The model of bulk-synchronous parallel (BSP) computation
is an emerging paradigm of general-purpose parallel computing. We pro-
pose a new p-processor BSP algorithm for the all-pairs shortest paths
problem in a weighted directed dense graph. In contrast with the gen-
eral algebraic path algorithm, which performs O(p1/2) to O(p2/3) global
synchronisation steps, our new algorithm only requires O(log p) synchro-
nisation steps.

1 Introduction

The model of bulk-synchronous parallel (BSP) computation (see [18,11,13]) pro-
vides a simple and practical framework for general-purpose parallel computing.
Its main goal is to support the creation of architecture-independent and scalable
parallel software. Key features of BSP are its treatment of the communication
medium as an abstract fully connected network, and strict separation of all inter-
action between processors into point-to-point asynchronous data communication
and barrier synchronisation. This separation allows an explicit and independent
cost analysis of local computation, communication and synchronisation.

In this paper we propose a new BSP algorithm for the all-pairs shortest paths
problem in a weighted directed dense graph. This problem is a special case of
the general algebraic path problem, therefore it is natural to compare the gen-
eral algebraic path algorithm with our new all-pairs shortest paths algorithm.
Similarly to the general algorithm, the new algorithm is efficient in local com-
putation, and exhibits a tradeoff between communication and synchronisation;
however, our algorithm requires significantly fewer global synchronisation steps.

2 The BSP Model

A BSP computer, introduced in [18], consists of p processors connected by a
communication network. Each processor has a fast local memory. The processors
may follow different threads of computation. A BSP computation is a sequence
of supersteps. A superstep consists of an input phase, a local computation phase
and an output phase. In the input phase, a processor receives data that were sent
to it in the previous superstep; in the output phase, it can send data to other
processors, to be received in the next superstep. The processors are synchronised
between supersteps. The computation within a superstep is asynchronous.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 178–189, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

All-Pairs Shortest Paths Computation in the BSP Model 179

Let cost unit be the cost of performing a basic arithmetic operation or a
local memory access. If, for a particular superstep, w is the maximum number
of local operations performed by each processor, h′ (respectively, h′′) is the
maximum number of data units received (respectively, sent) by each processor,
and h = h′ + h′′ (another possible definition is h = max(h′, h′′)), then the
cost of the superstep is defined as w + h · g + l. Here g and l are the BSP
parameters of the computer. The value g is the communication throughput ratio
(also called “bandwidth inefficiency” or “gap”), the value l is the communication
latency (also called “synchronisation periodicity”). If a computation consists
of S supersteps with costs ws + hs · g + l, 1 ≤ s ≤ S, then its total cost is
W +H ·g+S ·l, where W =

∑S
s=1 ws is the local computation cost, H =

∑S
s=1 hs

is the communication cost, and S is the synchronisation cost. The values of W ,
H and S typically depend on the number of processors p and on the problem
size.

Papers [11,13] present the McColl–Valiant BSP algorithm for standard (non-
Strassen) matrix multiplication. The local computation, communication and syn-
chronisation costs of this algorithm are

W = O(n3/p) H = O(n2/p2/3) S = O(1)

Paper [12] extends this result to fast (Strassen-type) matrix multiplication. The
local computation, communication and synchronisation costs of the extended
algorithm are

W = O(nω/p) H = O(n2/p2/ω) S = O(1)

where ω is the exponent of fast matrix multiplication (currently 2.376 by [4]).
Many BSP algorithms are only defined for input sizes that are sufficiently

large with respect to the number of processors. This requirement is loosely re-
ferred to as slackness. The algorithm presented is this paper needs a very moder-
ate amount of slackness: to compute all-pairs shortest paths in an n-node graph,
we must have n ≥ p.

For the sake of simplicity, we ignore small irregularities that arise from im-
perfect matching of integer parameters. For example, when we write “divide an
array of size n equally across p processors”, the value n may not be an exact
multiple of p, and therefore the shares may differ in size by ±1. We use square
bracket notation for matrices, referring to an element of an n × n matrix A as
A[i, j], 1 ≤ i, j ≤ n.

3 Algebraic Path Computation

In this section we consider the problem of finding the closure of a square matrix
over a semiring. This problem is also known as the algebraic path problem. It
unifies many seemingly unrelated computational problems, such as graph con-
nectivity, network reliability, regular language generation, network capacity. All

180 A. Tiskin

these tasks can be viewed as instances of the algebraic path problem for an ap-
propriately chosen semiring. More information on applications of the algebraic
path problem can be found in [3,19,8,9,14].

Let an n×n matrix A over a semiring represent a weighted graph with nodes
1, . . . , n. The length of an edge i→ j is defined as the semiring element A[i, j]. If
the graph is not complete, we assume that non-edges have length zero. We denote
semiring addition and multiplication by ⊕ and � respectively. When it does not
create confusion, we also denote semiring multiplication by juxtaposition (e.g.
ab for a� b), and use standard notation for semiring powers (e.g. a2 for a� a).

Let A∗ = I ⊕ A⊕ A2 ⊕ · · · be the closure of matrix A (it is not guaranteed
to exist in a general semiring). The distance between nodes i, j is defined as
the semiring element A∗[i, j]. Note that in this general setting, the distance does
not have to correspond to any particular “shortest” path in the graph. In the
special case where the semiring is the set of all nonnegative real numbers with
∞, and the operations min and + are used as ⊕ and � respectively, lengths and
distances have their standard graph-theoretic meaning — in particular,∞ plays
the role of the semiring zero, and the distances are realised by shortest paths.
We will return to this special case in Section 4.

In order to compute the closure of a square matrix over a general semiring, we
use Gaussian elimination without pivoting. In the absence of pivoting, Gaussian
elimination over a general semiring is not guaranteed to terminate. Guaranteed
termination can be achieved by restricting the domain (e.g. considering closed
semirings instead of arbitrary semirings), or by restricting the type of the matrix
(e.g. considering numerical matrices with certain special properties). In the case
of numerical matrices, computation of the matrix closure corresponds to matrix
inversion: A∗ = (I −A)−1.

Let A be an n × n matrix over a semiring. We assume that the closure of a
semiring element can be computed in time O(1), whenever this closure exists.
Matrix closure A∗ can be computed by sequential Gaussian elimination in time
Θ(n3), provided that the computation terminates. This method is asymptotically
optimal for matrices over a general semiring, which can be shown by a standard
reduction of the matrix multiplication problem.

The parallel complexity of Gaussian elimination has been extensively studied
in many models of parallel computation. A BSP algorithm in [11] works by
reducing the problem to the computation of a three-dimensional cube dag (see
[11], [16]; many similar algorithms have been proposed earlier in the context of
systolic computation). The BSP cost of the cube dag algorithm is W = O(n3/p),
H = O(n2/p1/2), S = O(p1/2).

A lower communication cost for computing matrix closure can be achieved by
recursive block Gauss–Jordan elimination. This standard method was suggested
in [1] as a means of reducing the communication cost of a parallel transitive
closure algorithm, which is another special case of matrix closure. The BSP
cost of block Gauss–Jordan elimination was analysed in [17]; we summarise the
results here for completeness.

All-Pairs Shortest Paths Computation in the BSP Model 181

For convenience we assume that the resulting matrix A∗ must replace the
original matrix A. The algorithm works by dividing the matrix into square blocks
of size n/2,

A =
(

A11 A12
A21 A22

)

(1)

and then applying block Gauss–Jordan elimination:

Ā11 ← A∗
11

¯̄A22 ← Ā∗
22

Ā12 ← Ā11A12
¯̄A21 ← ¯̄A22Ā21

Ā21 ← A21Ā11
¯̄A12 ← Ā12

¯̄A22

Ā22 ← A22 ⊕A21Ā11A12
¯̄A11 ← Ā11 ⊕ Ā21

¯̄A22Ā12

(2)

after which every ¯̄Aij overwrites Aij . The procedure can be applied recursively
to find A∗

11 and Ā∗
22. The resulting matrix is

A∗ =
(

A∗
11 ⊕A∗

11A12 �G∗ �A21A
∗
11 A∗

11A12 �G∗

G∗ �A21A
∗
11 G∗

)

(3)

where G = A22 ⊕ A21A
∗
11A12 (here we use both � and juxtaposition to denote

semiring multiplication). The computation terminates, if all taken closures exist.
The resulting BSP algorithm allows us to trade off the costs of communication

and synchronisation in a certain range. In order to account for this tradeoff, we
introduce a real parameter α. The algorithm is as follows.

Algorithm 1. Algebraic path computation.
Parameters: integer n ≥ p; real number α, αmin = 1/2 ≤ α ≤ 2/3 = αmax.
Input: n× n matrix A over a semiring.
Output: n× n matrix closure A∗ (assuming it exists), overwriting A.
Description. The computation is defined by recursion on the size of the matrix.
For small blocks, (2) is computed sequentially on an arbitrarily chosen processor.
For large blocks, matrix multiplication in (2) is performed by the McColl–Valiant
algorithm on all p processors. The details of the algorithm are described in [17].
Cost analysis. The analysis in [17] gives

W = O(n3/p) H = O(n2/pα) S = O(pα) �

For α = αmin = 1/2, the cost of Algorithm 1 is W = O(n3/p), H =
O(n2/p1/2), S = O(p1/2). This is asymptotically equal to the BSP cost of the
cube dag method from [11]. For α = αmax = 2/3, the cost of Algorithm 1 is
W = O(n3/p), H = O(n2/p2/3), S = O(p2/3). In this case, the communication
cost is as low as in matrix multiplication (the McColl–Valiant algorithm). This
improvement in communication efficiency is offset by a reduction in synchroni-
sation efficiency. For large n, the communication cost of Algorithm 1 dominates
the synchronisation cost, and therefore the communication improvement should

182 A. Tiskin

outweigh the loss of synchronisation efficiency. This justifies the use of Algo-
rithm 1 with α = αmax = 2/3. Smaller values of α, or the cube dag algorithm,
should be considered when the problem is moderately sized.

If the ground semiring is a commutative ring with unit, fast matrix multi-
plication can be used instead of standard matrix multiplication for computing
block products. The BSP cost of the resulting algorithm is

W = O(nω/p) H = O(n2/pα) S = O(pα)

where 1/(ω − 1) ≤ α ≤ 2/ω.

4 All-Pairs Shortest Paths Computation

4.1 Nonnegative Edge Lengths

In Section 3 we considered the algebraic path problem over an arbitrary semiring.
Here we deal with a special case where the semiring is the set of real numbers
with ∞, and the numerical operations min and + are used as semiring addition
⊕ and multiplication � respectively. Since the min operation is idempotent, for
all i, j there is a path from i to j of length A∗[i, j] — this is one of the shortest
paths from i to j. Most algorithms for matrix closure in the (min, +) semiring can
be extended to compute the shortest paths between all pairs of nodes, as well as
the distances. Therefore, in this section we use the term all pairs shortest paths
problem as a synonym for the matrix closure problem in the (min, +) semiring.
Initially, we consider the case where all edge lengths are nonnegative. We then
extend our method to general lengths.

The technique of Gauss–Jordan elimination, considered in Section 3, can be
applied to the all pairs shortest paths problem. In this context, Gauss–Jordan
elimination is commonly known as the Floyd–Warshall algorithm (see e.g. [5]).
Its block recursive version, identical to Algorithm 1, solves the problem with
BSP cost W = O(n3/p), H = O(n2/pα), S = O(pα), for an arbitrary α, 1/2 ≤
α ≤ 2/3.

Alternatively, the problem with nonnegative lengths can be solved by Dijk-
stra’s algorithm ([6], see also [5]). This greedy algorithm finds all shortest paths
from a fixed source in order of increasing length. The sequential time complex-
ity of Dijkstra’s algorithm is Θ(n2). To compute the shortest paths between all
pairs of nodes in parallel, one can apply Dijkstra’s algorithm independently to
each node as a source (this approach is suggested e.g. in [10,7]). The resulting
algorithm has BSP cost W = O(n3/p), H = O(n2), S = O(1). It thus has a
higher communication cost, but a lower synchronisation cost, than the Floyd–
Warshall algorithm. This tradeoff motivates us to look for an improved BSP
algorithm, that would solve the all pairs shortest paths problem efficiently both
in communication and synchronisation.

In order to design such an algorithm, we use the principle of path doubling.
No shortest path may contain more than n edges, therefore An = A∗. Ma-
trix An can be obtained by repeated squaring in log n matrix multiplications.

All-Pairs Shortest Paths Computation in the BSP Model 183

Therefore, the local computation cost of computing An by repeated squaring is
W = Θ

(
(n3 log n)/p

)
. A refined version of path doubling was proposed in [2,15].

When run in parallel, this method allows one to compute the matrix An = A∗

with local computation cost W = O(n3/p). Compared to the Floyd–Warshall
algorithm, the new method does not improve on the synchronisation cost by
itself; however, an improvement can be achieved by combining the new method
with Dijkstra’s algorithm.

By a small perturbation of edge lengths, we can always make all edge and
path lengths in the graph distinct. Therefore, from now on we assume that all
shortest paths are unique. We use the term path size for the number of edges
in a path. The main idea of the method is to perform path doubling, keeping
track not only of path lengths, but also of path sizes. We assume that lengths
and sizes are kept in a single data structure, called the path matrix. In a such a
matrix X, each entry X[i, j] is either ∞, or corresponds to a simple path from
i to j. Addition and multiplication of path matrices are defined in the natural
way.

For an integer k, let X(k) denote the matrix of all paths in X of size exactly
k. More precisely,

X(k)[i, j] =

{
X[i, j] if path X[i, j] has size k

∞ otherwise

Let X(k1, . . . , ks) = X(k1)⊕· · ·⊕X(ks) (remembering that ⊕ denotes numerical
min). Note that for any path matrix X, we have

X = X(0, 1, . . . , m) = X(0)⊕X(1)⊕ · · · ⊕X(m)

where m is the maximum path size in X.
For path matrices X, Y , we write X ≤ Y , if X[i, j] ≤ Y [i, j] for all i, j

(ignoring path sizes). We call an entry X[i, j] trivial, if X[i, j] = ∞. We call X
and Y disjoint, if either X[i, j], or Y [i, j] is trivial for all i, j.

Consider the nonnegative all-pairs shortest paths problem defined by path
matrix A. This matrix contains all shortest paths of size 0 (the main diagonal)
and of size 1 (the off-diagonal entries). For an integer k, matrix Ak contains all
shortest paths of size at most k (and maybe some other paths). Suppose that
we have computed Ak for some k, 1 ≤ k < n. Our next goal is to compute
all shortest paths of size at most 3k/2. Decompose the path matrix Ak into a
disjoint semiring sum:

Ak = Ak(0, 1, . . . , k) = I ⊕Ak(1)⊕ · · · ⊕Ak(k)

Consider the upper half of this sum, which consists of matrices Ak(k/2 +
1), . . . , Ak(k). The total number of nontrivial entries in all these matrices is
at most n2 (since the matrices are disjoint), hence the average number of non-
trivial entries per matrix is at most 2n2/k. For some l, k/2 < l ≤ k, matrix
Ak(l) contains at most 2n2/k nontrivial entries. The BSP cost of finding such
an l is negligible.

184 A. Tiskin

Consider any shortest path of size in the range l + 1, . . . , 3k/2. This path
consists of an initial subpath of size l, and a final subpath of size at most k.
Therefore, the semiring sum Ak ⊕Ak(l)�Ak contains all shortest paths of size
at most 3k/2:

Ak ⊕Ak(l)�Ak =
(
I ⊕Ak(l)

)�Ak ≤ A3k/2

Since Ak(l) has at most 2n2/k nontrivial entries, computation of Ak(l) � Ak

requires not more than 2n3/k semiring multiplications.
For efficient parallel computation of the sparse-by-dense matrix product

Ak(l)�Ak, we need to partition the problem into p sparse-by-dense matrix mul-
tiplication subproblems, where all the sparse arguments have an approximately
equal number of nontrivial entries. This can be done by first partitioning the set
of rows in Ak(l) into p1/3/k1/3 equal subsets, such that each subset contains at
most 2n2

k2/3·p1/3 nontrivial entries. This partitioning defines, up to a permutation of
rows, a decomposition of the matrix into p1/3/k1/3 equal horizontal strips. Each
strip defines an n·k1/3

p1/3 ×n×n sparse-by-dense matrix multiplication subproblem.
Consider one of the above subproblems. Partition the set of columns in the

strip into p1/3/k1/3 equal subsets, such that each subset contains at most 4n2

k1/3·p2/3

nontrivial entries. This partitioning defines, up to a permutation of columns, a
decomposition of the strip into equal square blocks. Each block defines an n·k1/3

p1/3 ×
n·k1/3

p1/3 ×n sparse-by-dense matrix multiplication subproblem. By partitioning the
set of columns of the second argument of this subproblem into p1/3 · k2/3 equal
subsets, we obtain p1/3 ·k2/3 sparse-by-dense matrix multiplication subproblems
of size n·k1/3

p1/3 × n·k1/3

p1/3 × n
p1/3·k2/3 .

The total number of resulting sparse-by-dense matrix multiplication subprob-
lems is p. The sparse argument of each subproblem contains at most 4n2

k1/3·p2/3

nontrivial entries. The partitioning can be computed by a greedy algorithm, the
BSP cost of which is negligible. The BSP cost of computing the matrix product
Ak(l)�Ak is therefore W = O

(
n3/(k · p)

)
, H = O

(
n2/(k1/3 · p2/3)

)
, S = O(1).

The path doubling process is stopped after at most log3/2 p rounds, when
the matrix Ap (or some matrix ≤ Ap, which is only better) has been computed.
For some q, 1 ≤ q ≤ p, matrix Ap(q) contains at most n2/p nontrivial entries.
Therefore, this matrix can be broadcast to every processor with communication
cost H = O(n2/p). Each processor receives the matrix Ap(q), picks n/p nodes,
and computes all shortests paths originating in these nodes by n/p independent
runs of Dijkstra’s algorithm. The result of this computation across all processors
is the matrix closure Ap(q)∗. Matrix Ap(q)∗ contains all shortest paths of sizes
that are multiples of q (and maybe some other paths).

Any shortest path in A∗ consists of an initial subpath of size that is a multiple
of q, and a final subpath of size at most q ≤ p. Therefore, all shortest paths for
the original matrix A can be computed as the matrix product

Ap(q)∗ �Ap = A∗

All-Pairs Shortest Paths Computation in the BSP Model 185

The cost of the resulting algorithm is W = O(n3/p), H = O(n2/p2/3), S =
O(log p). We can further reduce the synchronisation cost by terminating the
path doubling phase after fewer than log3/2 p steps. For 1 ≤ r ≤ p2/3, we can
find a q such that the matrix Ar(q) has at most n2/r nontrivial entries, therefore
the communication cost of applying Dijkstra’s algorithm to find Ar(q)∗ is H =
O(n2/r).

The resulting algorithm is as follows.

Algorithm 2. All pairs shortest paths (nonnegative case).
Parameters: integer n ≥ p; integer r, 1 ≤ r ≤ p2/3.
Input: n× n matrix A over the (min, +) semiring of nonnegative real numbers
with ∞.
Output: n× n matrix closure A∗.
Description. The computation proceeds in three stages.

First stage. Compute Ar by at most log3/2 r rounds of path doubling.
Second stage. Select q, 0 < q ≤ r, such that Ar(q) contains at most n2/r nontriv-
ial entries. Broadcast Ar(q) and compute the closure Ar(q)∗ by n independent
runs of Dijkstra’s algorithm, n/p runs per processor.
Third stage. Compute the product Ar(q)∗ �Ar = A∗.

Cost analysis. The local computation and communication costs of the first
stage are dominated by the cost of its first round: W = O(n3/p) and H =
O(n2/p2/3). The synchronisation cost of the first stage is S = O(log r).

The cost of the second stage is W = O(n3/p), H = O(n2/r), S = O(1). The
cost of the third stage is W = O(n3/p), H = O(n2/p2/3), S = O(1). The local
computation, communication and synchronisation costs of the whole algorithm
are

W = O(n3/p) H = O(n2/r) S = O(log r) �

The two extremes of Algorithm 2 are the communication-efficient algorithm
(r = p2/3), with

W = O(n3/p) H = O(n2/p2/3) S = O(log p)

and the multiple Dijkstra algorithm (r = 1), with

W = O(n3/p) H = O(n2) S = O(1)

The second stage of Algorithm 2 allows the following variation. Instead of
using the matrix Ar(q) with at most n2/r nontrivial entries, we can use the
matrix Ar(r). In order to communicate this matrix efficiently, we represent it as
a product

Ar(r) = Ar(q)�Ar(r − q)

For some q, 0 ≤ q < r/2, the disjoint sum Ar(q) ⊕ Ar(r − q) contains at most
2n2/r nontrivial entries. Therefore, the second stage of the algorithm can be

186 A. Tiskin

replaced by broadcasting the matrices Ar(q) and Ar(r−q) (or, equivalently, their
disjoint sum), recovering the product Ar(q)�Ar(r− q) = Ar(r), and computing
the closure Ar(r)∗. A similar technique of broadcasting a path matrix can be
used on every step of path doubling in the first stage of Algorithm 2.

4.2 General Edge Lengths

We now extend the algorithm to graphs where edge lengths may be negative.
Formally, the problem consists in finding the closure A∗ of a matrix A over
the (min, +) semiring of all real numbers with ∞. The closure exists, if and
only if the graph defined by the matrix does not contain a cycle of negative
length. We cannot use our original method to solve this more general problem,
because Dijkstra’s algorithm does not work on graphs with negative edge lengths.
However, we can get around this difficulty by replacing Dijkstra’s algorithm with
an extra stage of sequential path doubling.

The extended algorithm has three stages. In the first stage, we compute the
matrix Ap2

by 2 log3/2 p steps of parallel path doubling. Let

Ap2
((p)) = Ap2

(p, 2p, . . . , p2)

and

Ap2
((p)− q) = Ap2

(p− q, 2p− q, . . . , p2 − q)

We represent matrix Ap2
((p)) as a product

Ap2
((p)) = Ap2

(q)�Ap2
((p)− q)

For some q, 0 ≤ q < p/2, the disjoint sum Ap2
(q) ⊕ Ap2

((p) − q) contains at
most 2n2/p nontrivial entries. In the second stage, we collect matrices Ap2

(q)
and Ap2

((p)− q) in a single processor, and recover their product Ap2
((p)). Since

the matrix Ap2
((p)) represents paths of p different sizes p, 2p, . . . , p2, we can

find a size l ∈ {(p/2) · p, (p/2 + 1) · p, . . . , p2}, such that the matrix Ap2
((p))(l)

contains at most 2n2/p nontrivial entries. Now the closure Ap2
((p))∗ = Ap2

(p)∗

can be computed by sequential path doubling, with the first step computing the
semiring sum

Ap2
((p))⊕Ap2

((p))(l)�Ap2
((p)) ≤ A3p2/2((p))

The sequential cost of the closure computation is dominated by the cost of
its first step, O(n3/p). In the third stage, it remains to compute the product
Ap2

(p)∗ �Ap2
= A∗.

In contrast with the nonnegative case, early termination of the parallel path
doubling phase would increase not only the communication cost, but also the
local computation cost. Therefore, we do not consider this option.

The resulting algorithm is as follows.

All-Pairs Shortest Paths Computation in the BSP Model 187

Algorithm 3. All pairs shortest paths (general case).
Parameter: integer n ≥ p.
Input: n× n matrix A over the (min, +) semiring of real numbers with ∞.
Output: n× n matrix closure A∗.
Description. The computation proceeds in three stages.

First stage. Compute Ap2
and Ap2

((p)) by at most 2 log3/2 p rounds of path
doubling.
Second stage. Select q, 0 < q ≤ p/2, such that the disjoint sum Ap2

(q)⊕Ap2
((p)−

q) contains at most 2n2/p nontrivial entries. Collect Ap2
(q)⊕ Ap2

((p)− q) in a
single processor, and recover Ap2

((p)) = Ap2
(q) � Ap2

((p) − q). Compute the
closure Ap2

((p))∗ = Ap2
(p)∗ by sequential path doubling.

Third stage. Compute the product Ap2
(p)∗ �Ap2

= A∗.

Cost analysis. The local computation and communication costs of the first
stage are dominated by the cost of its first round: W = O(n3/p) and H =
O(n2/p2/3). The synchronisation cost of the first stage is S = O(log p).

The local computation cost of the second stage is dominated by the cost of
its first round, equal to W = O(n3/p). The communication and synchronisation
costs of the second stage are H = O(n2/p), S = O(1).

The cost of the third stage is W = O(n3/p), H = O(n2/p2/3), S = O(1).
The local computation, communication and synchronisation costs of the

whole algorithm are

W = O(n3/p) H = O(n2/p2/3) S = O(log p) �

The described method is applicable not only to the (min, +) semiring (the
standard shortest paths problem), but also to any semiring where addition
is idempotent, e.g. the (∨,∧) semiring (the transitive closure problem), the
(max, min) semiring (paths of maximum capacity), or the (max, ·) semiring
(paths of maximum reliability). Note that in the case of transitive closure com-
putation by Algorithm 2, Boolean matrix multiplication cannot be used instead
of general matrix multiplication, since the path doubling process involves the
multiplication of path matrices, rather than ordinary Boolean matrices. It is
not immediately clear if the BSP cost of general matrix multiplication can be
reduced for path matrices with Boolean edge lengths.

5 Conclusions

We have presented a new BSP algorithm for the all-pairs shortest paths problem
in a weighted directed dense graph. The algorithm adapts the method of selec-
tive path doubling from [2,15] to the BSP framework, and saves a substantial
amount of synchronisation by combining selective path doubling with Dijkstra’s
algorithm. In contrast with the general algebraic path algorithm, which per-
forms O(p1/2) to O(p2/3) global synchronisation steps, our new algorithm only
requires O(log p) synchronisation steps. The number of synchronisation steps can

188 A. Tiskin

Table 1. Summary of presented algorithms

Problem W H S

Matrix multiplication n3/p n2/p2/3 1
Algebraic paths n3/p

general, minH − n2/p2/3 p2/3

general, minS − n2/p1/2 p1/2

All-pairs shortest paths n3/p

general − n2/p2/3 log p
nonnegative, minH − n2/p2/3 log p
nonnegative, minS − n2 1

be further reduced to O(1), if the edge lengths are nonnegative. In this case, the
algorithm exhibits a tradeoff between asymptotic costs of communication and
synchronisation.

It is not clear yet whether the presented algorithm is practical, because of
the significant potential overhead of dealing with path matrices, instead of or-
dinary numerical matrices (as e.g. in the Floyd–Warshall algorithm). However,
our algorithm advances the theoretical understanding of BSP computation on
dense graphs, and shows a possible source of faster parallel graph algorithms.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs.
Theoretical Computer Science, 71(1):3–28, March 1990.

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences, 54(2):255–262, April 1997.

[3] B. Carré. Graphs and Networks. Oxford Applied Mathematics and Computer
Science Series. Clarendon Press, 1979.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251–280, March 1990.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. The MIT Press and
McGraw–Hill, 1990.

[6] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[7] I. Foster. Designing and Building Parallel Programs. Addison–Wesley, 1995.
[8] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley—Interscience Series

in Discrete Mathematics. John Wiley & Sons, 1984.
[9] M. Gondran and M. Minoux. Linear algebra in dioids: A survey of recent results.

Annals of Discrete Mathematics, 19:147–164, 1984.
[10] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal

of the ACM, 24(1):1–13, January 1977.
[11] W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer Sci-

ence Today: Recent Trends and Developments, volume 1000 of Lecture Notes in
Computer Science, pages 46–61. Springer-Verlag, 1995.

All-Pairs Shortest Paths Computation in the BSP Model 189

[12] W. F. McColl. A BSP realisation of Strassen’s algorithm. In M. Kara, J. R.
Davy, D. Goodeve, and J. Nash, editors, Abstract Machine Models for Parallel
and Distributed Computing, pages 43–46. IOS Press, 1996.

[13] W. F. McColl. Universal computing. In L. Bougé et al., editors, Proceedings of
Euro-Par ’96 (Part I), volume 1123 of Lecture Notes in Computer Science, pages
25–36. Springer-Verlag, 1996.

[14] G. Rote. Path problems in graphs. Computing Supplementum, 7:155–189, 1990.
[15] T. Takaoka. Subcubic cost algorithms for the all pairs shortest path problem.

Algorithmica, 20:309–318, 1998.
[16] A. Tiskin. The bulk-synchronous parallel random access machine. Theoretical

Computer Science, 196(1–2):109–130, April 1998.
[17] A. Tiskin. Bulk-synchronous parallel Gaussian elimination. In N. N. Vasil’ev

and A. M. Vershik, editors, Representation Theory, Dynamical Systems, Com-
binatorial and Algorithmic Methods (Part 4), volume 258 of Zapiski Nauchnykh
Seminarov POMI. Russian Academy of Sciences, 1999. Also to appear in Journal
of Mathematical Sciences.

[18] L. G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, August 1990.

[19] U. Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic
Structures, volume 10 of Annals of Discrete Mathematics. North-Holland, 1981.

Approximating the Minimum Spanning Tree
Weight in Sublinear Time

Bernard Chazelle1?, Ronitt Rubinfeld2, and Luca Trevisan3

1 Princeton University and NEC Research Institute,
Princeton, NJ

chazelle@cs.princeton.edu.
2 NEC Research Institute, Princeton, NJ.

ronitt@research.nj.nec.com.
3 U.C. Berkeley, Berkeley, CA.
luca@eecs.berkeley.edu.

Abstract. We present a probabilistic algorithm that, given a connected
graph G (represented by adjacency lists) of maximum degree d, with
edge weights in the set {1, . . . , w}, and given a parameter 0 < ε < 1/2,
estimates in time O(dwε−2 log w

ε
) the weight of the minimum spanning

tree of G with a relative error of at most ε. Note that the running time
does not depend on the number of vertices in G. We also prove a nearly
matching lower bound of Ω(dwε−2) on the probe and time complexity
of any approximation algorithm for MST weight.
The essential component of our algorithm is a procedure for estimat-
ing in time O(dε−2 log ε−1) the number of connected components of an
unweighted graph to within an additive error of εn. The time bound
is shown to be tight up to within the log ε−1 factor. Our connected-
components algorithm picks O(1/ε2) vertices in the graph and then grows
“local spanning trees” whose sizes are specified by a stochastic process.
From the local information collected in this way, the algorithm is able
to infer, with high confidence, an estimate of the number of connected
components. We then show how estimates on the number of components
in various subgraphs of G can be used to estimate the weight of its MST.

1 Introduction

Traditionally, a linear time algorithm has been held as the gold standard of
efficiency. In a wide variety of settings, however, large data sets have become
increasingly common, and it is often desirable and sometimes necessary to find
very fast algorithms which can assert nontrivial properties of the data in sublin-
ear time.

One direction of research that has been suggested is that of property test-
ing [15,8], which relaxes the standard notion of a decision problem. Property
testing algorithms distinguish between inputs that have a certain property and
? Part of this research was supported by NSF grant CCR-99817 and ARO Grant

DAAH04-96-1-0181.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 190–200, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Approximating the Minimum Spanning Tree Weight in Sublinear Time 191

those that are far (in terms of Hamming distance, or some other natural dis-
tance) from having the property. Sublinear and even constant time algorithms
have been designed for testing various algebraic and combinatorial properties
(see [14] for a survey). Property testing can be viewed as a natural type of ap-
proximation problem and, in fact, many of the property testers have led to very
fast, even constant time, approximation schemes for the associated problem (cf.
[8,6,7,1]). For example, one can approximate the value of a maximum cut in a
dense graph in time 2O(ε−3 log 1/ε), with relative error at most ε, by looking at
only O(ε−7 log 1/ε) locations in the adjacency matrix [8]. Note that typically
such schemes approximate the value of the optimal solution, here the size of a
maxcut, without computing the structure that achieves it, i.e., the actual cut.
Sometimes, however, a solution can also be constructed in linear or near-linear
time.

In this paper, we consider the problem of finding the weight of the minimum
spanning tree (MST) of a graph. Finding the MST of a graph has a long and
interesting history [3,10,12]. Currently the best known deterministic algorithm
of Chazelle [2] runs in O(mα(m, n)) time, where n (resp. m) is the number of
vertices (resp. edges) and α is inverse-Ackermann, and the randomized algorithm
of Karger, Klein and Tarjan [11] runs in linear expected time (see also [5,13] for
alternative models).

In this paper, we show that there are conditions under which it is possible to
approximate the weight of the MST of a connected graph in time sublinear in the
number of edges. We give an algorithm which approximates the MST of a graph
G to within a multiplicative factor of 1 + ε and runs in time O(dwε−2 log w

ε) for
any G with max degree d and edge weights in the set {1, . . . , w}. The relative
error ε (0 < ε < 1/2) is specified as an input parameter. Note that if d and ε
are constant and the ratios of the edge weights are bounded, then the algorithm
runs in constant time. We also extend our algorithm to the case where G has
nonintegral weights in the range [1, w], achieving a comparable runtime with a
somewhat worse dependence on ε.

Our algorithm considers several auxiliary graphs: If G is the weighted graph,
let us denote by G(i) the subgraph of G that contains only edges of weight at
most i. We estimate the number of connected components in each G(i). To do
so, we sample uniformly at random O(1/ε2) vertices in G(i), and then estimate
the size of the component that contains each sampled vertex by constructing
“local trees” of some appropriate size defined by a random process. Based on
information about these local trees, we can produce a good approximation for the
weight of the MST of G. Our algorithm for estimating the number of connected
components in a graph runs in time O(dε−2 log ε−1) and produces an estimate
that is within an additive error of εn of the true count. The method is based on a
similar principle as the property tester for graph connectivity given by Goldreich
and Ron [9].

We give a lower bound of Ω(dw/ε2) on the time complexity of any algorithm
which approximates the MST weight. In order to prove the lower bound, we give
two distributions on weighted graphs, where the support set of one distribution

192 B. Chazelle, R. Rubinfeld, and L. Trevisan

contains graphs with MST weight at least 1 + ε times the MST weight of the
graphs in the support of the other distribution. We show that any algorithm that
reads o(dw/ε2) weights from the input graph is unlikely to distinguish between
graphs from the two distributions. We also prove a lower bound of O(d/ε2)
on the running time of any approximation algorithm for counting connected
components.

2 Estimating the Number of Connected Components

We begin with the problem of estimating the number of components in an ar-
bitrary graph G. We present an algorithm which gives an additive estimate of
the number of components in G to within εn in O(dε−2 log ε−1) time, for any
0 < ε < 1/2. We later show how to use the ideas from our algorithm to aid in
estimating the weight of the MST of a graph.

Let c be the number of connected components in G. Let nu be the num-
ber of vertices in u’s component in G. Our algorithm is built around a simple
observation:

Fact 1 Given a graph with vertex set V , for every connected component I ⊆ V ,∑
u∈I

1
nu

= 1 and
∑

u∈V
1

nu
= c.

Our strategy is to estimate c by approximating each summand 1/nu. Com-
puting nu directly can take linear time, so we construct an estimator of the
quantity 1/nu that has the same expected value. We approximate the number
of connected components via the algorithm given in Figure 1. The parameter W
is a threshold value, which is set to 2/ε for counting connected components and
somewhat higher for its use in MST weight estimation.

approx-number-connected-components(G, ε, W)
uniformly choose r = O(1/ε2) vertices u1, . . . , ur

for each vertex ui,
set βi = 0
take the first step of a BFS from ui

(*) flip a coin
if heads and number of vertices visited in BFS < W

then resume BFS to double number of visited vertices
if this allows BFS to complete

then set βi = 2#coinflips/#vertices visited in BFS
else go to (*)

output ĉ = n
r

∑r

i=1 βi

Fig. 1. Estimating the number of connected components

Approximating the Minimum Spanning Tree Weight in Sublinear Time 193

In the algorithm, doubling the number of vertices does not include duplicate
visits to the same vertices; in other words, at each step the number of new
vertices visited is supposed to match the number of vertices already visited. In
our terminology, the first step of the BFS (shorthand for breadth first search)
involves the visit of the single vertex ui. We now bound the expectation and
variance of the estimator βi for a fixed i. If the BFS from ui completes, the
number of coin flips associated with it is dlog nui

e and the number of distinct
vertices visited is nui

. Let S denote the set of vertices in components of size
< W . If ui 6∈ S, then βi = 0; otherwise, it is 2dlog nui

e/nui
with probability

2−dlog nui
e and 0 otherwise. Since βi < 2, the variance of βi is:

varβi ≤ Eβ2
i ≤ 2Eβi =

2
n

∑

u∈S

1
nu

≤ 2c

n
.

Then the variance of ĉ is bounded by

var ĉ = var
(n

r

∑

i

βi

)
=

n2

r2 · r · varβi ≤ 2nc

r
. (1)

Since the number of components with vertices not in S is at most n/W , we have
that

c − n

W
≤ E ĉ =

∑

u∈S

1
nu

≤ c .

If we set W = 2/ε, then
c − εn

2
≤ E ĉ ≤ c (2)

and, by Chebyshev,

Prob[|ĉ − E ĉ| > εn/2] <
var ĉ

(εn/2)2
≤ 8c

ε2rn
. (3)

Choosing r = O(1/ε2) ensures that with constant probability arbitrarily close
to 1, our estimate ĉ of the number of connected components deviates from the
actual value by at most εn.

The expected number of vertices visited in a given execution of the “for
loop” is O(log W), and each newly visited vertex incurs a cost of O(d), so the
algorithm runs in expected time O(dε−2 log W). For our setting of W , this is
O(dε−2 log ε−1). As stated, the algorithm’s running time is randomized. However,
one can get a deterministic running time bound by stopping the algorithm after
Cdε−2 log ε−1 steps and outputting 0 if the algorithm has not yet terminated.
This event occurs with probability at most O(1/C), which is a negligible addition
to the error probability. Thus we have the following theorem:

Theorem 2. Let c be the number of components in a graph with n vertices. Then
Algorithm approx-number-connected-components runs in time O(dε−2 log ε−1)
and with probability at least 3/4 outputs ĉ such that |c − ĉ| ≤ εn.

194 B. Chazelle, R. Rubinfeld, and L. Trevisan

We can improve the running time to O((ε+ c/n)dε−2 log ε−1), which is much
better for small values of c. First, run the algorithm for r = O(1/ε). By Cheby-
shev and (1, 2),

Prob
[
|ĉ − E ĉ| >

E ĉ + εn

2

]
<

8nc

r(c + εn/2)2
≤ 8n

r(c + εn/2)
,

which is arbitrarily small for rε large enough. Next, we use this approximation
ĉ to “improve” the value of r. We set r = A/ε + Aĉ/(ε2n) for some large enough
constant A and we run the algorithm again, with the effect of producing a second
estimate c∗. By (2, 3),

Prob[|c∗ − E c∗| > εn/2] <
8c

ε2rn
≤ 16c

Aεn + AE ĉ
≤ 16

A
,

and so with overwhelming probability, our second estimate c∗ of the number of
connected components deviates from c by at most εn. The running time of this
new algorithm is O((ε + c/n)dε−2 log ε−1).

3 Approximating the Weight of an MST

In this section we present an algorithm for approximating the value of the MST
in bounded weight graphs. We are given a connected graph G with maximum
degree d and with each edge is assigned an integer weight between 1 and w.
We assume that G is represented by adjacency lists or, for that matter, any
representation that allows one to access all edges incident to a given vertex in
O(d) time. We show how to approximate the weight of the minimum spanning
tree of G with a relative error of at most ε.

In Section 3.1 we give a new way to characterize the weight of the MST in
terms of the number of connected components in subgraphs of G. In Section 3.2
we give the main algorithm and its analysis. Finally, Section 3.3 addresses how
to extend the algorithm to the case where G has nonintegral weights.

3.1 MST Weight and Connected Components

We reduce the computation of the MST weight to counting connected compo-
nents in various subgraphs of G. To motivate the new characterization, consider
the special case when G has only edges of weight 1 or 2 (i.e., w = 2). Let G(1)

be the subgraph of G consisting precisely of the edges of weight 1, and let n1 be
its number of connected components. Then, any MST in G must contain exactly
n1 − 1 edges of weight 2, with all the others being of weight 1. Thus, the weight
of the MST is exactly n − 2 + n1. We easily generalize this derivation to any w.

For each 0 ≤ ` ≤ w, let G(`) denote the subgraph of G consisting of all the
edges of weight at most `. Define c(`) to be the number of connected components
in G(`) (with c(0) defined to be n). By our assumption on the weights, c(w) = 1.
Let M(G) be the weight of the minimum spanning tree of G. Using the above
quantities, we give an alternate way of computing the value of M(G):

Approximating the Minimum Spanning Tree Weight in Sublinear Time 195

Claim 3. For integer w ≥ 2,

M(G) = n − w +
w−1∑

i=1

c(i) .

Proof: Let αi be the number of edges of weight i in an MST of G. (Note that αi

is independent of which MST we choose [4].) Observe that for all 0 ≤ ` ≤ w − 1,∑
i>` αi = c(`) − 1, therefore

M(G) =
w∑

i=1

iαi =
w−1∑

`=0

w∑

i=`+1

αi = −w +
w−1∑

`=0

c(`) = n − w +
w−1∑

i=1

c(i).

2

Thus, computing the number of connected components allows us to compute
the weight of the MST of G.

3.2 The Main Algorithm

Our algorithm approximates the value of the MST by estimating each of the
c(`)’s. The algorithm is given in Figure 2.

approx-MST-weight(G, ε)
For i = 1, . . . , w − 1

ĉ(i) = approx-number-connected-components(G(i), ε, 2w/ε)
output v̂ = n − w +

∑w−1
i=1 ĉ(i)

Fig. 2. Approximating the weight of the MST

Theorem 4. Let v be the weight of the MST of G. Algorithm approx-mst-weight
runs in time O(dwε−2 log w

ε) and outputs a value v̂ that, with probability at least
3/4, differs from v by at most εv.

Proof: Let c =
∑w−1

i=1 c(i). Since we call approx-number-connected-components
with parameter W = 2w/ε, (1, 2) become

c(i) − εn

2w
≤ E ĉ(i) ≤ c(i) and var ĉ(i) ≤ 2nc(i)

r
.

By summing over i, it follows that c − εn/2 ≤ E ĉ ≤ c and var ĉ ≤ 2nc/r.
Choosing rε2 large enough, by Chebyshev we have

Prob[|ĉ − E ĉ| > (n − w + c)ε/3] <
18nc

rε2(n − w + c)2
,

196 B. Chazelle, R. Rubinfeld, and L. Trevisan

which is arbitrarily small since we may assume that w/n is sufficiently small
(else we might as well compute the MST explicitly, which can be done in O(dn)
time [11]). It follows that, with high probability, the error on the estimate satisfies

|v − v̂| = |c − ĉ| ≤ εn

2
+

ε(n − w + c)
3

≤ εv.

Since the expected running time of each call to approx-number-connected-compo-
nents is O(dr log w/ε), the total running time is O(dwε−2 log w

ε). As before, the
running time can be made deterministic by stopping execution of the algorithm
after Cdwε−2 log w

ε steps for some appropriately chosen constant C. 2

3.3 Nonintegral Weights

Suppose the weights of G are all in the range [1, w], but are not necessarily
integral. To extend the algorithm to this case, one can multiply all the weights
by 1/ε and round each weight to the nearest integer. Then one can run the above
algorithm with error parameter ε/2 and with a new range of weights [1, dw/εe] to
get a value v. Finally, output εv. The relative error introduced by the rounding
is at most ε/2 per edge in the MST, and hence ε/2 for the whole MST, which
gives a total relative error of at most ε. The runtime of the above algorithm is
O(dwε−3 log w

ε).

4 Lower Bounds

We prove that our algorithms for estimating the MST weight and counting con-
nected components are essentially optimal.

Theorem 5. Any probabilistic algorithm for approximating, with relative er-
ror ε, the MST weight of a connected graph with max degree d and weights in
{1, . . . , w} requires Ω(dwε−2) edge weight lookups on average. It is assumed that
w > 1 and C

√
w/n < ε < 1/2, for some large enough constant C.

We can obviously assume that w > 1, otherwise the MST weight is always
n − 1 and no work is required. The lower bound on ε is nonrestrictive since
we can always compute the MST exactly in O(dn) time, which is O(dwε−2) for
ε = O(

√
w/n).

Theorem 6. Given a graph with n vertices, any probabilistic algorithm for ap-
proximating the number of connected components with an additive error of εn
requires Ω(dε−2) edge lookups on average. It is assumed that C/

√
n < ε < 1/2,

for some large enough constant C.

Again, note that the lower bound on ε is nonrestrictive since we can always
solve the problem exactly in O(dn) time.

Approximating the Minimum Spanning Tree Weight in Sublinear Time 197

Both proofs revolve around the difficulty of distinguishing between two
nearby distributions. For any 0 < q < 1/2 and s = 0, 1, let Ds

q denote the
distribution induced by setting a 0/1 random variable to 1 with probability
qs = q(1 + (−1)sε). We define a distribution D on n-bit strings as follows: (1)
pick s = 1 with probability 1/2 (and 0 else); (2) then draw a random string
from Ds

q (by choosing each bi from Ds
q independently). Consider a probabilistic

algorithm that, given access to such a random bit string, outputs an estimate
on the value of s. How well can it do?

Lemma 7. Any probabilistic algorithm that can guess the value of s with a
probability of error below 1/4 requires Ω(ε−2/q) bit lookups on average.

Proof: By Yao’s minimax principle, we may assume that the algorithm is de-
terministic and that the input is distributed according to D. It is intuitively
obvious that any algorithm might as well scan b1b2 · · · until it decides it has
seen enough to produce an estimate of s. In other words, there is no need to
be adaptive in the choice of bit indices to probe (but the running time itself
can be adaptive). To see why is easy. An algorithm can be modeled as a binary
tree with a bit index at each node and a 0/1 label at each edge. An adaptive
algorithm may have an arbitrary set of bit indices at the nodes, although we can
assume that the same index does not appear twice along any path. Each leaf is
naturally associated with a probability, which is that of a random input from
D following the path to that leaf. The performance of the algorithm is entirely
determined by these probabilities and the corresponding estimates of s. Because
of the independence of the random bi’s, we can relabel the tree so that each path
is a prefix of the same sequence of bit probes b1b2 · · ·. This oblivious algorithm
has the same performance as the adaptive one.

We can go one step further and assume that the running time is the same for
all inputs. Let t∗ be the expected number of probes, and let 0 < α < 1 be a small
constant. With probability at most α, a random input takes time ≥ t

def= t∗/α.
Suppose that the prefix of bits examined by the algorithm is b1 · · · bu. If u < t,
simply go on probing bu+1 · · · bt without changing the outcome. If u > t, then
stop at bt and output s = 1. Thus, by adding α to the probability of error, we
can assume that the algorithm consists of looking up b1 · · · bt regardless of the
input string.

Let ps(b1 · · · bt) be the probability that a random t-bit string chosen from Ds
q

is equal to b1 · · · bt. The probability of error satisfies

perr ≥ 1
2

∑

b1···bt

min
s

ps(b1 · · · bt).

Obviously, ps(b1 · · · bt) depends only on the number of ones in the string, so if
ps(k) denotes the probability that b1 + · · · + bt = k, then

perr ≥ 1
2

t∑

k=0

min
s

ps(k). (4)

198 B. Chazelle, R. Rubinfeld, and L. Trevisan

By the normal approximation of the binomial distribution,

ps(k) → 1
√

2πtqs(1 − qs)
e− (k−tqs)2

2tqs(1−qs) ,

as t → ∞. This shows that ps(k) = Ω(1/
√

qt) over an interval Is of length
Ω(

√
qt) centered at tqs. If qtε2 is smaller than a suitable constant γ0, then

|tq0 − tq1| is small enough that I0 ∩ I1 is itself an interval of length Ω(
√

qt);
therefore perr = Ω(1). This shows that if the algorithm runs in expected time
γ0ε

−2/q, for some constant γ0 > 0 small enough, then it will fail with probability
at least some absolute constant. By setting α small enough, we can make that
constant larger than 2α. This means that, prior to uniformizing the running
time, the algorithm must still fail with probability α.

Note that by choosing γ0 small enough, we can always assume that α > 1/4.
Indeed, suppose by contradiction that even for an extremely small γ1, there is
an algorithm that runs in time at most γ1ε

−2/q and fails with probability ≤ 1/4.
Then run the algorithm many times and take a majority vote. In this way we
can bring the failure probability below α for a suitable γ1 = γ1(α, γ0) < γ0, and
therefore reach a contradiction. This means that an expected time lower than
ε−2/q by a large enough constant factor causes a probability of error at least
1/4. 2

Proof (Theorem 6): Consider the graph G consisting of a simple cycle of n
vertices v1, . . . , vn. Pick s ∈ {0, 1} at random and take a random n-bit string
b1 · · · bn with bits drawn independently from Ds

1/2. Next, remove from G any
edge (vi, vi+1 mod n) if bi = 0. Because ε > C/

√
n, the standard deviation of the

number of components, which is Θ(
√

n), is sufficiently smaller than εn so that
with overwhelming probability any two graphs derived from D0

1/2 and D1
1/2 differ

by more than εn/2 in their numbers of connected components. That means that
any probabilistic algorithm that estimates the number of connected components
with an additive error of εn/2 can be used to identify the correct s. By Lemma 7,
this requires Ω(ε−2) edge probes into G on average. Replacing ε by 2ε proves
Theorem 6 for graphs of degree d = 2. For arbitrary d, we may simply add d− 2
loops to each vertex. Each linked list thus consists of two “cycle” pointers and
d−2 “loop” ones. If we place the cycle pointers at random among the loop ones,
then it takes Ω(d) probes on average to hit a cycle pointer. If we single out the
probes involving cycle pointers, it is not hard to argue that the probes involving
cycle pointers are, alone, sufficient to solve the connected components problem
on the graph deprived of its loops: one expects at most O(T/d) such probes and
therefore T = Ω(dε−2). 2

Proof (Theorem 5): Again we begin with the case d = 2. The input graph G is a
simple path of n vertices. Pick s ∈ {0, 1} at random and take a random (n − 1)-
bit string b1 · · · bn−1 with bits drawn independently from Ds

q , where q = 1/w.
Assign weight w (resp. 1) to the i-th edge along the path if bi = 1 (resp. 0). The
MST of G has weight n − 1 + (w − 1)

∑
bi, and so its expectation is Θ(n). Also,

Approximating the Minimum Spanning Tree Weight in Sublinear Time 199

note that the difference ∆ in expectations between drawing from D0
q or D1

q is
Θ(εn).

Because ε > C
√

w/n, the standard deviation of the MST weight, which is
Θ(

√
nw), is sufficiently smaller than ∆ that with overwhelming probability any

two graphs derived from D0
q and D1

q differ by more than ∆/2 in MST weight.
Therefore, any probabilistic algorithm that estimates the weight with a relative
error of ε/D, for some large enough constant D, can be used to identify the
correct s. By Lemma 7, this means that Ω(wε−2) probes into G are required on
average.

For d > 2, simply join each vertex in the cycle to d − 2 others (say, at
distance > 2 to avoid introducing multiple edges) and, as usual, randomize the
ordering in each linked list. Assign weight w + 1 to the new edges. (Allowing the
maximum weight to be w + 1 instead of w has no influence on the lower bound
we are aiming for.) Clearly none of the new edges are used in the MST, so the
problem is the same as before, except that we now have to find our way amidst
d − 2 spurious edges, which takes the complexity to Ω(dwε−2). 2

5 Open Questions

It is natural to ask what can be done if the max degree restriction is lifted.
We have made some progress on the case of graphs of bounded mean degree.
Our algorithm for the case of nonintegral weights requires extra time. Is this
necessary? Can the ideas in this paper be extended to finding maximum weighted
independent sets in general matroids? There are now a small number of examples
of approximation problems that can be solved in sublinear time; what other
problems lend themselves to sublinear approximation schemes? More generally,
it would be interesting to gain a more global understanding of what can and
cannot be approximated in sublinear time.

References

[1] Alon, N., Dar, S., Parnas, M., Ron, D., Testing of clustering, Proc. FOCS, 2000.
[2] Chazelle, B., A minimum spanning tree algorithm with inverse-Ackermann type

complexity, J. ACM, 47 (2000), 1028–1047.
[3] Chazelle, B., The Discrepancy Method: Randomness and Complexity, Cambridge

University Press, 2000.
[4] Eppstein, D., Representing all minimum spanning trees with applications to count-

ing and generation, Tech. Rep. 95-50, ICS, UCI, 1995.
[5] Fredman, M.L., Willard, D.E. Trans-dichotomous algorithms for minimum span-

ning trees and shortest paths, J. Comput. and System Sci., 48 (1993), 424–436.
[6] Frieze, A., Kannan, R. Quick approximation to matrices and applications, Com-

binatorica, 19 (1999).
[7] Frieze, A., Kannan, R., Vempala, S., Fast monte-carlo algorithms for finding low-

rank approximations, Proc. 39th FOCS (1998).

200 B. Chazelle, R. Rubinfeld, and L. Trevisan

[8] Goldreich, O., Goldwasser, S., Ron, D., Property testing and its connection to
learning and approximation, Proc. 37th FOCS (1996), 339–348.

[9] Goldreich, O., Ron, D., Property testing in bounded degree graphs, Proc. 29th
STOC (1997), 406–415.

[10] Graham, R.L., Hell, P. On the history of the minimum spanning tree problem,
Ann. Hist. Comput. 7 (1985), 43–57.

[11] Karger, D.R., Klein, P.N, Tarjan, R.E., A randomized linear-time algorithm to
find minimum spanning trees, J. ACM, 42 (1995), 321–328.

[12] Nešetřil, J. A few remarks on the history of MST-problem, Archivum Mathe-
maticum, Brno 33 (1997), 15–22. Prelim. version in KAM Series, Charles Univer-
sity, Prague, No. 97–338, 1997.

[13] Pettie, S., Ramachandran, V. An optimal minimum spanning tree algorithm, Proc.
27th ICALP (2000).

[14] Ron, D., Property testing (a tutorial), to appear in “Handbook on Randomiza-
tion.”

[15] Rubinfeld, R., Sudan, M., Robust characterizations of polynomials with applica-
tions to program testing, SIAM J. Comput. 25 (1996), 252–271.

Approximation Hardness of TSP with Bounded
Metrics

Lars Engebretsen1,? and Marek Karpinski2,??

1 MIT Laboratory for Computer Science
200 Technology Square, NE43-369

Cambridge, Massachusetts 02139-3594
enge@mit.edu

2 Department of Computer Science
University of Bonn

53117 Bonn
marek@cs.uni-bonn.de

Abstract. The general asymmetric (and metric) TSP is known to be ap-
proximable only to within an O(logn) factor, and is also known to be ap-
proximable within a constant factor as soon as the metric is bounded. In
this paper we study the asymmetric and symmetric TSP problems with
bounded metrics and prove approximation lower bounds of 101/100 and
203/202, respectively, for these problems. We prove also approximation
lower bounds of 321/320 and 743/742 for the asymmetric and symmetric
TSP with distances one and two.

1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is the metric
TSP, where the distances between the cities satisfy the triangle inequality. The
decision version of this special case was shown to be NP-complete by Karp [9],
which means that we have little hope of computing exact solutions in polynomial
time. Christofides [5] has constructed an elegant algorithm approximating the
metric TSP within 3/2, i.e., an algorithm that always produces a tour whose
weight is at most a factor 3/2 from the weight of the optimal tour. For the
case when the distance function may be asymmetric, the best known algorithm
approximates the solution within O(log n), where n is the number of cities [7].
As for lower bounds, Papadimitriou and Yannakakis [12] have shown that there
exists some constant, see also [1], such that it is NP-hard to approximate the
TSP where the distances are constrained to be either one or two—note that
such a distance function always satisfies the triangle inequality—within that
constant. This lower bound was improved by Engebretsen [6] to 2805/2804 − ε
for the asymmetric and 5381/5380− ε for the symmetric, respectively, TSP with
distances one and two. Böckenhauer et. al [3,4] considered the symmetric TSP
? Supported by the Marcus Wallenberg Foundation.

?? Supported in part by DFG grant, DIMACS, and IST grant 14036 (RAND-APX).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 201–212, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

202 L. Engebretsen and M. Karpinski

with distances one, two and three, and were able to prove a lower bound of
3813/3812 − ε. (For a discussion of bounded metric TSP, see also Trevisan [13].)
It appears that the metric TSP lacks the good definability properties which
were needed (so far) for proving strong nonapproximability results. Therefore,
any new insights into explicit lower bounds here seem to be of a considerable
interest.

Papadimitriou and Vempala [10] recently announced lower bounds of 42/41−
ε and 129/128 − ε, respectively, for the asymmetric and symmetric versions, re-
spectively, of the TSP with graph metric, but left the question of the approx-
imability for the case with bounded metric open. However, their proof contained
an error influencing the explicit constants. The corrected proof and the new
constants of 98/97 − ε and 234/233 − ε are computed in [11]. Apart from being
an interesting question on its own, it is conceivable that the special cases with
bounded metric are easier to approximate than the cases when the distance be-
tween two points can grow with the number of cities in the instance. Indeed, the
asymmetric TSP with distances bounded by B can be approximated within B
by just picking any tour as the solution and the asymmetric TSP with distances
one and two can be approximated within 17/12 [14]. The symmetric version of
the latter problem can be approximated within 7/6 [12].

In this paper, we consider the case when the metric contains only integer
distances between one and eight and prove a lower bound of 101/100 − ε for the
asymmetric case and 203/202 − ε for the symmetric case. This is an improve-
ment of an order of magnitude compared to the previous best known bounds of
2805/2804− ε and 3813/3812− ε for this case, respectively [3,4,6]. We also prove
that it is NP-hard to approximate the asymmetric TSP with distances one and
two within 321/320 − ε, for any constant ε > 0. For the symmetric version of
the latter problem we show a lower bound of 743/742 − ε. The previously best
known bounds for this case are 2805/2804−ε and 5381/5380−ε, respectively [6].
Our proofs depend on explicit reductions from certain bounded dependency in-
stances of linear equations satisfiability. The main idea is to construct certain
uniform circles of equation gadgets and, in the second part, certain combined
hybrid circle constructions. The reductions for the symmetric case are omitted
from this extended abstract; they will appear in the full version of the paper.
Definition 1. The Asymmetric Traveling Salesman Problem (ATSP) is the fol-
lowing minimization problem: Given a collection of cities and a matrix whose
entries are interpreted as the distance from a city to another, find the shortest
tour starting and ending in the same city and visiting every city exactly once.

Definition 2. (1,B)-ATSP is the special case of ATSP where the entries in the
distance matrix obey the triangle inequality and the off-diagonal entries in the
distance matrix are integers between 1 and B.

2 The Hardness of (1,B)-ATSP

We reduce, similarly to Papadimitriou and Vempala [10,11], from H̊astad’s lower
bound for E3-Lin mod 2 [8]. Our construction consists of a circle of equation

Approximation Hardness of TSP with Bounded Metrics 203

gadgets testing odd parity. This is no restriction since we can easily transform a
test for even parity into a test for odd parity by flipping a literal. Three of the
edges in the equation gadget correspond to the variables involved in the parity
check. These edges are in fact gadgets, so called edge gadgets, themselves. Edge
gadgets from different equation gadgets are connected to ensure consistency
among the edges representing a literal. This requires the number of negative
occurrences of a variable to be equal to the number of positive occurrences. This
is no restriction since we can duplicate every equation a constant number of
times and flip literals to reach this property.

Definition 3. E3-Lin mod 2 is the following maximization problem: Given an
instance of n variables and m equations over Z2 with exactly three unknowns in
each equation, find an assignment to the variables that satisfies as many equa-
tions as possible.

Theorem 1 ([8]). There exists instances of E3-Lin mod 2 with 2m equations
such that, for any constant ε > 0, it is NP-hard to decide if at most εm or
at least (1 − ε)m equations are left unsatisfied by the optimal assignment. Each
variable in the instance occurs a constant number of times.

We describe our instance of (1,B)-ATSP by constructing a weighted directed
graph G and then let the (1,B)-ATSP instance have the nodes of G as cities.
For two nodes u and v in G, let `(u, v) be the length of the shortest path from u
to v in G. The distance between two cities u and v is the (1,B)-ATSP instance
is then defined to be min{B, `(u, v)}.

2.1 The Gadgets

The gadgets are parametrized by the parameters a, b and d; they will be specified
later. Our construction follows Papadimitriou and Vempala [10,11], but we use
a slightly different accounting method in our proofs.

The equation gadget for equations of the form x+y+z = 0 is shown in Fig. 1.
The key property of this gadget is that there is a Hamiltonian path through the
gadget only if zero or two of the ticked edges are traversed. To form the circle
of equation gadgets, vertex A in one gadget coincides with vertex B in another
gadget.

The edge gadget is shown in Fig. 2. Each of the bridges is shared between
two different edge gadgets, one corresponding to a positive occurrence of the
literal and one corresponding to a negative occurrence. The precise coupling is
provided by a perfect matching in a d-regular bipartite multigraph (V1 ∪ V2, E)
on 2k vertices with the following property: For any partition of V1 into subsets
S1, U1 and T1 and any partition of V2 into subsets S2, U2 and T2 such that there
are no edges from U1 to U2, the total number of edges from vertices in T1 to
vertices in T2 is greater than

min
{
k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|

}

a + b
− |S1| + |S2|

2
.

204 L. Engebretsen and M. Karpinski

A B

Fig. 1. The gadget for equations of the form x + y + z = 0. There is a Hamiltonian
path from A to B only if zero or two of the ticked edges, which are actually gadgets
themselves (Fig. 2), are traversed. The non-ticked edges have weight 1.

The purpose of this construction is to ensure that it is always optimal for the
tour to traverse the graph in such a way that all variables are given consistent
values. The edge gadget gives an assignment to an occurrence of a variable by
the way it is traversed.

Definition 4. We call an edge gadget where all bridges are traversed from left
to right in Fig. 2 traversed and an edge gadget where all bridges are traversed
from right to left untraversed. All other edge gadgets are called semitraversed.

Fig. 2. The edge gadget consists of d bridges. Each of the bridges are shared between
two different edge gadgets and consist of two undirected edges of weight a/2. The
leftmost directed edge above has weight 1, the directed edges leaving a bridge have
weight b.

Fig. 3. A traversed edge gadget represents the value 1.

Approximation Hardness of TSP with Bounded Metrics 205

Fig. 4. An untraversed edge gadget represents the value 0.

2.2 Proof of Correctness

If we assume that the tour behaves nicely, i.e., that the edge gadgets are ei-
ther traversed or untraversed, it is straightforward to establish a correspondence
between the length of the tour and the number of unsatisfied equations.

Lemma 1. The only way to traverse the equation gadget in Fig. 1 with a tour of
length 4—if the edge gadgets count as length one for the moment—is to traverse
an even number of edge gadgets. All other locally optimal traversals have length 5.

Proof. It is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. Any tour traversing one ticked edge and
leaving the other two ticked edges untraversed has length at least 5. Strictly
speaking, it is impossible to have three traversals since this does not result in a
tour. However, we can regard the case when the tour leaves the edge gadget by
jumping directly to the exit node of the equation gadget as a tour with three
traversals; such a tour gives a cost of 5.

Lemma 2. In addition to the length 1 attributed to the edge gadget above, the
length of a tour traversing an edge gadget in the intended way is d(a + b).

Proof. Each bridge has length a, and every bridge must have one of the outgoing
edge traversed. Thus, the total cost is d(a + b).

Lemma 3. Suppose that there are 2m equations in the E3-Lin mod 2 instance.
If the tour is shaped in the intended way, i.e., every edge gadget is either traversed
or untraversed, the length of the tour is 3md(a + b) + 4m + u, where u is the
number of unsatisfied equations resulting from the assignment represented by the
tour.

Proof. The length of the tour on an edge gadgets is d(a+b). There are three edge
gadgets corresponding to every equation and every bridge in the edge gadget is
shared between two equation gadgets. Thus, the length of the tour on the edge
gadgets is 2m · 3d(a + b)/2 = 3md(a + b) The length of the tour on an equation
gadget is 4 if the equation is satisfied and 5 otherwise. Thus, the total length is
3md(a + b) + 4m + u.

206 L. Engebretsen and M. Karpinski

The main challenge now is to prove that the above correspondence between the
length of the optimum tour and the number of unsatisfied equation holds also
when we drop the assumption that the tour is shaped in the intended way.

To count the excessive cost due to traversed non-edges of the graph defining
our (1,B)-ATSP instance, we note that every traversed non-edge of weight w > 1
corresponds to a path of length min{w, B} on edges in the graph defining the
instance. We thus reroute every such tour its corresponding path if w ≤ B; if
w > B we make the tour follow the first B/2 and last B/2 edges of the tour and
then pretend that the tour does a jump of zero cost between these two vertices.
This produces something which is not a tour—we call it a pseudo-tour—since
some edges are traversed more than once and some vertices are connected to
more than two traversed edges. From now on, most of the reasoning concerns
this pseudo-tour. Our proof uses the following technical lemma:

Lemma 4 ([11]). For k sufficiently large, almost every 4-regular bipartite
multigraph (V1 ∪ V2, E) on 2k vertices has the following property: For any par-
tition of V1 into subsets S1, U1 and T1 and any partition of V2 into subsets S2,
U2 and T2 such that there are no edges from U1 to U2, the total number of edges
from vertices in T1 to vertices in T2 is greater than

min
{
k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|

}

8
− |S1| + |S2|

2
.

Given the above lemma, the following sequence of lemmas give a lower bound on
the extra cost, not counting the “normal” cost of d(a + b) per edge gadget and
4 per equation gadget, that results from a non-standard behavior of the tour.

We have already seen that an unsatisfied equation adds an extra cost of 1.
Edge gadgets that are either traversed or untraversed do not add any extra
cost, except for the case when two traversed equation gadgets share a bridge;
this results in a bridge being traversed in both directions by the pseudo-tour. A
pseudo-tour resulting from a proper TSP tour can never result in two untraversed
edge gadgets sharing a bridge; this would imply a cycle of length 2a in the original
TSP tour.

Lemma 5. Two traversed edge gadgets that share a bridge give an extra cost
of a + b to the length of the tour.

Proof. If two traversed edge gadgets are connected, there must be a bridge that
is traversed in both directions. Such a bridge gives an extra cost of a + b.

Lemma 6. Suppose that B ≥ 2 max{a, b}. Then every semitraversed edge gad-
get adds an extra cost of at least min{a, b} to the length of the tour.

Proof (sketch). We call a bridge balanced with respect to a pseudo-tour if there
is at least one edge of the pseudo-tour adjacent to each endpoint of the bridge.
Note that an unbalanced bridge always gives an extra cost of a, since the bridge
must be traversed in both directions by the pseudo-tour. Thus, we always obtain
an extra cost of two if any of the bridges are unbalanced.

Approximation Hardness of TSP with Bounded Metrics 207

Now assume that all bridges are balanced. Since the edge gadget is semitra-
versed, all bridges cannot be traversed in the same direction. Thus, there are two
adjacent bridges that are traversed in different directions. This gives an extra
cost of b.

Lemma 7. For a = b = d = 4, there exists a coupling of the equation gad-
gets with the property that it can never be advantageous to have inconsistently
traversed equation gadgets.

Proof. Repeat the following argument for every variable x:
Let k be the number of occurrences of x (and also the number of occurrences

of x̄). Pick a bipartite graph on 2k vertices having the properties stated in
Lemma 4. We know by Lemma 4 that such a graph exists—since the graph has
constant size, we can try all possible graphs in constant time.

Put occurrences of x at one side and occurrences of x̄ on the other side of
the bipartite graph. Each vertex in the graph can be labeled as T , U or S,
depending on whether it is traversed, untraversed or semitraversed. Let T1 be
the set of traversed positive occurrences and T2 be the set of traversed negative
occurrences. Define U1, U2, S1, and S2 similarly. We can assume that |U1|+|T2| ≤
|U2| + |T1|—otherwise we just change the indexing convention.

We now consider a modified tour where the positive occurrences are traversed
and the negative occurrences are untraversed. This decreases the cost of tour by
at least 4(|S1| + |S2|) + 8|(T1, T2)|, where |(T1, T2)| denotes the number of edges
between T1 and T2, and increases it by min{k, |S1| + |S2| + |U1| + |T2|}. But the
bipartite graph has the property that

8
∣
∣(T1, T2)

∣
∣ ≥ min

{
k, |U1| + |T2| + |S1| + |S2|

}− 4
(|S1| + |S2|

)

which implies that the cost of tour decreases by this transformation. Thus, we
can assume that x is given a consistent assignment by the tour.

Theorem 2. For any constant ε > 0, it is NP-hard to approximate (1,8)-ATSP
within 101/100 − ε.

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every vari-
able occurs a constant number of times, we construct the corresponding instance
of (1,8)-ATSP with a = b = d = 4. This can be done in polynomial time. By
the above lemma, we can assume that all edge gadgets are traversed consistently
in this instance. The assignment obtained from this traversal satisfies 2m − u
equations if the length of the tour is 3md(a + b) + 4m + u. If we could decide
if the length of the optimum tour is at most (3d(a + b) + 4 + ε1)m or at least
(3d(a+ b) + 5− ε2)m, we could decide if at most ε1m or at least (1− ε2)m of the
equations are left unsatisfied by the corresponding assignment. But to decide
this is NP-hard by Theorem 1.

In the full version of this paper, we also prove the following theorem:

Theorem 3. For any constant ε > 0, it is NP-hard to approximate (1,8)-TSP
within 203/202 − ε.

208 L. Engebretsen and M. Karpinski

3 The Hardness of (1,2)-ATSP

We apply the construction used by Berman and Karpinski [2] to prove stronger
hardness results for instances of several combinatorial optimization problems
where the number of occurrences of every variable is bounded by some constant.
In particular, [2] devises a reduction from systems of linear equations mod two
with exactly three unknowns in each equation to a problem called Hybrid with
the two following properties: Each equation contains either two or three literals
and each literal occurs exactly three times.

Definition 5. Hybrid is the following maximization problem: Given a system
of linear equations mod 2 containing n variables, m2 equations with exactly two
unknowns, and m3 equations exactly with three unknowns, find an assignment
to the variables that satisfies as many equations as possible.

Theorem 4 ([2]). There exists instances of Hybrid with 42ν variables,
60ν equations with two variables, and 2ν equations with three variables such
that:

1. Each variable occurs exactly three times.
2. For any constant ε > 0, it is NP-hard to decide if at most εν or at least

(1 − ε)ν equations are left unsatisfied.

Since we adopt the construction of Berman and Karpinski [2], we can partly rely
on their main technical lemmas, which simplifies our proof of correctness.

On a high level, the (1,2)-ATSP instance in our reduction consists of a circle
formed by equation gadgets representing equations of the form x + y + z = 0
and x + y = 1. These gadgets are coupled in a way ensuring that the three
occurrences of a variable are given consistent values. In fact, the instances of
Hybrid produced by the Berman-Karpinski construction have a very special
structure. Every variable occurs in at least two equations with two unknowns,
and those equations are all equivalences, i.e., equations of the form x + y = 0.
Since our gadget for equations with two unknowns tests odd parity, we have
to rewrite those equations as x + ȳ = 1 instead. Similarly, the equations of
the form x + y + z = 1 must be rewritten with one variable negated since our
gadgets for equations with three unknowns only test even parity. Turning to
the coupling needed to ensure consistency, we have three occurrences of every
variable. Since we do not have any gadgets testing odd parity for three variables
or even parity for two variables, we may have to negate some of the occurrences.
We now argue that there are either one or two negated occurrences of every
variable. The Hybrid instance produced by the Berman-Karpinski construction
can be viewed as a collection of wheels where the nodes correspond to variables
and edges to equations. The edges within a wheel all represent equations with
two unknowns, while the equations with three unknowns are represented by
hyperedges connecting three different wheels. The equations corresponding to
the edges forming the perimeter of the wheel can be written as x1 + x̄2 = 1,
x2 + x̄3 = 1, . . . , xk−1 + x̄k = 1, and xk + x̄1 = 1, which implies that there is at
least one negated and at least one unnegated occurrence of each variable.

Approximation Hardness of TSP with Bounded Metrics 209

Corollary 1. There exists instances of Hybrid with 42ν variables, 60ν equations
of the form x + ȳ = 1 mod 2, and 2ν equations of the form x + y + z = 0 mod 2
or x + y + z̄ = 0 mod 2 such that:

1. Each variable occurs exactly three times.
2. There is at least one positive and at least one negative occurrence of each

variable.
3. For any constant ε > 0, it is NP-hard to decide if at most εν or at least

(1 − ε)ν equations are left unsatisfied.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid of the
form described in Corollary 1 to instances of (1,2)-ATSP and prove that, given a
tour in the (1,2)-ATSP instance, it is possible to construct an assignment to the
variables in the original Hybrid instance with the property that the number of
unsatisfied equations in the Hybrid instance is related to the length of the tour
in the (1,2)-ATSP instance.

To describe a (1,2)-TSP instance, it is enough to specify the edges of weight
one. We do this by constructing a graph G and then let the (1,2)-TSP instance
have the nodes of G as cities. The distance between two cities u and v is defined
to be one if (u, v) is an edge in G and two otherwise. To compute the weight of
a tour, it is enough to study the parts of the tour traversing edges of G. In the
asymmetric case G is a directed graph.

Definition 6. We call a node where the tour leaves or enters G an endpoint. A
node with the property that the tour both enters and leaves G in that particular
node is called a double endpoint and counts as two endpoints.

If c is the number of cities and 2e is the total number of endpoints, the weight
of the tour is c + e since every edge of weight two corresponds to two endpoints.

3.1 The Gadgets

The equation gadget for equations of the form x+y + z = 0 is shown in Fig. 1—
the same gadget as in the (1,B) case. However, the ticked edges now represent
a different structure.

The equation gadget for equations of the form x + y = 1 is shown in Fig. 5.
The key property of this gadget is that there is a Hamiltonian path through the
gadget only if one of the ticked edges is traversed.

A B

Fig. 5. The gadget for equations of the form x + y = 1. There is a Hamiltonian path
from A to B only if one of the ticked edges is traversed.

The ticked edges in the equation gadgets are syntactic sugar for a construc-
tion ensuring consistency among the three occurrences of each variable. As we

210 L. Engebretsen and M. Karpinski

noted above, either one or two of the occurrences of a variable are negated. The
construction in Fig. 6 ensures that the occurrences are given consistent values,
i.e., that either x = 0 and x̄ = 1, or x = 1 and x̄ = 0. If there is one negated
occurrence of a variable, the upper part of the gadget connects with that occur-
rence and the lower part connects with the two unnegated occurrences. If there
are two negated occurrences, the situation is reversed.

Fig. 6. The gadget ensuring consistency for a variable. If there are two positive occur-
rences of the variable, the ticked edges corresponding to those occurrences are repre-
sented by the parts enclosed in the dotted curves and the ticked edge corresponding
to the negative occurrence is represented by the part enclosed in the dashed curve. If
there are two negative occurrences, the rôles are reversed.

3.2 Proof of Correctness

We want to prove that every unsatisfied equation has an extra cost of one as-
sociated with it. At first, it would seem that this is very easy—the gadget in
Fig. 1 is traversed by a path of length four if the equation is satisfied and a path
of length at least five otherwise; the gadget in Fig. 5 is traversed by a path of
length one if the equation is satisfied and a path of length at least two otherwise;
and the gadget in Fig. 6 ensures consistency and is traversed by a tour of length
six, not counting the edges that were accounted for above. Unfortunately, things
are more complicated than this. Due to the consistency gadgets, the tour can
leave a ticked edge when it is half-way through it, which forces us to be more
careful in our analysis.

We count the number of endpoints that occur within the gadgets; each end-
point gives an extra cost of one half. We say that an occurrence of a literal is
traversed if both of its connected edges are traversed, untraversed if none of its
connecting edges are traversed, and semitraversed otherwise. To construct an
assignment to the literals, we use the convention that a literal is true if it is
either traversed or semitraversed. We need to show that there are two endpoints
in gadgets that are traversed in such a way that the corresponding assignment
to the literals makes the equation unsatisfied. The following lemmas are easy,
but tedious, to verify by case analysis; we omit the proofs form this extended
abstract:

Lemma 8. It is locally optimal to traverse both bridges, i.e., both pairs of undi-
rected edges, in the consistency gadget.

Approximation Hardness of TSP with Bounded Metrics 211

Lemma 9. Every semitraversed occurrence introduces at least one endpoint.

Lemma 10. It is always possible to change a semitraversed occurrence into a
traversed one without introducing any endpoints in the consistency gadget.

Lemma 11. A “satisfying traversal” of the gadget in Fig. 5 has length 1, all
other locally optimal traversals have length at least 2, i.e., contain at least two
endpoints within the gadget.

Lemma 12. A “satisfying traversal” of the gadget in Fig. 1 has length 4, all
other locally optimal traversals have length at least 5, i.e., contain at least two
endpoints within the gadget.

We also need to prove that the gadget we use for consistency actually implements
consistency.

Lemma 13. The gadget in Fig. 6 ensures consistency and is traversed by a tour
of length 6, not counting the edges or endpoints that were accounted for in the
above lemmas.

By combining the above lemmas, we have shown the following connection be-
tween the length of an optimum tour and the number of unsatisfied equations
in the corresponding instance of Hybrid.

Theorem 5. Suppose that we are given an instance of Hybrid with n variables,
m2 equations of the form x + ȳ = 1 mod 2, and m3 equations of the form x +
y + z = 0 mod 2 or x + y + z̄ = 0 mod 2 such that:

1. Each variable occurs exactly three times.
2. There is at least one positive and at least one negative occurrence of each

variable.

Then we can construct an instance of (1,2)-ATSP with the property that a tour
of length 6n + m2 + 4m3 + u corresponds to an assignment satisfying all but u
of the equations in the Hybrid instance.

Corollary 2. For any constant ε > 0, it is NP-hard to approximate (1,2)-ATSP
within 321/320 − ε.

Proof. We connect Theorem 5 with Corollary 1 and obtain an instance of (1,2)-
ATSP with the property that a tour of length 6 · 42ν + 60ν + 4 · 2ν + u =
320ν + u corresponds to an assignment satisfying all but u of the equations in
the Hybrid instance. Since, for any constant ε′ > 0, it is NP-hard to distinguish
the cases u ≤ ε′ and u ≥ 1−ε′, it is NP-hard to approximate (1,2)-ATSP within
321/320 − ε for any constant ε > 0.

212 L. Engebretsen and M. Karpinski

4 Conclusions

It should be possible to improve the reduction by eliminating the vertices that
connect the equation gadgets for x+y+z = {0, 1} with each other. This reduces
the cost of those equation gadgets by one, which improves our bounds—but only
by a miniscule amount. The big bottleneck, especially in the (1,2) case, is the
consistency gadgets. If, for the asymmetric case, we were able to decrease the
cost of them to four instead of six, we would improve the bound to 237/236 − ε;
if we could decrease the cost to three, the bound would become 195/194 − ε. We
conjecture that some improvement for the (1,2) case is still possible along these
lines.

Acknowledgments. We thank Santosh Vempala for many clarifying discus-
sions on the subject of this paper.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

2. P. Berman and M. Karpinski. On some tighter inapproximability results. In Proc.
26th ICALP, vol. 1644 of LNCS, pp 200–209, 1999.

3. H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, and W. Unger. An im-
proved lower bound on the approximability of metric TSP and approximation
algorithms for the TSP with sharpened triangle inequality. In Proc. 17th STACS,
vol. 1770 of LNCS, pp 382–391, 2000.

4. H.-J. Böckenhauer and S. Seibert. Improved lower bounds on the approximability of
the traveling salesman problem. RAIRO Theoretical Informatics and Applications,
34(3):213–255, 2000.

5. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical Report CS-93-13, GSIA, Carnegie Mellon University, 1976.

6. L. Engebretsen. An explicit lower bound for TSP with distances one and two. In
Proc. 16th STACS, vol. 1563 of LNCS, pp 373–382, 1999.

7. A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23–39,
1982.

8. J. H̊astad. Some optimal inapproximability results. In Proc. 29th STOC, pp 1–10,
1997.

9. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pp 85–103. Plenum
Press, New York, 1972.

10. C. H. Papadimitriou and S. Vempala. On the approximability of the traveling
salesman problem. In Proc. 32nd STOC, pp 126–133, 2000.

11. C. H. Papadimitriou and S. Vempala. On the approximability of the traveling
salesman problem. Manuscript, 2001.

12. C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with
distances one and two. Math. of Oper. Res., 18(1):1–11, 1993.

13. L. Trevisan. When Hamming meets Euclid: The approximability of geometric TSP
and MST. In Proc. 29th STOC, pp 21–29, 1997.

14. S. Vishwanathan. An approximation algorithm for the asymmetric travelling sales-
man problem with distances one and two. Inf. Process. Lett., 44(6):297–302, 1992.

The RPR2 Rounding Technique for Semidefinite
Programs

Uriel Feige and Michael Langberg

Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot 76100, {feige,mikel}@wisdom.weizmann.ac.il.

Abstract. Several combinatorial optimization problems can be approx-
imated using algorithms based on semidefinite programming. In many of
these algorithms a semidefinite relaxation of the underlying problem is
solved yielding an optimal vector configuration v1 . . . vn. This vector con-
figuration is then rounded into a {0, 1} solution. We present a procedure
called RPR2 (Random Projection followed by Randomized Rounding)
for rounding the solution of such semidefinite programs. We show that
the random hyperplane rounding technique introduced by Goemans and
Williamson, and its variant that involves outward rotation are both spe-
cial cases of RPR2. We illustrate the use of RPR2 by presenting two
applications. For Max-Bisection we improve the approximation ratio.
For Max-Cut, we improve the tradeoff curve (presented by Zwick) that
relates the approximation ratio to the size of the maximum cut in a
graph.

1 Introduction

For NP-hard maximization problems, we are interested in polynomial time ap-
proximation algorithms that for every instance produce solutions whose value
is guaranteed to be within a ratio of at least α from the value of the optimal
solution. The parameter 0 ≤ α ≤ 1 is known as the approximation ratio of the
algorithm, and the larger α is, the better.

A common method for obtaining an approximation algorithm for a combi-
natorial optimization problem is based on linear programming:

1. Formulate the problem as an integer linear program.
2. Relax the problem to a linear program.
3. Solve the relaxation in polynomial time, obtaining a fractional solution

x1, . . . , xn.
4. Round the fractional solution to a 0/1 solution.

There are several approaches of how to round a fractional solution x1 . . . xn, and
the approach to choose depends on the problem. Two common approaches are:
(a) Threshold rounding in which a threshold t is set and each variable xi is
rounded to 1 if xi ≥ t, and to 0 otherwise (this approach is used for the Vertex
Cover problem in [Hoc82]). (b) Randomized rounding in which a (monotone)

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 213–224, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

214 U. Feige and M. Langberg

rounding function f : R → [0, 1] is chosen. Each variable xi is rounded indepen-
dently to 1 with probability f(xi) and to 0 otherwise (randomized rounding was
introduced in [RT87], and used for example in the approximation of the Max-
SAT problem [GW94]). When the rounding function f is a threshold function
(0 below the threshold and 1 above it), we get threshold rounding as a special
case of randomized rounding.

Goemans and Williamson [GW95] successfully extended this approach to
semidefinite programming. They use a random hyperplane rounding technique. In
our presentation below we break this rounding technique into two steps (steps 4
and 5).

1. Formulate the problem as an integer quadratic program.
2. Relax the problem to a semidefinite program.
3. Solve the relaxation in polynomial time, obtaining a vector solution v1 . . . vn.
4. Project the vector solution on a random line through the origin, obtaining

a fractional solution x1 . . . xn. The value xi is defined to be the (directed)
distance of the projection of the vector vi form the origin.

5. Round the fractional solution x1 . . . xn to a 0/1 solution using threshold
rounding. (The threshold chosen by Goemans and Williamson is 0, rounding
vectors with positive projection to 1 and negative projection to 0.)

Hence both the linear programming approach and the semidefinite program-
ming approach eventually round a fractional solution to a 0/1 solution. The
main difference in this respect is that for semidefinite programming threshold
rounding has always been used at this stage, whereas for linear programming it
has often been the case that randomized rounding is preferred.

In this paper we study the use of a randomized rounding procedure instead of
threshold rounding for the last step of the semidefinite programming approach.
We call this rounding technique RPR2 (random projection, randomized round-
ing) for short. The main contribution of this paper is in adding RPR2 to the
“tool kit” of rounding techniques for semidefinite programs. To achieve this, we
do several things: (a) We show how the tool can be used. This includes methods
for choosing the rounding function f , and methods for analyzing (or lower bound-
ing) the resulting approximation ratio. (b) We identify classes of optimization
problems for which RPR2 has potential of improving the known approximation
ratios (or possibly even achieving approximation ratios that match the integral-
ity gap of the semidefinite program). (c) We illustrate the usefulness of RPR2

by improving the known approximation ratios for some of these problems.
We now go on to discuss the types of problems for which RPR2 may be useful.

For simplicity and concreteness, we shall concentrate on variants of the Max-
Cut problem. Given a graph G = (V, E) the Max-Cut problem is the problem
of finding a maximum cut of G (i.e. a partition of the vertex set V into two
sets (U, V \ U) that maximizes the number of edges with one end-point in U
and the other in V \ U). Goemans and Williamson [GW95] use the method
described above (with semidefinite programming and threshold rounding) to
obtain a partition (U, V \U) of value at least α ' 0.87856 times the value of the
maximum cut in G. Recently in [FS01] it was shown that this approximation

The RPR2 Rounding Technique for Semidefinite Programs 215

ratio matches the integrality ratio (for the particular semidefinite program used
by Goemans and Williamson), and hence we shall not try to improve it (at
least not in this paper). Instead we shall consider special cases of Max-Cut for
which threshold rounding (that is, the random hyperplane) produces a solution
that is clearly not optimal. A simple sufficient condition for a solution not to
be optimal is that of local optimality. Call a vertex misplaced if most of its
neighbors lie in the same side of the cut. A solution is locally optimal if it does
not have misplaced vertices. Clearly, a solution that is not locally optimal can
be improved by having misplaced vertices change sides. For some instances of
Max-Cut, it can be shown that if the approximation ratio of the Goemans and
Williamson algorithm is indeed as bad as α ' 0.87856, then necessarily the
solution produced has (a substantial number of) misplaced vertices. Hence the
approximation ratio can be improved by adding a local correction step to the
algorithm that moves vertices from side to side until the solution becomes locally
optimal. The questions that remain are how to best guide the local correction
step in its choices, and how to analyze the effect of the local correction step. In
some cases, RPR2 answers both questions simultaneously.

Consider light Max-Cut, the problem of Max-Cut on instances where the
maximum cut in a graph is not very large (below a 0.844 fraction of the edges
in the graph). For this case Zwick [Zwi99] showed how to obtain approximation
ratios above α ' 0.87856, using the tool of outward rotation. We propose to
use RPR2 instead. We observe that for instances of light Max-Cut for which
threshold rounding is at its worse, there are misplaced vertices. (This may not
be obvious to the reader at this point, but is true nevertheless.) Hence necessarily
the approximation ratio can be improved, and the only question is by how much.
By a suitable choice of a rounding function f , we can use the RPR2 technique
to give solutions that are locally optimal, and moreover, we can lower bound
the approximation ratio that is obtained. As we shall see, this approximation
ratio is better than the one obtained by Zwick using outward rotations. This is
no coincidence, because as we shall show, outward rotation can be viewed as a
special case of RPR2, but with a choice of rounding function f that produces a
solution that is not locally optimal.

The use of RPR2 above can be viewed as using a threshold scheme (random
hyperplane) followed by a randomized local correction step (in the randomized
rounding phase vertices change sides with probabilities related to their distance
from the hyperplane). Hence the choice of rounding function f guides the local
correction step, and the RPR2 methodology gives us a way of quantifying the
effect of using a local correction step. Moreover, it is straightforward to deran-
domize the local correction step (using the method of conditional probabilities)
giving a local correction step that is deterministic.

It is fair to remark that not in all cases it is advantageous to use the RPR2

approach in order to guide and analyze local corrections. For example, local
corrections were successfully used in [FKL00] to improve the approximation ratio
for Max-Cut for graphs of bounded degree. We do not think that the analysis
of [FKL00] can be cast in the terminology of RPR2.

216 U. Feige and M. Langberg

Another class of problems for which RPR2 may be useful is cases where
threshold rounding produces infeasible solutions. Given a graph G = (V, E) the
Max-Bisection problem is the problem of finding a partition (U, V \ U) of V
into two equally sized sets (i.e. a bisection of V) that maximizes the number of
edges cut by the partition. The algorithm of [GW95] (described above) for the
Max-Cut problem on G will probably yield a partition (U, V \ U) which is not
a bisection (i.e. |U | 6= |V \ U |). Hence, in order to obtain a feasible partition of
V (i.e. a bisection), the partition (U, V \ U) must be modified (e.g., by moving
vertices from the large side of the partition to the smaller one until both sides
are equal). It is very difficult to analyze the effect of this additional step. There
has been a sequence of papers [FJ97,Ye99,HZ00], each improving the bounds of
the previous papers. We observe that RPR2 is a natural rounding technique to
use in this context, because by an appropriate choice of the rounding function
f (possibly, based on the outcome of the random projection), we can guarantee
that the two sides are of (nearly) the same size. We show a particular choice of
rounding function f that modestly improves the known approximation ratio for
Max-Bisection. We suspect that there are choices of f that give more dramatic
improvements, though we are still struggling with their analysis.

A function f is called s-linear if for some s ≥ 0 it is of the form f(x) = 0 for
x ≤ −s, f(x) = 1 for x ≥ s, and f(x) = 1

2 + x
2s for −s ≤ x ≤ s. As concrete

examples of our results, we have the following theorem:

Theorem 1. Using RPR2 with an s-linear rounding function f , one obtains
the following approximation ratios.

– For light Max-Cut for instances in which the optimal cut contains at most
0.6 of the edges, the ratio is at least 0.9128. (Previous best bound was be-
low 0.9119.)

– For Max-Bisection the ratio is at least 0.7027. (Previous best bound was
below 0.7017.)

Our paper is structured as follows. In Section 2 we review the random hyper-
plane and outward rotation rounding techniques. In Section 3 we define RPR2

and show that outward rotation is a special case of RPR2. In Section 4 we an-
alyze the use of RPR2 on the Max-Cut and Max-Bisection problems. Finally,
in Section 5 we offer some concluding remarks. Due to space limitations, the
results of our work are presented without detailed proof. In most cases, [FL01]
(the extended version of our work) contains the missing details.

2 SDP Relaxation of Max-Cut and Various Roundings

Consider the Max-Cut problem on a graph G = (V, E) with |V | = n. It can be
represented as a quadratic integer program:

(QI-MC) Maximize
∑

eij2E

1−xi�xj

2

subject to:
xi ∈ {−1, 1} for 1 ≤ i ≤ n

The RPR2 Rounding Technique for Semidefinite Programs 217

The above program can be understood as follows. With each vertex i ∈ V we
associate a variable xi, and the value of xi (which is either +1 or −1) indicates
in which side of the cut the respective vertex is placed. For each edge eij ∈ E, if
xi 6= xj (corresponding to the case in which eij is cut) then the value of 1−xi·xj

2
is 1, and if xi = xj then this value is 0.

The requirement xi ∈ {−1, 1} can be relaxed by representing each variable
xi by a unit n-dimensional vector vi ∈ Sn (here Sn is the unit sphere) and the
multiplication xi · xj by the inner product 〈vi, vj〉.
(SDP-MC) Maximize

∑
eij2E

1−hvi,vji
2

subject to:
vi ∈ Sn for 1 ≤ i ≤ |V |

As every solution of (QI-MC) is also a solution of (SDP-MC), the value of
(SDP-MC) is at least as large as that of (QI-MC). (SDP-MC) can be solved
(up to arbitrary precision) in polynomial time using semidefinite programming
(see [GW95]). A solution to (SDP-MC) is a set of unit vectors in Rn, rather
than a cut of G. To obtain a cut (U, V \ U) of G we round the set of optimal
vectors v1 . . . vn obtained by solving (SDP-MC). One such rounding technique,
presented by Goemans and Williamson [GW95] is the random hyperplane round-
ing technique.

Let r = r1 . . . rn be a random variable with an n dimensional standard nor-
mal distribution (i.e. each coordinate ri is an independent random variable with
standard normal distribution). It can be seen that r is spherically symmetric,
namely the direction specified by the vector r ∈ Rn is uniformly distributed (see
for instance [Ren70]). In the random hyperplane rounding technique a random
vector r of the above distribution is chosen and the vectors v1 . . . vn are parti-
tioned into two sets according to the sign of the inner product 〈vi, r〉. That is, a
cut (U, V \ U) is defined by the set U = {i | 〈vi, r〉 > 0} .

Using the semidefinite program (SDP-MC) and the random hyperplane
rounding technique, [GW95] obtain a 0.87856 approximation ratio for the Max-
Cut problem. A number of other approximation algorithms for various problems
have been designed using semidefinite programming and variations of the random
hyperplane rounding technique (for example [FG95,KMS98,FJ97,KZ97,Zwi99],
[Ye99,FKL00]). In some of these algorithms, the vectors v1 . . . vn obtained by
solving a semidefinite relaxation are rearranged prior to the use of random hy-
perplane rounding.

One method used to rearrange the vectors v1 . . . vn is outward rotations
[Nes98,Ye99,Zwi99]. Let γ ∈ [0, 1]. Given a set of vectors v1 . . . vn in Rn, ob-
tained by the solution of a semidefinite program, the γ-outward rotation of
v1 . . . vn are a set of new vectors v̂1 . . . v̂n in R2n. The vector v̂i is defined to
be

√
1 − γvi +

√
γei ∈ R2n where the original vectors vi are viewed as vectors in

R2n (Rn being a subspace of R2n) and e1 . . . en are a set of orthonormal vectors
in R2n that are also orthogonal to the vectors v1 . . . vn. In general, when γ = 1
the γ-outward rotation of the vectors v1 . . . vn is a new vector configuration in
which all vectors are orthogonal, and when γ = 0 the γ-outward rotation does
not change the vectors v1 . . . vn. For intermediate γ, the γ-outward rotation is

218 U. Feige and M. Langberg

somewhere in between. Outward rotation has been used in the design of ap-
proximation algorithms for special instances of the Max-Cut problem, and other
problems closely related to Max-Cut (for example [Zwi99,Ye99,HZ00]).

3 Random Projection, Randomized Rounding (RPR2)

Let v1 . . . vn be a set of vectors obtained by the solution of a semidefinite relax-
ation. We define a family of rounding procedures parameterized by a function
f : R → [0, 1]. We denote this family of rounding procedures as the random
projection, randomized rounding (RPR2) family. An RPR2 procedure using f
has two steps and is defined as:

Step 1 (Projection): Project the vectors v1 . . . vn onto a random one dimen-
sional subspace (i.e. a line). This is done by choosing a random variable r with
n dimensional standard normal distribution, and projecting each vi onto the one
dimensional subspace containing r. For each i, let xi be the directed distance
(times ‖r‖) of the projected vector vi from the origin (i.e. xi = 〈vi, r〉).
Step 2 (Randomized rounding): Define the {0, 1} solution a1 . . . an: for each
i set ai to be 1 independently with probability f(xi).

The standard random hyperplane rounding technique presented in [GW95]
in the approximation of the Max-Cut problem is a member of the RPR2 family.
The function f corresponding to random hyperplane rounding is the function
which is 1 for all x > 0, and zero otherwise. Later in this section we show that the
outward rotation rounding technique is also a special case of RPR2. In Section 4
we study the use of RPR2 on the “light” Max-Cut problem and on the Max-
Bisection problem. For both these problems outward rotation was used in order
to obtain the previously best approximation ratios. We show functions f which
when used in RPR2 give better approximation ratios.

Analyzing RPR2: Let v1 . . . vn be the solution of a semidefinite relaxation on
a given graph G = (V, E), and let a1 . . . an be the {0, 1} solution obtained by
using RPR2 with some function f . An edge eij is cut if ai 6= aj . As RPR2 is a
randomized procedure, the number of edges cut is a random variable. We wish
to compute its expectation. For this, we analyze the probability of the event
“ai 6= aj”.

Let r = r1 . . . rn be an n dimensional standard normal vector. In general,
given r, the probability that “ai 6= aj” depends on the vectors vi, vj , and the
function f . Hence, integrating over all possible r one can compute the probability
of this event. However, as r is spherically symmetric this probability can be
computed using two independent standard normal random variables r1, r2, and
the angle between vi and vj alone. Given two vectors vi and vj that form an
angle of θij , let Pf (θij) denote the probability that the corresponding values
ai and aj differ. Let φ(x) = 1√

2π
e−x2/2 be the density function of a standard

normal random variable. The following lemma is straightforward (details appear
in [FL01]).

The RPR2 Rounding Technique for Semidefinite Programs 219

Lemma 1. Let θ ∈ [0, π], z(r1, r2) = cos(θ)r1 + sin(θ)r2.

Pf (θ) =
∫ 1

−1

∫ 1

−1
[f(r1)(1 − f(z(r1, r2))) + f(z(r1, r2))(1 − f(r1))]φ(r1)φ(r2)dr1dr2

By linearity of expectation, the expected number of edges cut is
∑

eij∈E Pf (θij),
where θij is the angle formed by the vectors vi and vj corresponding to eij .
Dividing this value by |E| we get the expected fraction of edges cut, which we
denote by E[Cutf].

For an edge that makes an angle of θ, let SDP (θ) = (1 − cos θ)/2 be its
contribution to the semidefinite program. Then a convenient lower bound on the
approximation ratio achieved for Max-Cut by RPR2 with a rounding function f
is minθ>0 Pf (θ)/SDP (θ). For light Max-Cut, this lower bound is too pessimistic.
The angle θ minimizing the above expression cannot hold simultaneously for all
edges, because then the graph would contain a cut that is too large. A stronger
lower bound on the approximation ratio can be derived by more detailed anal-
ysis, following principles outlined in [Zwi99]. For Max-Bisection, there are more
complications, because the cut obtained by the rounding technique is not nec-
essarily a bisection. An additional step of moving vertices from the larger side
to the smaller one is used, and analyzing its effect (or at least, providing lower
bounds), can be done using the techniques outlined in [FJ97,Ye99,HZ00]. The
numerical bounds for the approximation ratios that are presented in this paper
were derived by using analysis that follows the principles developed in [FJ97,
Zwi99,Ye99,HZ00]).

Outward rotation is a special case of RPR2: Let v1 . . . vn be as above. Let γ
be some value in [0, 1]. Recall that the γ-outward rotation v̂1 . . . v̂n of the vectors
v1 . . . vn is defined by v̂i =

√
1 − γvi +

√
γei ∈ R2n.

In the standard use of outward rotation, a {0, 1} solution a1 . . . an is ob-
tained by rounding the vectors v̂1 . . . v̂n by a random hyperplane. Specifically
let r = r1 . . . r2n be a random vector with a 2n-dimensional standard normal
distribution. Define the solution a1 . . . an by setting ai to be one iff the inner
product 〈v̂i, r〉 is positive. It is convenient to describe the solution a1 . . . an as
the subset U = {i ∈ V | ai = 1} of V , i.e. U = {i ∈ V | 〈v̂i, r〉 > 0}. Using the
definition of v̂i and the spherical symmetry of r, we have that the set U obtained
is equal to {i ∈ V | √

1 − γ〈v, r1 . . . rn〉 +
√

γrn+i > 0}.
We would like to obtain the exact set U without the use of outward ro-

tations. Instead we would like to use RPR2. Let φ(x) = 1√
2π

e−x2/2 and
Φ(x) =

∫ x

−∞ φ(x)dx be the density function and distribution function of a stan-
dard normal random variable. We obtain the following theorem (detailed proof
can be found in [FL01]).

Theorem 2. For any γ ∈ [0, 1], let fγ = Φ
(
x
√

1−γ
γ

)
. Using RPR2 with fγ is

equivalent to γ-outward rotation followed by random hyperplane rounding.

In cases where outward rotation is used, it is natural to ask whether RPR2 in
combination with a different rounding function f can give better approximation

220 U. Feige and M. Langberg

ratios. It is our belief that the answer to this question is in general positive.
That is, whenever outward rotation gives better approximation ratios than the
random hyperplane rounding technique, one should expect RPR2 to offer further
improvements.

Let us note that for RPR2, if we restrict ourselves to nice behaving rounding
functions, finding the optimal rounding function f is not really a problem. For
any fixed ε > 0, there is a constant number of functions f (where this constant
depends exponentially on 1/ε) such that at least one of them has expected ap-
proximation ratio within an additive error of at most ε from the optimal f . (This
can be shown using concepts such as ε-nets.) An RPR2 algorithm can even try
out all these functions at run time and take the best result obtained. Hence, we
may always assume that RPR2 is performed with the best possible rounding
function. The problem is in analyzing the approximation ratio that one obtains.
Here it is useful to select one particular easy to analyze rounding function f ,
to compute the expected approximation ratio that this f gives, and use it as a
lower bound on the approximation ratio of the RPR2 scheme. In this respect,
outward rotations are helpful, as they can be analyzed not only using the inte-
grals of Lemma 1, but also via other techniques (as in [Ye99,Zwi99]), and these
other techniques are often simpler to use. It would be fair to say that previous
work on outward rotation served as inspiration to much of the work reported in
the current paper.

4 Applications of RPR2

Light Max-Cut:

Let G = (V, E) be a given graph, let v1 . . . vn be the optimal vector configuration
obtained by solving the semidefinite relaxation (SDP-MC) presented in [GW95]
(and in Section 2) of G, and let Z be the value of this relaxation. Can RPR2

(with some specific f) be used on the Max-Cut problem in order to improve the
approximation ratio of α ' 0.87856 proved in [GW95] ? If we define α to be the
ratio between the expected value of the cut obtained using RPR2, and the value
of the semidefinite relaxation Z, the answer is negative. This is due to a recent
work of Feige and Schechtman [FS01] that shows that the integrality gap of this
relaxation is arbitrarily close to 1/α. Therefore, we will not try to improve the
approximation ratio α on general instances G. Instead we shall consider special
cases of Max-Cut.

Consider parameterizing the instances of Max-Cut according to the ratio
between the value of the semidefinite relaxation Z and the total number of edges
W . Goemans and Williamson [GW95] study Max-Cut restricted to instances
G for which this ratio is greater that 0.844. For each value t ∈ (0.844, 1], they
show that using standard random hyperplane rounding on instances G for which
Z = tW , will yield a cut of value at least αtZ where αt > α (this implies an
approximation ratio of αt). In [FS01] it is shown that the integrality gap of
(SDP-MC) on these restricted instances is arbitrarily close to 1/αt. Therefore,

The RPR2 Rounding Technique for Semidefinite Programs 221

we will not try to improve the algorithm of [GW95] restricted on such instances
either.

Zwick [Zwi99] studies Max-Cut restricted to instances G for which Z = tW
and t < 0.844. We call this “light” Max-Cut. For these instances Zwick shows
how to obtain approximation ratios αt > α, using outward rotation followed
by random hyperplane rounding. The value of the integrality gap (SDP-MC)
on these restricted instances is not clear. We analyze the use of RPR2 on light
Max-Cut. Roughly speaking, we show (a) Necessary conditions for a rounding
function f to be the one that maximizes the expected value of the cut obtained by
RPR2. (b) Outward rotation (a special case of RPR2) is not the best rounding
function for RPR2, as it does not satisfy these necessary conditions. (c) We
present an s-linear rounding function that gives an approximation ratio strictly
above the ratio of αt presented in [Zwi99]. We suspect that RPR2 (with the
optimal choice of f) achieves an approximation ratio that matches the inverse
of the integrality gap of (SDP-MC) (as a function of t). We are trying to extend
the techniques of [FS01] in order to prove this.

Our analysis involves the numerical evaluation of double integrals (presented
in Lemma 1). These evaluations have been performed using MATLAB functions
within precision of 10−6. As such computations are time consuming, item (b)
and (c) above are shown for a few values of t (namely t = 0.55, 0.6, 0.7).

Properties of the best function f for RPR2: Given a graph G = (V, E)
and a set of vectors v1 . . . vn obtained by solving (SDP-MC) on G, let E[Cutf]
be the expected fraction of edges cut by using RPR2 with a function f . Call a
function well behaved if it is piecewise continuous. We are interested in finding
a well behaved function f∗ that maximizes E[Cutf].

For light Max-Cut we identify a necessary condition for any well behaved
function f that maximizes E[Cutf]. We use this necessary condition to prove
that the functions f corresponding to outward rotation are not optimal. More-
over, this necessary condition helps to guide us in finding a better rounding
function (in our case, an s-linear function), without resorting to a tedious ex-
haustive search type approach for such a function (as mentioned in Section 3).

A natural property that one could expect from an optimal function f∗ is that
rounding the vectors v1 . . . vn using RPR2 with f∗ yields a cut (U, V \U) which
is expected to be locally optimal (i.e. there are no vertices with an expected
majority of neighbors on their side of the cut). For instance for the function
f(x) ≡ 1/2 this property holds. The necessary condition we suggest is closely
related to this “local optimality” property.

Let G = (V, E) be a given graph and v1 . . . vn be the set of vectors obtained
by solving (SDP-MC) on G. Let f be some RPR2 function. Recall that Pf (θ)
(defined in Lemma 1) measures the probability that using RPR2 with the func-
tion f , two vectors vi and vj that form an angle of θ have corresponding values
ai and aj that differ. Let E[Cutf] be the expected fraction of edges cut by us-
ing RPR2 with f . That is, E[Cutf] is a normalized sum of Pf (θij), where θij

is the angle between the vectors corresponding to edges eij in E. Consider the
probability Pf (θij) conditioned on the event that the inner product between vi

222 U. Feige and M. Langberg

and the random vector r used in RPR2 is fixed to be a specific value r1. We
denote this probability as Pf (θij)|r1. Define E[Cutf | r1] as the corresponding
normalized sum of Pf (θij)|r1.

Theorem 3. If f∗ is an optimal (well behaved) RPR2 function then for all r1 we
have that E[Cutf∗ | r1] ≥ 1/2 with equality if 0 < f(r1) < 1 (i.e. f(r1) 6∈ {0, 1}).

Proof of the above theorem appears in [FL01]. We would like to note that our
proof is done in a constructive manner. That is, if f is some RPR2 function
that does not satisfy the above conditions in some interval ∆, we show how to
modify f in ∆ to obtain a new function f∗ such that E[Cutf∗] > E[Cutf], thus
implying that f is not optimal.

Outward rotation is not the best function for RPR2: For an instance
G = (V, E) of Max-Cut, let W = |E|, let v1 . . . vn be the vector configuration
obtained by solving relaxation (SDP-MC) on G and let Z be the value of the
relaxation. Let t ∈ [0.5, 0.844). Assume a graph G = (V, E), with a corresponding
vector configuration v1 . . . vn of value Z = tW . In [Zwi99] it is shown that
rounding v1 . . . vn using γ-outward rotation, an expected approximation ratio
strictly above αt will be obtained unless for each edge eij in E, the corresponding
vectors vi and vj form an angle of either zero or θt (where θt is some specific
angle greater than π/2 that depends on t).

In other words, only on graphs G = (V, E) with a corresponding vector con-
figuration in which a δ fraction of edges eij in E have corresponding vectors vi

and vj that form an angle of zero, and a 1− δ fraction of edges have correspond-
ing vectors that form an angle of θt, does the algorithm of [Zwi99] obtain an
approximation ratio of no better than αt. On all other graphs the algorithm of
[Zwi99] has an approximation ratio strictly greater than αt.

Let fγ be the RPR2 function corresponding to γ-outward rotation. It can
be seen ([FL01]) that for such worst case graphs there exists a non negligible
interval ∆ ⊆ R, and a constant ε > 0 such that E[Cutfγ | r1] < 1/2 − ε for all
r1 ∈ ∆ (for instance for t = 0.6 we have E[Cutfγ | r1] < 0.493 for r1 ∈ [0.3, 0.4]).
By a quantitative version of Theorem 3 we may construct a new function f∗ by
modifying fγ in the interval ∆ such that E[Cutf∗] > E[Cutfγ

] + poly(ε). We
conclude

Theorem 4. There exists a constant ε > 0, such that using RPR2 on the worst
case graphs of [Zwi99] an approximation ratio of αt + ε can be obtained.

This implies an improved approximation algorithm for Max-Cut on general in-
stances G with Z = tW . If the given graph has a vector configuration close
to the worst case configuration use the best function for RPR2, otherwise use
the original algorithm of [Zwi99] (we rely on the fact that RPR2 rounding is
continuous with respect to the vector configuration v1 . . . vn).

As noted previously, our analysis involves the numerical evaluation of inte-
grals, thus the above theorem has been proven for t = 0.55, 0.6, 0.7. We have no
reason to believe that our results depend on these particular values of t.

An example for superior RPR2 functions: We have shown that an ap-
proximation ratio greater than αt can be obtained on graphs G with Z = tW

The RPR2 Rounding Technique for Semidefinite Programs 223

by improving the approximation ratio obtained on worst case graphs of [Zwi99].
Following we show that such an improvement can be proven directly. That is,
given a value t and a graph G with Z = tW , we are interested in proving a lower
bound on the expected value of the cut obtained by RPR2. This can be done by
choosing some function f , and analyzing the value of Pf (θ) for every θ ∈ [0, π].

Let s be some threshold, recall that an s-linear function f∗
s is the continu-

ous function that is zero for all x ≤ −s, one for all x ≥ s, and linear for all
x ∈ (−s, s). By replacing the function fγt

that corresponds to outward rotation,
by an s-linear function f∗

s the following approximation ratios were achieved. For
t = 0.55 and s = 0.96 a ratio of 0.942562 (as opposed to 0.941282 of [Zwi99]),
for t = 0.6 and s = 0.635 a ratio of 0.912809 (as opposed to 0.911890 of [Zwi99]),
and for t = 0.7 and s = 0.263 a ratio of 0.886453 (as opposed to 0.886251 of
[Zwi99]). The functions f∗

s are not claimed to be optimal, but as we have checked
many different functions, we believe that they are close to being so. Hence, it
seems that the original functions corresponding to outward rotation are very
close to being optimal.

Max-Bisection:

Given a graph G = (V, E) the Max-Bisection problem is the problem of finding
a partition (U, V \U) of V into two equally sized sets (i.e. a bisection of V) that
maximizes the number of edges cut by the partition. A number of approximation
algorithms for Max-Bisection based on semidefinite programming have been sug-
gested [FJ97,Ye99,HZ00], yielding approximation ratios of 0.6514, 0.699, 0.7016
respectively. In these algorithms, a semidefinite relaxation of Max-Bisection is
solved yielding a set of vectors v1 . . . vn. These vectors are then rounded (using
the random hyperplane or outward rotation technique) in order to obtain a cut
(U, V \U) of G. This cut is not necessarily a bisection, thus the cut (U, V \U) is
modified by moving vertices from the large side of the cut to the smaller side
until both sides are equal. As in the case of Max-Cut, we analyze the use of
RPR2 in the algorithm above and conclude the following theorem (our analysis
is based on that presented in [HZ00]).

Theorem 5. Using RPR2 with a 0.605-linear rounding function, Max-
Bisection can be approximated within an approximation ratio of 0.7027.

5 Conclusions

Many questions remain open, but seem within reach. For “light” Max Cut, we
suspect that RPR2 (with the optimal choice of f) achieves an approximation
ratio that matches the integrality ratio (as a function of the relative size of the
maximum cut). We are trying to extend the techniques of [FS01] in order to
prove this. For Max Bisection, we suspect that more substantial improvements
of the approximation ratio can be proven for other choices of rounding function
f . For some other problems, especially those currently analyzed using outward
rotation (such as Not-All-Equal-3SAT [Zwi99]), it is natural to assume that the
approximation ratio can be improved using RPR2, but this needs to be seen.

224 U. Feige and M. Langberg

Acknowledgments. The first author is the Incumbent of the Joseph and Celia
Reskin Career Development Chair. The second author would like to thank Naftali
Langberg for helpful discussions. This research was supported in part by project
RAND APX of the European Community.

References

[FG95] U. Feige and M.X. Goemans. Approximating the value of two prover proof
systems with applications to Max-2-Sat and Max-Dicut. Proc. of the 3rd Is-
rael Symposium on Theory of Computing and Systems, pages 182–189, 1995.

[FJ97] A. Frieze and M. Jerrum. Improved approximation algorithms for Max-k-Cut
and Max-Bisection. Algorithmica, 18:67–81, 1997.

[FKL00] U. Feige, M. Karpinski, and M. Langberg. Improved approximation of Max-
Cut on graphs of bounded degree. ECCC, TR00-021, 2000.

[FL01] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite
programs. Manuscript, http://www.wisdom.weizmann.ac.il/∼mikel, 2001.

[FS01] U. Feige and G. Schechtman. On the optimality of the random hyperplane
rounding technique for MAX CUT. Manuscript, 2001.

[GW94] M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for
the maximum satisfiability problem. SIAM Journal on Discrete Mathematics,
7(4):656–666, 1994.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of ACM, 42:1115–1145, 1995.

[Hoc82] D.S. Hochbaum. Approximation algorithms for the set covering and vertex
cover problem. SIAM J. of Computing, 11(3):555–556, 1982.

[HZ00] E. Halperin and U. Zwick. Improved approximation algorithms for maximum
graph bisection problems. Manuscript, 2000.

[KMS98] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by
semidefinite programming. Journal of ACM, 45(2):246–265, 1998.

[KZ97] H. Karloff and U. Zwick. A 7/8-approximation algorithm for Max-3-Sat? In
Proceedings of the 38th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 406–415, 1997.

[Nes98] Y. E. Nesterov. Semidefinite relaxation and nonconvex quadratic optimiza-
tion. Optimization Methods and Software, 9:141–160, 1998.

[Ren70] A. Renyi. Probability theory. Elsevier, New York, 1970.
[RT87] P. Raghavan and C.D. Thompson. Randomized rounding : A technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(7):365–
374, 1987.

[Ye99] Y. Ye. A 0.699-approximation algorithm for Max-Bisection. Manuscript,
available at URL http://dollar.biz.uiowa.edu/col/ye/, 1999.

[Zwi99] U. Zwick. Outward rotations: a new tool for rounding solutions of semidefi-
nite programming relaxations, with application to Max-Cut and other prob-
lems. In Proceedings of the 31th ACM Symposium on Theory of Computing,
pages 679–687, 1999.

Approximation Algorithms for Partial Covering
Problems

Extended Abstract

Rajiv Gandhi1, Samir Khuller2, and Aravind Srinivasan3

1 Department of Computer Science, University of Maryland, College Park, MD
20742. Research supported by NSF Award CCR-9820965.

gandhi@cs.umd.edu.
2 Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742. Research supported by NSF Award
CCR-9820965 and an NSF CAREER Award CCR-9501355.

samir@cs.umd.edu.
3 Bell Labs, Lucent Technologies, 600-700 Mountain Avenue, Murray Hill, NJ 07974.

srin@research.bell-labs.com.

Abstract. We study the generalization of covering problems to partial
covering. Here we wish to cover only a desired number of elements,
rather than covering all elements as in standard covering problems. For
example, in k-set cover, we wish to choose a minimum number of sets
to cover at least k elements. For k-set cover, if each element occurs in
at most f sets, then we derive a primal-dual f -approximation algorithm
(thus implying a 2-approximation for k-vertex cover) in polynomial
time. In addition to its simplicity, this algorithm has the advantage
of being parallelizable. For instances where each set has cardinality
at most three, we obtain an approximation of 4/3. We also present
better-than-2-approximation algorithms for k-vertex cover on bounded
degree graphs, and for vertex cover on expanders of bounded average
degree. We obtain a polynomial-time approximation scheme for k-vertex
cover on planar graphs, and for covering points in Rd by disks.

Keywords and Phrases: Approximation algorithms, partial covering,
set cover, vertex cover, primal-dual methods, randomized rounding.

1 Introduction

Covering problems are widely studied in discrete optimization: basically, these
problems involve picking a least-cost collection of sets to cover elements. Classi-
cal problems in this framework include the general set cover problem, of which a
widely studied special case is the vertex cover problem. (The vertex cover prob-
lem is a special case of set cover in which the edges correspond to elements and
vertices correspond to sets; in this set cover instance, each element is in exactly
two sets.) Both these problems are NP-hard and polynomial-time approximation
algorithms for both are well studied. For set cover see [8,23,26]. For vertex cover
see [3,4,9,18,19,27].

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 225–236, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

226 R. Gandhi, S. Khuller, and A. Srinivasan

In this paper we study the generalization of “covering” to “partial covering”
[24,28]. Specifically, in k-set cover, we wish to find a minimum number (or, in
the weighted version, a minimum weight collection) of sets that cover at least
k elements. When k is the total number of elements, we obtain the regular set
cover problem; similarly for k-vertex cover. (We sometimes refer to k-set cover as
“partial set cover”, and k-vertex cover as “partial vertex cover”; the case where
k equals the total number of elements is referred to as “full coverage”.) This
generalization is motivated by the fact that real data (in clustering for example)
often has errors (also called outliers). Thus, discarding the (small) number of
constraints posed by such errors/outliers is permissible. Suppose we need to
build facilities to provide service within a fixed radius to a certain fraction of
the population. We can model this as a partial set cover problem. The main
issue in partial covering is: which k elements should we choose to cover? If such
a choice can be made judiciously, we can then invoke a set cover algorithm. Other
facility location problems have recently been studied in this context [7].

Regarding vertex cover, a very simple approximation algorithm for the un-
weighted case is attributed to Gavril and Yannakakis, and can be found, e.g.,
in [10]: take a maximal matching and pick all the matched vertices as part of
the cover. The size of the matching (number of edges) is a lower bound on the
optimal vertex cover, and this yields a 2-approximation. This algorithm fails for
partial covering, since the lower bound relies on the fact that all the edges have
to be covered: in general, approximation algorithms for vertex cover may return
solutions that are much larger than the optimal value of a given k-vertex cover
instance. The first approximation algorithm for k-vertex cover was given in [6].
Their 2-approximation algorithm is based on a linear programming (LP) for-
mulation: suitably modifying and rounding the LP’s optimal solution. A faster
approximation algorithm achieving the same factor of 2 was given in [21]; here,
the key idea is to relax the constraint limiting the number of uncovered elements
and searching for the dual penalty value. More recently, a 2-approximation based
on the elegant “local ratio” method was given in [5].

Problem Definitions and Previous Work
k-Set Cover: Given a set T = {t1, t2, . . . , tn}, a collection S of subsets of T ,
S = {S1, S2, . . . , Sm}, a cost function c : S → Q+, and an integer k, find a
minimum cost sub-collection of S that covers at least k elements of T .

For the full coverage version, a ln n+1 approximation was proposed in [23,26].
This analysis of the greedy algorithm can be improved to H(∆) (see the proof
in [10]) where ∆ is the size of the largest set. (H(k) .=

∑k
i=1 1/i = ln k + Θ(1).)

Chvátal [8] generalized this to the case when sets have costs. Slav́ik [29] shows
the same bound for the partial cover problem. When ∆ = 3, Duh and Fürer
[11] gave a 4/3-approximation for the full coverage version. They extended this
result to get a bound of H(∆) − 1

2 for full coverage. When an element belongs
to at most f sets Hochbaum [18] gives a f -approximation.
k-Vertex Cover: Given a graph G = (V, E), a cost function c : V → Q+, and
an integer k, find a minimum cost subset of V that covers at least k edges of G.

Several 2-approximation algorithms are known for this; see [6,21,5].

Approximation Algorithms for Partial Covering Problems 227

Geometric Covering Problem: Given n points in a plane, find a minimally
sized set of disks of diameter D that would cover at least k points.

Previous Results: The full coverage version is well-studied. This problem is
motivated by the location of emergency facilities as well as from image processing
(see [20] for additional references). For the special case of geometric covering
problems, a polynomial-time approximation scheme is shown in [22].

Our Results
Full proofs of the claims in this paper are given in [12].

k-Set Cover: For the special case when each element is in at most f sets, we
combine a primal-dual algorithm [9,15] with a thresholding method to obtain an
f -approximation. One advantage of our method, in addition to its simplicity, is
that it can be easily parallelized by changing the algorithm slightly. The resulting
approximation factor is f(1+ε), where ε > 0 is any desired constant. The number
of parallel rounds is O(log n) once we fix ε > 0. The number of processors
required in linear in the problem size. This is the first parallel approximation
algorithm for any partial covering problem. For set cover where the sets have
cardinality at most ∆ there are results (starting from [13,16]) by Duh and Fürer
[11] for set cover (full coverage) that improve the H(∆) bound to H(∆) − 1

2 .
For example, for ∆ = 3 they present a 4

3 (= H(3) − 1
2) approximation using

“semi-local” optimization rather than a 11
6 -approximation obtained by the simple

greedy algorithm. For the case ∆ = 3, we can obtain a 4
3 bound for the partial

coverage case.

k-Vertex Cover: By switching to a probabilistic approach to rounding the LP
relaxation of the problem, we obtain improved results for k-vertex cover, where
we wish to choose a minimum number of vertices to cover at least k edges.
An outstanding open question for vertex cover (full coverage) is whether the
approximation ratio of 2 is best-possible; see, e.g., [14]. Thus, it has been an
issue of much interest to identify families of graphs for which constant-factor
approximations better than 2 (which we denote by Property (P)) are possible.
In the full coverage case, Property (P) is true for graphs of bounded maximum
degree; see, e.g., [17]. How can we extend such a result? Could Property (P) hold
for graphs of constant average degree? This is probably not the case, since this
can be shown to imply Property (P) for all graphs. As a step toward seeing
which graph families of constant average degree enjoy property (P), we show
that for expander graphs of bounded average degree, Property (P) is true. We
also show Property (P) for k-vertex cover in the case of bounded maximum
degree and arbitrary k; this is the first Property (P) result for k-vertex cover, to
our knowledge. We also present certain new results for multi-criteria versions
of k-vertex cover.

Geometric Covering: There is a polynomial approximation scheme based on
dynamic programming for the full coverage version [22]. For the partial coverage
version since we do not know which k points to cover, we have to define a new
dynamic program. This makes the implementation of the approximation scheme
due to [22] more complex, although it is still a polynomial-time algorithm.

228 R. Gandhi, S. Khuller, and A. Srinivasan

k-Vertex Cover for Planar Graphs: We are able to use the dynamic program-
ming ideas developed for the geometric covering problem to design a polynomial-
time approximation scheme (PTAS) for k-vertex cover for planar graphs. This is
based on Baker’s method for the full covering case [2]. The details are omitted
from this extended abstract; the interested reader is referred to [12].

2 k-Set Cover

The k-Set Cover problem can be formulated as an integer program as follows. We
assign a binary variable xj for each Sj ∈ S i.e xj ∈ {0, 1}. In this formulation,
xj = 1 iff set Sj belongs to the cover. A binary variable yi is assigned to each
element ti ∈ T . yi = 1 iff ti is not covered. Clearly, there could be at most
n − k such uncovered elements. An LP relaxation is obtained by letting the
variables be reals in [0, 1]. The LP is to minimize

∑m
j=1 c(Sj) · xj , subject to:

(i) yi +
∑

j:ti∈Sj
xj ≥ 1, i = 1, 2, . . . , n; (ii)

∑n
i=1 yi ≤ n − k; (iii) xj ≥ 0,

j = 1, 2, . . . , m; and (iv) yi ≥ 0, i = 1, 2, . . . , n. The dual LP contains a variable
ui (for each element ti ∈ T) corresponding to each of the first n constraints in
the above LP. The dual variable z corresponds to the (n + 1)th constraint in the
above LP formulation. The dual LP is to maximize

∑n
i=1 ui − (n − k) · z subject

to: (i)
∑

i:ti∈Sj
ui ≤ c(Sj) for j = 1, 2, . . . , m, (ii) 0 ≤ ui ≤ z for i = 1, 2, . . . , n,

and (iii) z ≥ 0.
The algorithm SetCover does the following. The algorithm “guesses” the

set with the highest cost in the optimal solution by considering each set in turn
to be the highest cost set. For each set that is chosen, to be the highest cost set,
say Sj , Sj along with all the elements it contains is removed from the instance
and is included as part of the cover for this guess of the highest cost set. The
cost of all sets having a higher cost than c(Sj) is raised to ∞. Ij = (T j ,Sj , c′, kj)
is the modified instance. SetCover then calls Primal-Dual on Ij which uses
a primal dual approach [15] to return a set cover for Ij . In Primal-Dual, the
dual variables ui are increased for all ti ∈ T j until there exists a set Si such
that

∑
i:ti∈Si

ui = c′(Si). Sets are chosen this way until the cover is feasible.
The algorithm then chooses the minimum cost solution among the m solutions
found. The pseudo-code for this algorithm can be found in [12].

Theorem 1. SetCover(T ,S, c, k) returns a f-approximate solution, where f
is the highest frequency of any element i.e. an element appears in at most f sets.

Corollary 1. SetCover(E, V, c, k) gives a 2-approximate solution for k-Vertex
Cover.

2.1 Parallel Implementation of Partial Set Cover Algorithm

We assume as before that each element belongs to at most f sets. The frame-
work for the algorithm is the same as the one we described for the primal-
dual serial algorithm. The parallel algorithm runs in “rounds”. In each round,

Approximation Algorithms for Partial Covering Problems 229

we simultaneously raise all dual variables ui corresponding to the uncovered
elements. In the serial algorithm we pick one set in each iteration, namely
a set Sj such that (

∑
i:ti∈Sj

ui = c′(Sj)). (Recall that c′ denotes the modi-
fied cost function.) We change this step in the algorithm to pick all sets such
that (c′(Sj) − ∑

i:ti∈Sj
ui ≤ εc′(Sj)). (This condition will let us prove that

c′(Sj) ≤ (
∑

i:ti∈Sj
ui)/(1 − ε).) We stop as soon as we have covered at least

k elements. Suppose the algorithm covers at least k elements after ` rounds. The
main problem is that in the last round we can include many sets simultaneously,
while we can afford to include only a few. Let δ be the number of elements that
we need to cover after round `−1. To select an appropriate subset of the chosen
sets, we need to pick a minimal collection of chosen sets that cover at least δ
elements. To accomplish this, we order the sets chosen in the last iteration ar-
bitrarily. Now compute in parallel the “effective” number of elements each set
covers and choose a minimal collection based on the fixed ordering. (All these
steps can be implemented in parallel using prefix computations.)

Theorem 2. The parallel algorithm runs in (1 + f log(1/ε))(1 + log n) rounds,
with each round running in O(log n) time; the number of processors is linear in
the size of the input. The algorithm produces an f

1−ε -approximate solution.

3 Set Cover for Small Sets

Problem: Given a collection C of small subsets of a base set U . Each small
subset in the collection has size at most ∆, and their union is U . The objective
is to find a minimum size sub-collection that covers at least k elements.

Here we have the original partial set cover instance with the additional infor-
mation that the sets are of “small” size, i.e., ∆ is small. We obtain an approxima-
tion factor of 4/3 for the case when ∆ = 3 using the the idea of (s, t) semi-local
optimization [11]. This technique consists of inserting up to s 3-sets (sets of size
3) and deleting up to t 3-sets from the current cover. Then the elements that
are not covered by the 3-sets (already existing ones + the newly added) are
covered optimally using 2-sets and 1-sets. This can be solved in polynomial time
using maximum matching [13]. The vertices are the uncovered elements of U and
the edges are the admissible 2-sets. The 2-sets corresponding to the maximum
matching edges and the 1-sets corresponding to the vertices not covered by the
maximum matching form an optimum covering. We will order the quality of a
solution by the number of sets in the cover and among two covers of the same
size we choose the one with fewer 1-sets and if the covers have the same size and
neither cover has a 1-set we choose the one that covers more elements.

The algorithm starts with any solution. One solution can be obtained as
follows. Choose a maximal collection of disjoint 3-sets. Cover the remaining ele-
ments optimally using 2-sets and 1-sets. Perform semi-local (2, 1) improvements
until no improvement is possible.

The proof for the bound of 4/3 for full coverage does not extend to the partial
coverage version. For the full coverage, to prove the lower bound on the optimal

230 R. Gandhi, S. Khuller, and A. Srinivasan

solution Duh and Fürer construct a graph G in which the vertices are the sets
chosen by OPT and the edges are 1-sets and 2-sets of the approximate solution.
They prove that G can not have more than one cycle and hence argue that the
total number of 1-sets and 2-sets in the solution is a lower bound on OPT . This
works well for the full coverage version but breaks down for the partial covering
problem. For the partial covering case G having at most one cycle is a necessary
but not a sufficient condition to prove the lower bound.

In the full version of the problem, to bound the number of 1-sets in the solu-
tion they construct a bipartite graph with the two sets of vertices corresponding
to the sets chosen by the approximate solution and OPT . If a set corresponding
the approximate solution intersects a set corresponding to OPT in m elements
then there are m edges between their corresponding vertices in the graph. In each
component of the graph they show that the number of 1-sets of the solution in
that component is at most the number of 1-sets of OPT in that component.
This is clearly not the case in the partial covering case. We obtain a bound on
the number of 1-sets as a side effect of the proof for the lower bound on OPT .

Theorem 3. The semi-local (2, 1)-optimization algorithm for 3-set partial cov-
ering problem produces a solution that is within 4

3OPT + 1.

4 Probabilistic Approaches for k-Vertex Cover

We now present a randomized rounding approach to the natural LP relaxation
of k-vertex cover. Analyzed in three different ways, this leads to three new ap-
proximation results mentioned in §1: relating to vertex cover (full coverage) for
expander graphs of constant average degree, k-vertex cover on bounded-degree
graphs, and multi-criteria k-vertex cover problems. The k-vertex cover problem
on a graph G = (V, E) can be formulated as an integer program as follows. We
assign binary variables xj for each vj ∈ V and zi,j for each (i, j) ∈ E. Here,
xj = 1 iff vertex vj belongs to the cover, and zi,j = 1 iff edge (i, j) is covered.
The LP relaxation is obtained by letting each xj and zi,j lie in [0, 1]:

min
n∑

j=1

xj subject to

xi + xj ≥ zi,j , (i, j) ∈ E (1)
∑

(i,j)∈E

zi,j ≥ k (2)

xj , zi,j ∈ [0, 1], ∀i, j.

Our basic approximation recipe will be as follows. The LP relaxation is solved
optimally. Let {x∗

i }, {z∗
i,j} denote an optimal LP solution, and let λ = 2(1 − ε),

where ε ∈ [0, 1/2] is a parameter that will be chosen based on the application.
Let S1 = {vj |x∗

j ≥ 1/λ}, and S2 = V − S1. Include all the vertices in S1 as

Approximation Algorithms for Partial Covering Problems 231

part of our cover, and mark the edges incident on vertices in S1 as covered. Now
independently for each j ∈ S2, round xj to 1 with a probability of λx∗

j , and
to 0 with a probability of 1 − λx∗

j . Let W be the random variable denoting the
number of covered edges at this point. If W < k, we choose any k−W uncovered
edges and cover them by arbitrarily choosing one end-point for each of them.

We now introduce some notation to analyze the above process. Throughout,
we let Pr[·] and E[·] denote probability and expectation, respectively. Let y∗

represent the optimal objective function value of the LP, and define S0 ⊆ S1 by
S0 = {vj : x∗

j = 1}. Let y∗
F and y∗

P be the contribution to y∗ of the vertices in S0
and V − S0 respectively. Denote by Ui,j the event that edge (i, j) is uncovered.
Let C1 be the cost of the solution produced by our randomized scheme before
the step of covering k − W edges if necessary, and let C2 be the cost incurred in
covering these k − W edges, if any. The total cost C is of course C1 + C2; thus,
E[C] = E[C1] +E[C2]. Now, it is easy to check that E[C1] ≤ y∗

F +λy∗
P , and that

E[C2] ≤ E[max{k − W, 0}]. So we have

E[C] ≤ y∗
F + λy∗

P + E[max{k − W, 0}]. (3)

As usual, let E denote the complement of an event E . Lemma 1 on the statis-
tics of W will be useful; we only give a proof sketch here.

Lemma 1. (i) E[W] ≥ k(1−ε2). (ii) Suppose the graph G has maximum degree
d. Then, the variance Var[W] of W is at most dE[W].

Proof. (i) Consider any edge (i, j). Now if x∗
i ≥ 1/λ or x∗

j ≥ 1/λ, Pr[Ui,j] = 0;
otherwise, Pr[Ui,j] = (1 − λx∗

i)(1 − λx∗
j). In the latter case, since x∗

i + x∗
j ≥ z∗

i,j

and z∗
i,j ∈ [0, 1], we can show that Pr[Ui,j] ≤ (1 − λz∗

i,j/2)2 ≤ 1 − z∗
i,j(1 − ε2).

Since E[W] =
∑

(i,j)∈E Pr[Ui,j], we get E[W] ≥ k(1 − ε2).
(ii) We have W =

∑
(i,j)∈E Ui,j . It can be checked that if a random variable

W ′ is the sum of pairwise independent random variables each of which lies in
[0, 1], then Var[W ′] ≤ E[W ′]. However, the terms Ui,j that constitute W do have
some dependent pairs: if edges (i, j) and (i′, j′) share an endpoint, then Ui,j and
Ui′,j′ are dependent. Define γ to be the sum, over all unordered pairs of distinct
edges (i, j) and (i′, j′) that share an end-point, of Pr[Ui,j∧Ui′,j′]. Using the above
observations and the definition of variance, we can show that Var[W] ≤ E[W]+γ.
Now, for any term p

.= Pr[Ui,j ∧ Ui′,j′] in γ, p ≤ min{Pr[Ui,j], Pr[Ui′,j′]} ≤
(Pr[Ui,j]+Pr[Ui′,j′])/2. Finally, since each edge has at most 2(d−1) other edges
that share an end-point with it, we get

Var[W] ≤ E[W] + γ ≤ E[W] +
∑

(i,j)∈E

(2(d − 1)/2) · Pr[Ui,j] = dE[W].

4.1 Vertex Cover on Expanders

Suppose we have a vertex cover problem; i.e., k-vertex cover with k = m. The
LP relaxation here has “1” in place of “zi,j” in (1), and does not require the

232 R. Gandhi, S. Khuller, and A. Srinivasan

variables zi,j and the constraint (2). We focus here on the case of expander
graphs of constant average degree. That is, for some constants c and d, we are
studying graphs where: (i) the number of edges m is at most nd, and (ii) for any
set X of vertices with |X| ≤ n/2, at least c|X| vertices outside X have a neighbor
in X. Since k = m, it is well-known that we can efficiently compute an optimal
solution x∗ to the LP with all entries lying in {0, 1/2, 1}. Let H = {vj |x∗

j = 1/2}
and F = {vj |x∗

j = 1}. Also, since W ≤ k = m always holds, E[max{k −
W, 0}] = E[k −W] ≤ mε2, by Lemma 1(i). Thus, (3) shows that E[C] is at most
y∗

F + 2(1 − ε)y∗
H + mε2. (The overall approach of: (i) conducting a randomized

rounding and then doing a greedy fixing of violated constraints, and (ii) using an
equality such as our “E[max{k − W, 0}] = E[k − W]” here, is suggested in [30].
We next show how expansion is useful in bounding E[C] well. However, in the
context of partial covering, an equality such as “E[max{k − W, 0}] = E[k − W]”
does not hold; so, as discussed in §4.2 and §4.3, new analysis approaches are
employed there.) Choosing ε = y∗

H/m, we get

E[C] ≤ y∗
H(2 − y∗

H/m) + y∗
F . (4)

Case I: |H| ≤ n/2. By the LP constraints, the edges incident on vertices in H
must have their other end-point in F . Since G is an expander, |F | ≥ c · |H|. Also,
y∗

F = |F | and y∗
H = |H| /2. So, since y∗ = y∗

H + y∗
F , we have y∗

H = y∗/(1 + a) for
some a ≥ 2c. We can now use (4) to get

E[C] ≤ 2y∗
H + y∗

F = (2 − a/(1 + a))y∗ ≤ (2 − 2c/(1 + 2c))y∗.

Case II: |H| > n/2. So, we have y∗
H ≥ n/4. Bound (4) shows that E[C] ≤

(2 − y∗
H/m)y∗; we have m ≤ nd by assumption. So, E[C] ≤ (2 − 1/(4d))y∗.

Thus we see that E[C] ≤ [2 − min{2c/(1 + 2c), 1/(4d)}] · y∗; i.e., we get a
constant-factor approximation that is strictly better than 2.

4.2 k-Vertex Cover: Bounded-Degree Graphs

We now show that any constant d, k-vertex cover on graphs of maximum degree
at most d can be approximated to within 2(1 − Ω(1/d)), for any value of the
parameter k. We also prove that the integrality gap in this case is at most
2(1−Ω(1/d)). We start with a couple of useful tail bounds. First, suppose X is a
sum of independent random variables Xi each of which lies in [0, 1]; let E[X] = µ.
Then for any δ ∈ [0, 1], the Chernoff bound shows that Pr[X ≥ µ(1 + δ)] is at
most e−µδ2/3. Next, suppose X is a random variable with mean µ and variance
σ2; suppose a > 0. The Chebyshev-Cantelli inequality (see, e.g., [1]), shows
that Pr[X − µ ≤ −a] ≤ σ2/(σ2 + a2). We now analyze the performance of our
basic algorithm (of randomized rounding of the LP solution followed by a simple
covering of a sufficient number of edges), for the k-vertex cover problem on graphs
with maximum degree bounded by some given constant d. The notation remains
the same. The main problem in adopting the method of §4.1 here is as follows.
Since k equaled m there, we could use the equality E[max{k−W, 0}] = E[k−W],

Approximation Algorithms for Partial Covering Problems 233

thus substantially simplifying the analysis. Such an equality is not true here;
also, E[max{X, 0}] ≥ max{E[X], 0} for any random variable X. (The two sides
of this inequality may differ a lot: if X is the sum of n i.i.d. random variables
each of which is uniformly distributed on {−1, 1}, then the r.h.s. is zero, while
the l.h.s. is Θ(

√
n).) However, Lemma 1, Chebyshev-Cantelli, and a case analysis

of whether k ≥ 4d or not, can be used to show

Pr[W ≤ (k(1 − ε2) − 2
√

kd)] ≤ 1/5. (5)

Next, for a suitably large constant c0, we can assume that k ≥ c0d
5. (Any

optimal solution has size at most k, since in an optimal solution, every vertex
should cover at least one new edge. So if k is bounded by a constant–such as c0d

5–
then we can find an optimal solution in polynomial time by exhaustive search.)
Also, by adding all the constraints of the LP and simplifying, we get that y∗ ≥
k/d. Thus, letting δ = 1/(3d), a Chernoff bound shows that immediately after
the randomized rounding, the probability of having more than 2y∗(1 − ε)(1 + δ)
vertices in our initial cover is at most 1/5 (if the constant c0 is chosen large
enough). Recall (5). So, with probability at least 1− (1/5 + 1/5) = 3/5, the final
cover we produce is of size at most 2y∗(1 − ε)(1 + δ) + kε2 + 2

√
kd. We now

choose ε = y∗(1 + δ)/k; since y∗ ≥ k/d ≥ c0d
4 with c0 sufficiently large, some

simplification shows that the final cover size is at most 2y∗(1 − Ω(1/d)).

4.3 k-Vertex Cover: Multiple Criteria

We now briefly consider multi-criteria k-vertex cover problems on arbitrary
graphs. Here, we are given a graph G and, as usual, have to cover at least
k edges. We are also given ` “weight functions” wi, and want a cover that
is “good” w.r.t. all of these. More precisely, suppose we are given vectors
wi ∈ [0, 1]n, i = 1, 2, . . . , `, and a fractional solution x∗ to the k-cover problem
on G. Let wi = (wi,1, wi,2, . . . , wi,n), and define y∗

i =
∑

j wi,jx
∗
j for 1 ≤ i ≤ `.

We aim for an integral solution z such that for each i, yi =
∑

j wi,jzj is not
“much above” y∗

i . Multi-criteria optimization has recently received much atten-
tion, since participating individuals/organizations may have differing objective
functions, and we may wish to (reasonably) simultaneously satisfy all of them if
possible. The result we show here is that if y∗

i ≥ c1 log2(` + n) for all i (where c
is a sufficiently large constant), then we can efficiently find an integral solution
z with yi ≤ 2(1 + 1/

√
log(` + n))y∗

i for each i.

5 Geometric Packing and Covering

Recall this problem’s definition from §1. A polynomial-time approximation
scheme exists for the case when k = n (full covering). The algorithm uses a
strategy, called the shifting strategy. The strategy is based on a divide and con-
quer approach. The area, I, enclosing the set of given points is divided into strips
of width D. Let l be the shifting parameter. Groups of l consecutive strips, re-
sulting in strips of width lD are considered. For any fixed subdivision of I into

234 R. Gandhi, S. Khuller, and A. Srinivasan

strips of width D, there are l different ways of partitioning I into strips of width
lD. The l partitions are denoted by S1, S2, . . . , Sl. The solution to cover all the
points is obtained by finding the solution to cover the points for each partition,
Sj , 1 ≤ j ≤ l, and then choosing a minimum cost solution. A solution for each
partition is obtained by finding a solution to cover the points in each strip (of
width lD) of that partition and then taking the union of all such solutions. To
obtain a solution for each strip, the shifting strategy is re-applied to each strip.
This results in the partition of each strip into “squares” of side length lD. As
will be shown later, there exists an optimal covering for such squares.

We modify the use of shifting strategy for the case when k ≤ n (partial
covering). The obstacle in directly using the shifting strategy for the partial
covering case is that we do not know the number of points that an optimal
solution covers in each strip of a partition. This is not a problem with the full
covering case because we know that any optimal solution would have to cover all
the points within each strip of a partition. For the partial covering, this problem
is overcome by “guessing” the number of points covered by an optimal solution
in each strip. This is done by finding a solution for every possible value for the
number of points that can be covered in each strip and storing each solution. A
formal presentation is given below.

Let A be any algorithm that delivers a solution to cover the points in any
strip of width lD. Let A(Si) be the algorithm that applies A to each strip of
the partition Si and outputs the union of all disks in a feasible solution. We
will find such a solution for each of the l partitions and output the minimum.
Consider a partition Si containing p strips of width lD. Let nj be the number
of points in strip j. Let nOPT

j be the number of points covered by OPT in strip
j. Since we do not know nOPT

j , we will find feasible solutions to cover points for
all possible values of nOPT

j . Note that 0 ≤ nOPT
j ≤ k′

j = min(k, nj). A dynamic
programming formulation is as follows:

C(x, y) = min
0≤i≤k′x

(Dx
i + C(x − 1, y − i))

where C(x, y) denotes the number of disks needed to cover y points in strips 1..x
and Dx

i is the number of disks needed to cover i points in strip x. Computing
C(p, k) gives us the desired answer.

For each strip s, for 0 ≤ i ≤ k′
s, D

s
i can be calculated by recursive application

of the algorithm to the strip s. We partition the strip into squares of side length
lD. We can find optimal coverings of points in such a square by exhaustive search.
With O(l2) disks of diameter D we can cover lD× lD square compactly, thus we
never need to consider more disks for one square. Further, we can assume that
any disk that covers at least two of the given points has two of these points on its
border. Since there are only two ways to draw a circle of given diameter through

two given points, we only have to consider 2
(

n′

2

)

possible disk positions where

n′ is the number of given points in the considered square. Thus, we have to check
for at most O(n′2(l√2)2) arrangements of disks.

Approximation Algorithms for Partial Covering Problems 235

Let ZA be the value of the solution delivered by algorithm A. The shift
algorithm SA is defined for a local algorithm A. Let rB denote the performance
ratio of an algorithm B; that is, rB is defined as the supremum of ZB/ |OPT |
over all problem instances. We can show:

Lemma 2. rSA
≤ rA(1 + 1

l) where A is the local algorithm and l is the shifting
parameter.

Theorem 4. The above algorithm yields a PTAS with performance ratio at most
(1 + 1

l)2.

Proof. We use two nested applications of the shifting strategy to solve the prob-
lem. The above lemma applied to the first application of the shifting strategy
would relate the performance ratio of the final solution, rSA

, to that of the so-
lution for each strip, rA: rSA

≤ rA(1 + 1/l). The lemma when applied to the
second application of shifting strategy relates rA to the performance ratio of the
solution to each square, say rA′ . Thus, rA ≤ rA′(1 + 1/l). But since we obtain
an optimal solution for each square, rA′ = 1. Thus we have rSA

≤ (1 + 1/l)2.

Acknowledgements. We thank the referees for their helpful feedback. Part of
this work was done when the second and third authors attended the DIMACS
Workshop on Multimedia Streaming on the Internet at the DIMACS Center,
Rutgers University, Piscataway, NJ, on June 12–13, 2000.

References

1. N. Alon, R. Boppana and J. H. Spencer. An asymptotic isoperimetric inequality.
Geometric and Functional Analysis, 8:411–436, 1998.

2. B. Baker. Approximation Algorithms for NP-Complete Problems on Planar
Graphs. JACM, Vol 41 (1), (1994), pp. 153–190.

3. R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the
weighted vertex cover problem. J. of Algorithms 2:198-203, 1981.

4. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. Annals of Discrete Mathematics, 25:27-45, 1985.

5. R. Bar-Yehuda. Using homogeneous weights for approximating the partial cover
problem. In Proc. Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
71-75, 1999.

6. N. Bshouty, and L. Burroughs. Massaging a linear programming solution to
give a 2-approximation for a generalization of the vertex cover problem. The
Proceedings of the Fifteenth Annual Symposium on the Theoretical Aspects of
Computer Science 298-308, 1998.

7. M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for Facility
Location Problems with Outliers. In Proc. Twelfth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 642-651, 2001.

8. V.Chvátal. A greedy heuristic for the set-covering problem. Math. of Oper. Res.
Vol. 4, 3, 233-235, 1979.

9. K. L. Clarkson. A modification of the greedy algorithm for the vertex cover.
Information Processing Letters 16:23-25, 1983.

236 R. Gandhi, S. Khuller, and A. Srinivasan

10. T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to Algorithms”,
MIT Press, 1989.

11. R. Duh and M. Fürer. Approximating k-set cover by semi-local optimization. In
Proc. 29th STOC, May 1997, pages 256–264.

12. R. Gandhi, S. Khuller and A. Srinivasan. Approximation algorithms for partial
covering problems. Technical Report CS-TR-# 4234 (April 2001). Also available
at: http://www.cs.umd.edu/users/samir/grant/icalp01.ps

13. O. Goldschmidt, D. Hochbaum, and G. Yu. A modified greedy heuristic for the
set covering problem with improved worst case bound. Information Processing
Letters 48(1993), 305-310.

14. M. X. Goemans and J. Kleinberg. The Lovász theta function and a semidefinite
programming relaxation of vertex cover. SIAM Journal on Discrete Mathematics,
11:196–204, 1998.

15. M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24:296-317, 1995.

16. M. Halldórsson. Approximating k-set cover and complementary graph coloring.
In Proc. Fifth Conference on Integer Programming and Combinatorial Optimiza-
tion, June 1996, LNCS 1084, pages 118–131.

17. E. Halperin. Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. In Proc. Eleventh ACM-SIAM Symposium on Discrete
Algorithms, January 2000, pages 329–337.

18. D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. W.P.#64-79-80, GSIA, Carnegie-Mellon University, April 1980. Also:
SIAM J. Comput. 11(3) 1982.

19. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics 6:243-254, 1983.

20. D. S. Hochbaum (editor). Approximation Algorithms for NP-hard problems.
PWS Publishing Company, 1996.

21. D. S. Hochbaum. The t-vertex cover problem: Extending the half integrality
framework with budget constraints. In Proc. First International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems 111-122,
1998.

22. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of ACM, 32(1):130-136, 1985.

23. D. S. Johnson. Approximation algorithms for combinatorial problems. J. Com-
put. System Sci., 9:256-278, 1974.

24. M. Kearns. The computational complexity of machine learning. M.I.T. Press,
1990.

25. S. Khuller, U. Vishkin, and N. Young. A Primal Dual Parallel Approximation
Technique Applied to Weighted Set and Vertex Cover. Journal of Algorithms,
17(2):280–289, 1994.

26. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math.
13:383-390, 1975.

27. G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: Structural properties
and algorithms. Mathematical Programming 8:232-248, 1975.

28. E. Petrank. The hardness of approximation: Gap location. Computational Com-
plexity 4:133-157, 1994.

29. P. Slav́ik. Improved performance of the greedy algorithm for partial cover. In-
formation Processing Letters 64:251-254, 1997.

30. A. Srinivasan. New Approaches to Covering and Packing Problems. In Proc.
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 567-576, 2001.

On the Online Bin Packing Problem

Steven S. Seiden?

Department of Computer Science
298 Coates Hall

Louisiana State University
Baton Rouge, LA 70803, USA

sseiden@acm.org

Abstract. A new framework for analyzing online bin packing algo-
rithms is presented. This framework presents a unified way of explaining
the performance of algorithms based on the Harmonic approach [3,5,
8,10,11,12]. Within this framework, it is shown that a new algorithm,
Harmonic++, has asymptotic performance ratio at most 1.58889. It
is also shown that the analysis of Harmonic+1 presented in [11] is
incorrect; this is a fundamental logical flaw, not an error in calculation
or an omitted case. The asymptotic performance ratio of Harmonic+1
is at least 1.59217. Thus Harmonic++ provides the best upper bound
for the online bin packing problem to date.

Keywords: bin packing, online algorithms.

1 Introduction

Bin packing is one of the oldest and most well studied problems in computer
science [4,2]. The study of this problem dates back to the early 1970’s, when
computer science was still in its formative phase—ideas which originated in the
study of the bin packing problem have helped shape computer science as we
know it today. The influence and importance of this problem are witnessed by
the fact that it has spawned off whole areas of research, including the fields of
online algorithms and approximation algorithms.

Problem Definition: In the bin packing problem, we receive a sequence σ of
pieces p1, p2, . . . , pN . We use the words piece and item synonymously. Each piece
has a fixed size in (0, 1]. In a slight abuse of notation, we use pi to indicate both
the ith piece and its size. The usage should be obvious from the context. We have
an infinite number of bins each with capacity 1. Each piece must be assigned to
a bin. Further, the sum of the sizes of the items assigned to any bin may not
exceed its capacity. A bin is empty if no piece is assigned to it, otherwise it is
used. The goal is to minimize the number of bins used.
? This research was partially supported by an LSU Council on Research summer sti-

pend and by the Research Competitiveness Subprogram of the Louisiana Board of
Regents.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 237–248, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

238 S.S. Seiden

In the online version of this problem, each piece must be assigned in turn,
without knowledge of the next pieces. Since it is impossible in general to pro-
duce the best possible solution when computation occurs online, we consider
approximation algorithms. Basically, we want to find an algorithm which uses a
number of bins which is within a constant factor of the minimum possible num-
ber, no matter what the input is. This constant factor is known as the asymptotic
performance ratio.

We define the asymptotic performance ratio more precisely. For a given input
sequence σ, let costA(σ) be the number of bins used by algorithm A on σ. Let
cost(σ) be the minimum possible number of bins used to pack pieces in σ. The
asymptotic performance ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞
sup

σ

{
costA(σ)
cost(σ)

∣
∣
∣
∣
∣
cost(σ) = n

}

.

Let O be the set of all online bin packing algorithms. The optimal asymptotic
performance ratio is defined to be R∞

OPT = infA∈O R∞
A . Our goal is to find an

algorithm with asymptotic performance ratio close to R∞
OPT.

Previous Results: The online bin packing problem was first investigated by
Johnson [6]. He showed that the Next Fit algorithm has performance ratio 2.
Subsequently, it was shown by Johnson, Demers, Ullman, Garey and Graham
that the First Fit algorithm has performance ratio 17

10 [7]. Yao showed that
Revised First Fit has performance ratio 5

3 , and further showed that no online
algorithm has performance ratio less than 3

2 [14]. Brown and Liang independently
improved this lower bound to 1.53635 [1,9]. The lower bound currently stands
at 1.54014, due to van Vliet [13]. Define ui+1 = ui(ui − 1) + 1, u1 = 2 and

h∞ =
∞∑

i=1

1
ui − 1

≈ 1.69103.

Lee and Lee showed that the Harmonic algorithm, which uses bounded space,
achieves a performance ratio arbitrarily close to h∞ [8]. They further showed that
no bounded space online algorithm achieves a performance ratio less than h∞ [8].
In addition, they developed the Refined Harmonic algorithm, which they
showed to have a performance ratio of 373

228 < 1.63597. The next improvements
were Modified Harmonic and Modified Harmonic 2. Ramanan, Brown,
Lee and Lee showed that these algorithms have performance ratios of 538

333 <
1.61562 and 239091

148304 < 1.61217, respectively [10]. The best result to date is that
of Richey [11]. He presents an algorithm called Harmonic+1 and claims that it
has performance ratio 1.58872.

Our Results: In this paper, we present a general framework for analyzing a
large class of online bin packing algorithms. This class includes Harmonic,
Refined Harmonic, Modified Harmonic, Modified Harmonic 2 and
Harmonic+1. In fact, we show that all these algorithm are just special cases
of a general algorithm which we call Super Harmonic. We present a general

On the Online Bin Packing Problem 239

analysis of Super Harmonic. Our analysis is qualitatively different than pre-
vious ones, in that we reduce the problem of analyzing an instance of Super
Harmonic to that of solving a specific knapsack problem instance. We develop a
branch an bound algorithm for solving such knapsack problems. Thus we provide
a general computer assisted method of proving upper bounds for all algorithms
that can be expressed in terms of Super Harmonic. This leads us to fundamen-
tal logical flaw in the analysis of Harmonic+1. We show that the performance
ratio of Harmonic+1 is at least 1.59217. In light of this finding, we develop
a new algorithm called Harmonic++, and show that it has asymptotic per-
formance ratio at most 1.58889. Thus Harmonic++ provides the best upper
bound for the online bin packing problem to date. We also note that 1.58333
is a lower bound for any Super Harmonic algorithm, thus Harmonic++ has
performance reasonably close to the best possible Super Harmonic algorithm.

Due to space constraints, several proofs and a full description of the algorithm
are omitted. They can be found in an appendix, available at:

http://www.csc.lsu.edu/˜seiden/append.ps.Z

2 Interval Classification Algorithms

An interval classification algorithm operates by classifying pieces according to
a set of predefined intervals. Let t1 = 1 > t2 > · · · > tn > tn+1 > 0 be real
numbers. We define ε = tn+1 and tn+2 = 0. The interval Ij is defined to be
(tj+1, tj] for j = 1, . . . , n+1. Note that these intervals are disjoint and that they
cover (0, 1]. A piece of size s has type j if s ∈ Ij .

The Next Fit algorithm [6] is used to pack all items of size at most ε. The
algorithm maintains a single open bin. If the current item fits into the open
bin, it is placed there. Otherwise, the open bin is closed and a new open bin
is allocated. Obviously, this algorithm is online, runs in linear time and uses
constant space. The following well known lemma shall prove useful:

Lemma 1. If the sum of the sizes of the items packed by Next Fit is x, and
each item has size at most ε, then the number of bins used is at most x/(1−ε)+1.

Proof. Every bin packed by Next Fit, except possibly the one open bin, con-
tains pieces whose total size is at least 1− ε. Therefore, the total number of bins
used is at most dx/(1 − ε)e ≤ x/(1 − ε) + 1. ut

A packing is a tuple q = 〈q1, . . . , qn〉 over N such that
∑n

i=1 qi ti ≤ 1. In-
tuitively, a packing describes the contents of one of the algorithm’s bins. I.e.
qi is the number of items of type i contained in the bin. All interval classifica-
tion algorithms operate by placing items according to some predetermined set
of packings. We call the set of bins with a particular packing a group.

An important subset of interval classification algorithms can be described
in terms of one general algorithm, which we call Super Harmonic. All of the
algorithms considered here fall into this sub-class.

240 S.S. Seiden

An instance of the Super Harmonic algorithm is described by the following
parameters: integers n and K; real numbers 1 > t2 > · · · > tn > tn+1 = ε > 0,
α1, . . . , αn,∈ [0, 1] and 0 < ∆1 < · · · < ∆K < 1

2 ; and a function φ : {1, . . . , n} 7→
{0, . . . , K}. Define t1 = 1 and ∆0 = 0. In the following paragraphs, we describe
the operation of Super Harmonic.

Upon receipt, each item of type i ≤ n is assigned a color, red or blue. The
algorithm uses two sets of counters, e1, . . . , en and si, . . . , sn, all of which are
initially zero. The total number of type i items is si, while the number of type i
red items is ei. For 1 ≤ i ≤ n, the invariant ei = bαisic is maintained.

βi = b1/tic is the number of type i items which fit in a bin. Blue items of
type i are placed βi in a bin, as in Harmonic.

δi = 1 − tiβi is the amount of space left when a bin is filled with βi type i
items. If possible, we would like to use this space to pack red items. We require
that φ satisfy ∆φ(i) ≤ δi. Intuitively, D = {∆1, . . . , ∆K} describes the set of
spaces into which red items can be placed. ∆φ(i) is the amount of space used
to hold red items in a bin which holds blue items of type i. φ(i) = 0 indicates
that no red items can be accepted. To ensure that every red item potentially can
be placed, we require that αi = 0 for all i such that ti > ∆K . Define γi = 0 if
ti > ∆K and γi = max{1, b∆1/tic} otherwise. This is the number of red items of
type i that the algorithm places together in a bin. Note that this is the maximum
number guaranteed to fit in every space in D. Define

ϕ(i) = min{j | ti ≤ ∆j , 1 ≤ j ≤ K}.

Intuitively, ϕ(i) is the index of the smallest space in D into which a red item of
type i can be placed.

The bin groups used are named:

{i | φi = 0, 1 ≤ i ≤ n, },

{(i, ?) | φi 6= 0, 1 ≤ i ≤ n, },

{(?, j) | αi 6= 0, 1 ≤ i ≤ n, },

{(i, j) | φi 6= 0, αj 6= 0, γjtj ≤ ∆φ(i), 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

We call these groups monochromatic, indeterminate blue, indeterminate red and
bichromatic, respectively. Collectively, we call the monochromatic and bichro-
matic groups final groups.

The monochromatic group i contains bins which hold only blue items of
type i. There is one open bin in each of these groups; this bin has fewer than βi

items. The closed bins all contain βi items.
The bichromatic group (i, j) contains bins which contain blue items of type i

along with red items of type j. A closed bin in this group contains βi type i
items and γj type j items. There are at most three open bins.

The indeterminate blue group (i, ?) contains bins which hold only blue items
of type i. These bins are all open, but only one has fewer than βi items.

The indeterminate red group (?, j) contains bins which hold only red items
of type j. Again, these bins are all open, but only one has fewer than γj items.

On the Online Bin Packing Problem 241

Essentially, the algorithm tries to minimize the number of indeterminate bins,
while maintaining all the aforementioned invariants. I.e. we try to place red and
blue items together whenever possible; when this is not possible we place them
in indeterminate bins in hope that they can later be so combined. A formal
description of Super Harmonic is displayed in Figure 1. The symbols ♦, ♣, ?,
♥, ♣ and † are labels used in the proof of Lemma 2.

Initialize ei ← 0 and si ← 0 for 1 ≤ i ≤ n.
For each piece p:

i← type of p.
If i = n + 1 place p using Next Fit.
Else:

si ← si + 1.
If ei < bαisic:

ei ← ei + 1.
Color p red.

♦ If, for any j, there is an open bin in group (j, i) or (?, i) with fewer
than γi type i items, then place p in this bin.

♣ Else if there is some bin in group (j, ?) such that ∆φ(j) ≥ γiti, then
place p in it and change the group of this bin to (j, i).

? Otherwise, open a new group (?, i) bin and place p in it.
Else:

Color p blue.
If φi = 0:

If there is an open bin in group i with fewer than βi items, then
place p in this bin.
If not, open a new group i bin and place p there.

Else:
♥ If, for any j, there is an open bin in group (i, j) with fewer than βi

type i items, then place p in this bin.
Else if there is an open bin in group (i, ?) with fewer than βi type i
items, then place p in this bin.

♠ Else if there is some bin in group (?, j) such that ∆φ(i) ≥ γjtj then
place p in it and change the group of this bin to (i, j).
† Otherwise, open a new group (i, ?) bin and place p there.

Fig. 1. The Super Harmonic Algorithm.

Lemma 2. Super Harmonic maintains the following invariants: (1) The
number of red items of type i is bαisic. (2) At most one bin is open in any
group i. (3) At most three bins are open in any group (i, j). (4) At most one bin
has fewer than βi items in any group (i, ?). (5) At most one bin has fewer than
γi items in any group (?, i).

Due to space considerations, the proof is given in the appendix.
Corollary 3.1 of Ramanan et al. [10] implies the following result:

242 S.S. Seiden

Lemma 3 (Ramanan et al.). For all choices of parameters, the asymptotic
performance ratio of Super Harmonic is at least 19

12 > 1.58333.

3 Weighting Systems

Analysis based on weighting functions is introduced in [7], and is used in the
subsequent work on interval classification bin packing algorithms [8,10,11]. We
generalize the idea of a weighting function here.

Let R and N be the sets of real numbers and non-negative integers, respec-
tively.

A weighting system for algorithm A is a tuple (Rm,wA, ξA). R
m is a vector

space over the real numbers with dimension m. The function wA : (0, 1] 7→ R
m

is called the weighting function. For each j ≤ n, wA(x) is constant for x ∈ Ij .
The function ξA : R

m 7→ R is called the consolidation function. We have

ξA(x) = ξj
A(x), if x ∈ Dj

for some set ξ1
A, . . . , ξΛ

A of linear functions and some set D1, . . . , DΛ of disjoint
domains covering R

m. We require that ξA is continuous and has the scalability
property: ξA(ax) = a ξA(x) for all x ∈ R

m and a ∈ R. Since ξA is continuous,
and each piece is linear, the boundaries defining each domain are defined by at
most Λ − 1 linear functions. I.e. each domain can be described using at most
λi < Λ constraints:

x ∈ Di ⇒
x · di,1 ≥ 0
x · di,2 ≥ 0

...
...

...
x · di,λi

≥ 0.

Finally, for (Rm,wA, ξA) to be a weighting system we must have

costA(σ) ≤ ξA

(
N∑

i=1

wA(pi)

)

+ O(1),

for all input sequences σ. Intuitively, in the simplest case, the weight of a piece
indicates the maximum portion of a bin that it can occupy.

Weighting systems can be used to analyze Harmonic, Refined Har-
monic, Modified Harmonic, Modified Harmonic 2, Harmonic+1 and
Harmonic++. In fact, all these algorithms are instances of Super Harmonic.
We develop a general analysis of Super Harmonic and apply this analysis to
prove upper bounds for these specific algorithms.

We define a 2K + 1 dimensional weighting system for Super Harmonic. In
order to express the vectors in compact format, we define the unit basis vectors:
b0, b1, . . . ,bK , r1, . . . , rK . The weighting function is

wSH(x) =

(1 − αi)
bφ(i)

βi
+ αi

rϕ(i)

γi
if x ∈ Ii with i ≤ n,

x
b0

1 − ε
if x ∈ In+1.

On the Online Bin Packing Problem 243

The consolidation function is

ξSH(x) = x · b0 + max
1≤k≤K+1

min

{
K∑

i=k

x · ri +
K∑

i=1

x · bi,
K∑

i=1

x · ri +
k−1∑

i=1

x · bi

}

.

Lemma 4. For all σ, costSH(σ) ≤ ξSH

(∑N
i=1 wSH(pi)

)
+ O(1).

Due to space considerations, the proof is given in the appendix.

4 General Analysis with Weighting Systems

We now turn our attention to analyzing algorithms. We begin by develop-
ing general techniques applicable to the analysis of any interval classification
algorithm—we show how weighting systems can be used to upper bound the
asymptotic performance ratio of a given algorithm. We then focus our analysis
on Super Harmonic.

Suppose we have an online interval classification algorithm A, with weighting
system (Rm, wA, ξA). Fix an input σ.

Consider the optimal offline solution for σ. Suppose some bin in the optimal
solution is not full. Let x be the sum sizes of the pieces in this bin. Then add a
piece of size 1 − x to the end of our sequence. The cost of the optimal solution
does not increase, whereas the cost to A cannot decrease. Therefore, when upper
bounding the performance ratio of A, we may assume that each bin in the optimal
solution is full.

A pattern is a tuple q = 〈q1, . . . , qn〉 over N such that
∑n

i=1 qi ti+1 < 1. Intu-
itively, a pattern describes the contents of a bin in the optimal offline solution.
The reader should contrast this with the definition of a packing given earlier.
The weight of pattern q is

wA(q) = wA

(

1 −
n∑

i=1

qiti+1

)

+
n∑

i=1

qi wA(ti).

Define Q to be the set of all patterns q. Note that Q is necessarily finite.
A distribution is a function χ : Q 7→ R≥0 such that

∑
q∈Q χ(q) = 1. Given

σ, A is defined by the numbers and types of items it places in each of the bins
it uses. Specifically, A is defined by a distribution χ. It uses cost(σ)χ(q) bins
containing items as described by the pattern q.

To show that A has performance ratio at most c, we show that

1
cost(σ)

ξA

(
N∑

i=1

wA(pi)

)

=
1

cost(σ)
ξA

∑

q∈Q
cost(σ)χ(q)wA(q)

= ξA

∑

q∈Q
χ(q)wA(q)

 .

is at most c, for all σ. The second step follows from the scalability of ξA.

244 S.S. Seiden

We are therefore led to consider the following optimization problem: Maxi-
mize ξi

A(x) subject to

x =
∑

q∈Q
χ(q)wA(q); (1)

0 ≤ x · di,j , for 1 ≤ j ≤ λi; (2)
0 ≤ χ(q), for q ∈ Q; (3)

1 =
∑

q∈Q
χ(q); (4)

i ∈ {1 . . . Λ}; (5)

over integer variable i, real variables χ(q), q ∈ Q and real vector x. The value
of this mathematical program, which we name P, upper bounds the asymptotic
performance ratio of A. Fix i = j and call the resulting linear program Pj . We
can solve P by solving Pj for i = 1, . . . , Λ and taking the maximum value. The
following lemma tells us something about the structure of a solution to Pj :

Lemma 5. For 1 ≤ j ≤ Λ, there exists an optimal feasible solution to Pj where
χ(q) is non-zero at at most λi + 1 patterns q.

Proof. Pj is a |Q| − 1 dimensional linear program, since x and (4) may be
removed by substitution. By the theory of linear programming, the optimal
solution is achieved at some vertex of the polytope of feasible solutions defined
by (2) and (3). At a vertex of this polytope, |Q| − 1 inequalities are satisfied
with equality. Of these, at least |Q| − 1 − λi must be of the form (3), and each
of these implies that some value of χ is zero. The total number of variables is
|Q| and |Q| − (|Q| − 1 − λi) = λi + 1. ut
For certain types of consolidation functions, stronger results are possible:

Lemma 6. If ξA(x) = max1≤j≤Λ ξj
A(x) for some set ξ1

A, . . . , ξΛ
A of linear func-

tions then there exits an optimal feasible solution to P where χ(q) is non-zero
at at most one pattern q.

Proof. Suppose distribution χ defines an optimal feasible solution. The objective
value achieved is

max
1≤j≤Λ

ξj
A

∑

q∈Q
χ(q)wA(q)

 =
∑

q∈Q
χ(q)ξ`

A(wA(q))

≤ max
q∈Q

ξ`
A(wA(q)) = ξ`

A(wA(q∗)).

for some 1 ≤ ` ≤ Λ and q∗ ∈ Q. The first step uses the linearity of ξ1
A, . . . , ξΛ

A,
while the second uses the fact that χ is a convex combination over Q. So the
distribution

χ′(q) =
{

1 if q = q∗,
0 otherwise.

On the Online Bin Packing Problem 245

achieves at least the objective value achieved by χ. We need to show that χ is
feasible for i = `. Let x′ =

∑
q∈Q χ′(q)wA(q) = wA(q∗). If χ′ is feasible for i = `

we have ξ`
A(x′) ≥ ξj

A(x′) for all j. If ξj
A(x′) > ξ`

A(x) for some j 6= `, this would
contradict the optimality of χ. ut

Note that the preceding lemma is applicable in the analysis of Harmonic,
Refined Harmonic and Modified Harmonic, but not Harmonic+1. [8]
and [10] use it implicitly. As we shall see, Richey [11] uses it incorrectly. Using
Lemma 6, our problem is reduced to that of finding the single pattern q which
maximizes ξA(wA(q)). This leads us to consider the mathematical program:
Maximize ξi

A(x) subject to

x = wA(y) +
n∑

j=1

qjwA(tj); (6)

y = 1 −
n∑

j=1

qj tj+1 (7)

0 ≤ x · di,j , for 1 ≤ j ≤ λi; (8)
y > 0, (9)

qj ∈ N, for 1 ≤ j ≤ n, (10)
i ∈ {1 . . . Λ}; (11)

over variables x, y, i, q1, . . . , qn. Intuitively, q is a pattern; qj is the number of
type j pieces in q. y is an upper bound on space space available for type n + 1
pieces. Note that strict inequality is required in (9) because a type j piece is
strictly larger than tj+1. Call this integer linear program P̄. The value of P̄ up-
per bounds the asymptotic performance ratio when the consolidation function
satisfies the conditions of Lemma 6. One can think of P̄ as a knapsack prob-
lem: The adversary must pack items into a knapsack of size 1. The profit for
a knapsack is found by applying the consolidation function to the sum of the
weights.

The following lemma allows for further simplification in the case that the
algorithm under consideration uses Harmonic to pack items below a certain
size:
Lemma 7. Let ` and k ≤ ` be positive integers, and y ≤ 1/k be a positive real
number. The mathematical program: Maximize

`−k∑

i=1

vi

k + i− 1
+

`

`− 1
(y − z)

subject to

z < y;

z =
`−k∑

i=1

vi

k + i
;

qi ∈ N, for 1 ≤ i ≤ `− k;

over variables v1, . . . , v`−k and z has value Γ (y, k, `) where

246 S.S. Seiden

Γ (x, i, j) =

j

j − 1
x if i = j

1
i

+ Γ
(
x − 1

i+1 , i + 1, j
)

if x > 1
i+1

Γ (x, i + 1, j) otherwise.

Due to space considerations, the proof is given in the appendix.
Note that the lemma implies that Harmonic has performance ratio

Γ (1, 1, n + 1). Further, it is easily seen that limn→∞ Γ (1, 1, n + 1) = h∞.
Using the machinery we have developed here, it is also easy to analyze the

performance ratios of Refined Harmonic and Modified Harmonic. One
merely need evaluate P̄; this is easily accomplished even by hand calculation.

We now turn to Super Harmonic. We abuse notation and define wi =
wSH(ti) for the remainder of our discussion. Fix a k ∈ {1, . . . , K + 1} and define

s = b0 +
K∑

i=k

ri +
K∑

i=1

bi, t = b0 +
K∑

i=1

ri +
k−1∑

i=1

bi.

First note that min{x · s,x · t} = x · t for k = 1 and min{x · s,x · t} = x · s
for k = K + 1. In these two cases, we can apply Lemma 6, and the performance
ratio is upper bounded by the value of P̄.

We now turn to 2 ≤ k ≤ K. Consider the mathematical program: Maximize

min{(z x + (1 − z)x′) · s, (z x + (1 − z)x′) · t}

subject to

z ∈ [0, 1];

x =
1

1 − ε
y b0 +

n∑

j=1

qjwj ; x′ =
1

1 − ε
y′ b0 +

n∑

j=1

q′
jwj ;

y = 1 −
n∑

j=1

qj tj+1; y′ = 1 −
n∑

j=1

q′
j tj+1;

y > 0; y′ > 0;
qj ∈ N, q′

j ∈ N, for 1 ≤ j ≤ n;

over variables z,x,x′, y, y′, q1, . . . , qn, q′
1, . . . , q

′
n. Call this program P̂k. By

Lemma 5, if we show that value of P̂k is at most c for all k, the asymptotic
performance ratio of Super Harmonic is at most c. The two patterns are q
and q′, their weights are x and x′, respectively. The constraints guarantee that
q and q′ are legitimate patterns. Conversely, the reader should verify that the
constraints allow all possible patterns. The distribution between q and q′ is given
by z. Again, P̂k is a type of knapsack problem: The adversary must pack items
into two knapsacks of size 1. The profit is found by applying the consolidation
function a convex combination of the weights in the two knapsacks.

On the Online Bin Packing Problem 247

We have developed a branch and bound algorithm for solving P̂k. We im-
plemented this algorithm in C++. To ensure the validity of our results, all cal-
culations are done using the GNU CLN infinite precision rational arithmetic
package. A front end program is written in Mathematica. An explanation of the
algorithm along with a listing of the code appears in the appendix. The program
is available on the World Wide Web at

http://www.csc.lsu.edu/˜seiden/super harmonic.tgz

5 Results

Details of Harmonic++ are given in the appendix. Using the methods outlined
in the preceding sections, we are able to show our main results:

Theorem 1. The asymptotic performance ratio of Harmonic++ is at most
158889/100000.

Theorem 2. The asymptotic performance ratio of Harmonic+1 is at least
1.59217.

Due to space considerations, the proofs is given in the appendix.
Using our computer program, we have also verified the upper bounds for

Harmonic, Refined Harmonic, Modified Harmonic and Modified Har-
monic 2.

6 Conclusions

We have developed a uniform method of analysis for online bin packing al-
gorithms. Using our framework, we have analyzed the Super Harmonic al-
gorithm. Online bin packing algorithms based on Harmonic are just special
instances of this general algorithm. We have developed an instance of Super
Harmonic, called Harmonic++, which has the best performance of any on-
line bin packing algorithm to date. Our framework is easily adapted to closely
related problems, such as variable-sized bin packing [12] and resource augmented
bin packing [5].

The question of how to design a Super Harmonic algorithm is still an open
one. The problem of choosing interval breakpoints is at the heart of this question.
Once this choice is made, the values αi can be optimized by mathematical (in
some cases linear) programming. The solution to the breakpoint choice problem
seems to be currently out of our reach. The results of Ramanan et al. [10] imply
that any instance of Super Harmonic has performance ratio at least 19/12 >
1.58333. Further, the set of intervals designed by Richey works very well, despite
the ad-hoc design. We did not find another set which would significantly improve
performance. An understanding of the breakpoint problem will not lead to a large
improvement in performance, or bring us close to the lower bound of 1.54014.
Still, despite the inherent limitations of our approach, it is our hope that this
work brings us one step closer to a final resolution of the online bin packing
problem.

248 S.S. Seiden

Acknowledgement. We would like to thank Gerhard Woeginger for suggesting
this problem.

References

1. Brown, D. J. A lower bound for on-line one-dimensional bin packing algo-
rithms. Tech. Rep. R-864, Coordinated Sci. Lab., University of Illinois at Urbana-
Champaign, 1979.

2. Coffman, E. G., Garey, M. R., and Johnson, D. S. Approximation algorithms
for bin packing: A survey. In Approximation Algorithms for NP-hard Problems,
D. Hochbuam, Ed. PWS Publishing Company, 1997, ch. 2.

3. Csirik, J. An on-line algorithm for variable-sized bin packing. Acta Informatica
26, 8 (1989), 697–709.

4. Csirik, J., and Woeginger, G. On-line packing and covering problems. In On-
Line Algorithms—The State of the Art, A. Fiat and G. Woeginger, Eds., Lecture
Notes in Computer Science. Springer-Verlag, 1998, ch. 7.

5. Csirik, J., and Woeginger, G. Resource augmentation for online bounded space
bin packing. In Proceedings of the 27th International Colloquium on Automata,
Languages and Programming (Jul 2000), pp. 296–304.

6. Johnson, D. S. Fast algorithms for bin packing. Journal Computer Systems
Science 8 (1974), 272–314.

7. Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham,
R. L. Worst-case performance bounds for simple one-dimensional packing algo-
rithms. SIAM Journal on Computing 3 (1974), 256–278.

8. Lee, C., and Lee, D. A simple on-line bin-packing algorithm. Journal of the
ACM 32, 3 (Jul 1985), 562–572.

9. Liang, F. M. A lower bound for online bin packing. Information Processing
Letters 10 (1980), 76–79.

10. Ramanan, P., Brown, D., Lee, C., and Lee, D. On-line bin packing in linear
time. Journal of Algorithms 10, 3 (Sep 1989), 305–326.

11. Richey, M. B. Improved bounds for harmonic-based bin packing algorithms.
Discrete Applied Mathematics 34 (1991), 203–227.

12. Seiden, S. S. An optimal online algorithm for bounded space variable-sized bin
packing. In Proceedings of the 27th International Colloquium on Automata, Lan-
guages and Programming (Jul 2000), pp. 283–295.

13. van Vliet, A. An improved lower bound for online bin packing algorithms. In-
formation Processing Letters 43, 5 (Oct 1992), 277–284.

14. Yao, A. C. C. New algorithms for bin packing. Journal of the ACM 27 (1980),
207–227.

Quick k-Median, k-Center, and Facility Location
for Sparse Graphs

Mikkel Thorup

AT&T Labs–Research, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ
07932. mthorup@research.att.com

Abstract. Solving an open problem of Jain and Vazirani [FOCS’99],
we present Õ(n+m) time constant factor approximation algorithms for
the k-median, k-center, and facility location problems with assignment
costs being shortest path distances in a weighted undirected graph with
n nodes and m edges.
For all of these location problems, Õ(n2) algorithms were already known,
but here we are addressing large sparse graphs. An application could be
placement of content distributing servers on the Internet. The Internet is
large and changes so frequently that an Õ(n2) time solution would likely
be outdated long before completion.

1 Introduction

We consider several classical (discrete) location problems defined in terms of a
a metric (P, dist), |P | = n. We want to pick a set S ⊆ P of facilities subject to
different objectives. In the k-median and k-center problems we require |S| = k,
and our goal is to minimize

∑
x∈P dist(x, S) and maxx∈P dist(x, S), respectively.

In the facility location problem, there is no limit k on the number of facilities,
but we are further given a facility cost function f-cost : P → N0, and our goal is
to minimize

∑
a∈S f-cost(a) +

∑
x∈P dist(x, S).

In this paper, we are interested in the graph setting where the metric is the
shortest path metric of a weighted undirected connected graph G = (V, E, ` :
E → N), |V | = n, |E| = m ≥ n−1, that is, dist(x, y) is the length of the shortest
path from x to y in G. This setting used is the basis for many of the classical
applications of facility location in operations research [16]. For example, the
problems can then model placement of shopping centers on a road network with
driving distance to nearest shopping center the consumer cost. Also, they can
model placement of content distribution servers on the Internet. Both examples
concern large sparse graphs. Further, the Internet changes frequently and hence
an algorithm has to be fast in order to produce up-to-date answers. In particular,
we cannot wait for months for an all-pairs shortest paths computation to finish.

For all of the above location problems, we present Õ(m) time constant factor
approximation algorithms. Here ˜ means that we ignore log n factors. The con-
crete approximation factors are 12 + o(1) for k-median, 2 for k-center, 3 + o(1)
for facility location. The approximation factor for the k-median problem may

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 249–260, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

250 M. Thorup

be reduced to around 9, but this is complicated and beyond the scope of the
current paper.

Our results solve an open problem of Jain and Vazirani [13]. They consid-
ered a distance oracle setting where given any pair of points (x, y) ∈ P 2, one
can compute dist(x, y) in constant time. For the k-median and facility location
problems, the achieved approximation factors of 6 and 3, respectively, in Õ(n2)
time1, improving for the k-median, the LP-based factor 62

3 from [1]. They noted
that “The distinguishing feature of our algorithms is their low running time”. In
their final discussion they ask if improved running times can be obtained for the
graph version in the case of sparse graphs, as done near-optimally in this paper.
We note that the distance oracle setting is interesting in its own right, e.g. in-
terpreting the location problems as clustering problems for large data bases [7].
As it turns out, a by-product of our work is some much improved approximation
factors in “sub-linear” o(n2) time in the distance oracle setting.

It should be appreciated that the graph and distance oracle models are fun-
damentally different in that a single distance query in a graph takes O(m) time
[17]. For a sparse graph, Jain and Vazirani would first compute the shortest path
metric with an all pairs shortest path computation, which takes O(nm) time.
Our improvement to Õ(m) time is obtained using only a polylogarithmic num-
ber of single source shortest path computations. We note that it is easy to get
an Õ(n2) time solution using approximate shortest path computations (see e.g.
[3]), but the approximation factor become worse than ours. More importantly,
as suggested in [13] and as in our example applications, we are mostly interested
in large sparse graphs with m = O(n), and then our Õ(m) time is a strong
improvement.

The pride of this paper is the solution to the k-median problem, the hardness
being the sharp bound on the number of facilities. Facility location is compara-
tively trivial because we can use approximate facility costs. It is considered here
for completeness because it was part Jain and Vazirani’s open problem [13]. The
k-center solution comes in for free as a warm-up for our solution to the facility
location problem. Also, by covering k-median, k-center, and facility location, we
develop a quite general tool-box for basic location problems in networks [16].

Henceforth, the paper is focused on the k-median problem, leaving k-center
and facility location to two independent sections at the end (c.f. §5 and §6).

The distance oracle version. Our work on the graph version of the k-median
problem is inspired by the progress on the distance oracle version: Indyk [10]
has presented a randomized reduction that together with the Õ(fn) time factor
6 approximation algorithm of Jain and Vazirani [13] implies a Õ(k3n) time factor
(3 +o(1))(2 + 6) = 24 +o(1) approximation algorithm, though cheating a bit us-
ing 2k facilities. Also, as part of their work on an on-line version of the k-median
problem, Mettu and Plaxton [15] presented an O(n2) time algorithm with an ap-
proximation factor slightly below 40. Finally, based on Indyk’s construction [10],

1 Actually, they get Õ(fn) time if only f points are potential facilities, but here we
generally assume all points are potential facilities.

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 251

Guha et al. [7] presented a Õ(kn) time factor 6×2× (24+o(1)+1) = 300+o(1)
approximation algorithm. Their algorithm works for a special streaming version
of the problem if distances between points can be computed directly from the
points. Their approximation factor can be reduced to 80 + o(1) if k = Õ(

√
n)

[Guha, personal communication]. An Õ(kn) time constant factor approximation
is also announced by Mettu and Plaxton [15], but with no specification of the
constant. They also pointed out that Ω(kn) time is necessary even for random-
ized algorithms.

Some of our initial developments actually imply an Õ(kn) time factor 12+o(1)
approximation for the distance oracle version of the k-median problem. This is
better than any previous o(n2) time algorithm, and 25 times better than the
previous Õ(kn) time algorithm [7] for unbounded k. Clearly some of the pre-
vious approximation factors could have been improved somewhat, but our vast
improvement is due to some new simple and powerful sampling techniques. Cor-
responding improvments can also be obtained in the streaming model considered
in [7] (historically this paper actually predates [7] slightly, but had a less fortu-
nate conference history).

The graph version. The previous work on the distance oracle version does have
some applications for the graph version. Applying an all pairs small-stretch path
algorithm of Cohen and Zwick [3], we can approximate all distances in the graph
within a factor 3 in Õ(n2) time, and then we can apply Jain and Vazirani’s
algorithm [13] in Õ(n2) time to get a factor 3×6 = 18 approximation algorithm.
In order to exploit the Õ(kn) time distance oracle algorithm of Guha et al. [7], we
can first apply Thorup and Zwick’s [19] approximate distance oracle algorithm:
for any positive integer t, after O(tmn1/t) preprocessing time, we can answer
distance queries within a factor 2t−1 in O(t) time. Setting t = 2 and combining
with [7], we get an Õ(m

√
n + nk) time algorithm with approximation factor

3(300 + o(1)) = 900 + o(1), or 3(80 + o(1)) = 240 + o(1) if k =
√

n.
Our new Õ(m) time bound is near-optimal and breaks the Ω(kn) lower

bound for distance oracles if k � m/n. Further, our approximation factor is
only 12 + o(1). This is better than any previous o(nm) time solution. It appears
the approximation factor can be further reduced to around 9.

Our approach is easily generalized to work for weighted points. One ap-
plication of this is if only a subset of the points are potential facilities. Then
we first assign each point to its nearest potential facility. Second we solve the
k-median problem over the potential facilities, each weighted by the number
of assigned original points. The resulting solution can be seen to be a factor
2(12 + o(1)) + 1 = 25 + o(1) approximation.

Other metrics. Our techniques imply that the k-median problem can be solved
with Õ(n) nearest neighbor queries. For Hamming space this implies a constant
factor approximation in Õ(n1+ε) time for ε > 0 [11], thus beating that Ω(kn)
lower bound for general distance oracles if k = nΩ(1). We note that large values
of k are relevant to fine grained clustering.

252 M. Thorup

(Im)practicality and outline. Our Õ(m) solution to the k-median problem in
graphs is exceedingly complicated, and hence unlikely to be of practical rel-
evance. However, in our developments we present several algorithms that are
simple and easy to implement, yet providing stronger bounds than were previ-
ously known. Also, our algorithms for the k-center and facility location problems
are simple and easy to implement, and it is all these simpler algorithms that con-
stitute the practical contribution of the paper.

First, in §2, we present a simple fast randomized algorithm for selecting a
set of Õ(k) potential facilities, guaranteed to contain a solution with k facilities
with at most twice the cost of the optimal solution. Using this as a preprocessing
step for Jain and Vazirani’s algorithm, we find a factor 12 + o(1) approximation
in Õ(kn) time for distance oracles, and Õ(km) time for graphs. This part is
considered very practical, “perfect” for distance oracles, and good for graphs if
k is not too large.

Next, in §3, we show that it can be meaningful to apply the algorithm from
[13] to a sparse graph whose weights do not satisfy the triangle inequality, and
construct a graph for which this makes sense. In Õ(m) time, this leads to a factor
12+o(1) approximation to the k-median problem but cheating using k+k/ log2 n
facilities. This part is still simple enough to be of practical use, and good enough
if the bound on the number of facilities is not sharp.

The true difficulty in the k-median problem is the sharp bound on the fa-
cilities. In §4, we sketch a very convoluted recursion for getting rid of the last
k/ log2 n extra facilities, leaving the details to the journal version. It is based
on structural theorems showing that if we cannot easily get rid of the k/ log2 n
extra facilities, it is because our current solution is very similar to any optimal
solution. This similarity allows us to fix most of the facilities and recurse on a
o(k)-median problem. This last step is considered too complicated to be of prac-
tical interest, but it takes us to our theoretical goal: a near-linear time constant
factor approximation to the k-median problem.

Notation and terminology. We are dealing with a metric (P, dist), |P | = n, from
which we pick a subset S of facilities. Further, each point x ∈ P is assigned
a facility xS ∈ S at cost dist(x, xS). The total cost of S is then cost(S) =∑

x∈P dist(x, xS) Unless otherwise stated, we assume that xS is a point in S
nearest to x. Then the assignment cost for x is dist(x, S) = mina∈S dist(x, a),
and then the total cost of S is cost(S) =

∑
x∈P dist(x, S).

By evaluating a set S ⊆ P , we mean that for each x ∈ P , we find its nearest
point xS in S, compute dist(x, xS) = dist(x, S), and finally, compute cost(S).
Observation 1. In an undirected (or directed) weighted graph, we can evaluate
a set S in O(m) time (O(m log log n) time).
Proof. Introduce a source s with zero length edges to all a ∈ S, and compute
the shortest path tree to all nodes in O(m) time [17]. For each x, dist(x, S) is
the found distance from s, and cost(S) is the sum of these distances. Finally, for
each x in the subtree of a ∈ S, we set xS = a. The same construction works for
directed graphs if we first reverse the direction of all edges and use the directed
shortest path algorithm from [18].

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 253

Note that if for some reason, we want to run on a restricted machine model such
as the pointer machine, we get an O(n log n + m) time bound in Observation 1
from [4].

The k-median problem is the problem of finding S ⊆ P , |S| ≤ k, mini-
mizing cost(S). Define k-mediancost⊆F = min{cost(S) : S ⊆ F, |S| = k} and
k-mediancost = k-mediancost⊆P . By a c-approximation to the k-median prob-
lem, we mean a solution S ⊆ P , |S| = k, with cost(S) ≤ c × k-mediancost.

By the S-cluster of a ∈ S, we mean the set {x ∈ P : xS = a}, denoted
cluster(a, S).

Generally, we will use a subscript to denote that measurements are done in a
metric different from the one currently understood. For example, if H is a graph,
distH(x, y) is the distance from x to y in H.

2 Sampling k logO(1) n Facilities

In this section, we will prove
Theorem 1. For 0 < ε < 0.4, with probability at least 1/2, by sampling and
evaluating O(log n) sets of size O(k/ε log n), we can identify a set F of size
O(k/ε log2 n) such that k-mediancost⊆F ≤ (2 + ε) × k-mediancost.
Our constructive proof of Theorem 1 is based on the following simple algorithm:

Algorithm A
A.1.R := P ; S := ∅;
A.2.while |R| ≥ k/ε log2 n do
A.2.1. add 4k/ε log n random points from R to S

A.2.2. pick a random t ∈ {1, ..., |R|} and remove from R the t points with lowest
distance to S.

A.3.return F = S ∪ R.

Proof (of Theorem 1). First we note that the probability that Algorithm A
terminates in ω(log n) iterations is 1/nω(1) (each round reduces R by a factor 2
with probability 1/2 and we can only do this log2 n times) so we may assume
termination in O(log n) iterations.

Let OPT be an optimal solution to the k-median problem. Our claimed good
solution inside F will be OPTF = {aF }a∈OPT . It is trivially of size k, and for
our analysis, we will assign each x ∈ P to (xOPT)F .

A point x ∈ P will be declared “happy” as soon as a point a with
dist(a, xOPT) ≤ dist(x, xOPT) is picked for S, to later end up in F . Clearly,
if all points ended up happy, we would get cost(OPTF) ≤ 2cost(OPT). Unfor-
tunately, we cannot hope to make all points happy, but we will find a way to
pay for the unhappy ones.

Consider an unhappy point x. Our assignment cost for x is
dist(x, (xOPT)F) ≤ dist(x, xOPT) + dist(xOPT , (xOPT)F) ≤ dist(x, xOPT) +
dist(xOPT , xF) ≤ dist(x, xOPT) + dist(xOPT , x) + dist(x, xF) ≤

254 M. Thorup

2dist(x, OPT) + dist(x, F) The point x can itself pay 2dist(x, OPT), so
it only remains to show that the sum over dist(x, F) over all unhappy x is
bounded by ε cost(OPT).

Consider an iteration of the algorithm. Let S and R be the values of S and
R after step A.2.1, and let U be the prefix of R removed in step A.2.2. We will
show that the expected fraction of unhappy points in R and U is very small and
based on this we will show that the happy points can pay for them.

Claim 1. The expected fraction of unhappy points in R after step A.2.1 is ≤
ε/(4 log n).

Proof. Consider a point x ∈ R which was not happy before step A.2.1, and
let C be the remaining part of the OPT -cluster containing x, that is, C =
cluster(xOPT , OPT) ∩ R.

Suppose there are i points in C, including x, that are as close to xOPT

as x. Now, the probability that x is not turned happy by step A.2.1 is
(1 − i/|R|)4k/ε log n < e−i4k/ε log n/|R|. Thus, no matter the size of C, the ex-
pected number of unhappy points in C is at most

∑∞
i=1 e−i4k/ε log n/|R| <∫∞

x=0 e−x4k/ε log n/|R|dx < |R|/(4k/ε log n), so with k clusters, the expected frac-
tion of unhappy elements in R is at most 1/(4/ε log n).

Claim 2. If f is the fraction of unhappy points before step A.2.2 removes the
random prefix U of R, the probability that

∑

unhappy x∈U

dist(x, S) ≤ ε
∑

happy x∈U

dist(x, S)/2 (1)

is not satisfied is at most f(2 + 2/ε).

Proof. Let the points in R be sorted in order of increasing distance to S. We
are going to delete the first t points in this sequence with t randomly chosen
from {1, ..., |R|}. Before this happens, traverse R and let each unhappy point
grab the first d2/εe happy points of higher distance that are not grabbed yet, if
any. Now, if point t is neither unhappy nor grabbed, then each unhappy point
among the first t points have grabbed its own d2/εe happy points to pay for it,
and hence (1) is satisfied. The fraction of points that are unhappy or grabbed
by an unhappy point is f(d2/εe + 1).

By Claim 1 and 2, the probability that (1) is not satisfied for a given iteration is
E(f)(2+2/ε) ≤ (1+ε)/(2 log n). Since the expected number of iterations is Hn,
the probability that (1) is false for any iteration is ≤ (1 + ε)Hn/(2 log n) < 1/2
for ε ≤ 0.4 and n → ∞. Thus, we may assume that (1) is satisfied over all
iterations.

Since dist(x, S) ≥ dist(x, F) for any unhappy x, and dist(y, S) ≤
2dist(y, OPT) for any happy y, (1) implies

∑
unhappy x∈U dist(x, F) ≤

ε
∑

happy x∈U dist(x, OPT)/2 However, since the sets U from different iterations
are disjoint, we get

∑
unhappy x∈P dist(x, F) ≤ ε

∑
happy x∈P dist(x, OPT)/2 ≤

εcost(OPT), as desired.

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 255

It should be noted that the above construction works even if OPT is allowed
to use points not in P , and in this case, we cannot get below 2 (think of OPT
being the center of a star and the center not being in P). Also, note that for
each a ∈ OPT , all points in cluster(a, OPT) are assigned to the same facility
in F . Hence the construction works even if the facilities have the same limited
capacity.

Corollary 1. For a general metric we can find a (12 + o(1))-approximation for
the k-median problem, using Õ(kn) distance queries and computation time.

Proof. By the above theorem and lemma, we spend Õ(kn) distance queries on
finding a set of Õ(k) relevant facility locations, and then the algorithm from [13]
allows us to solve the k-median problem in Õ(kn) time.

3 Reducing to k + k/ log2 n Facilities

In this section, we will show that we can get down from k logO(1) n potential facil-
ities to a solution S with k +k/ log2 n facilities. We wish to apply the techniques
of Jain and Vazirani [13], but these techniques are only quoted as working for
graphs satisfying the triangle inequality. More precisely, let F be the set of poten-
tial facilities. They assume all edges in F ×P , and that each edge (a, x) ∈ F ×P

has length `(a, x) = dist(a, x). If |F | = logω(1) n, this is too much for our time
bounds.

We will now discuss what happens when the algorithm from [13] is applied
and G does not satisfy the triangle inequality. Define `-cost(S) =

∑
x∈P `(x, xS).

Here `(x, xS) = ∞ if (x, xS) is not an edge in G. What the algorithm from [13]
really finds is a k-median S ⊆ F with cost(S) ≤ 6×k-median-`-cost⊆F . The point
is that the dual variables providing the lower bound in [13] do not require triangle
inequality. It is only used in bounding the gap between the primal solution and
the dual variables.

Concerning speed, the algorithm in [13] works in Õ(m) time for m edges,
except for the rounding. We will modify the simple rounding from [13, §3.3] to
make it efficient. The simple rounding from [13, §3.3] operates on to subsets
A and B of F with |A| < k and |B| > k. First they let each a ∈ A pick its
nearest un-picked b ∈ B. Afterwards, they pick k − |A| random facilities among
the remaining |B| − |A| facilities in B. However, picking the nearest un-picked
facility is not easy. Instead, we evaluate B once in Õ(m) time. For each a ∈ A,
this gives us the nearest facility aB ∈ B. We now first pick AB = {aB : a ∈ A}
and second we pick a random subset of B \ AB of size k − |AB |. To see that
the analysis in [13, §3.3] still goes through, we note that the probability that
b ∈ B \ AB is picked is (k − |AB |)/(|B| − |AB |) ≤ (k − |A|)/(|B| − |A|).

Since we do not use the improved rounding in [13, §3.5], the overall approx-
imation factor is worsened by a factor (1 + o(1)). In conclusion, we get

Theorem 2. In Õ(m) time we can find S ⊆ F , |S| = k, with cost(S) ≤ (6 +
o(1)) × k-median-`-cost⊆F .

256 M. Thorup

To apply this theorem, we construct a graph G` with Õ(n) edges (v, w), each
with `(v, w) = dist(v, w), and with k`-median-`-cost⊆F

G` = O(k-mediancost⊆F)
where k` = k + k log2 n. Applying Theorem 2 then gives us a k`-median S ⊆ F
with cost(S) ≤ costG`(S) = O(k-mediancost⊆F).

The construction of G` is rather simple based on F . Set d = log3 n|F |/k =
logO(1) n. For each point x ∈ P , we include an edge to each of the d nearest
neighbors in F .
Lemma 1. The graph G` has (k + k/ log2 n)-median S ⊆ F with `-cost(S) ≤
k-mediancost⊆F .
Proof. All we need is to show the existence of a set D ⊆ F of size k/ log2 n
which dominates in the sense that each x, xD is one of its d nearest neighbors.
We then set S = OPT ∪ D where OPT is the optimal solution. If xOPT is one
of the d nearest neighbors in F , xS = xOPT . Otherwise, xS = xD and then
`(x, xD) ≤ dist(x, OPT), so `-cost(S) ≤ cost(OPT).

To show the existence of D, we just pick D randomly. For each x ∈ P , the
probability that none of its d nearest neighbors are picked is ≤ (1 − |D|/|F |)d <
e− log n < 1/n, so there is a positive probability that this does not happen for
any x.
For the construction of G`, we need
Lemma 2. With high probability, using O(d log n) evaluations, we can find the
d nearest neighbors in F to each point x.
Proof. We pick each a ∈ F with probability 1/(2d) for a set Q that we evaluate.
For each x ∈ P and each i ≤ d, the probability that xQ is the ith nearest neighbor
in F is ≥ (1 − 1/(2d))i−1/2d ≥ 1/(4d). Hence, in O(d log n) evaluations, we can
find the d nearest neighbors of all x with high probability.
Theorem 3. With probability 1 − O(1/n), in Õ(m) time, we can construct a
k + k/ log2 n-median S with cost(S) ≤ (12 + o(1)) × k-mediancost
Proof. First using Theorem 1, we identify a set F of size k logO(1) n with
k-mediancost⊆F ≤ (2 + o(1))k-mediancost. Then using the above lemmas we
construct G` with (k + k/ log2 n)-median-`-costG` ≤ k-mediancost⊆F and fi-
nally, we apply Theorem 2 to G`.

To get the low error probability, we repeat the above construction O(log n)
times, returning the S minimizing cost(S). Note that this could not be done for
Theorem 1 because we cannot compute and compare k-mediancost⊆F .

4 Recursing Down to k Facilities

Let OPT denote some optimal solution to the k-median problem. Our starting
point is a solution S, as from Theorem 3, of satisfactory cost, that is, cost(S) =
O(OPT), but which uses q = k/ log2 n too many facilities. We will then first
try greedily to remove q facilities from S. If this cannot be done easily at cost
o(S), we will be able to fix many universally good facilities and then recurse.
This recursion is by far the hardest and most technical part of the paper, and a
descent presentation would take about 8 pages in the current format. For space
reasons, we defer this to the journal version.

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 257

5 k-Center

We want to pick S ⊆ V , |S| = k minimizing maxv∈V dist(v, S). A factor 2
approximation is classical [6,8], and best possible [9], but the natural algorithm
takes Õ(km) time. We get down to Õ(m) time, and our methods will be reused
for facility location.

The classical factor 2 approximation is the following greedy algorithm: guess
the optimal distance d∗ and then return any maximal dist-2d∗ independent set.
Here, for any d, a subset U ⊆ V is dist-d independent if no two vertices of U are
within distance d of each other. We know we have an adequate value of d if it
gives rise to ≥ k facilities whereas d − 1 gives rise to < k facilities, so d may be
found with a binary search.

The obvious greedy way of finding a maximal dist-d independent set U is as
follows: set U = ∅ and W = V . While W 6= ∅, add an arbitrary vertex v ∈ W
to U and remove all vertices within distance d from W . The complexity of this
algorithm is Õ(|U |m). Here we we will get down to near-linear time. To the best
of our knowledge, no o(mn) time algorithm existed for finding maximal dist-d
independent sets.

We shall use the following result of Cohen [2]:

Lemma 3 (Cohen). For any W ⊆ V , after Õ(m) preprocessing, for any vertex
v and d ≥ 0, in Õ(1) time, we can estimate within a factor 1 ± o(1) the number
of vertices from W within any distance d of v.

Proposition 1. We can find a maximal dist-d independent set of any set W ⊆
V in Õ(m) time.

Proof. As in the above greedy algorithm, start by setting U = ∅. While W 6= ∅,
do as follows. Using Lemma 3, compute δ = (1 ± o(1)) maxv∈W |N≤d(v) ∩ W |.
Pick a random subset R of W of size |W |/δ. Let T = {v ∈ R|N≤d ∩ R = {v}}.
Add T to U and remove all vertices from W within distance d from U .

To identify the set T , construct a family {Ri}i≤2 log2 |R| of subsets of R such
that for all v, w ∈ R there is a set Ri containing v but not w. These sets may
be constructed by associating different log2 |R| bit vectors to the vertices in R,
and then characterizing each set by the value of a certain bit position. Now,
N≤d(v) ∩ R = {v} if and only if dist(v, Ri) > d for each Ri not containing v.

The idea in the above construction is that it within O(log n) rounds reduces
maxv∈W |N≤d(v) ∩ W | by a constant factor. More precisely, we show that if
for some vertex v ∈ W , |N≤d(v) ∩ W | ≥ δ/2, the next round eliminates v
with constant probability. Clearly, the condition implies that some vertex u ∈
N≤d(v)∩W will be picked for R with constant probability. Further, by choice of
δ, |N≤d(u)∩W | ≤ (1+o(1))δ, so with constant probability, no other vertex from
u will be picked for R. Hence some u ∈ N≤d(v) ∩ W will end in T , eliminating
v from W , with constant probability.

We note that the above proof has some similarities with the randomized parallel
independent set algorithm in [14]. However, the algorithm in [14] accesses all
edges whereas we do not want to consider the O(n2) pairs of distance ≤ d.

258 M. Thorup

Corollary 2. In Õ(m) time, we can find a factor 2 approximation to the k-
center problem.

In [8] are mentioned several similar problems that can be improved with similar
methods.

6 Facility Location

In the facility location problem for a metric (P, dist), there is a facility cost
f-cost(x) associated with each x ∈ P , and then the cost of S ⊆ P is∑

f∈S f-cost(f) +
∑

x∈P dist(x, S). First we note that in the distance oracle ver-
sion of the facility location problem, even if all facility costs are uniform, no
constant factor approximation is possible with o(n2) queries, not even if we al-
low randomization. For a negative example, divide into clusters of size t with
intra- and inter-cluster distance 0 and ∞, respectively. Then we expect to need
Ω(n2/t) queries for an approximation factor substantially below t. It follows that
Mettu and Plaxton’s [15] O(n2) time bound is optimal for facility location with
distance oracles, even with uniform facility costs.

However, in [5], it is shown that Jain and Vazirani’s algorithm [13] can be
implemented with Õ(n) nearest neighbor queries, leading to a more efficient
solution in Hamming space [11]. We note that [5] does not give anything for the
k-median problem as it is based on approximate counting, hence approximate
payment of facilities, and then Jain and Vazirani’s rounding trick does not work.

In a graph, we have no efficient way of supporting individual nearest neighbor
queries, but what we can do for a subset X ⊆ V of the vertices is for all points
v ∈ V to find their nearest neighbor vX , that is, in graphs, we can solve the all
points nearest marked neighbor problem in O(m) time (c.f. proof of Observation
1). Essentially, we show below that facility location can be solved within a factor
3 from optimality, with a polylogarithmic number of solutions to the all points
nearest neighbor problem. We note that whereas “phase 2” of Jain and Vazirani’s
algorithm [13] is trivial to implement with efficient individual nearest neighbor
queries [5], it needs something like Proposition 1 for graphs.

Instead of using Jain and Vazirani’s algorithm [13], we use the one of Mettu
and Plaxton [15]. The factor 3 approximation algorithm of Mettu and Plaxton
[15] for facility location is very simple and elegant. As the algorithm in [13], it
has two phases.

Phase 1. for each x ∈ P , we find rx such that value(x, rx) = f-cost(x) where
value(x, r) =

∑
y∈P,dist(x,y)≤r(r − dist(x, y)).

Phase 2. Starting with S = ∅, we visit x ∈ P in order of increasing rx, adding
x to S if dist(x, S) > 2rx.

Lemma 4 ([15]). The above set S is at most a factor 3 from the optimal solu-
tion to the facility location problem.
For an efficient implementation of the above algorithm, let ε > 0 be such that
2 is an integral power of (1 + ε) for some integer i. Increasing assignment just

Quick k-Median, k-Center, and Facility Location for Sparse Graphs 259

a little, we will view all distances as rounded up to nearest integral power of
(1 + ε).

Recall that in our later usage of the rx, all we care about is which vertices
are within distance 2rx from x. Let i be such that (1 + ε)i ≤ rx ≤ (1 + ε)i+1,
since 2 is an integral power of (1 + ε), there are no rounded distances between
(1 + ε)i and (1 + ε)i+1. Thus, we can freely round rx down to the nearest power
of (1 + ε), even if this implies value(x, rx) � f-cost(x).

Algorithm B Implements phase 1 finding rv for all v ∈ V .
B.1.for all a ∈ V , set fa = 0 — fa = value(a, (1 + ε)i).
B.2.set U = V — U are facilities with unidentified ra.
B.3.for i = 1, 2, ... while U 6= ∅,
B.3.1. using Lemma 3 with W = V , estimate for each a ∈ U , the number pa of

vertices within distance (1 + ε)i from a.
B.3.2. for each a ∈ U ,
B.3.2.1. if (f-cost(a) − fa) < ((1 + ε)i+1 − (1 + ε)i)pa,
B.3.2.1.1. set ra = (1 + ε)i

B.3.2.1.2. remove a from U

else
B.3.2.1.1. fa = fa + ((1 + ε)i+1 − (1 + ε)i)pa

Algorithm C Implements phase 2, constructing the set S.
C.1.set S = ∅
C.2.for i = 1, 2...,
C.2.1. let W be the set of vertices a ∈ V with ra = (1 + ε)i

C.2.2. remove from W all vertices within distance 2(1 + ε)i from S

C.2.3. using Proposition 1, construct a maximal dist-2(1 + ε)i independent set
U from W

C.2.4. add U to S

Theorem 4. We can solve the facility location problem within a factor 3 + o(1)
from optimality in Õ(m) time.
Proof. We have used approximate distances in the sense of rounding up to near-
est power of (1+ε)i, and we used approximate facility costs in the sense that the
pa may be off by a factor (1 ± o(1)). The implicit rounding down of the ra was
seen above to have no consequence. In phase 2, we made no further approxima-
tion, so with ε = o(1), our total costs are only off by a factor (1 ± o(1)) relative
to the factor 3 in Lemma 4.

The time bound follows from the time bound in Proposition 1.

References

1. M. Charikar, S. Guha, E. Tardos, and D.B. Shmoys. A constant-factor approx-
imation algorithm for the k-median problem. In Proc. 31th STOC, pages 1–10,
1999.

260 M. Thorup

2. E. Cohen. Size-estimation framework with applications to transitive closure and
reachability. J. Comput. System Sci., 55(3):441–453, 1997.

3. E. Cohen and U. Zwick. All-pairs small-stretch paths. In Proc. 8th SODA, pages
93–102, 1999.

4. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. J. ACM, 34:596–615, 1987.

5. A. Goel, P. Indyk, and K. Varadarajan. Reductions among high demensional
proximity problems. In Proc. 10th SODA, pages 769–778, 2001.

6. T. F. Gonzales. Clustering to minimize the maximum intercluster distance. Theor.
Comp. Sci., 38:293–550, 1985.

7. S. Guha, M. Mishra, R. Motwani, and L O’Callaghan. Clustering data streams.
In Proc. 41th FOCS, pages 359–366, 2000.

8. D. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33:533–550, 1986.

9. W.L. Hsu and G.L. Nemhauser. Easy and hard bottleneck problems. Discr. Appl.
Math., 1:209–216, 1979.

10. P. Indyk. Sublinear time algorithms for metric space problems. In Proc. 31th
STOC, pages 428–434, 1999.

11. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
course of dimensionality. In Proc. 30th STOC, pages 604–613, 1998.

12. P. Indyk and M. Thorup. Approximate 1-medians, 2000.
13. K. Jain and V.V. Vazirani. Primal-dual approximation algorihtms for metric facil-

ity location and k-median problems. In Proc. 40th FOCS, pages 2–13, 1999. The
running times involve a certain factor L that will be removed in the journal version
to appear in J. ACM.

14. M. Luby. A simple parallel algorithm for the maiximal independent set. SIAM J.
Comput., 15:1036–1053, 1986.

15. R.R. Mettu and C. G. Plaxton. The online medan problem. In Proc. 41th FOCS,
pages 339–348, 2000.

16. B.C. Tansel, R.L. Francis, and T.J. Lowe. Location on networks: A survey. part 1
and 2. Management Science, 29(4):482–511, 1983.

17. M. Thorup. Undirected single source shortest paths with positive integer weights
in linear time. J. ACM, 46:362–394, 1999.

18. M. Thorup. On RAM priority queues. SIAM J. Comput., 30(1):86–109, 2000.
19. M. Thorup and U. Zwick. Approximate distance oracles, 2000. Accepted for

STOC’01.

Parameterized Complexity: Exponential
Speed-Up for Planar Graph Problems

Jochen Alber?, Henning Fernau, and Rolf Niedermeier

Universität Tübingen, Wilhelm-Schickard-Institut für Informatik,
Sand 13, 72076 Tübingen, Fed. Rep. of Germany,

{alber,fernau,niedermr}@informatik.uni-tuebingen.de

Abstract. A parameterized problem is fixed parameter tractable if it
admits a solving algorithm whose running time on input instance (I, k)
is f(k) · |I|α, where f is an arbitrary function depending only on k.
Typically, f is some exponential function, e.g., f(k) = ck for constant c.
We describe general techniques to obtain growth of the form f(k) = c

p
k

for a large variety of planar graph problems. The key to this type of al-
gorithm is what we call the “Layerwise Separation Property” of a planar
graph problem. Problems having this property include planar vertex
cover, planar independent set, and planar dominating set.

1 Introduction

While many problems of practical interest tend to be intractable from a standard
complexity-theoretic point of view, in many cases such problems have natural
“structural” parameters, and practically relevant instances are often associated
with “small” values of these parameters. The notion of fixed parameter tractabil-
ity [10] tries to capture this intuition. This is done by taking into account solving
algorithms that are exponential with respect to the parameter, but otherwise
have polynomial time complexity. That is, on input instance (I, k) one terms a
(parameterized) problem fixed parameter tractable if it allows for a solving algo-
rithm running in time f(k)nO(1), where f is an arbitrary function only depending
on k and n = |I|. The associated complexity class is called FPT. As fixed pa-
rameter tractability explicitly allows for exponential time complexity concerning
the parameter, the pressing challenge is to keep the related “combinatorial ex-
plosion” as small as possible. In this paper, we provide a general framework for
NP-hard planar graph problems that allows us to go from typically time cknO(1)

algorithms to time c
√
knO(1) algorithms (subsequently briefly denoted by “c

√
k-

algorithms”), meaning an exponential speed-up.1 The main contributions of our
work, thus, are
? Supported by the Deutsche Forschungsgemeinschaft (research project PEAL (Para-

meterized complexity and Exact ALgorithms), NI 369/1-1).
1 Actually, whenever we can construct a so-called problem kernel of polynomial size

in polynomial time (which is often the case for parameterized problems), then we
can replace the term c

p
knO(1) by c

p
kkO(1) + nO(1).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 261–272, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

262 J. Alber, H. Fernau, and R. Niedermeier

• to provide new results and a “structural breakthrough” for the parameterized
complexity of a large class of problems,

• to parallel and complement results for the approximability of planar graph
problems obtained by Baker [4],

• to methodize and extend previous work on concrete graph problems [1], and
• to systematically compute the bases in the exponential terms.

Fixed parameter tractability. The parameterized tractability approach tries
to restrict the seemingly inherent “combinatorial explosion” of NP-hard prob-
lems to a “small part” of the input, the parameter. For instance, vertex cover
allows for an algorithm with running time O(kn + 1.3k), where k is the size of
the vertex cover to be constructed [8,14]. One direction in current research is to
investigate problems with fixed parameter algorithms of running time cknO(1)

and to try to get the constant c as small as possible. Getting small constant
bases in the exponential factor f(k) is also our concern, but here, we focus on
functions f (asymptotically) growing as slowly as possible.
Planar graph problems. Planar graphs build a natural and practically impor-
tant graph class. Many problems that are NP-complete for general graphs (such
as vertex cover and dominating set) remain so when restricted to planar
graphs. Whereas many NP-complete graph problems are hard to approximate
in general graphs, Baker, in her well-known work [4], showed that many of them
possess a polynomial time approximation scheme for planar graphs. However,
the degree of the polynomial grows with the quality of the approximation. Al-
ternatively, finding an “efficient” exact solution in “reasonable exponential time”
is an interesting and promising research challenge.
Relations to previous work. In recent work, algorithms were presented that
constructively produce a solution for planar dominating set and related prob-
lems in time c

√
kn [1]. To obtain these results, it was proven that the treewidth

of a planar graph with a dominating set of size k is bounded by O(
√
k), and that

a corresponding tree decomposition can be found in time O(
√
kn). Building on

that problem-specific work with its rather tailor-made approach for dominating
sets, here, we take a much broader perspective. From a practitioner’s point of
view, this means that, since the algorithms developed here can be stated in a
very general framework, only small parts have to be changed to adapt them
to the concrete problem. In this sense, our work differs strongly from research
directions where running times of algorithms are improved in a very problem-
specific manner (e.g., by extremely sophisticated case-distinctions, as in the case
of vertex cover for general graphs). For example, once one can show that a
problem has the so-called “Layerwise Separation Property,” one can run a gen-
eral algorithm which quickly computes a tree decomposition of guaranteed small
width (independent of the concrete problem).
Results. We provide a general methodology for the design of c

√
k-algorithms.

A key to this is the notion of select&verify graph problems and the introduc-
tion of the Layerwise Separation Property (see Section 3) of such problems in
connection with the concept of linear problem kernels (see Subsection 2.1). We
show that problems that have the Layerwise Separation Property and admit ei-

Parameterized Complexity: Exponential Speed-Up 263

Fig. 1. Roadmap of our methodology for planar graph problems.

ther a tree decomposition based algorithm (cf., e.g., [17]) or admit an algorithm
based on bounded outerplanarity (cf. [4]), can be solved in time c

√
knO(1). For

instance, these include planar vertex cover, planar independent set,
planar dominating set, or planar edge domination and also variations
of these, such as their weighted versions. Moreover, we give explicit formulas to
determine the base c of the exponential term with respect to the problem specific
parameters. For planar vertex cover, e.g., we obtain a time O(24

√
3kn) algo-

rithm. The methods can be generalized in a way that basically all FPT-problems
that admit tree-decomposition based algorithms can be attacked with our ap-
proach. A library containing implementations of various algorithms sketched in
this paper is currently under development. It uses the LEDA package [13] for
graph algorithms and the results obtained so far are encouraging.
Review of presented methodology. In a first phase, one separates the graph
in a particular way (“layerwise”). The key property of a graph problem which
allows such an approach will be the so-called “Layerwise Separation Property.”
Corresponding details are presented in Section 3. It will be shown that such a
property holds for quite a large class of graph problems. In a second phase, the
problem is solved on the layerwisely separated graph. We present two indepen-
dent ways to achieve this in Section 4; either using the separators to set up a
tree decomposition of width O(

√
k) and solving the problem using this tree de-

composition, or using a combination of a trivial approach on the separators and
some algorithms working on graphs of bounded outerplanarity (see [4]) for the
partitioned rest graphs. Figure 1 gives a general overview of our methodology.

Several details and proofs had to be deferred to the full version [2].

2 Basic Definitions and Preliminaries

We consider undirected graphs G = (V,E), V denoting the vertex set and E
denoting the edge set. Sometimes we refer to V by V (G). Let G[D] denote

264 J. Alber, H. Fernau, and R. Niedermeier

the subgraph induced by a vertex set D. We only consider simple (no double
edges) graphs without self-loops. We study planar graphs, i.e., graphs that can
be drawn in the plane without edge crossings. Let (G,φ) denote a plane graph,
i.e., a planar graph G together with an embedding φ. A face of a plane graph is
any topologically connected region surrounded by edges of the plane graph. The
one unbounded face of a plane graph is called the exterior face. We study the
following “graph numbers”: A vertex cover C of a graph G is a set of vertices
such that every edge of G has at least one endpoint in C; the size of a vertex cover
set with a minimum number of vertices is denoted by vc(G). An independent set
of a graph G is a set of pairwise nonadjacent vertices; the size of an independent
set with a maximum number of vertices is denoted by is(G). A dominating set
D of a graph G is a set of vertices such that each of the vertices in G lies
in D or has at least one neighbor in D; the size of a dominating set with a
minimum number of vertices is denoted by ds(G). The corresponding problems
are (planar) vertex cover, independent set, and dominating set.

2.1 Linear Problem Kernels

Reduction to problem kernel is a core technique for the development of fixed
parameter algorithms (see [10]). In a sense, the idea behind is to cut off the
“easy parts” of a given problem instance such that only the “hard kernel” of
the problem remains, where, then, e.g., exhaustive search can be applied (with
reduced costs).

Definition 1. Let L be a parameterized problem, i.e., L consists of pairs (I, k),
where problem instance I has a solution of size k (the parameter).2 Reduction
to problem kernel3 then means to replace problem (I, k) by a “reduced” problem
(I ′, k′) (which we call the problem kernel) such that k′ ≤ c · k and |I ′| ≤ q(k′)
with constant c, polynomial q, and (I, k) ∈ L iff (I ′, k′) ∈ L. Furthermore, we
require that the reduction from (I, k) to (I ′, k′) (that we call kernelization) is
computable in polynomial time TK(|I|, k).

Usually, having constructed a size kO(1) problem kernel in time nO(1), one
can improve the time complexity f(k)nO(1) of a fixed parameter algorithm to
f(k)kO(1) + nO(1). Subsequently, our focus is on decreasing f(k), and we do
not always refer to this simple fact. Often (cf. the subsequent example ver-
tex cover), the best one can hope for the problem kernel is size linear in k,
a so-called linear problem kernel . For instance, using a theorem of Nemhauser
and Trotter [15], Chen et al. [8] recently observed a problem kernel of size 2k
for vertex cover on general (not necessarily planar) graphs. According to the
current state of knowledge, this is the best one could hope for. As a further
example, note that due to the four color theorem for planar graphs and the

2 In this paper, we assume the parameter to be a positive integer, although, in general,
it might also be from an arbitrary language (e.g., being a subgraph).

3 Here, we give a somewhat “restricted definition” of reduction to problem kernel
which, however, applies to all practical cases we know.

Parameterized Complexity: Exponential Speed-Up 265

corresponding algorithm generating a four coloring [16], it is easy to see that
planar independent set has a problem kernel of size 4k.

Besides the positive effect of reducing the input size significantly, this pa-
per gives further justification, in particular, for the importance of linear prob-
lem kernels. The point is that once we have a linear problem kernel, e.g., for
planar vertex cover or planar independent set, it is fairly easy to get
c
√
k-algorithms for these problems based upon the famous planar separator the-

orem [12]. The constant factor in the problem kernel size directly influences the
value of the exponential base and hence, lowering the kernel size means improved
efficiency. We will show alternative, more efficient ways (without using the pla-
nar separator theorem) of how to make use of linear problem kernels in a generic
way in order to obtain c

√
k-algorithms for planar graph problems.

2.2 Tree Decomposition and Layer Decomposition of Graphs

Definition 2. A tree decomposition of a graph G = (V,E) is a pair 〈{Xi | i ∈
I}, T 〉, where Xi ⊆ V is called a bag and T is a tree with the elements of I as
nodes, such that the following hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;
3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi∩Xk ⊆ Xj.

The width of 〈{Xi | i ∈ I}, T 〉 is max{|Xi| | i ∈ I} − 1. The treewidth tw(G)
of G is the minimum ` such that G has a tree decomposition of width `.

Details on tree decompositions can be found in [5,6,11]. Let G = (V,E) be a
planar graph. The vertices of G can be decomposed according to the level of the
“layer” in which they appear in an embedding φ, see [1,4].
Definition 3. Let (G = (V,E), φ) be a plane graph.

a) The layer decomposition of (G,φ) is a disjoint partition of the vertex set V
into sets L1, . . . , Lr, which are recursively defined as follows:

• L1 is the set of vertices on the exterior face of G, and
• Li is the set of vertices on the exterior face of G[V − ⋃i−1

j=1 Lj] for i =
2, . . . r.

We will denote the layer decomposition of (G,φ) by L(G,φ) := (L1, . . . , Lr).
b) The set Li is called the ith layer of (G,φ).
c) The (uniquely defined) number r of different layers is called the outerpla-

narity of (G,φ), denoted by out(G,φ) := r.
d) We define out(G) to be the smallest outerplanarity possible among all plane

embeddings, i.e., minimizing over all plane embeddings φ of G we set

out(G) := min
φ

out(G,φ).

Proposition 1 ([1]). Let (G = (V,E), φ) be a plane graph. The layer decom-
position L(G,φ) = (L1, . . . , Lr) can be computed in time O(|V |).

266 J. Alber, H. Fernau, and R. Niedermeier

2.3 Algorithms Based on Separators in Graphs

One of the most useful algorithmic techniques for solving computational prob-
lems is divide-and-conquer. To apply this technique to planar graphs, we need
graph separators and related notions.
Graph separators and select&verify problems. Graph separators are de-
fined as follows. Let G = (V,E) be an undirected graph. A separator S ⊆ V
of G partitions V into two sets A and B such that A ∪ B ∪ S = V with
A ∩ B = A ∩ S = B ∩ S = ∅ and no edge joins vertices in A and B. In general,
of course, A, B and S will be non-empty.

Definition 4. A set G of tuples (G, k), G an undirected graph with vertex set
V = {v1, . . . , vn} and k a positive real number, is called a select&verify graph
problem if there exists a pair (P·, opt) with opt ∈ {min,max}, such that P· is
a function that assigns to an undirected graph G (with n vertices) a polynomial
time computable function PG : {0, 1}n → R+ ∪ {±∞}, such that

(G, k) ∈ G ⇔
{

optx∈{0,1}n PG(x) ≤ k if opt = min
optx∈{0,1}n PG(x) ≥ k if opt = max .

It is an easy observation that every select&verify graph problem that additionally
admits a linear problem kernel of size dk is solvable in time O(2dkk+TK(n, k)).

Vertex cover is an easy example for a select&verify graph problem. Here,
for G = (V,E), one may use (with the convention ∞ · 0 = 0)

PG(x) =
n∑

i=1

xi +
∑

{vi,vj}∈E
∞ · (1 − xi)(1 − xj).

Algorithms based on separator theorems. Lipton and Tarjan [12] have used
their famous separator theorem in order to design algorithms with a running time
of O(c

√
n) for certain select&verify planar graph problems. This naturally implies

that, in the case of parameterized planar graph problems for which a linear kernel
is known, algorithms with running time O(c′

√
k + TK(n, k)) can be derived. As

worked out in [3], a straightforward application yields very bad constants, even
when dealing with improved versions of the planar separator theorem (see [9]);
for instance, c′ = 215.1823 ≈ 40000 for planar vertex cover. We will see
algorithms with much better constants in this paper. In addition, the advantages
of the approach pursued in this paper also lie in weaker assumptions. In some
cases, we may drop requirements such as linear problem kernels by replacing it
with the so-called “Layerwise Separation Property,” a seemingly less restrictive
demand.

3 Phase 1: Layerwise Separation

We will exploit the layer-structure of a plane graph in order to gain a “nice”
separation of the graph. It is important that a “yes”-instance (G, k) (where G is

Parameterized Complexity: Exponential Speed-Up 267

a plane graph) of the graph problem G admits a so-called “layerwise separation”
of small size. By this, we mean, roughly speaking, a separation of the plane graph
G (i.e., a collection of separators for G), such that each separator is contained
in the union of constantly many subsequent layers (see conditions 1 and 2 of
the following definition). For (fixed parameter) algorithmic purposes, it will be
important that the corresponding separators are “small” (see condition 3 below).
Definition 5. Let (G = (V,E), φ) be a plane graph of outerplanarity r :=
out(G,φ) and let L(G,φ) = (L1, . . . , Lr) be its layer decomposition. A layer-
wise separation of width w and size s of (G,φ) is a sequence (S1, . . . , Sr) of
subsets of V , with the properties that:
1. Si ⊆ ⋃i+(w−1)

j=i Lj, 2. Si separates layers Li−1 and Li+w, and 3.
∑r
j=1 |Sj | ≤ s.

Definition 6. A parameterized problem G for planar graphs is said to have
the Layerwise Separation Property (abbreviated by: LSP) of width w and size-
factor d if for each (G, k) ∈ G and every planar embedding φ of G, the plane
graph (G,φ) admits a layerwise separation of width w and size dk.

3.1 How Can Layerwise Separations Be Obtained?

The Layerwise Separation Property can be shown directly for many parameter-
ized graph problems. As an example, consider planar vertex cover. Here,
we get constants w = 2 and d = 2. In fact, for (G, k) ∈ vertex cover (where
(G,φ) is a plane graph) with a “witnessing” vertex cover V ′ of size k, the sets
Si := (Li∪Li+1)∩V ′ form a layerwise separation, given the layer decomposition
L(G,φ) = (L1, . . . , Lr). In [1], the non-trivial fact is proven that for planar
dominating set, the LSP holds with constants w = 3 and d = 51.
Lemma 1. Let G be a parameterized problem for planar graphs that admits
a problem kernel of size dk. Then, the parameterized problem G′ where each
instance is replaced by its problem kernel has the LSP of width 1 and size-
factor d.

With Lemma 1 and the size 2k problem kernel for vertex cover (see Sub-
section 2.1), we derive, for example, that planar vertex cover has the LSP
of width 1 and size-factor 2 (which is even better than what was shown above).
Using the 4k problem kernel for planar independent set, we see that this
problem has the LSP of width 1 and size-factor 4 on the set of reduced instances.

3.2 What Are Layerwise Separations Good for?

The idea of the following is that, from a layerwise separation of small size (say
bounded by O(k)), we are able to choose a set of separators such that their size
is bounded by O(

√
k) and—at the same time—the subgraphs into which these

separators cut the original graph have outerplanarity bounded by O(
√
k).

Definition 7. Let (G = (V,E), φ) be a plane graph with layer decomposition
L(G,φ) = (L1, . . . , Lr). A partial layerwise separation of width w is a sequence
S = (S1, . . . , Sq) such that there exist i0 = 1 ≤ i1 < . . . < iq ≤ r = iq+1 such
that for i = 1, . . . , q:4
4 By default, we set Si := ∅ for i < 1 and i > q.

268 J. Alber, H. Fernau, and R. Niedermeier

1. Sj ⊆ ⋃ij+(w−1)
`=ij L`,

2. ij + w ≤ ij+1 (so the sets in S are pairwise disjoint), and
3. Sj separates layers Lij−1 and Lij+w.

The sequence CS = (G0, . . . , Gq) with

Gj := G[(
ij+1+(w−1)⋃

`=ij

L`) − (Sj ∪ Sj+1)], j = 0, . . . , q

is called the sequence of graph chunks obtained by S.

Theorem 1. Let (G = (V,E), φ) be a plane graph that admits a layerwise sep-
aration of width w and size dk. Then, for every ψ ∈ R+, there exists a partial
layerwise separation S(ψ) of width w such that

1. maxS∈S(ψ) |S| ≤ ψ
√
dk and

2. out(H) ≤
√
dk
ψ + w for each graph chunk H in CS(ψ).

Moreover, there is an algorithm with running time O(
√
kn) which, for given ψ,

recognizes whether (G,φ) admits a layerwise separation of width w and size dk
and, if so, computes S(ψ).

Proof. (Sketch) For m = 1, . . . , w, consider the integer sequences Im = (m +
jw)br/wc−1

j=0 and the corresponding sequences of separators Sm = (Si)i∈Im . Note
that each Sm is a sequence of pairwise disjoint separators. Since (S1, . . . , Sr) is
a layerwise separation of size dk, this implies that there exists a 1 ≤ m′ ≤ w
with

∑
i∈Im′

|Si| ≤ dk
w (∗).

For a given ψ, let s := ψ
√
dk. Define S(ψ) to be the subsequence of Sm′ such

that |S| ≤ s for all S ∈ S(ψ), and |S| > s for all S ∈ Sm′ − S(ψ). This yields
condition 1. As to condition 2, suppose that S(ψ) = (Si1 , . . . , Siq). The number
of separators in Sm′ that appear between Sij and Sij+1 is (ij+1 − ij)/w. Since
all of these separators have size ≥ s, their number has to be bounded by dk/ws,
see (∗). Therefore, ij+1 − ij ≤ √

dk/ψ for all j = 1, . . . , q− 1. Hence, the chunks
G[(

⋃ij+1+(w−1)
`=ij L`) − (Sij ∪ Sij+1)] have outerplanarity at most

√
dk/ψ + w.

The proof can be turned into a constructive algorithm. This is outlined in
the full version [2]. ut

4 Phase 2: Algorithms on Layerwisely Separated Graphs

After Phase 1, we are left with a set of disjoint (layerwise) separators of size
O(

√
k) separating the graph in components, each of which having outerplanarity

bounded by O(
√
k).

Parameterized Complexity: Exponential Speed-Up 269

4.1 Using Tree Decompositions

We will show how the existence of a layerwise separation of small size helps to
constructively obtain a tree decomposition of small width. The following result
can be found in [6, Theorem 83] and [1, Theorem 12].

Proposition 2. For a plane graph (G,φ), we have tw(G) ≤ 3 ·out(G)−1. Such
a tree decomposition can be found in O(out(G) · n) time.

Theorem 2. Let (G,φ) be a plane graph that admits a layerwise separation of
width w and size dk. Then, we have tw(G) ≤ 2

√
6dk + (3w − 1). Such a tree

decomposition can be computed in time O(k3/2n).

Proof. (Sketch) By Theorem 1, for each ψ ∈ R+, there exists a partial layerwise
separation S(ψ) = (S1, . . . , Sq) of width w with corresponding graph chunks
CS(ψ) = (G0, . . . , Gq), such that maxS∈S(ψ) |S| ≤ ψ

√
dk and out(Gi) ≤ √

dk/ψ+
w for i = 0, . . . , q. The algorithm that constructs a tree decomposition Xψ is:

1. Construct a tree decomposition Xi of width at most 3 out(Gi) − 1 for each
of the graphs Gi (using the algorithm from Proposition 2).

2. Add Si and Si+1 to every bag in Xi (i = 0, . . . , q).
3. Let Ti be the tree of Xi. Then, successively add an arbitrary connection

between the trees Ti and Ti+1 in order to obtain a tree T .

The tree T , together with the constructed bags, gives a tree decomposition of G,
see [1, Prop. 4]. Its width tw(Xψ) is upperbounded by (2ψ+3/ψ)

√
dk+(3w−1),

which is minimal if ψ =
√

3/2. Therefore, tw(Xψ) ≤ 2
√

6dk + (3w − 1). ut
For example, Theorem 2 and previous observations imply tw(G) ≤ 4

√
3 vc(G)+5

and tw(G) ≤ 6
√

34 ds(G) + 8 for planar graphs G. Note that for general graphs,
no relation of the form tw(G) ≤ f(ds(G)) (for any function f) holds. For vertex
cover, only the linear relation tw(G) ≤ vc(G) can be shown easily.

In addition, Theorem 2 yields a c
√
k-algorithm for certain graph problems.

Theorem 3. Let G be a parameterized problem for planar graphs. Suppose that
G has the LSP of width w and size-factor d and that there exists a time σ`n
algorithm that decides (G, k) ∈ G, if G is given together with a tree decomposition
of width `.

Then, there is an algorithm to decide (G, k) ∈ G in time O(σ3w−1 ·
2θ1(σ,d)

√
kn), where θ1(σ, d) = 2 log(σ)

√
6d.

Proof. In time O(
√
kn) (see Theorem 1), we can check whether an instance

(G, k) admits a layerwise separation of width w and size dk. If so, the algorithm
of Theorem 2 computes a tree decomposition of width at most 2

√
6dk+(3w−1),

and we can decide (G, k) ∈ G by using the given tree decomposition algorithm in
time O(σ2

√
6dk+(3w−1)n). If (G, k) does not admit such a layerwise separation,

we know that (G, k) /∈ G, by definition of LSP. ut

270 J. Alber, H. Fernau, and R. Niedermeier

Going back to our running examples, it is well-known that planar vertex
cover and planar independent set admit such a tree decomposition based
algorithm for σ = 2. For planar vertex cover, we have seen that the LSP of
width 1 and size-factor d = 2 holds. Hence, Theorem 3 guarantees an O(24

√
3kn)

algorithm for this problem. For planar independent set, we have a linear
problem kernel of size 4k, hence, the LSP of width 1 and size-factor d = 4 holds,
which yields an O(24

√
6kn) algorithm.

4.2 Using Bounded Outerplanarity

We now turn our attention to select&verify problems subject to the assumption
that a solving algorithm of linear running time on the class of graphs of bounded
outerplanarity exists. This issue was addressed in [4]; a variety of examples can
be found therein. We examine how, in this context, the notions of select&verify
problems and the LSP will lead to c

√
k-algorithms.

Due to the lack of space, we only give an intuitive explanation of the notions
“weak glueability” and “constraint G” associated to a select&verify problem G
which appear in the formulation of the following results. For a more detailed
definition we refer to the long version [2] or to [3]. A problem G is weakly glueable
with λ colors if a solution of G on an instance G can be obtained by “merging”
solutions of constraint G with G[A∪S] and G[B∪S], where S separates G into
two parts A and B. Here, constraint G is a variant of G, in which it is already
fixed which vertices of S belong to an admissible solution. The number λ, in
some sense, measures the complexity of the merging step. For example, planar
vertex cover, and planar independent set are weakly glueable with λ = 2
colors and, planar dominating set is weakly glueable with “essentially” λ = 3
colors.

Similar to Theorem 3, we construct a partial layerwise separation S(ψ) with
optimally adapted trade-off parameter ψ to enable an efficient dynamic pro-
gramming algorithm. We omit the proof of the following theorem (see [2] for
details).

Theorem 4. Let G be a select&verify problem for planar graphs. Suppose that
G has the LSP of width w and size-factor d, that G is weakly glueable with λ
colors, and that there exists an algorithm that solves the problem constraint
G for a given graph G in time τout(G)n.

Then, there is an algorithm to decide (G, k) ∈ G in time O(τw ·2θ2(λ,τ,d)
√
kn),

where θ2(λ, τ, d) = 2
√

2d log(λ) log(τ).

It remains to say for which problems there exists a solving algorithm of the
problem constraint G for a given graph G in time τout(G)n. For planar
vertex cover, we have d = 2, w = 1 and τ = 8 (see the result of Baker [4] which
can be adapted to the constraint case fairly easily) and, hence, the approach in
Theorem 4 yields an O(24

√
3kn) time algorithm.

As an alternative to Baker, we again may use tree decomposition based ap-
proaches: Let G be a parameterized problem for planar graphs. Suppose that

Parameterized Complexity: Exponential Speed-Up 271

there exists a time σ`n algorithm that solves constraint G, when G is given
together with a tree decomposition of width `. Then, due to Proposition 2, there
is an algorithm that solves constraint G in time τout(G)n for τ = σ3.

The following easy corollary helps comparing the approach from Subsec-
tion 4.1 (i.e., Theorem 3) with the approach in this subsection (i.e., Theorem 4).

Corollary 1. Let G be a select&verify problem for planar graphs. Suppose that
G has the LSP of width w and size-factor d, that G is weakly glueable with λ
colors, and that there exists a time σ`n algorithm that solves constraint G for
a graph G, if G is given together with a tree decomposition of width `.

Then, there is an algorithm to decide (G, k) ∈ G in time O(σ3w·2θ3(λ,σ,d)
√
kn),

where θ3(λ, σ, d) = 2
√

6d log(λ) log(σ).
The exponential factor of the algorithm in Corollary 1, i.e., θ3(λ, σ, d), is related
to the corresponding exponent of Theorem 3, i.e., θ1(σ, d), in the following way:√

log λ · θ1(σ, d) =
√

log σ · θ3(λ, σ, d). From this, we derive that, if λ > σ, the
algorithm in Theorem 3 outperforms the one of Corollary 1, whereas, if λ < σ,
the situation is vice versa. However, in order to apply Corollary 1, we need the
three extra assumptions that we have a select&verify problem which is weakly
glueable and that we can deal with the problem constraint G in the treewidth
algorithm.

5 Conclusion

To some extent, this paper can be seen as the “parameterized complexity coun-
terpart” to what was developed by Baker [4] in the context of approximation
algorithms. We describe two main ways (namely linear problem kernels and
problem-specific approaches) to achieve the novel concept of Layerwise Sep-
aration Property, from which again, two approaches (tree decomposition and
bounded outerplanarity) lead to c

√
k-algorithms for planar graph problems (see

Figure 1 for an overview). A slight modification of our presented techniques can
be used to extend our results to parameterized problems that admit a problem
kernel of size p(k) (not necessarily linear!). In this case, the running time can
be sped up from 2O(p(k))nO(1) to 2O(

√
p(k))nO(1) (see [2] for details). Basically

all FPT-problems that admit treewidth based algorithms can be handled by our
methods (see [17]).

Future research topics raised by our work include to further improve the (“ex-
ponential”) constants, e.g., by a further refined and more sophisticated “layer
decomposition tree”; to investigate and extend the availability of linear problem
kernels for all kinds of planar graph problems; to provide implementations of our
approach accompanied by sound experimental studies, thus taking into account
that all our analysis is worst case and often overly pessimistic. Finally, a more
general question is whether there are other “problem classes” that allow for c

√
k

fixed parameter algorithms. Cai and Juedes [7], however, very recently showed
the surprising result that for a list of parameterized problems (e.g., vertex
cover on general graphs) co(k)-algorithms are impossible unless FPT = W [1].

272 J. Alber, H. Fernau, and R. Niedermeier

Acknowledgements. We’d like to mention that parts of this work were dis-
cussed at the first international Workshop on Parameterized Complexity (orga-
nized by Mike Fellows and Venkatesh Raman) in Chennai, India, December 7–9,
2000.

References

1. J. Alber, H. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter al-
gorithms for planar dominating set and related problems. In Proc. 7th SWAT,
vol. 1851 of LNCS, Springer, pp. 97–110, 2000. Full version available as Technical
Report UU-CS-2000-28, Utrecht University, 2000.

2. J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential
speed-up for planar graph problems. Technical Report TR01–023, ECCC Reports,
Trier, March 2001. Available through http://www.eccc.uni-trier.de/eccc/.

3. J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parameterized view.
To appear in Proc. 7th COCOON, 2001. Full version available as Technical Re-
port WSI–2001–8, Universität Tübingen (Germany), Wilhelm-Schickard-Institut
für Informatik, March 2001.

4. B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. J. ACM, 41(1):153–180, 1994.

5. H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proc. 22nd
MFCS, vol. 1295 of LNCS, Springer, pp. 19–36, 1997.

6. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sci., 209:1–45, 1998.

7. L. Cai and D. Juedes. Subexponential parameterized algorithms collapse the W-
hierarchy. In Proc. 28th ICALP, 2001.

8. J. Chen, I. Kanj, and W. Jia. Vertex cover: Further observations and further
improvements. In Proc. 25th WG, vol. 1665 of LNCS, Springer, pp. 313–324, 1999.

9. H. N. Djidjev and S. Venkatesan. Reduced constants for simple cycle graph sepa-
ration. Acta Informatica, 34:231–243, 1997.

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
11. T. Kloks. Treewidth: Computations and Approximations, vol. 842 of LNCS,

Springer, 1994.
12. R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM

J. Comp., 9(3):615–627, 1980.
13. K. Mehlhorn and S. Näher. LEDA: A Platform of Combinatorial and Geometric

Computing. Cambridge University Press, Cambridge, England, 1999.
14. R. Niedermeier and P. Rossmanith. Upper Bounds for Vertex Cover further im-

proved. In Proc. 16th STACS, vol. 1563 of LNCS, Springer, pp. 561–570, 1999.
15. G. L. Nemhauser and J. L. E. Trotter. Vertex packing: structural properties and

algorithms. Math. Progr., 8:232–248, 1975.
16. N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-coloring

planar graphs. In Proc. 28th STOC, ACM Press, pp. 571–575, 1996.
17. J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an

application to domination-like problems. In Proc. 3rd WADS, vol. 709 of LNCS,
Springer, pp. 610–621, 1993.

Subexponential Parameterized Algorithms
Collapse the W-Hierarchy?

Liming Cai1 and David Juedes2

1 School of Electrical Engineering and Computer Science,
Ohio University, Athens, OH 45701

cai@cs.ohiou.edu.
2 School of Electrical Engineering and Computer Science,

Ohio University, Athens, OH 45701
juedes@ohiou.edu

Abstract. It is shown that for essentially all MAX SNP-hard optimiza-
tion problems finding exact solutions in subexponential time is not possi-
ble unless W [1] = FPT . In particular, we show that O(2o(k)p(n)) param-
eterized algorithms do not exist for Vertex Cover, Max Cut, Max
c-Sat, and a number of problems on bounded degree graphs such as
Dominating Set and Independent Set, unless W [1] = FPT . Our re-
sults are derived via an approach that uses an extended parameterization
of optimization problems and associated techniques to relate the parame-
terized complexity of problems in FPT to the parameterized complexity
of extended versions that are W [1]-hard.

1 Introduction

Recent substantial progress has been made in building better and better param-
eterized algorithms for a variety of NP-complete problems. Consider the problem
of determining whether a graph with n nodes has a Vertex Cover of size k.
Starting with the early work of Buss [7] who discovered a O(2kk2k+2 +kn) algo-
rithm for the problem, the running time of parameterized algorithms for Ver-
tex Cover has been improved to O(2kk2 + kn) by Downey and Fellows [11],
O(1.325kk2 + kn) by Balasubramanian et al. [5], O(1.3196kk2 + kn) by Downey,
Fellows, and Stege [13], O(1.29175kk2 + kn) by Niedermeier and Rossmanith
[17], and O(1.271kk2 + kn) by Chen, Kanj, and Jia [9]. Similar improvements
have been made for other NP-complete problems [2]. In particular, we mention
the case for Planar Dominating Set. As shown by Downey and Fellows [11],
this problem is known to be fixed parameter tractable via a O(11k|G|) algorithm.
However, this result was recently improved to O(2O(

√
k)n) by Alber, Bodlaender,

Fernau, and Niedermeier [1].
Noting the progress on algorithms for Planar Dominating Set, it is nat-

ural to ask if similar progress can be made for Vertex Cover. In particular, it
? This work was supported in part by the National Science Foundation research grant

CCR-000248.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 273–284, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

274 L. Cai and D. Juedes

is natural to ask if the current O(2εkp(n)) upper bound on Vertex Cover can
be improved to O(2o(k)p(n)). As our main result, we show that this is unlikely
since the existence of such an algorithm implies that the W -hierarchy collapses
at the first level, i.e., W [1] = FPT . With this in mind, it is natural to ask why
is it possible to build a parameterized algorithm for Planar Dominating Set
that runs in time O(2o(k)p(n)) when the existence of such an algorithm for Ver-
tex Cover implies that W [1] = FPT . The answer to this question seems to
lie in the approximability of these two problems. While both of these problems
are NP-complete [14], it is known that Planar Dominating Set has a PTAS
[4]. The same is not true for Vertex Cover unless P = NP because Vertex
Cover is MAX SNP-hard [18]. As we show here, the fact the Vertex Cover
is MAX SNP-hard means that it does not have a subexponential parameterized
algorithm unless W [1] = FPT .

Our results are obtained using new parameterized proof techniques. In par-
ticular, we examine generalized parameterizations of optimization problems and
relate the complexities of various parameterizations. For each maximization
problem Π, we define Π(r,s) to be the parameterized problem that determines
whether OPTΠ(I) ≥ r(I) +ks(|I|), for functions r and s. Analogous parameter-
izations are defined for minimization problems. As we show here, the parameter-
ized complexity of these problems depends largely on the function s. We show
that for certain optimization problems Π such as Max c-Sat, Π(r,s) is param-
eterized tractable when s = 1 or even o(log n), but Π(r,s) becomes W [1]-hard
when s = Θ(log n).

This extended abstract is structured as follows. In section 2, we provide
necessary notation concerning parameterized complexity theory, and we intro-
duce a general framework for examining parameterized versions of optimization
problems. In section 2, we begin to examine the relationships among the prob-
lems Π(r,s) for various functions r and s. In Theorem 1, we show that if Π(r,1)

is computable in time O(2o(k)p(n)), then Π(r,log n) is parameterized tractable.
In section 3, we examine the parameterized tractability of problems in MAX
SNP. In Theorem 3, we show that if some MAX SNP-hard problem Π1 has
a O(2o(k)p(n)) parameterized algorithm, then every problem Π2 in MAX SNP
has a O(2o(k)q(n)) parameterized algorithm. In Theorem 4, we examine the
complexity of Max c-Sat(r,s) for the function r(φ) = r′m, where r′ is a ra-
tional number and m is the number of clauses in φ. We show that if Max
c-Sat has a O(2o(k)p(n)) parameterized algorithm, then Max c-Sat(r,1) has a
O(2o(k)q(n)) parameterized algorithm. In section 4, we prove our main techni-
cal result, namely, that Max c-Sat(r,log n) is W [1]-hard. Note that many short
proofs are omitted from this extended abstract.

Combining the results from sections 2, 3, and 4 gives the main result of
this work. Consider the hypothesis that some MAX SNP-hard problem Π has
a O(2o(k)p(n)) parameterized algorithm. Since Max c-Sat is in MAX SNP,
this hypothesis implies that Max c-Sat has a O(2o(k)q1(n)) parameterized al-
gorithm. By Theorem 4, it follows that Max c-Sat(r,1) has a O(2o(k)q2(n))
parameterized algorithm. By an application of Theorem 1, we have that Max

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 275

c-Sat(r,log n) is parameterized tractable. Since Max c-Sat(r,log n) is W [1]-hard
by Theorem 5, this implies that W [1] = FPT .

We note that earlier work by Impagliazzo, Paturi, and Zane [15] also indicates
that Vertex Cover and other NP-complete problems likely do not have subex-
ponential parameterized algorithms. In particular, their work defines a notion of
completeness under “SERF” (sub-exponential reduction family) reductions for
the syntactic class SNP that was originally defined by Papadimitriou and Yan-
nakakis [18]. As shown there, the existence of a subexponential-time algorithm
for any problem that is SNP-hard under SERF reductions implies that every
problem in SNP has a subexponential-time algorithm. In their work, many NP-
complete problems, including Vertex Cover, Independent Set, and 3-Sat,
where shown to be SNP-hard under SERF reductions.

To compare our work with this earlier work, consider again the case for Ver-
tex Cover. Since k is bounded above by n, the existence of a subexponential-
time parameterized algorithm for Vertex Cover implies the existence of a
subexponential-time algorithm for the usual decision version. Hence, the under-
lying hypothesis of our work is stronger than that of Impagliazzo, Paturi, and
Zane [15]. However, our conclusion is also stronger. As shown in Corollary 17.7
of [12], if W [1] = FPT then 3-SAT has a subexponential-time algorithm. Since
3-SAT is SNP-complete under SERF reductions [15], this implies that every
problem in SNP has a subexponential-time algorithm. It is not known if the
converse is true.

2 Preliminaries

We begin by introducing necessary concepts concerning optimization problems
and the theory of parameterized complexity. For additional information, we refer
readers to the comprehensive text on parameterized complexity by Downey and
Fellows [12] and the classic text on NP-completeness by Garey and Johnson [14].

To begin, a parameterized problem Π is defined over the set Σ∗×N, where Σ
is a finite alphabet and N in the set of natural numbers. Therefore, each instance
of the problem Π is a pair 〈I, k〉, where k is called the parameter. A problem Π
is parameterized tractable if there is an algorithm running in time O(f(k)p(|I|))
that solves the parameterized problem Π for some polynomial p and some recur-
sive function f . The complexity class FPT contains all parameterized tractable
problems.

The theory of parameterized complexity defines a variety of reductions that
preserve parameterized tractability. Here we employ the standard parameterized
m-reduction. Briefly, Π1 is parameterized reducible to Π2 if there is a function
g : N → N and f : Σ∗ × N → Σ∗ such that 〈x, k〉 ∈ Π1 ↔ 〈f(x, k), g(k)〉 ∈
Π2 and f(x, k) is computable in time g(k)p(|x|) for some polynomial p. Based
on this reduction, a hierarchy of increasingly difficult parameterized problems,
FPT ⊆ W [1] ⊆ W [2] ⊆ . . . W [P], can be defined. This is the W -hierarchy.
A problem Π is W [t]-hard if every problem in W [t] is parameterized reducible

276 L. Cai and D. Juedes

to Π and W [t]-complete if it is also in W [t]. Our work relies on the fact that
Independent Set is W [1]-complete [10].

Many parameterized problems are obtained from optimization problems via
parameterizations. Following the earlier work of Cai and Chen [8], we use a stan-
dard parameterization of optimization problems. For each optimization problem
Π, the standard parameterized version of Π is to determine, given an instance
I of Π and an integer k, whether the optimal solution cost OPTΠ(I) is ≥ k for
maximization problems or ≤ k in the case of a minimization problems.

As pointed out by Majahan and Raman [16], OPTΠ(I) is always large for
certain problems such as Max Cut and Max Sat. In these cases, the question
of whether OPTΠ(I) ≥ k is trivial for small values of k. To overcome this diffi-
culty, they suggest that for problems Max Sat and Max Cut, parameterized
problems should be defined to determine whether OPT (I) ≥ dm

2 e + k. In this
paper, this formulation is extended to OPTΠ(I) ≥ r(I) + ks(|I|), for arbitrary
functions r and s. Note that the formulation of parameterized Max Sat by Ma-
jahan and Raman can be achieved by using r(φ) = dm

2 e, where m is the number
of clauses in the boolean formula φ.

Definition 1. Let Π be a maximization problem with instances IΠ and an op-
timal cost function OPTΠ . For functions r : IΠ → Q and s : N → Q, the
parameterized problem Π(r,s) is defined as follows: Given an instance 〈I, k〉, de-
termine whether OPTΠ(I) ≥ r(I) + ks(n), where n = |I|.

Π(r,s) is called an extended parameterized version of Π. When r(n) = 0 and
s(n) = 1, Π(r,s) is called the standard parameterized version of Π. We often
use Π to denote Π(0,1) when our intention is clear from the context.

Parameterized versions of minimization problems can be defined in a similar
fashion. In the literature, most parameterized tractability proofs involve explicit
constructions of a solution to witness each positive answer. In particular, the
following “stronger” definition of parameterized tractability was introduced in
[8].

Definition 2. Let Π be a maximization problem. The parameterized problem
Π(r,s) is parameterized tractable with witness if there is a O(f(k)p(|I|)) algo-
rithm that determines the membership of 〈I, k〉 in Π(r,s) and also produces a so-
lution to Π that witnesses to OPTΠ(I) ≥ r(I)+ks(|I|) whenever 〈I, k〉 ∈ Π(r,s),
for some recursive function f and polynomial p .

Although we primarily use the standard definition of parameterized tractabil-
ity throughout this extended abstract, Definition 2 is used in section 3 to show
that L reductions preserve parameterized tractability. The fact that L reduc-
tions preserve parameterized tractability with witness is crucial to our main
results. Note, however, that the close relationship between search and decision
means that the terms parameterized tractable and parameterized tractable with
witness are equivalent in many cases. As explained in sections 4 and 5, this re-
lationship allows us to state our main results without reference to the witness
characterization.

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 277

To begin, we mention some properties of the parameterized problems Π(r,s).
First note that s can be as large as o(log n) without significantly changing the
parameterized complexity of Π(r,s). Consider the following technical lemma.

Lemma 1. A parameterized problem is parameterized tractable if it is solvable
in O(2O(s(n)k)p(n)) steps for some unbounded and nondecreasing function s(n) =
o(log n).

Lemma 1 leads immediately to the following theorem.

Theorem 1. Let Π(r,1) be a parameterized problem solvable in O(2O(k)p(n))
steps for some p polynomial. Then for any unbounded nondecreasing function
s(n) = o(log n), Π(r,s) is parameterized tractable.

It is natural to ask whether the above theorem holds when s = Θ(log n).
As we show in section 4, this is unlikely since it implies that W [1] = FPT .
Indeed, Π(r,log n) appears to be parameterized intractable for certain problems.
Furthermore, the parameterized intractability of Π(r,log n) implies a strong lower
bound on the running times of parameterized algorithms for Π(r,1). This is one
of the keys to our overall approach.

Theorem 2. If Π(r,1) is solvable in O(2o(k)p(n)) steps, then Π(r,log n) is param-
eterized tractable.

3 Parameterized Tractability of MAX SNP

As noted in [12], a number of NP-complete problems such as Vertex Cover,
Vertex Cover-B, Max Sat, Max c-Sat, Max k-Cut, and Independent
Set for bounded degree graphs are parameterized tractable. In particular, each
of these problems can be solved in time O(2O(k)p(n)) for some polynomial p.
It is natural to ask whether the running times of parameterized algorithms for
these problems can be significantly improved. In this section, we work towards
answering these questions through an investigation of parameterized versions of
MAX SNP-hard optimization problems.

The class MAX SNP was introduced by Papadimitriou and Yannakakis [18]
to study the approximability of optimization problems. As defined in [18], an
optimization problem Π is in the syntactic class MAX SNP0 if its optimal
cost OPTΠ(I) for each instance I can be expressed as OPTΠ(I) = maxS |{v :
φ(v, I, S)}|, where both the instance I and the solution S are described as fi-
nite structures. The class MAX SNP contains all optimization problems that
can be reduced to some problem in the class MAX SNP0 through the following
approximation-preserving reduction.

Definition 3. [18] Let Π1 and Π2 be two optimization problems with cost func-
tions f1 and f2. Π1 L-reduces to Π2 if there are two polynomial time algorithms
A and B and two constants α, β > 0 such that for each instance I1 of Π1,

278 L. Cai and D. Juedes

i.) the algorithm A produces an instance I2 = A(I) such that OPTΠ2(I2) ≤
αOPTΠ1(I1), and

ii.) given any solution S2 for I2 with cost f2(I2, S2), algorithm B produces a
solution S1 for I1 with cost f1(I1, S1) such that |OPTΠ1(I1) − f1(I1, S1)| ≤
β|OPTΠ2(I2) − f2(I2, S2)|.

It is known from the work of Cai and Chen [8] that the standard param-
eterized versions of all maximization problems in the MAX SNP are parame-
terized tractable. The proof of this earlier result shows that L reductions pre-
serve parameterized tractability. Here we provide a more detailed account of how
L reductions preserve parameterized tractability among the standard parame-
terized versions of optimization problems. In particular, it can be shown that
L-reductions preserve subexponential-time computability.

Lemma 2. Let Π1 and Π2 be two optimization problems such that Π1 L-reduces
to Π2, and assume that the cost function for Π2 is integer-valued. If Π

(0,1)
2 is

solvable with witness in time O(f(k)p(n)) for some recursive function f and
polynomial p then Π

(0,1)
1 can be solved in time O(kf(O(k))q(n)) for some q

polynomial.

Because Max 3-Sat(0,1) [8,16] is parameterized tractable with witness, we
obtain the following result through Lemma 2.

Corollary 1. The standard parameterized version of each optimization problem
in the class MAX SNP is solvable in time O(2O(k)p(n)) for some polynomial p.

Lemma 2 allows us to give a natural connection between the parameterized
complexity of MAX SNP-hard problems and the parameterized complexity of
problems in MAX SNP.

Theorem 3. Let Π1 be a MAX SNP-hard (under L-reductions) optimization
problem with an integer-valued cost function. If Π

(0,1)
1 is solvable with witness

in time O(2o(k)p(n)) for some polynomial p, then for any optimization problem
Π2 in MAX SNP, Π

(0,1)
2 is solvable in time O(2o(k)q(n)) for some polynomials

q.

To show that similar results hold for the extended parameterized versions of
certain problems, we use the following technique that bridges the gap between
the standard and extended parameterized versions of optimization problems.

Lemma 3. Let c > 0 be any constant integer, let r′ ≥ 1
2 be an any rational

number, and define r(φ) = r′ ·m, where m is the number of clauses in the boolean
formula φ. If the standard parameterized problem Max c-Sat is solvable in time
O(f(k)p(n)) for some polynomial p, then the extended parameterized problem
Max c-Sat(r,1) is solvable in time O(f(11k + 8)q(n)), for some polynomial q.

Proof. Assume that there is an algorithm A solving the parameterized problem
Max c-Sat as stated. We describe an algorithm B that solves Max c-Sat(r,1)

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 279

by calling the algorithm A. The algorithm B uses the approach found in Propo-
sition 8 and Theorem 9 of Mahajan and Raman [16].

Let F be a set of clauses, and let 〈F, k〉 be a given instance for Max c-
Sat(r,1). The algorithm B operates as follows.

Input 〈F, k〉.
Let U be the set of unit clauses in F .
(1) While U contains clauses of the form (x) and (¬x),

remove both clauses and reduce k by 1.
(2) If |U | ≥ r′m + k return “YES”
(3) If m

2 + |F−U |
4 − 1 ≥ r′m + k return “YES”

(4) Otherwise, call algorithm A on input 〈F, r′m + k〉 and return
its answer.

To see that this algorithm correctly solves Max c-Sat(r,1) on input 〈F, k〉, first
consider the set U of unit clauses in F . If U contains two clauses of the form
(x) and (¬x), both can be removed since any truth assignment of x satisfies
exactly one of these two clauses. In this case, the value k can be reduced by 1.
If U contains no such pair of clauses, then all the clauses in U can be satisfied
simultaneously. Hence, if |U | ≥ r′m + k, there is an assignment to the variable
satisfying at least r′m + k clauses and the algorithm B correctly answers yes.
Furthermore, by Proposition 8 of [16], there exists a satisfying assignment of F

that satisfies at least dm
2 e + |F−U |

4 − 1 clauses in F . Hence, if m
2 + |F−U |

4 − 1 ≥
r′m + k, at least r′m + k clauses of F can be satisfied simultaneously. So, the
algorithm B also answers correctly in this case. In all other cases, algorithm B
calls algorithm A on input 〈F, r′m+k〉. Since algorithm A correctly solves Max
c-Sat(0,1), algorithm B is also correct.

It is easy to see that steps (1)–(3) of algorithm B can be performed in a
polynomial number of steps. Step (4) involves a call to algorithm A on input
〈F, r′m+k〉. Since m

2 + |F−U |
4 −1 < r′m+k, we have that |F −U | ≤ 4(r− 1

2)m+
4k + 4. Since |U | < r′m + k, we have that m = |U | + |F − U | ≤ rm + k + 4(r −
1
2) + 4k + 4. Therefore, we have that the number of clauses in F is bounded a
linear function of k1, i.e.,

m ≤ 5k + 4
3 − 5r

.

Because r′ ≥ 1
2 , it follows that m ≤ 10k + 8 and k′ = r′m + k ≤ 10r′k + 8r′ + k.

Substituting this new value of k into the running time of the algorithm A gives
the required running time for the algorithm B.

Lemma 3 immediately gives the following theorem.

Theorem 4. Let c > 0 be any constant integer, let r′ ≥ 1
2 be an any rational

number, and define r(φ) = r′ · m, where m is the number of clauses in the
boolean formula φ. If the parameterized problem Max c-Sat(0,1) is solvable in
time O(2o(k)p(n)) for some p polynomial, then Max c-Sat(r,1) is solvable in
time O(2o(k)q(n)), for some polynomial q. 2

1 This also suggests that step (4) will only be executed when r < 3
5 .

280 L. Cai and D. Juedes

4 Parameterized Complexity of MAX SNP-Hard
Problems

In contrast to our results in the previous section, we now show that for some
optimization problem Π, the parameterized version Π(r,log n) may not be pa-
rameterized tractable.

Theorem 5. Let r′ be a rational constant such that 1
2 < r′ < 1 and define

r(φ) = r′m, where m is the number of clauses in φ. Then for any natural number
c ≥ 3, Max c-Sat(r,log n) is W [1]-hard.

Proof. It suffices to show that the W [1]-hard problem Independent Set can
be transformed to Max c-Sat(r,log n) through a standard parameterized m re-
duction.

The parameterized problem Independent Set is defined as follows. Given
a graph G = (V, E) of n nodes and an integer k, determine whether there is a
subset V ′ of V of size k in G such that no two vertices in V ′ are connected by an
edge in G. We describe a process to transform 〈G, k〉 to an instance for problem
Max c-Sat(r,log n) for some r′ ≥ 1

2 . The reduction consists of the following five
steps.

Step 1. Construct an anti-monotonic Boolean circuit C1 from G as fol-
lows. Let V = {v1, · · · , vn}. The circuit C1 consists of n input variables
X = (x1, · · · , xn), an AND gate as the output, and |E| intermediate OR gates,
each of which has the output wired to an input of the AND gate. For each edge
e = (vi, vj) in G, an OR gate ge is constructed with two inputs ¬xi and ¬xj . By
associating a setting of the variables x1, . . . , xn with a subset of V in the natural
way, it is straightforward to verify that C1 has a satisfying assignment of weight
k if and only if G has an independent set of size k.

Step 2. Convert the circuit C1 into another anti-monotonic circuit C2 that
has nk input variables. These nk variables are organized into k blocks of n.
Let Y = [(y(1)

1 , · · · y(1)
n), (y(2)

1 , · · · y(2)
n),· · ·, (y(k)

1 , · · · y(k)
n)] be this set of input

variables. As with C1, we have an AND gate as output. In addition, the circuit
C2 contains three sets of OR gates, E1, E2, and E3, defined as follows.

E1 = { (¬y
(t)
i ∨ ¬y

(t)
j) : 1 ≤ t ≤ k, 1 ≤ i < j ≤ n },

E2 = { (¬y
(s)
i ∨¬y

(t)
j) : for each gate ¬xi∨¬xj ∈ C1, 1 ≤ i, j ≤ n, 1 ≤ s, t ≤ k},

and E3 = { (¬y
(s)
i ∨ ¬y

(t)
i) : 1 ≤ s < t ≤ k, 1 ≤ i ≤ n }.

Each of the OR gates has an output wired to an input of the AND gate.
Notice that the three sets of OR gates enforce specific conditions. The set E1

enforces the condition that no more than one variable in each block of n can be
set to true. The set E3 enforces the condition that no more than one variable in
position j (y(t)

j) of some block is set to true. Sets E1 and E3 force any satisfying
assignment to contain at most k variable that are set to true, with at most one
coming from each block of n and each position j. Intuitively, the ith variable in

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 281

a block being set to true will correspond to the vertex i being in an independent
set V ′.

It is easy to show that C2 has a weight k satisfying assignment if and only if
C1 has a weight k satisfying assignment.

Step 3. Transform the anti-monotonic circuit C2 into a monotonic circuit C3
that contains 2k log n input variables, organized into k blocks of size 2 log n. Let
Z = (z(1), · · · , z(k)) be the k blocks of input variables, where for each t = 1, · · · , k,
z(t) = (u(t)

1 , v
(t)
1 , · · · , u(t)

log n, v
(t)
log n) is a vector of 2log n variables. In this construc-

tion, z(t) corresponds to the tth block in Y . This requires some explanation.
A desired assignment to Y in C2 will have exactly one variable assigned to

true in each block. For each block t of Y , the variable that is assigned to true,
say y

(t)
i , can be specified by its position i within the block. When 1 ≤ i ≤ n,

the position i can be encoded by a binary number B of length log n. Let B =
b
(t)
1 · · · b(t)

log n with each b
(t)
l ∈ {0, 1}. In C3, each bit b

(t)
l is encoded by a pair of

variables u
(t)
l , v

(t)
l . For l = 1, · · · , k,

(1) b
(t)
l = 1 if and only if u

(t)
l = 1 and v

(t)
l = 0, and

(2) b
(t)
l = 0 if and only if u

(t)
l = 0 and v

(t)
l = 1.

Notice that each input variable in y
(t)
i can be represented by an AND of

input variables from Z. Let gate g
(t)
i in C3 represent the input variable y

(t)
i in

Y , where g
(t)
i =

log n∧

l=1
w

(t)
l with w

(t)
l = u

(t)
l if b

(t)
l = 1 in B = i and w

(t)
l = v

(t)
l

if b
(t)
l = 0 in B = i. Since C2 is an anti-monotonic circuit, we only need to

represent the negation of an input variable y
(t)
i in Y . For this purpose, we use

ḡ
(t)
i = ¬g

(t)
i =

log n∨

l=1
w

(t)
l , where w

(t)
l = u

(t)
l if bl(t) = 0 in B = i and w

(t)
l = v

(t)
l if

bl(t) = 1 in B = i. It is not hard to verify the correctness of this representation.
Continuing the construction, each OR gate ¬y

(s)
i ∨¬y

(t)
j in circuit C2 is repre-

sented by a gate ḡ
(s)
i ∨ ḡ

(t)
j . This is an OR of 2 log n variables in Z. Additionally,

we need to guarantee that each pair of input variables u
(t)
l , v

(t)
l always take ex-

clusive values in a desired assignment. To enforce this, we introduce a set H of
gates, where H = { h

(t)
l = u

(t)
l ∨ v

(t)
l : l = 1, · · · , log n, t = 1, · · · , k }. The gates

in H force at least one variable from each pair u
(t)
l , v

(t)
l to evaluate to true. Since

there are exactly 2k log n variables, a weight k log n satisfying assignment causes
exactly one of u

(t)
l , v

(t)
l to be true.

It is straightforward to show that C3 has a weight k log n satisfying assign-
ment if and only if C2 has a weight k satisfying assignment.

Step 4. Reformulate the weighted satisfiability problem for the monotone
circuit C3 into a parameterized Max c-Sat(r,log n) problem. From step 3, C3 is
a monotonic circuit with 2k log n input variables that is an AND of ORs. Note
that all of the OR gates in C3 either have fan-in 2 or fan-in s = 2 log n. We now
build a boolean formula in CNF for C3.

282 L. Cai and D. Juedes

Define

F1 = {Cg = (w(g)
1 , · · · , w(g)

s) : gate g =
s∨

i=1

w
(g)
i is in C3 },

F2 = {(w) : w is an input variable of C3}, and

H ′ = {(u, v), (¬u, ¬v) : u, v are two paired input variables of C3 }.

Furthermore, let F3 be the set containing (2k log n + 1) copies of each clause in
H ′. Let F = F1 ∪ F2 ∪ F3. Note that |F2| = 2k log n.

If C3 has a weight k log n satisfying assignment, then there is an assignment
of the variables of F that satisfies |F1| + |F3| + k log n clauses in F . Similarly, if
F has an assignment that satisfies |F1| + |F3| + k log n, then all the clauses in F3
must evaluate to true. If not, then at least 2k log n + 1 clauses in F3 evaluate to
false. This is a contradiction. Moreover, if all the clauses in F3 evaluate to true,
then exactly k log n variables are set to true. Hence, all the clauses in F1 must
evaluate to true. Therefore, C3 has a weight k log n satisfying assignment.

To complete the conversion to a formula in c-CNF, it suffices to convert
all the large ORs in F1 to clauses of size c. This can be done using additional
variables as in the standard reduction from SAT to 3-SAT [3, p.438]. If these
new clauses are placed into F1, then, as verified in the previous paragraph, C3
has a weight k log n satisfying assignment if and only if F has an assignment
satisfying |F1| + |F3| + k log n clauses.

Step 5. Let N = |F1| + |F3|. Note that the total number of clauses in F
is N + 2k log n, where n is the number of vertices in the original graph G. We
next pad some new unit clauses into F so that there exists an assignment to the
variables satisfying r′m + k log n clauses if and only if G has an independent set
of size k, where m is the number of clauses.

Now, add M new variables and add one unit clause to F for each new variable
and its negation. This new formula F has m = 2M + N + 2k log n clauses, and
there exists an assignment to the variables satisfying M + N + k log n clauses if
and only if G has an independent set of size k. It suffices to show that we can
pick a value for M such that r′m + k log n = M + N + k log n.

The appropriate value for M must satisfy r′ = (M + k log n + N)/(2M +
2k log n + N). We can rewrite this as r′ = 1 − M+k log n

2(M+k log n)+N , and hence M =
(1−r′)N−r′k log n

2r′−1 . Because N >> k log n, such an M exists for any 1
2 < r′ < 1.

Moreover, we can compute M from r′, N , k, and log n and produce the correct
number of unit clauses.

An adjustment must be made to the factor log n. It can be verified that N is
a polynomial in n. Moreover, M is linear in N . So log m = O(log N) = O(log n).
Therefore, we can add 2dk log n unit clauses to F , for some constant d, so that
exactly rm + k log m clauses can be satisfied. This completes the reduction.

Finally, note that the reduction takes an instance 〈G, k〉 of Independent
Set and produces an instance 〈F, k〉 of Max c-Sat(r,log n). Since this is a pa-
rameterized m-reduction, it follows that Max c-Sat(r,log n) is W [1]-hard.

Subexponential Parameterized Algorithms Collapse the W-Hierarchy 283

Corollary 2. Let r′ be a rational constant such that 1
2 < r′ < 1, and define

r(φ) = r′m, where m is the number of clauses in φ. The problem Max Sat(r,log n)

is W [1]-hard.

Theorem 5 completes the technical results leading up to our main result.

Theorem 6. Let Π be a MAX SNP-hard optimization problem with an integer-
valued cost function. The standard parameterized version of Π cannot be solved
with witness in time O(2o(k)p(n)) for any polynomial p(n) unless W [1] = FPT .

Proof. Assume that for some MAX SNP-hard optimization problem Π, its stan-
dard parameterized version Π(0,1) is solvable with witness in time O(2o(k)p(n))
for some polynomial p(n). Then by Theorem 3, Max c-Sat(0,1) is solvable in
time O(2o(k)q(n)), for some polynomial q(n). By Theorem 4, a O(k2o(k)q(n)) al-
gorithm exists for Max c-Sat(r,1) for any r. By Theorem 2, Max c-Sat(r,log n)

is parameterized tractable. Together with Theorem 5, this implies W [1] = FPT .

Since the proof of Theorem 6 relies on Theorem 3, it does not appear that
we can easily remove the word “witness” from the statement of our main re-
sult. However, in practice, it is often the case that the complexities of decision
problems and their witness versions are closely related. In the case of Vertex
Cover, it is easy to show that Vertex Cover is solvable in time O(2o(k)p(n))
if and only if it is solvable with witness in time O(2o(k)q(n)) for polynomials p
and q. Hence, Theorem 6 gives the following immediate corollary.

Corollary 3. The parameterized problems Max Sat, Max c-Sat, Vertex
Cover, Vertex Cover-B, Independent Set-B, Dominating Set-B, and
Max c-Cut cannot be solved in time O(2o(k)p(n)) for any polynomial p(n)
unless W [1] = FPT . 2.

5 Conclusion

Our main results provide a simple framework for proving strong lower bounds on
the parameterized complexity of problems within FPT. To achieve a 2o(k)p(n)
lower bound, it suffices to prove that a problem is MAX SNP-hard and that the
witness version nicely reduces to the decision version. As mentioned by Bellare
and Goldwasser [6], it is well-known that search is polynomial-time Turing re-
ducible to decision for every NP-complete problem. To obtain Corollary 3, we
require a more restrictive notion of reducibility between the witness and decision
versions of parameterized problems. In particular, we require that the reduction
between the witness and decision version does not greatly increase the value of
the parameter k. It is not immediately obvious that search reduces to decision
for every NP-complete problem when this requirement is added. Nevertheless, it
is the case that the witness version reduces to the decision version in this way
for many NP-complete problems, such as those mentioned in Corollary 3.

More generally, our techniques provide a framework for relating the com-
plexities of various parameterizations of the same problem. We believe that this
framework may lead to lower bounds on non MAX SNP-hard problems as well.

284 L. Cai and D. Juedes

References

1. J. Alber, H. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter al-
gorithms for planar dominating set and related problems. In Proceedings of the
7th Scandinavian Workshop on Algorithm Theory (SWAT 2000), volume 1851 of
Lecture Notes in Computer Science, pages 97–110. Springer-Verlag, 2000.

2. J. Alber, J. Gramm, and R. Niedermeier. Faster exact algorithms for hard prob-
lems: A parameterized point of view. Discrete Mathematics, 2001. to appear.

3. S. Arora and C. Lund. Hardness of approximations. In Dorit Hochbaum, editor,
Approximation Algorithms for NP-hard problems, pages 399–446. PWS Publishing,
1997.

4. B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM, 41:153–180, 1994.

5. R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed parameter
algorithm for vertex cover. Information Processing Letters, 65:163–168, 1998.

6. M. Bellare and S. Goldwasser. The complexity of decision versus search. SIAM
Journal on Computing, 23(1):97–119, February 1994.

7. S. Buss, 1989. Personal Communication with Downey and Fellows cited in [12,
p.5].

8. L. Cai and J. Chen. On fixed-parameter tractability and approximability of NP
optimization problems. Journal of Computer and System Sciences, 54(3):465–474,
June 1997.

9. J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and fur-
ther improvements. In Proceedings of the 25th International Workshop on Graph-
Theoretical Concepts in Computer Science, volume 1665 of Lecture Notes in Com-
puter Science, pages 313–324. Springer-Verlag, 1999.

10. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W [1]. Theoretical Computer Science, 141:109–131, 1995.

11. R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In
Proceedings of Feasible Mathematics II, pages 219–244. Birkhauser, 1995.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
New York, 1999.

13. R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A frame-
work for systematically confronting computational intractability. In Contemporary
Trends in Discrete Mathematics: From DIMACS to DIMATIA to the Future, vol-
ume 49 of AMS-DIMACS Proceeding Series, pages 49–99. AMS, 1999.

14. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.

15. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? In Proceedings of the 39th Symposium on Foundations of Computer
Science, pages 653–664. IEEE Computer Society Press, 1998.

16. M. Mahajan and V. Raman. Parameterizing above guaranteed values:MaxSat and
MaxCut. Journal of Algorithms, 31:335–354, 1999.

17. R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover further im-
proved. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science, volume 1563 of Lecture Notes in Computer Science, pages 561–
570. Springer-Verlag, 1999.

18. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and Systems Sciences, 43:425–440, 1991.

Improved Lower Bounds on the Randomized
Complexity of Graph Properties?

Amit Chakrabarti and Subhash Khot

Department of Computer Science, Princeton University
35 Olden Street, Princeton NJ 08544, USA.

{amitc,khot}@cs.princeton.edu
FAX: +1-(609)-258-1771

Abstract. We prove a lower bound of Ω(n4/3 log1/3 n) on the ran-
domized decision tree complexity of any nontrivial monotone n-vertex
bipartite graph property, thereby improving the previous bound of
Ω(n4/3) due to Hajnal [H91]. Our proof works by improving a proba-
bilistic argument in that paper, which also improves a graph packing
lemma proved there. By a result of Gröger [G92] our complexity lower
bound carries over from bipartite to general monotone n-vertex graph
properties. Graph packing being a well-studied subject in its own right,
our improved packing lemma and the probabilistic technique used to
prove it, may be of independent interest.

Keywords: Decision tree complexity, monotone graph properties, ran-
domized complexity, randomized algorithms, graph packing, probabilistic
method.

1 Introduction

Consider the problem of deciding whether or not a given input graph G has a
certain (isomorphism invariant) property P . The graph is given by an oracle
which answers queries of the form “is (x, y) an edge of G?” A decision tree
algorithm for P makes a sequence of such queries to the oracle, where each
query may depend upon the information obtained from the previous ones, until
sufficient information about G has been obtained to decide whether or not P
holds for G, whereupon it either accepts or rejects. Let AP denote the set of
decision tree algorithms for P and for A ∈ AP , let cost(A, G) denote the number
of queries that A asks on input G. The quantity C(P) = minA maxG cost(A, G)
is called the deterministic decision tree complexity, or simply the deterministic
complexity of P .

A randomized decision tree algorithm for P is a probability distribution D
over AP , and its cost (on input G) is the expectation of cost(A, G) with A drawn
from D:

costR(D, G) =
∑

A∈AP

Pr
D

[A] cost(A, G) .

? This work was supported in part by NSF Grant CCR-96-23768, ARO Grant
DAAH04-96-1-0181, and NEC Research Institute.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 285–296, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

286 A. Chakrabarti and S. Khot

The randomized decision tree complexity, or simply the randomized complexity,
of P is defined to be

CR(P) = min
D

max
G

costR(D, G) .

An n-vertex graph property is said to be nontrivial if there is at least one
n-vertex graph which has the property and at least one which does not. It is
said to be monotone if addition of edges does not destroy the property. Let Pn

denote the set of all nontrivial monotone n-vertex graph properties. We shall
need to consider the analogously defined notion of randomized complexity for
bipartite graph properties; let Pn,n denote the set of all nontrivial monotone
(n, n)-bipartite graph properties.

Clearly any n-vertex graph property P satisfies CR(P) ≤ C(P) ≤ (
n
2

)
=

O(n2). A classic result of Rivest and Vuillemin [RV76] shows that any P ∈ Pn has
C(P) = Ω(n2), which settles the deterministic complexity of monotone properties
up to a constant.1 We remark that monotonicity is crucial for this result; there
are examples of nontrivial non-monotone graph properties with C(P) = O(n).

The situation is far less satisfactory for randomized complexity. The first non-
linear lower bound on CR(P), for general P ∈ Pn, was an Ω(n log1/12 n) bound
proven by Yao [Y87]. This was subsequently improved by Valerie King [K88] to
Ω(n5/4) and later by Hajnal [H91] to Ω(n4/3). The only other significant work
in the area is due to Gröger [G92] who established lower bounds stronger than
Hajnal’s for certain special classes of graph properties.

No property in Pn is known to have randomized complexity below n2/4.
Closing this gap between Hajnal’s lower bound and this upper bound is one of the
most important open problems concerning the complexity of graph properties.
It is remarkable that this quarter-century-old problem has yielded so few results.

In this paper we take a small step by proving

Theorem 1.1 (Main Theorem). Any property P ∈ Pn satisfies CR(P) =
Ω(n4/3 log1/3 n). 2

Our proof will rely on an important theorem from the pioneering work of
Yao [Y87], as well as on a framework developed by Hajnal [H91]. In this frame-
work we associate with a graph property a special pair of graphs which cannot
be “packed” together. We then argue that if the property has low randomized
complexity, then certain degree upper bounds can be proven for these special
graphs. Finally, we use these degree bounds to prove that the special graphs can
be “packed”, thereby arriving at a contradiction.

The notion of graph packing, which we shall formally define later, is a well-
studied subject in its own right [B78]. A packing lemma (Lemma 2.8) which we
1 However, in the world of deterministic complexity, a far more interesting conjecture

is that any P ∈ Pn has C(P) =
(

n
2

)
exactly. Remarkably, this conjecture remains

open to this day.
2 Throughout this paper log x denotes the logarithm of x to the base 2. The natural

logarithm of x is denoted by lnx.

Improved Lower Bounds on the Randomized Complexity 287

establish in this paper is therefore of independent interest since it improves a
packing theorem due to Hajnal and Szegedy [HS92].

The rest of the paper is organized as follows: in Section 2, we define some
preliminary notions, describe the framework alluded to above and prove The-
orem 1.1 assuming our graph packing lemma. In Section 3 we state and prove
a technical lemma which is then used in Section 4 to prove the packing lemma
we need, thereby completing the proof of Theorem 1.1. We conclude with some
remarks in Section 5.

2 Preliminaries and Proof Outline

The first important step is to change the objects of study from graph properties
to bipartite graph properties. A result of Gröger [G92] lets us do just that.

Theorem 2.1. Let f(n) be a function satisfying f(n) = O(n3/2) and suppose
any P ∈ Pn,n satisfies CR(P) = Ω(f(n)). Then any Q ∈ Pn satisfies CR(Q) =
Ω(f(n)).

Proof. This is a simple restatement of Theorem 3.5 of [G92]. ut
For the purposes of proving a lower bound of Ω(n4/3 log1/3 n), we may there-

fore safely concentrate on monotone bipartite graph properties alone. We now
need some definitions.

Definition 2.2 (Basic definitions). An (m, n)-bipartite graph G is a graph
whose vertices can be partitioned into two independent sets, denoted VL(G) and
VR(G) respectively, of sizes m and n respectively. The edge set of G is denoted
E(G). For such a graph we define

∆L(G) = max
v∈VL(G)

degG(v) , δL(G) =
1

|VL(G)|
∑

v∈VL(G)

degG(v) =
|E(G)|
|VL(G)| .

∆R(G) and δR(G) are defined similarly. When |VL(G)| = |VR(G)| we define
δ(G) = δL(G) = δR(G). We define Ḡ to be the (m, n)-bipartite graph with the
same bipartition and with edge set VL(G) × VR(G) − E(G).

Definition 2.3 (Sparseness). The bipartite graph G is said to be L-sparse if
VL(G) contains at least 1

2 |VL(G)| isolated vertices, i.e. vertices of degree 0. The
notion of R-sparseness is defined analogously.

Let P ∈ Pn,n. An (n, n)-bipartite graph G is called a minterm of P if G
satisfies P but removing any edge from G yields a graph which does not. Suppose
we associate with G an n-tuple (d1, d2, . . . , dn) with d1 ≥ . . . ≥ dn where the
di are the degrees of the vertices in VL(G); we then say that G is an L-first
minterm of P if it is a minterm and its associated n-tuple is lexicographically
smallest amongst all minterms. We say that G is an L-first sparse minterm of

288 A. Chakrabarti and S. Khot

P if it is a minterm, is L-sparse and its associated n-tuple is lexicographically
smallest amongst all L-sparse minterms. We define R-first minterms and R-first
sparse minterms analogously.

Finally, we define the dual of a property P ∈ Pn,n to be the property P ∗ ∈
Pn,n such that a graph G satisfies P ∗ iff Ḡ does not satisfy P .

Lemma 2.4. For any P ∈ Pn,n either P or P ∗ has an R-sparse minterm.

Proof. Let G be an edge-maximal R-sparse (n, n)-bipartite graph. Then Ḡ is
isomorphic to G; therefore G must satisfy either P or P ∗. ut

It is easy to see that any decision tree algorithm for P can be converted into
one for P ∗; this gives CR(P) = CR(P ∗). Therefore from now on we shall assume
WLOG that G has an R-sparse minterm. The next theorem summarizes the key
result of Yao [Y87] and an extension of the result due to Hajnal [H91].

Theorem 2.5 ([Y87,H91]). For P ∈ Pn,n, the following hold
(1) If G is a minterm of P then CR(P) = Ω(|E(G)|).
(2) If G is either an L-first minterm or an L-first sparse minterm, then

CR(P) = Ω(n∆L(G)/δL(G)) ,

and a similar statement holds for R-first minterms and R-first sparse minterms.
ut

2.1 Graph Packing

We now introduce the key graph theoretic concept which we shall need. Let us
say that graphs G and H can be packed if there is a way to identify their vertices
without identifying any edge of G with an edge of H. Such an identification,
when it exists, shall be called a packing of G and H. To see the relevance of this
concept, consider the case when G and H are minterms of P and P ∗ respectively,
for some property P ∈ Pn,n. To say that G and H can be packed is equivalent to
saying that G is isomorphic to a aubgraph of H̄. Now from monotonicity and the
definition of dual properties one can see that this gives rise to a contradiction.

These ideas are formalized in the next definition3 and the following theorem.

Definition 2.6. Let G and H be (m, n)-bipartite graphs. A packing of G and H
is a pair of bijections ϕL : VL(G) → VL(H) and ϕR : VR(G) → VR(H) such that
for any x ∈ VL(G) and y ∈ VR(G), either (x, y) /∈ E(G) or (ϕL(x), ϕR(y)) /∈
E(H). We say that G and H can be packed if there exists such a packing.

Theorem 2.7 ([Y87]). For P ∈ Pn,n, let G be a minterm of P and H be a
minterm of P ∗. Then G and H cannot be packed. ut
3 We have defined the notion of packing only for bipartite graphs here because that is

all we need. In the literature, packing has been studied both for general graphs as
well as bipartite graphs.

Improved Lower Bounds on the Randomized Complexity 289

2.2 Outline of the Proof of the Main Theorem

We are now ready to outline the proof of Theorem 1.1. Let P ∈ Pn,n and let
q = q(n) be a parameter to be fixed later. We wish to prove that CR(P) = Ω(nq).
Suppose this is not the case. Let G be an R-first sparse minterm of P and H be
an L-first minterm of P ∗. By part (1) of Theorem 2.5 the following conditions
hold:

δ(G) ≤ q , δ(H) ≤ q .

Using these in part (2) of Theorem 2.5 gives us the following additional condi-
tions:

∆R(G) ≤ q2 , ∆L(H) ≤ q2 .

What we would like to show is that for an appropriate choice of q, these condi-
tions imply that G and H can be packed. Then by Theorem 2.7 we would have
a contradiction.

The above framework is the same as that used by Hajnal [H91]. Our im-
provement is in the parameters of the packing lemma. Our improved lemma
says:

Lemma 2.8 (Packing Lemma). Set q = (1
16εn log n)1/3. Let G and H be

(n, n)-bipartite graphs with δ(G) ≤ q, δ(H) ≤ q, ∆R(G) ≤ q2 and ∆L(H) ≤ q2.
Furthermore, suppose G is R-sparse. Then if ε is a small enough constant, G
and H can be packed.

Remark. This is a stronger result than that of Hajnal and Szegedy [HS92]; this
makes the lemma interesting on its own.

As outlined above, proving this lemma will establish that CR(P) = Ω(nq) =
Ω(n4/3 log1/3 n) with the above choice of q. This will prove the Main Theo-
rem 1.1. The rest of the paper will therefore be devoted to proving this lemma.

3 A Technical Lemma

The proof of our improved packing lemma will depend on a probabilistic fact:
specifically, a tail inequality. We shall be interested in considering set systems
with the property that a small random sample of the ground set is unlikely to
hit too many of the sets in the system. More precisely, the property is that the
number of sets missed by the sample is only a constant factor below the expected
number, with high probability. The purpose of this section is to establish that
certain simple conditions, if satisfied by the set system, guarantee this type of
property. As it turns out, it suffices to upper bound the size of each set, and
the maximum and average number of sets containing each element of the ground
set; of course we also need a large enough set system over a large enough ground
set. We shall call a set system favourable — with the appropriate parameters —
if it satisfies these conditions.

290 A. Chakrabarti and S. Khot

Assumption 3.1 Throughout this section we assume that n is large enough and
that r(n), s(n) and t(n) are integer valued functions in o(n) ∩ ω(1).

Definition 3.2. Let V be a finite set and let F ⊆ 2V be a set system on ground
set V . We say that F is (n, r(n), s(n), s̄(n))-favourable if

|V | = n , |F| ≥ n ,

∀F ∈ F |F | ≤ r(n) ,

∀v ∈ V |{F ∈ F : v ∈ F}| ≤ s(n) , and

1
n

∑

v∈V

|{F ∈ F : v ∈ F}| ≤ s̄(n) .

Now consider a set system F on ground set V , and a function t(n). Let S be
a random subset of V of size t(n), chosen uniformly from all subsets of size t(n).
Our Technical Lemma is concerned with the behaviour of the following random
variable:

X(F ; t(n)) = |{F ∈ F : F ∩ S = ∅}| . (1)

Lemma 3.3 (Technical Lemma). Let F be (n, r(n), s(n), s̄(n))-favourable.
Suppose r(n)t(n) ≤ 1

4εn log n, and t(n)s(n)s̄(n) ≤ n2−3ε for some constant
ε > 0. Then we have

Pr
[

X(F ; t(n)) <
1
2
n1−ε

]

≤ 1
n2 .

Example. It may help to first think about a concrete example of a favourable
set system and what the lemma says about it. Consider the ground set V =
{1, 2, . . . , n} and let F be the collection of all n intervals of size 3n1/4 (say)
with wrap-around (i.e. n and 1 are consecutive). Every interval is of size 3n1/4

and each point of the ground set belongs to 6n1/4 intervals. Therefore this F
is (n, 3n1/4, 6n1/4, 6n1/4)-favourable. A straightforward calculation shows that a
random subset of V of size 5n3/4 (say) is expected to be disjoint from Ω(n) of
these intervals. From the above lemma we can conclude, in particular, that it is
disjoint from Ω(n0.99) intervals, with “high” probability.

In order to prove Lemma 3.3, we define another random variable Y which
“behaves like” X(F ; t(n)) and is easier to handle. Let us number the elements
of V from 1 to n and set p = 2t(n)/n. Let Z1, . . . , Zn be i.i.d. boolean random
variables with Pr[Zi = 1] = p. Let S′ ⊆ V be the random subset given by
S′ = {i : Zi = 1} and define

Y = |{F ∈ F : F ∩ S′ = ∅}| . (2)

The next lemma connects Y with X.

Improved Lower Bounds on the Randomized Complexity 291

Lemma 3.4. For any α we have Pr[X(F ; t(n)) < α] ≤ 2 · Pr[Y < α].

Proof. We proceed as in [H91]. For 0 ≤ k ≤ n let πk = Pr[X(F ; k) < α]. Observe
that π0 ≤ π1 ≤ · · · ≤ πn. Let A = b 1

2npc and B = b 3
2npc. We have

Pr[Y < α] =
n∑

k=0

(
n

k

)

pk(1 − p)n−kπk ≥ πA

B∑

k=A

(
n

k

)

pk(1 − p)n−k ≥ 1
2
πA .

Noting that A = t(n) completes the proof. ut

Lemma 3.5. Under the hypotheses of the Technical Lemma, E[Y] ≥ n1−ε.

Proof. We have E[Y] =
∑

F∈F (1 − p)|F | ≥ n(1 − p)r(n) using the fact that F is
(n, r(n), s(n), s̄(n))-favourable. For any constant α > 1, we have (1−p)1/p ≥ e−α

for large enough n. Therefore

E[Y] ≥ n
(

(1 − p)1/p
)2t(n)r(n)/n

≥ n1−αε/2 ln 2 ,

since by hypothesis t(n)r(n) ≤ 1
4εn log n. Choosing α = 2 ln 2 completes the

proof. ut
Now that we know that Y has high expectation, the main task is to prove

that it does not fall far below its expectation too often. To this end we would
like to consider an exposure martingale corresponding to Y that is obtained by
revealing the values of Zi one at a time. For i = 0, 1, . . . , n, we define random
variables Yi = Yi(Z1, . . . , Zi):

Yi(z1, . . . , zi) = E[Y |Z1 = z1, . . . , Zi = zi] , ∀z1, . . . , zi ∈ {0, 1} (3)

where the expectation is taken over Zi+1, . . . , Zn. It is clear that
Yi−1(z1, . . . , zi−1) = (1 − p)Yi(z1, . . . , zi−1, 0) + pYi(z1, . . . , zi−1, 1). Therefore,
defining another set of random variables Di = Di(Z1, . . . , Zi−1) by

Di(z1, . . . , zi−1) := Yi(z1, . . . , zi−1, 0) − Yi(z1, . . . , zi−1, 1) ,
∀z1, . . . , zi−1 ∈ {0, 1} (4)

gives

Yi(z1, . . . , zi) =
{

Yi−1(z1, . . . , zi−1) + pDi(z1, . . . , zi−1) , if Zi = 0
Yi−1(z1, . . . , zi−1) − (1 − p)Di(z1, . . . , zi−1) , if Zi = 1

= Yi−1 + (p(1 − Zi) − (1 − p)Zi)Di

= Yi−1 + (p − Zi)Di ,

whence

Y = E[Y] +
n∑

i=1

(p − Zi)Di . (5)

292 A. Chakrabarti and S. Khot

To bound the random variables Di, note that for any fixed z1, . . . , zi−1, the
quantity Di is a convex combination of the quantities

Y (z1, . . . , zi−1
︸ ︷︷ ︸

fixed

, 0, zi+1, . . . , zn
︸ ︷︷ ︸

variable

) − Y (z1, . . . , zi−1, 1, zi+1, . . . , zn) (6)

where (zi+1, . . . , zn) varies over all tuples in {0, 1}n−i. From the definition of Y
in (2), it is clear that each of the quantities (6) lies between 0 and di where

di := |{F ∈ F : i ∈ F}| .

Therefore 0 ≤ Di ≤ di.

Lemma 3.6. With Z1, . . . , Zn as above, let c1, . . . , cn be positive integers, let
Ci = Ci(Z1, . . . , Zi−1) be real functions satisfying 0 ≤ Ci ≤ ci and let λ > 0 be
an arbitrary real. Define ∆ = maxn

i=1 ci and δ = max{λ2, 1
n

∑n
i=1 ci}. Then, if

pn ≥ ∆ we have

Pr
[n∑

i=1

(p − Zi)Ci < −λ
√

pnδ∆ log n

]

≤ n−λ2/6 .

Remark. The lemma is interesting because (1) we are summing dependent random
variables and (2) it is a martingale inequality that does not follow from Azuma’s
inequality.

Proof. To simplify the proof, we assume that the Ci’s are integer-valued; this as-
sumption can easily be removed by discretizing with denominator n2 and rescal-
ing. For 1 ≤ i ≤ n, 1 ≤ j ≤ di, define random variables Wij as follows

Wij =
{

p − Zi , if j ≤ Ci

0 , if j > Ci .

The key observation is that the nonzero Wij ’s for distinct i are independent,
because the Zi’s are. Therefore, if we set ` = nδ/∆, the Wij ’s can be arranged
in an ` × ∆ matrix such that the nonzero random variables in each column
are independent.4 Fix a column and discard the zero entries; suppose m entries
remain and sum to S. Standard Chernoff bounds (e.g. see [ASE00], Theorems
A.11 and A.12) imply that for any a > 0, b > 1:

Pr[S < −a] < exp
(

− a2

2pm
+

a3

2p2m2

)

, and (7)

Pr[S < −(b − 1)pm] <
(
eb−1b−b

)pm
. (8)

Set a = λ
√

p` log n and b = 1 + a/pm. Suppose a ≤ 2
3pm. From (7) we immedi-

ately obtain

Pr[S < −λ
√

p` log n] < exp(−1
6
λ2 log2 n) ≤ exp(−1

6
λ2 log n) .

4 We pad the matrix with extra zero entries, if necessary, to end up with the required
shape of `× ∆.

Improved Lower Bounds on the Randomized Complexity 293

Next suppose a > 2
3pm. Since the real function f(x) = (x−1)−1x ln x is increas-

ing for x ≥ 1, from (8) we get

Pr[S < −λ
√

p` log n] < exp
(

−λ

√
pnδ

∆
(f(5/3)−1) log n

)

< exp(−1
6
λ2 log n) ,

where the last inequality from the facts that pn ≥ ∆ and that δ ≥ λ2. Thus, in
each case we have Pr[S < −λ

√
p` log n] < n−λ2/6.

To finish the proof we simply note that
∑n

i=1(p−Zi)Ci is the sum of ∆ such
random variables S. ut
We are now ready to prove our technical lemma.

Proof. (of Lemma 3.3) Let us apply Lemma 3.6 with ci = di and Ci = Di.
This choice of parameters gives ∆ ≤ s(n) and δ ≤ s̄(n). Because of the way we
defined Y in (2), increasing p can only increase the quantity Pr[Y < α], for any
α; thus we may safely assume than pn ≥ ∆. Recalling that p = 2t(n)/n we get

Pr
[
Y < E[Y] − λ

√
2t(n)s(n)s̄(n)

]
< n−λ2/6 .

Recall that by hypothesis t(n)s(n)s̄(n) ≤ n2−3ε. Using Lemmas 3.4 and 3.5 we
then get

Pr
[
X < n1−ε − λ

√
2n2−3ε

]
< 2n−λ2/6 .

Setting λ >
√

12 yields Pr[X < 1
2n1−ε] < n−2 as desired, when n is large enough.

ut

4 Proof of the Packing Lemma

We now return to proving our improved packing lemma (Lemma 2.8). Recall
that from the hypotheses we already have the following degree conditions on the
bipartite graphs G and H we wish to pack:

δ(G) ≤ q , δ(H) ≤ q , ∆R(G) ≤ q2 , ∆L(H) ≤ q2 , (9)

where we have set

q =
(ε

16
n log n

)1/3
, (10)

where ε is a small constant to be fixed later. We shall assume throughout this
section that n is large enough.

Definition 4.1. For a subset W of the vertex set of a graph and integer k ≤ |W |,
let N (W) denote the neighbourhood of W . Let top(W, k) and bot(W, k) denote
the subsets of W consisting of, respectively, the k highest and k lowest degree
vertices in W . For a vertex x, let N (x) be defined as N ({x}).

294 A. Chakrabarti and S. Khot

Following Hajnal [H91], our first step will be to modify G and H suitably
so that even stronger degree conditions hold. Let k = min{n/2, n/4δ(H)}. From
the hypotheses, we know that VR(G) has at least n/2 isolated vertices; let V1
be a set of size n/2 of these. Let V0 = top(VL(G), k), V2 = bot(VL(H), k) and
V3 = N (V2)∪top(VR(H), n

2 −|N (V2)|). Let us define graphs G′ and H ′ as follows:

G′ = G − (V0 ∪ V1) ; H ′ = H − (V2 ∪ V3) .

It follows from the construction above that if G′ and H ′ can be packed then
so can G and H. This is because having packed G′ and H ′ we may arbitrarily
identify the vertices in V0 with those in V2 and the vertices in V1 with those
in V3. Now, to show that G′ and H ′ can be packed, we shall need the degree
conditions guaranteed by the following lemma.

Lemma 4.2. G′ and H ′ are (n − k, n/2)-bipartite graphs with the following
properties:

δL(G′) ≤ q , δR(G′) ≤ q , δL(H ′) ≤ q , δR(H ′) ≤ q ,

∆L(G′) ≤ 4q2 , ∆R(G′) ≤ q2 ,

∆L(H ′) ≤ q2 , ∆R(H ′) ≤ 4q .

Proof. The first four inequalities are obvious from (9), as are the bounds on
∆R(G′) and ∆L(H ′). By construction |N (V2)| ≤ ∑

v∈V2
degH(v) ≤ n/4; there-

fore V3 contains at least n/4 of the highest degree vertices in VR(H). Since these
vertices are removed to obtain H ′ we have ∆R(H ′) ≤ 4δ(H) ≤ 4q. Similarly, we
have ∆L(G′) ≤ 4δ(H)δ(G) ≤ 4q2. ut

We prove that G′ and H ′ can be packed using the probabilistic method: let
ϕL : VL(G′) → VL(H ′) be a random bijection; we shall show that with positive
probability there exists a bijection ϕR : VR(G′) → VR(H ′) such that (ϕL, ϕR)
is a packing. Let Γ = Γ(ϕL) be a bipartite graph on vertex set (VR(G), VR(H))
defined as follows: for x ∈ VR(G′), y ∈ VR(H ′) we have (x, y) ∈ E(Γ) iff
ϕL(N (x)) ∩ N (y) = ∅. It is clear that the required bijection ϕR exists iff the
graph Γ has a perfect matching. Our task now is to show that the (random)
bipartite graph Γ has a perfect matching with positive probability. The most
straightforward way of doing this is to obtain lower bounds on the degrees of
vertices in Γ and then apply König’s Theorem.

The next two lemmas establish such lower bounds. It is important to note
that unlike [H91] we exploit the asymmetry between G′ and H ′ in a crucial way;
the degree lower bound for H ′ is proved along lines similar to [H91], whereas for
G′ we need the power of our Technical Lemma.

Lemma 4.3. With probability greater than 1
2 , for every vertex y ∈ VR(H ′) we

have degΓ(y) ≥ n
2 − 8q2.

Improved Lower Bounds on the Randomized Complexity 295

Proof. Let y ∈ VR(H ′) be arbitrary and let S(y) = ϕ−1
L (N (y)). Then S(y) is a

random subset of VL(G′) of size at most ∆R(H ′) = 4q. Since δ(G′) ≤ q, we have

E

[∑

v∈S(y)

degG′(v)
]

≤ 4q2 .

This bound on the expectation implies a high probability result proven through
Chernoff bounds in exactly the same manner as Lemma 5.4 in [H91]; we need to
have ∆L(G′) = O(n/ log n), but this is indeed the case by Lemma 4.2 and our
choice of q in (10). Therefore, we get

Pr
[∑

v∈S(y)

degG′(v) > 8q2
]

<
1

2n
.

Thus Pr[|N (S(y))| > 8q2] < 1
2n and so Pr[degΓ(y) ≥ n

2 − 8q2] < 1
2n . Since

|VR(H ′)| ≤ n, the lemma follows. ut

Lemma 4.4. With probability greater than 1
2 , for every vertex x ∈ VR(G′) we

have degΓ(x) ≥ 8q2.

Proof. Fix ε = 1
10 . Let x ∈ VR(G′) be arbitrary and let T (x) = ϕL(N (x)).

Consider the set system H = {N (y) : y ∈ VR(H ′)} on ground set VL(H ′). By
Lemma 4.2 we see that H is (n

2 , 4q, q2, q)-favourable and by (10) we have 4q ·q2 =
1
4εn log n. Now T (x) is a random subset of VL(H ′) of size |T (x)| ≤ ∆R(G′) ≤ q2

and q2 · q2 · q = q5 ≤ n2−3ε. Therefore, H and T (x) satisfy the hypotheses of the
Technical Lemma 3.3.

Applying the Technical Lemma, we see that the number of sets in H that
T (x) is disjoint from falls below 1

2n1−ε with probability at most 1
n2 < 1

2n . In
other words Pr[degΓ(x) < 1

2n1−ε] < 1
2n . Noting that 1

2n1−ε ≥ 8q2 gives us the
desired result. ut

We now have all the pieces we need to prove the packing lemma.

Proof. (Of the Packing Lemma) From Lemma 4.3 and Lemma 4.4 we see
that if the bijection ϕL is chosen at random, then with positive probability the
following event occurs:

∀x ∈ VR(G′) degΓ(x) ≥ n

2
− 8q2 , and ∀y ∈ VR(H ′) degΓ(y) ≥ 8q2 .

Since Γ is an (n/2, n/2)-bipartite graph, by König’s Theorem, this event is a
sufficient condition for Γ to have a perfect matching. Therefore, there exists a
bijection ϕL such that Γ has a perfect matching; thus there exists a packing of
G′ and H ′. By the discussion preceding Lemma 4.2 we see that G and H can be
packed. ut

296 A. Chakrabarti and S. Khot

5 Concluding Remarks

The complexity of graph properties has been studied for a quarter of a century
now. Yet the most basic conjecture, namely an Ω(n2) randomized decision tree
complexity lower bound for monotone properties, remains open to this day. As
mentioned before, the number of results leading towards a settlement of this
conjecture have been very few.

Nine years have passed since the best previously known lower bound was
established. We believe that this makes our result, a slight improvement of the
bound, significant for injecting new life into this problem.

To improve the lower bound further it appears necessary to break out of Ha-
jnal’s framework. Our Technical Lemma is not constrained by this framework —
instead, Hajnal’s framework constrains the parameters we are forced to apply
the lemma with — and we hope that it will be useful in further work on this
problem.

Acknowledgments. We are grateful to Professor Andrew Yao for introduc-
ing us to this fascinating problem. We would like to thank Professor Bernard
Chazelle for several important comments and suggestions.

References

[ASE00] Alon, N., Spencer, J. H. The probabilistic method, Second Edition, Wiley-
Interscience Series, 2000, Appendix A.

[B78] Bollobás, B. Extremal Graph Theory, Academic Press, 1978, Chapter 8.
[G92] Gröger, H. D. On the randomized complexity of monotone graph properties,

Acta Cybernetica, 10 (1992), 119–127.
[H91] Hajnal, P. An Ω(n

4
3) lower bound on the randomized complexity of graph

properties, Combinatorica, 11 (1991), 131–143.
[HS92] Hajnal, P., Szegedy, M. On packing bipartite graphs, Combinatorica, 12

(1992), 295–301.
[K88] King, V. Lower bounds on the complexity of graph properties, Proc. 20th

ACM STOC (1988), 468–476.
[RV76] Rivest, R.L., Vuillemin, J. On recognizing graph properties from adjacency

matrices, Theoret. Comput. Sci., 3 (1976), 371–384.
[Y87] Yao, A.C. Lower bounds to randomized algorithms for graph properties,

Proc. 28th IEEE FOCS (1987), 393–400.

New Imperfect Random Source with
Applications to Coin-Flipping

Yevgeniy Dodis

Department of Computer Science, New York University, 251 Mercer St, New York,
NY 10012, USA. dodis@cs.nyu.edu

Abstract. We introduce a new imperfect random source that realisti-
cally generalizes the SV-source of Sántha and Vazirani [SV86] and the
bit-fixing source of Lichtenstein, Linial and Saks [LLS89]. Our source is
expected to generate a known sequence of (possibly dependent) random
variables (for example, a stream of unbiased random bits). However, the
realizations/observations of these variables could be imperfect in the fol-
lowing two ways: (1) inevitably, each of the observations could be slightly
biased (due to noise, small measurements errors, imperfections of the
source, etc.), which is characterized by the “statistical noise” parameter
δ ∈ [0, 1

2], and (2) few of the observations could be completely incorrect
(due to very poor measurement, improper setup, unlikely but certain
internal correlations, etc.), which is characterized by the “number of er-
rors” parameter b ≥ 0. While the SV-source considered only scenario
(1), and the bit-fixing source — only scenario (2), we believe that our
combined source is more realistic in modeling the problem of extracting
quasi-random bits from physical sources. Unfortunately, we show that
dealing with the combination of scenarios (1) and (2) is dramatically
more difficult (at least from the point of randomness extraction) than
dealing with each scenario individually. For example, if bδ = ω(1), the
adversary controlling our source can force the outcome of any bit extrac-
tion procedure to a constant with probability 1−o(1), irrespective of the
random variables, their correlation and the number of observations.
We also apply our source to the question of producing n-player collective
coin-flipping protocols secure against adaptive adversaries. While the op-
timal non-adaptive adversarial threshold for such protocols is known to
be n/2 [BN00], the optimal adaptive threshold is conjectured by Ben-Or
and Linial [BL90] to be only O(

√
n). We give some evidence towards this

conjecture by showing that there exists no black-box transformation from
a non-adaptively secure coin-flipping protocol (with arbitrary conceivable
parameters) resulting in an adaptively secure protocol tolerating ω(

√
n)

faulty players.

1 Introduction

Abstract Problem. Consider the following general problem. A sequence of de-
pendent random variables X1, X2, . . . is generated (such a sequence is called
a stochastic process). Ideally, each Xi has a known “ideal” conditional distribu-
tion, based on the outcomes of X1, . . . , Xi−1 (Xi’s being independent is a special

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 297–309, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

298 Y. Dodis

case). However, the “real” distributions with which the Xi’s are generated could
be slightly different from the expected “ideal” distribution. Moreover, in the ap-
plications we discuss later, it is typically the case that the exact nature of these
“imperfections” is almost impossible to estimate or predict exactly. Therefore,
we model them as if being caused by an adversary A. On the optimistic side,
we usually expect the “real” and the “ideal” stochastic process to be somewhat
“close”. In other words, there are some natural restrictions on the way A can
influence our stochastic process. The general abstract problem is to determine
how much “damage” can A cause subject to the restrictions put on it.

Let us now be more specific. Let N be the length of our stochastic process
P, and Di = Di(x1 . . . xi−1) be the ideal conditional distribution of Xi given
X1 . . . Xi−1 = x1 . . . xi−1. Now, we will study the effects of two natural imper-
fections: inevitable (but small!) statistical deviation of each Xi from Di, and rare
(but complete!) errors in the process. More precisely, our adversary A knows P
and is given the “noise” parameter δ ∈ [0, 1

2] and the “error” parameter b ≥ 0.
Then, for any i = 1 . . . N and given x1 . . . xi−1, A can influence the ideal sample
of Xi using one of the following rules:

(A) Fix Xi to any constant in the support of Di. This rule is called an interven-
tion and can be used at most b times.

(B) Sample Xi from any distribution D′
i (on the same support set) of statistical

distance1 at most δ from Di.

We notice that one of the most interesting ideal stochastic processes P is a
sequence on N independent coin flips. In this important example, A observes
x1 . . . xi−1 ∈ {0, 1}i−1, and can affect the next coin xi in the following two ways:

(A) Fix xi to 0 or 1. Such an intervention can be used at most b times.
(B) Bias xi by any value ≤ δ, i.e. set Pr(xi = 1) anywhere inside [12 − δ, 1

2 + δ].2

We remark that in most of our applications, δ, b and N will be functions of
some other implicit parameter (clear from the context). In such cases we will use
asymptotic notation in this implicit parameter (i.e., O(·), Ω(·), o(·), ω(·)).

Motivation. We will show that the abstract setting described above turns out
to be very relevant in at least the following three areas: (1) imperfect random
sources; (2) discrete control processes; (3) black-box transformations from stat-
ically to adaptively secure distributed protocols. While each of the above appli-
cations will later deserve a separate section, we give a brief introduction now.

Imperfect Random Sources. A convenient abstraction in the design and analysis
of various randomized algorithms is that the algorithm in question is given a
1 Recall that the statistical distance between random variables Z and W over a domain

R is ‖Z − W‖ = 1
2 · ∑α2R | Pr(Z = α) − Pr(W = α)|. The same notation stands for

the distributions generating Z and W .
2 Recall, a bias of a bit c is indeed defined to be | Pr(c = 1) − 1

2 |.

New Imperfect Random Source with Applications to Coin-Flipping 299

stream of completely unbiased and independent random bits. In implementa-
tions, this stream has to be generated by some physical source of randomness.
And obviously, such a physical source is unlikely to be “perfect”: the realiza-
tions/observations of the randomness that it produces are bound to deviate
from the “ideal” expected distribution (which actually need not be a sequence
of unbiased random bits, even though the latter in an important special case).
In particular, the following two “imperfections” are extremely natural: (1) in-
evitably, each of the observations could be slightly biased (due to noise, small
measurements errors, etc.), and (2) few of the observations could be completely
incorrect (due to poor measurement, improper setup, unlikely but certain in-
ternal correlations, etc.). Our abstract problem perfectly models the situation.
Inevitable small noise is modeled by the “statistical noise parameter” δ ∈ [0, 1

2]
and the ability of the adversary to apply rule (B) above. Few total errors are
modeled by the “number of errors” parameter b ≥ 0 and the ability of the adver-
sary to apply rule (A) a limited (at most b) number of times. While each of the
imperfections alone seems to be insufficient to model a typical physical source,
their combination seems to be much more realistic.

We also remark that the main question we address when looking at our
problem from this angle is that of randomness extraction: can we apply some
deterministic function to the observed output of our source so as to obtain nearly
perfect randomness (even a single almost random bit!), despite the malicious
behavior of the adversary?

Discrete Control Processes. This application is very similar to the above, except
it looks at the problem from a different angle. Namely, given some random
process P, the question asked is how much “influence” over P is needed so as to
force some desired event E (a function of P’s output) to happen. In this sense,
our adversary A can be seen as a controller trying to minimize the usage of its
“resources” and still force E to happen. Again, our problem models the situation
quite naturally. Rule (A), where A can completely fix the outcome of Xi, is the
“expensive” resource that A tries to minimize. It also explains while we call rule
(A) an “intervention”. On the other hand, rule (B), where A can just slightly
(or not at all if δ = 0) affect each Xi, can be viewed as something that takes
“no effort” for A to perform. A good analogy in this scenario could be that rule
(A) corresponds to a “sharp turn” or “changing highway”, while rule (B) to a
“casual streering” or “changing lane”.

While the “rules of the game” are the same as for imperfect random sources,
the main difference is in the question addressed: given the desired event E , either
tell the smallest expected number of A’s interventions so as to guarantee E , or
tell smallest probability of A’s failure for a fixed number of interventions.

Black-box Transformations. Assume we have a distributed protocol for n players
to flip a coin or, more generally, to sample some distribution D. As usual, we
can assume that some number of players (say, b) is malicious, and is controlled
by a central adversary A. As a result, the malicious players can somewhat bias
the resulting distribution D′, and we try to design protocols where such bias

300 Y. Dodis

is guaranteed to be small. A crucial distinction made in the design of such
protocols, is whether the adversary A is static or adaptive. In the former case
A has to decide which b players to “corrupt” before the protocol starts, while
in the latter case it can make these decisions dynamically in the course of the
execution. It turns out that it is significantly easier to design statically secure
protocols than their dynamic counterparts. The question we address is whether
and when it is possible to achieve adaptive security “for free”. More specifically,
can we transform some good (family of) statically secure protocol(s) Π so as
to obtain a reasonable adaptively secure protocol Φ (for the same or related
task)? Moreover, the proof of Φ’s adaptive security should only depend on the
knowledge that Π is statically secure and not on any other specifics about Π
(precisely, we will only assume that static A corrupting b players can bias the
outcome of Π by at most δ ∈ [0, 1

2]).
We formalize this using the notion of a black-box transformation. Namely,

we will sequentially run (various protocols in) Π many (say, N) times against
an adaptive adversary A who can dynamically corrupt up to b players. These
runs were expected to produce outputs X1 . . . XN . Of course, since we run a
static protocol against an adaptive adversary, some of the Xi’s might be very
biased. However, A can corrupt at most b players! Thus, at least (N − b) of
the subprotocols were effectively run against a static adversary, and therefore
produced outputs with the bias at most δ. But then, even if the other b runs
produced Xi’s which were completely fixed by A (which actually happens, say,
in current static coin-flipping protocols), we exactly get our abstract problem!

The question addressed here is for which setting of parameters such black-box
transformations are possible.

Our Results. We will study our abstract problem and show that the adversary
is quite powerful for essentially any non-trivial setting of parameters. In partic-
ular, applying our results to the three motivating applications above, we show
the following. If bδ = ω(1) and independent of the number of samples N : (1)
no “non-trivial” distribution Y (e.g., a random bit) can be sampled from our
imperfect source; (2) any “non-constant” event E can be forced with probability
1 − o(1) (alternatively, O(1/δ) expected interventions suffices to force E); (3) no
black-box transformation can result in a “non-trivial” adaptive sampling pro-
tocol. The latter result is extended to show that no black-box transformation
from any statically secure n-player coin-flipping protocol can result in adaptively
secure coin-flipping protocol tolerating ω(

√
n) corruptions, giving support to a

conjecture of Ben-Or and Linial [BL90].

Organization. While all our results hold for general stochastic processes, the
special case when P is a stream of unbiased bits will turn out to be quite repre-
sentative of the general situation, but will substantially simplify the presentation.
Therefore, we will mainly restrict our attention to the stream of unbiased bits.

In Section 2 we talk about the “imperfect random source view” on our prob-
lem. In particular, we completely characterize the (im)possibility of bit extrac-
tion from our bias-control limited (BCL) source. Next, in Section 3 view our

New Imperfect Random Source with Applications to Coin-Flipping 301

source as a discrete control process. We derive tight bounds on how “influential”
our adversary (or the controller) is in this regard. In Section 4 we have our main
application to collective coin-flipping: impossibility of black-box transformations
from statically to good adaptively secure protocols.

2 Imperfect Random Sources

Prior Work. Much work has been done on imperfect random sources. Due to
space constraints, we only survey the relevant to us history of streaming sources.
Like the ideal source, such sources produce a stream of bits (recall, we will talk
only about bits for simplicity) incrementally over time, but these bits are not
necessarily unbiased or independent. Perhaps the first streaming source goes
all the way back to von Newman [vN51] who showed how to extract perfect
random bits from a sequence of independent coin tosses of the same biased coin
(of unknown bias). Elias [E72] showed how to improve this result and extract
perfect random bits at the optimal rate. Blum [B86] relaxed the independence
requirement on the source by considering streaming sources generated by finite-
state Markov chains (of unknown structure).

The next important development was made by Sántha and Vazirani [SV86]
who considered a more general streaming source, called a semi-random source (or
an SV-source). In this source each subsequent bit can be arbitrarily correlated
with all the previous bits, as long as it has some uncertainty. More specifically,
the source is specified by the “noise” parameter δ ∈ [0, 1

2], and can produce any
sequence x1, x2, . . . as long as Pr(xi = 1 | x1 . . . xi−1) ∈ [12 −δ, 1

2 +δ]. This source
tries to model the fact that physical sources can never produce completely perfect
bits (anyway, our observation of such sources is bound to introduce some noise).
Alternatively, the stream of bits could be produced by a distributive coin-flipping
protocol [BL90], where few malicious players can slightly bias each of the bits.

In a parallel development, Lichtinstein, Linial and Saks [LLS89] considered
another streaming source, called the (adaptive) bit-fixing source. In this source
(characterized by the “number of errors” parameter b) each next bit, depending
on the previous bits, can be either perfectly random (which is one of the main
limitations of this source) or completely fixed to 0 or 1. The only constraint is
that at most b of the bits are fixed. This source tries to model the situation that
some of the bits generated by a physical source could be determined from the pre-
vious bits, even though we assume that this does not happen very frequently (at
most b times). Alternatively, it relates to the study of “discrete control processes”
that we mentioned earlier, as well as to the problem of adaptive coin-flipping
where each player sends at most one bit (see Section 4).

Our Source. As we see already, our new streaming source examines the impli-
cations of having both the problems of “constant small noise” and “rare total
errors”, naturally generalizing random sources of [SV86,LLS89]. Interestingly, we
will show that having both imperfections together is significantly more difficult
to deal with than having any of them individually, but first we need some nota-
tion. We call our source (given by δ, b, N and a particular adversary A obeying

302 Y. Dodis

rules (A) and (B)) Bias-Control Limited, or simply (δ, b, N)-BCL source. Notice,
b = 0 (or applying only rule (B)) corresponds to the SV-source, δ = 0 (or apply-
ing only rule (A)) yields the bit-fixing source, while b = δ = 0 gives the perfect
randomness. Now we can quantitatively measure the “goodness” of our source
for the problem of bit extraction.

Definition 1. Let A be some (δ, b, N)-BCL source, and f : {0, 1}N → {0, 1} be
a bit extraction function. Let

– q(δ, b, N, f,A) be the bias of f(x), where x = x1 . . . xN was produced by A.
– q(δ, b, N, f) = maxA q(δ, b, N, f,A) (taken over all (δ, b, N)-BCL sources A).
– q(δ, b, N) = minf q(δ, b, N, f) (taken over all f : {0, 1}N → {0, 1}).

Thus, q(δ, b, N) is the smallest bias of a coin that can be extracted from any
(δ, b, N)-BCL source.

We will say that one can extract an almost perfect bit from a (δ, b, N)-BCL
source, if q(δ, b, N) = o(1), and a slightly random bit if q(δ, b, N) ≤ 1

2 − Ω(1).
We will now survey the known results about the SV-source and the bit-fixing
source, and then parallel them with our results.

Extraction from the Bit-Fixing Source. Recall, the bit-fixing source of [LLS89]
corresponds to having b interventions and δ = 0. Notice, that if we let f to
be the majority function, we can tolerate b = O(

√
N) since any c

√
N bits (for

small enough constant c) do not influence the resulting (almost random) value
of majority with probability 1 − o(1). Remarkably enough, Lichtinstein, Linial
and Saks [LLS89] actually showed that this is the best bit extraction possible.

Theorem 1 ([LLS89]). Majority is the best bit extraction function for the bit-
fixing source: q(0, c1

√
N, N) = o(1), while q(0, c2

√
N, N) = 1

2 − o(1) (c1 < c2).

As a side note, a random function f : {0, 1}N → {0, 1} is a terrible bit
extraction function for the bit-fixing source even for b = ω(1). Indeed, with high
probability the first (N −b) bits do not fix f , so A can use the last b interventions
to fix f . Another terrible function (even for b = 1) is any parity function: it can
be fixed by fixing the last emitted bit.

Extraction from the SV-source. Recall, the SV-source [SV86] corresponds to
having b = 0, and where Pr(xi = 1 | x1 . . . xi−1) ∈ [12 − δ, 1

2 + δ]. On a negative
side, Sántha and Vazirani showed that one cannot extract a bit whose bias is
less than δ. In other words, many samples (i.e., large N) from the source do not
help: outputting x1 is as good as we can get! Notationally,

Theorem 2 ([SV86]). q(δ, 0, N) = δ. Thus, one can extract an almost perfect
bit iff δ = o(1), and a slightly random bit iff δ = 1

2 − Ω(1),

Clearly, there are many (optimal) functions that extract a δ-biased coin from
any SV-source: for example, any parity function will do. In fact, Boppanna and
Narayanan [BN96] (extending the ideas of [AR89]) show that a vast majority of
boolean functions from N bits extract a slightly random bit (provided, of course,

New Imperfect Random Source with Applications to Coin-Flipping 303

δ = 1
2 − Ω(1)). Unfortunately, majority is not one of these functions (unless

δ � 1/
√

N , which will turn out to be important soon). Indeed, if our source
always sets the 1-probability of the next bit to be 1

2 + δ, the resulting bit will be
1 with probability 1−o(1). In fact, Alon and Rabin [AR89] showed that majority
is the worst bit extracting function. Namely, q(δ, 0, N, majority) ≥ q(δ, 0, N, f),
for any f .

Extraction from Our Source. Looking at the extreme cases of our source (δ = 0
and b = 0), we notice that somewhat reasonable bit extraction (at least of slightly
random bits) is possible for both of them. However, the extraction functions
are diametrically opposite. For the bit-fixing source the best function was the
majority, and a random function (or any parity function) was terrible, while for
the SV-source a random function was good (and any parity function is optimal),
and the majority was the worst. Hence, the best bit extractor becomes the worst
and vice versa! One may wonder if some extraction function can work reasonably
well for both of these extreme cases, and hopefully provide a good extraction
for our combined source as well. Unfortunately, we show that such a magic
function does not exist for (any “interesting” setting of) our combined source.
The following theorem follows from Theorem 4 in Section 3:
Theorem 3. If bδ = ω(1), then it is impossible to extract a slightly random bit
from a (δ, b, N)-BCL source, irrespective of the value of N ! More precisely,

q(δ, b, N) ≥ 1
2

− 2
(1 + 2δ)b

=
1
2

− 1
2Ω(δb)−1 (1)

In particular, while for δ = 0 we could tolerate b = O(
√

N), and for b = 0 could
deal with δ < 1

2 −Ω(1), now we cannot tolerate b → ∞ for any (constant) δ > 0,
no matter how large N is. Notice also that the worst-case bias of any extracted
coin exponentially approaches to 1

2 as b grows.

Tightness. First, given b and δ, let us see under which conditions on N the
majority on N bits will be a good bit extraction for the (δ, b, N)-BCL source? A
moment look at the binomial distribution reveals that if N � b2, b interventions
allow the adversary to almost control the coin. On the other hand, if N � 1/δ2,
then the δ-bias at every step again allows the adversary to almost control the
coin. Hence, if b2 � 1/δ2, i.e. bδ � 1, then no N will make the majority “good”.
This is not surprising in light of Theorem 3, but the converse statement is more
interesting. It is easy to show that if b2 � 1/δ2, i.e. bδ � 1, any N such that
b2 � N � 1/δ2 will result in the majority being a good extractor (in fact,
N ≈ b/δ is the best). But what if N > 1/δ2? Of course, the majority itself does
not work then. However, we can still trivially extract an almost random bit by
simply ignoring some (say, the first or the last) N −O(1/δ2) bits and taking the
majority of the remaining O(1/δ2) bits! Collecting these ideas, we get
Lemma 1. If bδ = O(1), b = O(

√
N) and δ = o(1), one can extract an almost

random bit from a (δ, b, N)-BCL source: q(δ, b, N) = o(1). In particular, this can
be done by taking majority of any min(N, O(1/δ2)) bits of the source.

304 Y. Dodis

Complete Picture. We also notice that Theorem 3 does not imply Theorems 1
and 2, which study the extreme cases of our source. However, by combining
all three results with Lemma 1, we get a complete characterization of the of
bit extraction picture from any (δ, b, N)-BCL source. Namely, the following list
covers all the significant cases:

1. If b = Ω(
√

N) or δ = 1
2 − o(1) or bδ = ω(1), it is impossible to extract even

a slightly random bit. These results follow from Theorem 1 (even for δ = 0),
Theorem 2 (even for b = 0) and Theorem 3 respectively.

2. If Ω(1) ≤ δ ≤ 1
2 − Ω(1) and b = O(1), then one can extract a slightly but

not almost random bit (the lower bound follows from Theorem 2).
3. If b = O(

√
N) and bδ = O(1) and δ = o(1), then one can extract an almost

random bit from our source. This is exactly Lemma 1.

To have yet another insight on these results, we can let σ
def= max(δ, O(1/

√
N)) to

be the “effective noise” of our source. In other words, if δ � 1/
√

N , increasing δ
to 1/

√
N does not change the behavior of the source much. Then we can restate

our main result as follows: when bσ = ω(1), no good extraction is possible, and
if bσ = O(1), good extraction becomes possible.

Expected Number of Interventions to Fix the Outcome. We also study another bit
extraction measure of our source: the expected number of interventions to always
fix the extracted coin (to 0 or 1). Due to space limitations, we leave it to the final
version, where we show that O(1/δ) expected interventions suffice irrespective
of N . Combining with earlier results of [LLS89] for δ = 0 (that O(

√
N) interven-

tions suffice), we conclude that the right answer is Θ(min(1/δ,
√

N)) = Θ(1/σ).

Sampling General Distributions. We can look at the question of sampling general
distributions, and not just a single coin-flip. Not surprisingly, since we could not
even sample a slightly random bit from our source, the same will hold for other
distributions. Namely, if bδ = ω(1) and f ideally extracts a non-trivial Y = f(X)
(i.e., there is no y s.t. Pr(Y = y) = 1−o(1)) from our source, then A can influence
X to X ′ such that Y ′ = f(X ′) is statistically far from Y : ‖Y − Y ′‖ ≥ 1

2 − o(1).
Thus, no extraction is possible. We leave the details to the final version.

3 Discrete Control Processes

Alternative View of Our Source. So far we considered the task of our adversary A
to be preventing good bit extraction. However, an equally (if not more) natural
task for A would be to try to force some particular event E , i.e. to force the
string x = x1 . . . xN to satisfy some particular property. To formalize this, let
E be an event (or property) on {0, 1}N . Equivalently, E can be viewed as a
boolean function e : {0, 1}N → {0, 1}, or as a language L = e−1(1) ⊆ {0, 1}N ,
via “E happened ⇐⇒ e(x) = 1 ⇐⇒ x ∈ L”. We define the natural probability
p of E to be the probability that E happened for the ideal source (in our special

New Imperfect Random Source with Applications to Coin-Flipping 305

case, emitting N perfect unbiased bits), i.e. p = |L|/2N , and say that E is p-
sparse. Now we want to see if our adversary A has enough power to significantly
influence the occurrence of E (i.e., to make x ∈ L). Two dual questions naturally
come up for a given δ, N and E (with natural probability p):

1. For a given number of interventions b, what is the smallest probability of
“failure” that A can achieve? In particular, under what conditions can it
be arbitrarily close to 0? Can the answer(s) depend on p but not on other
specifics of E?

2. Assume we want to guarantee success (E always happens), by allowing possi-
bly unbounded number of interventions. What is the smallest expected num-
ber of interventions needed? Can the bound depend on p but not on other
specifics of E?

We define two natural measures that allow us to study the quantities addressed
in the above two questions. Since δ is never going to change in our discussion,
we omit it from all the notation below.

Definition 2. Define

– F (p, N, b) = maxE minA Pr(e(x) = 0), taken over all p-sparse E, and all
(δ, b, N)-BCL A.

– B(p, N) = maxE minA E[b], taken over all p-sparse E and all N -bit sources
A (with noise δ) necessarily producing x satisfying E. Here E[b] stands for
the expected number of interventions used by A (over the usage of rule (B)).

Thus, F (p, N, b) is the largest probability of A’s failure over all p-sparse events,
and B(p, N) is the smallest expected number of interventions A needs to always
force any p-sparse E . Notice, both times we take the worst-case p-sparse E .

Bounding the Probability of Failure. We start with a tight bound on F (p, N, b).

Theorem 4.

F (p, N, b) ≤ 1
p · (1 + 2δ)b

= 2log(1/p)−Θ(δb) (2)

Thus, if δb = ω(log(1
p)), A can force any p-sparse E with probability 1 − o(1).

Several remarks are in place before the proof. First, N does not enter the
equation above. Second, Theorem 4 immediately implies Theorem 3 (since for
any extraction function f , either the event f(x) = 0 or the event f(x) = 1 has
natural probability p ≥ 1/2). Finally, the bound in Equation (2) is almost tight,
at least in several significant cases. For example, for p = 1/2, Lemma 1 implies
that A cannot almost certainly force 1 on the majority of min(N, 1/δ2) bits
when δb = O(1). On the other hand, if e is the function that is 1 on the first p2N

values of x (in the lexicographic order), A has to intervene at least Ω(log(1/p))
times in order to force e(x) = 1 with probability more than 1

2 + δ.

306 Y. Dodis

Proof. The statement is true for δ = 0 or b = 0, since F (·, ·, ·) ≤ 1 ≤ 1/p,
so assume δ > 0 and b ≥ 1. Define g(p, b) = 1

p(1+2δ)b . We need to show that
F (p, N, b) ≤ g(p, b) for any N ≥ 1, 1 ≤ b ≤ N and 0 ≤ p ≤ 1. We prove this by
induction on N . For N = 1, F (0, 1, b) = 1 < ∞ = g(0, b), and F (p, 1, b) = 0 ≤
g(p, b) for p > 0 (here we used b ≥ 1). Now assume the claim is true for (N − 1).

Take any p-sparse E given by a function e. Let e0 : {0, 1}N−1 → {0, 1} be
the restriction of e when x1 = 0. Similarly for e1. This defines a p0-sparse event
E0 and a p1-sparse event E1 satisfying 1

2 (p0 + p1) = p. Without loss of generality
assume p0 ≥ p ≥ p1. Given such E , our particular adversary A will consider two
options and pick the best (using its unbounded computational resources): either
use an intervention (which is legal since we assumed b ≥ 1) and fix x1 = 0,
reducing the question to that of analyzing the p0-sparse event E0 on (N − 1)
variables and also reducing b by 1, or use rule (B) making the 0-probability of
x1 equal to 1

2 + δ and leaving the same b. We get the following recurrence:

F (p, N, b) ≤ min[F (p0, N − 1, b − 1),
(

1
2

− δ

)

· F (p1, N − 1, b) +
(

1
2

+ δ

)

· F (p0, N − 1, b)]

Let p0 = p(1+β) and p1 = p(1−β), where 0 ≤ β ≤ 1 (since p0 ≥ p ≥ p1). Using
our inductive assumption,

F (p, N, b) ≤ min(g(p(1 + β), b − 1),
(

1
2

− δ

)

· g(p(1 − β), b) +
(

1
2

+ δ

)

· g(p(1 + β), b))
?≤ g(p, b)

Recalling the definition of g, it thus suffices to show that

min
(

1
p(1 + β)(1 + 2δ)b−1 ,

1
2 − δ

p(1 − β)(1 + 2δ)b
+

1
2 + δ

p(1 + β)(1 + 2δ)b

)

≤ 1
p(1 + 2δ)b

⇐⇒ min
(

1 + 2δ

1 + β
,

1
2 − δ

1 − β
+

1
2 + δ

1 + β

)

≤ 1

We show that the inequality above holds for any β ∈ [0, 1] (since the choice of β
is outside of our control). We see that the expressions under the minimum are
equal when β = 2δ. The following two cases on β complete the proof.

– Case 1. Assume β ≥ 2δ. Then the minimum above is 1+2δ
1+β and we need to

show that 1+2δ
1+β ≤ 1, which is equivalent to β ≥ 2δ.

– Case 2. Assume β ≤ 2δ. Then the minimum above is
1
2 −δ

1−β +
1
2+δ

1+β and we

need to show that
1
2 −δ

1−β +
1
2+δ

1+β ≤ 1, which is equivalent to β ≤ 2δ.

Bounding Expected Number of Interventions. We also show a tight bound on
B(p, N). Namely, B(p, N) = O(1

δ log(1
p)) (in particular, this bound is indepen-

dent on N). Due to space limitations, we leave the proof to the final version.

New Imperfect Random Source with Applications to Coin-Flipping 307

Generalizing to Any Stochastic Process. As we mentioned earlier, our results
can be generalized to any stochastic process P. Namely, the notion of natural
probability p of E and the quantities FP(p, N, b) and BP(p, N) can now be
defined w.r.t. to P completely analogously to Definition 2. While the proofs
become significantly more involved, in the final version we show for any P:
FP(p, N, b) ≤ (1 − δ)b/p = 2log(1/p)−Ω(δb); BP(p, N) ≤ log1−δ p = O(1

δ · log(1
p)).

4 Black-Box Transformations and Adaptive Coin-Flipping

The Setting. Collective Coin-Flipping, introduced by Ben-Or and Linial [BL90],
is a problem where n (computationally unbounded) processors are trying to
generate a random bit in a setting where only a single broadcast channel is
available for communication. At most b out of n players can be controlled by
a central adversary A (which is called b-bounded) who is trying to bias the
resulting coin. Given a protocol Π, we let ∆Π(b) be the largest bias achieved by
a b-bounded adversary against Π. Π is said to be b(n)-resilient if Π produces a
slightly random coin: ∆Π(b(n)) ≤ 1

2 − Ω(1), where the constant is independent
of n. Similarly, Π is said to be strongly b(n)-resilient if Π produces an almost
random coin: ∆Π(b(n)) = o(1). As we said in the introduction, it makes a crucial
difference whether A is static (decides whom to corrupt before the protocol
starts), or adaptive (decides whom to corrupt during the protocol).

Coin-Flipping with Static Adversaries. The optimal resilient threshold for static
adversaries in n/2: any n/2 players can always fix the coin [S89,BN00], while
there exist (1

2 − ε)-resilient protocols (even constructive and efficient ones) for
any ε > 0 [BN00,RZ98,F99]. We also point out a very simple dependence of the
optimal bias ∆(b) (defined to be the smallest bias achieved by a coin-flipping
protocol: minΠ ∆Π(b)) on the number of players: ∆(b) = Θ(b/n) [BL90,AN93].
Finally, we point out that all the best statically secure coin-flipping protocols
are not even 1-resilient against adaptive adversaries. This is due to a historical
feature that all such protocols first elect a single (hopefully, not faulty) represen-
tative player (called a leader), who then flips the final coin by itself. Corrupting
such a leader at the end clearly controls the coin.

Coin-Flipping with Adaptive Adversaries. Adaptive adversaries were already
considered by Ben-Or and Linial [BL90], who observed that the “majority” pro-
tocol (each player sends a random bit, and the final coin is their majority)
achieves adaptive Θ(

√
n)-resilience. Surprisingly enough, this simple protocol

is the best known adaptively secure coin-flipping protocol! In fact, Ben-Or and
Linial [BL90] conjectured that this protocol to be optimal! This conjecture (call
it (*)), if true, would imply that adaptive adversaries are much more powerful
than static adversaries (where the threshold is n/2) for the problem of collective
coin-flipping. Interestingly enough, the only result that in support of conjecture
(*) comes from the bit-fixing source of [LLS89]. Namely, when each player sends
only 1 bit in the entire protocol, the optimal behavior of the adversary is exactly

308 Y. Dodis

the same as in the bit-fixing source with b interventions! Since the majority was
the best bit extraction function for the bit-fixing source, conjecture (*) is true in
this case. This result is interesting since is already illustrates the power of adap-
tivity. Namely, in the static case one can achieve Ω(n/ log2 n)-resilience [AL93]
when players send only 1 bit, even in one round. However, it supports the con-
jecture (*) much less than it seems to. Indeed, restricting each player to send at
most 1 bit seems like a huge limitation. For example, it is very limiting even for
statically secure protocols (i.e., no function can be more than O(n/ log n)-resilient
by the result of [KKL89], and there are general n/2-resilient statistically secure
protocols [BN00,RZ98,F99]).

To summarize, adaptively secure coin-flipping is much less understood than
its static counter-part, there seems to be some indication that adaptive adver-
saries are much more powerful than static adversaries, but there is little formal
evidence supporting this claim.

Black-Box Reductions. Due to space limitations, we leave the formal treatment
to the final version, and instead provide informal (but informative) intuition of
our approach, which we already sketched in the introduction. Namely, we want to
sequentially run a static coin-flipping protocol Π for N times, and try to extract
a good coin from the N outcomes x1 . . . xN . If δ = ∆Π(b), then we reduced
the adaptive adversary A to a (δ, b, N)-BCL source: rule (A) corresponds to
corrupting a player during one of the N sub-protocols, while rule (B) corresponds
to not doing so and using the power of the static adversary. Notice, while b and
δ are fixed (given n), we have the power to make N really huge, which seems
to give us a considerable advantage. Unfortunately, the strong negative result of
Theorem 3 shows that this advantage is, actually, an illusion. Namely, our results
say that the possibility of bit extraction from our source depends on whether
bδ = O(1) or bδ = ω(1), i.e. a large number of repetitions N does not help.

Nevertheless, when is bδ = O(1)? Notice that the best δ we could hope for
(without looking at the specifics of Π), while definitely no more than ∆(b), can
not be much less than ∆(b) = Θ(b/n) as well. For example, at the very beginning
A could corrupt b/2 players that gives δ ≥ ∆(b/2) = Θ(∆(b)), and still have
b/2 arbitrary corruptions left. Hence, our “black-box” approach can work (and
actually can be made to work) only if b · Θ(b/n) = O(1), i.e. b = O(

√
n). Since

such b can be trivially achieved by the majority protocol, we cannot achieve
adaptive security (beyond what is known) “for free”.

Discussion. We are not saying that black-box transformations are the most
natural way to achieve adaptive security. However, the “breaking point” of our
approach is exactly (believed to be optimal) b = Θ(

√
n). The latter “coincidence”

does give some further evidence to conjecture (*).

References

[AL93] M. Ajtai, N. Linial. The influence of large coalitions. Combinatorica,
13(2):129–145, 1993.

New Imperfect Random Source with Applications to Coin-Flipping 309

[AN93] N. Alon, M. Naor. Coin-flipping games immune against linear-sized coali-
tions. SIAM J. Comput., 22(2):403-417, 1993.

[AR89] N. Alon, M. Rabin. Biased Coins and Randomized Algorithms. Advances
in Computing Research, 5:499-507, 1989.

[BL90] M. Ben-Or, N. Linial. Collective Coin-Flipping. In Randomness and
Computation, pp. 91-115, Academic Press, New York, 1990.

[B86] M. Blum. Independent unbiased coin-flipsfrom a correclated biased
source — a finite state Markov chain. Combinatorica, 6(2):97–108, 1986.

[BN96] R. Boppana, B. Narayanan. The Biased Coin Problem. SIAM J. Discrete
Math., 9(1)29–36, 1996.

[BN00] R. Boppana, B. Narayanan. Perfect-information Leader Election with
Optimal Resilience. SIAM J. Comput., 29(4):1304-1320, 2000.

[E72] P. Elias. The Efficient Construction of an Unbiased Random Sequence.
Ann. Math. Stat., 43(3):865–870, 1972.

[F99] U. Feige. Noncryptographic Selection Protocols. In Proc. of 40th FOCS,
pp. 142–152, 1999.

[KKL89] J. Kahn, G. Kalai, N. Linial. The Influence of Variables on Boolean
Functions. In Proc. of 30th FOCS, pp. 68–80, 1989.

[LLS89] D. Lichtenstein, N. Linial, M. Saks. Some Extremal Problems Arising
from Discrete Control Processes. Combinatorica, 9:269–287, 1989.

[RZ98] A. Russell, D. Zuckerman. Perfect information leader election in log� n+
O(1) rounds. In Proc. of 39th FOCS, pp. 576–583, 1998.

[S89] M. Saks. A robust noncryptographic protocol for collective coin flipping.
SIAM J. Discrete Math., 2(2):240–244, 1989.

[SV86] M. Sántha, U. Vazirani. Generating Quasi-Random Sequences from Semi-
Random Sources. J. of Computer and System Sciences, 33(1):75–87,
1986.

[vN51] J. von Newman. Various techniques used in connection with random
digits. In National Bureau of Standards, Applied Math. Series, 12:36–38,
1951.

Recognizing More Unsatisfiable Random 3-SAT
Instances Efficiently

Joel Friedman1 and Andreas Goerdt2

1 Department of Mathematics, University of Britsh Columbia,
Vancouver, BC V6T 1Z2, Canada

jf@math.ubc.ca, www.math.ubc.ca/˜jf
2 Fakultät für Informatik, TU Chemnitz, 09107 Chemnitz, Germany

goerdt@informatik.tu-chemnitz.de,
www.tu-chemnitz.de/informatik/HomePages/TI

Abstract. It is known that random k-SAT instances with at least dn
clauses where d = dk is a suitable constant are unsatisfiable (with high
probability). This paper deals with the question to certify the unsatisfi-
ability of a random 3-SAT instance in polynomial time. A backtracking
based algorithm of Beame et al. works for random 3-SAT instances with
at least n2/ logn clauses. This is the best result known by now.
We improve the n2/ logn bound attained by Beame et al. to n3/2+ε for
any ε > 0. Our approach extends the spectral approach introduced to
the study of random k-SAT instances for k ≥ 4 in previous work of the
second author.

Introduction

We study the complexity of certifying unsatisfiability of random 3-SAT instances
(or 3-CNF formulas) over n propositional variables. The probability space of
random 3-SAT instances has been widely studied in recent years for several
good reasons. The most recent literature is [Ac2000],[Fr99], [Be et al97].

One of the reasons for studying random 3-SAT instances is that they have
the following sharp threshold behaviour [Fr99]: There exist values c = c(n) such
that for any ε > 0 formulas with at most (1 − ε) · c · n clauses are satisfiable
whereas formulas with at least (1+ε) ·c ·n are unsatisfiable with high probability
(that means with probability tending to 1 when n goes to infinity). Note, that
the aforementioned result does not say that c = c(n) is a constant, however the
general conjecture is that c(n) converges to a constant. Much recent work tries
to approximate c(n) and the currently best results are that c(n) is at least 3.125
[Ac2000] and at most 4.601 [KiKrKr98]. Inaccessible to the authors at the time
of writing is a FoCS 2000 paper making further progress on the lower bound for
c(n). (For random 2-SAT instances the analogous threshold is at c = 2 [ChRe92],
[Go96].)

The algorithmic interest in this threshold is due to the empirical obeserva-
tion that random 3-SAT instances at the threshold, i.e. with around c ·n random

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 310–321, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 311

clauses are hard instances. The following behaviour has been reported consis-
tently in experimental studies with backtracking algorithms for satisfiability, see
for example [SeMiLe96] [CrAu96]: The average running time is quite low for in-
stances below the threshold. For instances with at most 4n clauses the formulas
are satisfiable and it is quite easy to find a satisfying assignment. A precipitous
increase in the average complexity is observed at the threshold. For 4.2n clauses
about half of the generated formulas are satisfiable and it is difficult to decide
if a formula is satisfiable or not. Finally a speedy decline to lower complexity is
observed beyond the threshold. All instances with 4.5n clauses are unsatisfiable
and the running time decreases again (in spite of the fact that now the whole
backtracking tree must be searched.) Note however that the decline in running
time cannot yield polynomial average time. This follows from the paper [ChSz88]
on which we comment further below.

Except of trivial observations there are no general complexity theoretical re-
sults relating the threshold to hardness. The relationship of hardness and thresh-
olds has also been observed for k-colourability of random graphs with a linear
number of edges[PeWe89],[AcFr99] and for the subset sum problem, see[ImNa96]
for a theoretical discussion.

Abandoning the general point of view and looking at concrete algorithms
the following results are known for random 3-SAT instances: All progress ap-
proximating the threshold from below is based on the analysis of rather simple
polynomial time heuristics. In fact the most advanced heuristic being analyzed
[Ac2000] only finds a satisfying assignment with probability of at least ε where
ε > 0 is a small constant for 3-SAT formulas with at most 3.145n clauses. The
heuristic in [FrSu96] finds a satisfying assignment for 3-SAT almost always for
3-SAT instances with at most 3.003n clauses. On the other hand the progress
made in approximating the threshold from above does not provide us at all
with efficient algorithms. Here only the expectation of the number of satisfying
assignments is calculated and is shown to tend to 0.

In fact, beyond the threshold we have negative results: For arbitrary but fixed
d beyond the threshold random 3-SAT instances with dn clauses (are unsatisfi-
able and) have only resolution proofs with an exponential number, that is with at
least 2Ω(n) clauses [ChSz88]. This has been improved upon by [Fu98], [BePi96],
and [Be et al97] all proving (exponential) lower bounds for larger clause/variable
ratios. Note that the size of resolution proofs is a lower bound on the number of
nodes in any classical backtracking tree as generated by any variant of the well
known Davis-Putnam procedure.

Next we come to the historical development of polynomial time results be-
yond the threshold. In [Fu98] it is shown that 3-SAT formulas with at least
n2 clauses allow for polynomial size resolution proofs. This is strengthened in
[Be et al97] to the best result known by now: For random 3-SAT instances with
at least n2/ log n clauses a backtracking based algorithm proves unsatisfiability
in polynomial time with high probability. (The result of Beame et al. is slightly
stronger as is applies to formulas with Ω(n2/ log n) clauses.) For general k-SAT
the algorithm of Beame et al. works for formulas with at least nk−1/(log n)k−2

312 J. Friedman and A. Goerdt

clauses. This is improved in [GoKr2000] where a spectral approach is shown to
work for at least poly(log n) · nk/2 random clauses for even k. For odd k we get
the exponent (k + 1)/2 instead of k/2. This implies that for k = 3 the result of
Beame et al. is still the best known.

We extend the approach of our previous paper to show that for any ε > 0
random 3-SAT instances with at least n3/2 + ε clauses can be efficiently certified
as unsatisfiable thus improving the previous best bound of Beame et al. As in
[GoKr2000] we associate a graph with a given formula. Then we show how to
certify unsatisfiability of the formula with the help of the eigenvalue spectrum
of the adjacency matrix of this graph. Note that the eigenvalue spectrum can
be approximated with sufficient precision in polynomial time by standard linear
algebra methods.

One technical contribution of the present paper when compared to
[GoKr2000] is a lemma bounding the size of the largest independent set of ver-
tices of a graph with the help of the eigenvalue gap of the adjacency matrix of
this graph. We speculate that this may be of independent interest. In [GoKr2000]
we use a matrix derived from the adjacency matrix instead of the adjacency ma-
trix itself to bound the size of the largest independent set. In [Ch97] bounds on
the size of the largest independent set are given in terms of the spectral gap
of the Laplacian matrix of the graph. These results cannot be directly applied
to the present situation because in our case it is not clear how to estimate the
eigenvalues of the Laplacian matrix, instead of those of the adjacency matrix.

Note that eigenvalues can be used to help to find a solution to a random in-
stance of an NP-complete problem [AlKa94] or to prove the absence of a solution
as in our case, for example.

1 From Random 3-SAT Instances to Random Graphs

We consider a family probability spaces of random 3-SAT instances, Formn,p =
Formn,p,3, which is defined as follows: The set of 3-clauses is the set of all 3-
tuples l1 ∨ l2 ∨ l3 where li is a literal over a standard set of n propositional
variables. A literal either is a propositional variable x or its negation ¬x. As
double occurrences of literals inside of clauses are allowed we have altogether
(2n)3 = 8n3 3-clauses. A random instance F from Formn,p is obtained by adding
each single clause independently with probability p to F . We think of the clauses
of F as being joined conjunctively and write F = {C1, . . . , Cm} = C1 ∧ . . . ∧
Cm. In the sequel we assume that p = p(n) = 1/n1+γ where 1/2 > γ > 0
is a constant. Note that our space of formulas is analogous to the space of
random graphs Gn,p. The number of clauses in a random instance from Formn,p

follows the binomial distribution with parameters 8n3 and p, Bin(8n3, p) and
the expected number of clauses is 8n3 · p = 8n2−γ > n3/2.

Another popular family of probability spaces of random 3-SAT instances is
the space Formn,m. Here each formula is a set of exactly m clauses and each

formula has probability 1/

(
8n3

m

)

. Formn,m is analogous to the space of random

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 313

graphs Gn,m. We feel confident and in line with common usage that our results
also apply to Formn,m if m = 8n3 · p is the expected number of clauses in our
Formn,p model. See [Bo85] for a general theorem relating analogous random
graph models. Clauses might be defined in a slightly different way, too: They
might be sets of literals, they might be tuples without repetitions, they might
be non-tautological, that is not containing x and ¬x together. Again we assume
without actually checking that our results apply to the other probability spaces,
too.

We state a graph theoretical condition which implies the unsatisfiability of
a 3-SAT instance F over n propositional variables. To this end we define the
graphs GF and HF . The graph GF = (VF , EF) is defined as follows:

– VF is the set of ordered pairs over the n propositional variables. We have
|VF | = n2.

– The edge (a1, b1) (a2, b2) (where in order to avoid loops (a1, b1) 6= (a2, b2)
that is a1 6= a2 or b1 6= b2) is in EF if there exists a variable z such that F
contains both clauses a1 ∨a2 ∨ z and b1 ∨ b2 ∨¬z (or both clauses a2 ∨a1 ∨ z
and b2 ∨ b1 ∨ ¬z, note however that our graph is undirected and it is not
strictly necessary to mention explicitly this possibiliy.) Note that the ai and
bi are variables, that is positive literals.

The graph HF is defined totally analogously but with different clauses: Its
vertices are as before ordered pairs of variables and (a1, b1) (a2, b2) is an edge
iff F has the clauses ¬a1 ∨ ¬a2 ∨ z and ¬b1 ∨ ¬b2 ∨ ¬z for a variable z.

Some comments concerning the intuition behing this definition: In
[GoKr2000] we give an efficient algorithm which demonstrates the unsatisfia-
bility of random 4-SAT instances with at least poly(log n) · n2 clauses. Here we
build on the techniques introduced in this paper. The clause a1 ∨ a2 ∨ b1 ∨ b2 is
obtained by resolution [Sch] with z from the two clauses a1∨a2∨z and b1∨b2∨¬z
which define an edge of GF . Similarly we have that ¬a1 ∨ ¬a2 ∨ ¬b1 ∨ ¬b2 is
obtained from ¬a1 ∨ ¬a2 ∨ z and ¬b1 ∨ ¬b2 ∨ ¬z. The correctness of resolution
states that F is unsatisfiable if a set of resolvents of F is unsatisfiable.

For any given z the number of clauses like a1 ∨ a2 ∨ z and b1 ∨ b2 ∨ ¬z is
concentrated at the expectation ≈ n2 · p = n1−γ > n1/2 Applying resolution
with z to all these clauses gives ≈ n(1−γ)2 > n clauses a1 ∨ a2 ∨ b1 ∨ b2. Doing
this for all n variables z gives > n2 all-positive clauses of size 4. In the same way
we get > n2 all-negative 4-clauses. With the help of the technique introduced in
[GoKr2000] we get an efficient algorithm which demonstrates unsatisfiability of
these newly obtained 4-clauses and the correctness of resolution implies that F
itself is unsatisfiable. Note that our graphs GF and HF reflect the sets of clauses
obtained by resolution as above in that each clause induces an edge in one of
these graphs.

Some detailed remarks concerning GF : Only for technical reasons the vari-
able z which is resolved upon is the last variable in our clauses. (Recall we
consider clauses as ordered triples.) More important is the fact that the edge
reflects the resolvent a1 ∨ a2 ∨ b1 ∨ b2 not in the most natural way by the edge

314 J. Friedman and A. Goerdt

(a1, a2) (b1, b2) but by (a1, b1) (a2, b2). The variables of the vertices con-
nected by the edge come from the different clauses taking part in the resolution.
The reason why this is important is to increase the independence of the edges
of GF when F is a random formula. Again more of a technical nature is the
convention that the variables in the first position of each vertex come from the
clause which contains the positive literal z, whereas the second variables b1, b2
come from the clause with ¬z.

Recall that a set S of vertices of a graph G is an independent set iff there is no
edge inside of S, and α(G) is the independence number of G that is the maximum
number of vertices of an independent set of G. The independence number is NP-
hard to determine. Therefore we cannot use the following theorem directly to
get an efficient algorithm certifying unsatisfiability by simply computing the
independence number of GF and HF . The proof of the next theorem relies on
the correctness proof of resolution [Sch] and is not difficult.

Theorem 1. If F is a 3-SAT instance over n variables which is satisfiable then
we have:

α(GF) ≥ n2/4 or α(HF) ≥ n2/4.

Within GF (and HF) the presence or absence of an edge is not independent
of that of another edge, and so techniques from the area of standard random
graphs cannot be applied without further consideration. From now on we restrict
attention to GF , of course everything applies also to HF . We collect some basics
about GF .

An edge (a1, b1) (a2, b2) in GF is only possible if a1 6= a2 or b1 6= b2.
We take a look at the structure of the clause sets which induce the fixed edge
(a1, b1) (a2, b2). The edge (a1, b1) (a2, b2) is in GF iff F contains for a
variable z at least one of the pairs of clauses a1 ∨ a2 ∨ z and b1 ∨ b2 ∨¬z (or one
of the pairs a2 ∨ a1 ∨ z and b2 ∨ b1 ∨ ¬z).

Case 1: a1 6= a2 and b1 6= b2. In this case all the “z-clauses” necessary to
induce the edge are distinct and all ¬z-clauses, too. As the z and ¬z clauses
are all distinct from each other, too, we have 2n disjoint pairs of clauses which
induce the edge (a1, b1) (a2, b2).

Case 2: a1 = a2 and b1 6= b2. In this case the clauses a1 ∨ a2 ∨ z necessary
for the edge are all distinct. However a1 ∨ a2 ∨ z = a2 ∨ a1 ∨ z. The ¬z-clauses
are all distinct and also the z- and ¬z-clauses. We have altogether 2n pairs of
clauses where always two pairs have the common clause a1 ∨ a2 ∨ z. The last
case a1 6= a2 and b1 = b2 is analogous to the second case.

With these observations we can get a first impression of the probability of a
fixed edge in GF : If a1 6= a2 and b1 6= b2 the number of pairs of clauses which
induce the edge (a1, b1) (a2, b2) is distributed as Bin(2n, p2). The probability
that the edge is induced by two pairs of clauses is at most

(2n
2

) · p4 = o(2np2).
This makes it intuitively clear that the probability of (a1, b1) (a2, b2) being
in GF is about 2n · p2.

If a1 = a2 and b1 6= b2 we observe that the number of clauses like b1 ∨
b2 ∨ ¬z or b2 ∨ b1 ∨ ¬z is distributed as Bin(2n, p). The probability to have at

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 315

least two of these clauses is o(2np). Conditioning on the occurrence of at least
one of these clauses it becomes inuitively clear that the probability of the edge
(a1, b1) (a2, b2) should also be about 2n · p2. The following two results make
this precise.

Lemma 1. We fix the edge e = (a1, b1) (a2, b2) and recall p = 1/n1+γ .
(a) For a1 6= a2 and b1 6= b2 we have that

Pr[GF ; e is an edge of GF] = 2n · p2 · (1 + O(
1

n1+2γ
)).

(b) For a1 = a2 and b1 6= b2 this probability is

2n · p2 · (1 + O(
1

n1+γ
)).

The same applies of course to a1 6= a2 and b1 = b2.

The preceding lemma implies the following expectations:

Corollary 1. (a) E[Number of edges of GF] = n3−2γ · (1 + O(
1
n

)).

(b) E[Degree of the vertex (a1, b1)] = 2n1−2γ · (1 + O(
1
n

)).

Observe that n2·2n1−2γ = 2·n3−2γ reflecting the fact that the sum of the degrees
of all vertices is two times the number of edges. The number of vertices altogether
is equal to n2 and the probability of a given edge is ≈ 2/n1+2γ . Disregarding
edge dependencies GF is a random graph Gn2,p′ where p′ = 2/n1+2γ . As γ < 1/2
this situation is equivalent to that of a random graph over n vertices with edge
probability nδ/n with δ > 0.

2 Concentration of the Degree

The degree of a given vertex of a random graph with n vertices and edge prob-
ability nδ/n follows the binomial distribution Bin(n − 1, nδ/n). Exponential tail
bounds for the binomial distribution imply that each vertex has its degree sharply
concentrated at its expectation ≈ nδ. (Note that exp(−nδ) = o(1/n) and we
can proceed from a fixed vertex to all vertices.) To show an analogous result for
GF we consider a fixed vertex (a1, b1) and determine the number of edges like
(a1, b1) (a2, b2). Before looking at the degree of (a1, b1) itself we look at the
number of unordered pairs of clauses

a1 ∨ a2 ∨ z and b1 ∨ b2 ∨ ¬z (1)

in a random F where a2, z, b2 are arbitrary. To show concentration of the number
of pairs of clauses as in (1) we follow [AlSp92] Chapter 8, Section 4. The technical
problem to deal with is that distinct pairs are not always disjoint and thus are
not independent. Nevertheless the intuition is that they are nearly independent
and we have:

316 J. Friedman and A. Goerdt

Theorem 2. Let ε > 0 be fixed, let X be the random variable giving number of
pairs of clauses as in (1) and let µ be the expectation of X. Then Pr[|X − µ| >
εµ] = o(1/n2).

Some pairs of clauses as in (1) might induce the same edge. But that does
not destroy concentration:

Corollary 2. Let a1 and b1 be two variables and ε > 0. The degree of the
vertex (a1, b1) in GF is with probability 1 − o(1/n2) between 2n1−2γ(1 − ε) and
2n1−2γ(1+ε). Moreover, with high probability the degree of each vertex is within
the specified interval.

3 Spectral Considerations

In this section we prove a general relationship between the size of an indepen-
dent set in a graph and the eigenvalues of its adjacency matrix. Then we prove
that the random graphs GF and HF satisfy certain eigenvalue bounds with high
probability. These eigenvalue bounds certify that the graphs GF and HF do not
have independent sets as required by Theorem 1 in order for F to be satisfi-
able. Background from spectral graph theory can be found for regular graphs in
[AlSp92] and for the general case in [Ch97]. The linear algebra required is well
presented in [St88].

Let G = (V, E) be a standard undirected graph and AG the adjacency matrix
of G. Let AG’s eigenvalues be ordered λ1 ≥ · · · ≥ λn, with n = |V |. We say that
G is ν-separated if |λi| ≤ νλ1 for i > 1. With λ = max

i>1
|λi| this reads λ ≤ νλ1.

We say that G is ε-balanced for some ε > 0 if there is a real d such that the
degree of each vertex is between d(1 − ε) and d(1 + ε).

Theorem 3. If G is ν-separated and ε-balanced, then G contains no independent
set of size > (n/5) + n · f(ν, ε) where f(ν, ε) tends to 0 as ν, ε tend to 0.

We remark that this theorem can probably be greatly improved upon. But this
weak theorem does preclude independent sets of size n/4 for small ν, ε, and that
is all we need here.

Proof. Let S be an independent subset of vertices of G. We will bound |S|. Let
T = V \ S. Let χS , χT be the characteristic functions (represented as column
vectors) of S, T respectively (i.e. taking the value 1 inside the set and 0 outside
the set). As S is an independent set and G is ε-balanced, we have

d(1 − ε)|S| ≤
∣
∣
∣ edges leaving S

∣
∣
∣ = < AGχS , χT > . (2)

Note that AGχS is the column vector whose i’th entry is the number of edges
going from vertex i into the set S. Recall that T = V \ S and < · · · , · · · > is
the standard inner product of two vectors. We show further below that

< AGχS , χT > ≤ d(1 + ε) · (1/2 + ν) ·
√

|S||T |. (3)

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 317

Abbreviating θ = |S|/n we get from (2) and (3) that
θ/(1 − θ) ≤ (1/2 + g(ν, ε))2 = 1/4 + g(ν, ε) + g(ν, ε)2 where
g(ν, ε) = (ε + (1 + ε)ν)/(1 − ε) as can be seen by elementary algebra. Note that
g(ν, ε) goes to 0 when ν and ε approach 0. We set f(ν, ε) = (4/5)(g + g2) and
get: θ ≤ (1/4)(4/5) + (4/5)(g + g2) = 1/5 + f, which is the theorem.

We need to show inequality (3). Let u1, . . . , un be an orthonormal basis of
the n-dimensional vectorspace over the reals where ui is an eigenvector of AG

with eigenvalue λi. We can decompose the adjacency matrix as
AG = λ1 ·u1 ·uT

1 + λ2 ·u2 ·uT
2 +· · ·+ λn ·un ·uT

n , where uT
i = (ui,1, . . . , ui,n) is the

transpose of the column vector ui. Note that λi · (ui ·uT
i) ·v = λi ·v if v = α ·ui

and λi · (ui · uT
i) · v = 0 for v orthogonal to ui. Let E = AG − λ1 · u1 · uT

1 =∑

i≥2

λi · ui · uT
i . and represent χS , χT over the basis of the ui: χS =

∑n
i=1 αi ·ui

and χT =
∑n

i=1 βi · ui. Recall here the fact known as Parseval’s equation:
|S| = ||χS ||2 =

∑
α2

i and |T | = ||χT ||2 =
∑

α2
i . We get easily

< AGχS , χT >= (λ1(uT
1 · χS)) · (uT

1 · χT) + < E · χS , χT > and proceed to
bound both summands separately.

Because of the orthornormality of the ui we get:

< EχS , χT >≤ λ ·
√∑

i≥1

α2
i ·

√∑

i≥1

β2
i = λ ·

√
|S| ·

√
|T | ≤ ν · d(1 + ε)

√
|S||T |

where the last step holds because λ1 is bounded above by the maximum degree
of the vertices, the last but first step uses Parseval’s equation and the last but
second Cauchy-Schwarz inequality,

∑ |αiβi| ≤ √∑
α2

i · √∑
β2

i .
Now we come to the other summand, (λ1(uT

1 · χS)) · (uT
1 · χT). Let α, β be

the average values of u1 on S, T respectively, that is α = (
∑

u1,j)/|S| where
the sum goes over j ∈ S. With the inequality of Cauchy-Schwarz we get:

α2 =
(
∑

(u1,j · 1))2

|S|2 ≤ (
∑

u2
1,j) · (

∑
1)

|S|2 =

∑
u2

1,j

|S|
which implies α2|S| ≤ ∑

u2
1,j . As T = V \ S we get

α2|S| + β2|T | ≤
n∑

j=1

u2
1,j = ||u1||2 = 1.

Using the fact that the geometric mean is bounded by the arithmetic mean this
implies α

√|S|·β√|T | ≤ 1/2. (The weakness of this theorem undoubtedly comes
from the pessimistic estimate used α

√|S| · β
√|T | ≤ (α2|S| + β2|T |)/2 which

is only close to the truth when α2|S| is close to β2|T |). This implies as λ1 is
bounded above by the maximum degree that

λ1 · (uT
1 χS) · (uT

1 χT) = d(1 + ε)α|S| · β|T | ≤ (1/2) · d(1 + ε)
√

|S||T |
and we get (3) finishing the proof. ut

We next show that the graphs GF , and HF are ν-separated for a small ν. We
do this by applying the trace method, see for example [Fr91], in an elementary
form. We first give a general outline of this method. For A = AG an adjacency

318 J. Friedman and A. Goerdt

matrix we have from linear algebra that for each k ≥ 0 Trace(Ak) =
n∑

i=1

λk
i .

(The trace of a matrix is the sum of the elements on the diagonal.) TraceAk

can be calculated from the underlying graph as: Trace(Ak) =
∣
∣
∣ closed walks

of length k in the underlying graph
∣
∣
∣. A closed walk of length k in G is a walk

like a0
e1

a1
e2

a2
e3

· · ·
ek−1

ak−1
ek

ak = a0. Note that the ei

and ai need by no means be distinct. As we assume the graph loopless we can
only conclude that ai−1 6= ai. For all even k we have that all λk

i ≥ 0 and we get

Trace(Ak) =
n∑

i=1

λk
i ≥ λk

1 + max
i>1

λk
i . Abbreviating λ = max

i>1
λi we get further

λk ≤ ∑n
i=2 λk

i . If the underlying matrix A is the adjacency matrix of a random
graph this applies in particular to the expected values:

E[λk] ≤ E[Trace(Ak)] − E[λk
1] = E[

n∑

i=2

λk
i]. (4)

Now assume that we have an underlying variable n as in the Gn,p model of
random graphs and that E[λk] = o(λk

1) holds with high probability. Then for
each constant ν > 0 we get Pr[λ > νλ1] = Pr[λk > (νλ1)k] =
= Pr

[
λk > ((νλ1)k/E[λk]) · E[λk]

] ≤ Pr
[
λk > 1/o(1) · E[λk]

]
+ o(1) ≤ o(1)

where we apply Markov’s inequality and use the fact that ν and k are constant.
This says that the graphs considered are ν-separated with high probability. (The
idea considering the k-th power of the eigenvalues seems to be to increase the
gap between the largest eigenvalue and the remaining eigenvalues.) The proof
of the following lemma prepares for the more complex situation with the graphs
GF and HF .

Lemma 2. Let ν > 0 and δ > 0 be constants. With high probability a random
graph from Gn,p with p = nδ/n is ν-separated.

Proof. Let A be the adjacency matrix of a random graph from Gn,p. Let k be
an even constant to be specified further below. We bound E[λk] by bounding
E[Trace(Ak)] − E[λk

1], see (4). We calculate both expectations separately. From
concentration of the degree of each vertex we get that with high probability λ1
is between (1 − ε)nδ and (1 + ε)nδ. As the probability of failure is exponentially
low in n and k is constant we get E[λk

1] ≥ (1 − ε)knδk − o(1). Next we come to
the expectation of the trace. For a = (a0, . . . , ak−1, ak = a0) let walk(a) be the
indicator random variable of the event that the walk given by a is possible in a
random graph, that is all edges ei = (ai−1, ai) = {ai−1, ai} for 1 ≤ i ≤ k occur.
Then E[Trace(Ak)] =

∑

a

P [walk(a) = 1]. To calculate the preceding sum we

distinguish three types of possible walks a. A walk is distinct iff all edges ei are
distinct. A walk is duplicated iff each edge among the ei occurs at least twice.
A walk is quasi-distinct iff some edges among the ei occur at least twice and

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 319

some only once. For a distinct we have that the expected number of such walks
is bounded above by nδk. (Compare to our estimate for E[λ1] above.)

For a duplicated we parameterize further with respect to the number j with
1 ≤ j ≤ k/2, of distinct edges among the ei. the number of possibilities here is at
most nj+1k2k and for the expected number of duplicated walks we get the upper

bound
k/2∑

j=1

k2k · nj+1 · (nδ/n)j ≤
k/2∑

j=1

k2k · n · nδj ≤ (k/2) · k2k · n · nδk/2. Note

that picking k > 2/δ implies that 1 + δk/2 < δk which in turn implies that the
bound is o(nδk). Note that we must pick k larger when δ gets smaller in order
that the last statement holds. (This is reassuring.)

For the number of quasi-distinct walks we first assume that the last edge,
ek, is a unique edge of the walk. We get similarly to the preceding bound a
bound of k · k2k · nδ(k−1). As the last edge need not always be unique we get an
additional factor of k. The estimate is always o(nδk) as δ(k − 1) < δk. Summing
all preceding estimates we get E[Trace(Ak)] ≤ nδk + o(nδk) and E[λk] ≤
≤ (1 − (1 − ε)k) · nδk + o(nδk). As ε > 0 can be chosen arbitrarily small, k
is constant and the preceding estimate holds whenever n is sufficiently large
this means that E[λk] = o(nδk) = o(λk

1) with high probability. By the general
principle above the graphs from Gn,p are ν-separated with high probability. ut

As graphs from Gn,p are ε-balanced for any ε > n Theorem 3 implies that
we can efficiently certify that a random graph from Gn,p has no independent set
with much more than n/5 vertices with high probability. The treatment of our
graphs GF , HF based on the method above is more technical but otherwise the
same.

Theorem 4. For F ∈ Formn,p,3 let AF be the adjacency matrix of GF and let

λ1 ≥ λ2 ≥ · · · ≥ λn2 be the eigenvalues of AF . Then E

n2
∑

i=1

λk
i

 is equal to

E[Trace(Ak
F)] ≤ (

2n1−2γ
)k

+ c · k4 · k4k · 2k · (n(1−2γ)(k−1) + n2 · n(1−2γ)k/2),

where c is a constant (c = 100 should be enough). If k > 4/(1−2γ) the preceding
estimate is

(
2n1−2γ

)k + o
((

2n1−2γ
)k

)
(compare Corollary 2). The same applies

to HF .

Proof. For any F we have that Trace(AF) =
∣
∣
∣closed walks of length k in

GF

∣
∣
∣. A typical closed walk of length k is (a0, b0) (a1, b1) · · · (ak−1, bk−1)
(ak, bk) = (a0, b0). Now consider a step (ai−1, bi−1) (ai, bi) of this walk.

For this step to be possible in GF the formula F must have one of the following
2n pairs of clauses: ai−1∨ai∨z, bi−1∨bi∨¬z for a propositional variable z or the
other way round, that is ai, bi first. We say that pairs of the first type induce the
step (ai−1, bi−1) (ai, bi) with sign +1 whereas the second type induces this
step with sign −1. For two sequences of clauses C = (C1, C2, . . . , Ck) where the

320 J. Friedman and A. Goerdt

last literal of each Ci is a positive literal and D = (D1, D2, . . . , Dk), where the
last literal of each Di is negative, and a a sequence of signs ε = (ε1, . . . , εk)
we say that C,D, ε induce the walk above iff for each i the pair of clauses
Ci, Di induces the i’th step of the walk with sign given by εi. Note that the
occurrences of the clauses Di and Cj in a random F are independent as these
clauses are always distinct. We say that F induces the walk above iff we can
find sequences of clauses C,D ⊆ F (the Ci, Di need not necessarily be all dis-
tinct) and a sequence of signs ε such that C,D, ε induce the given walk. We
observe: First, GF allows for a given walk iff F induces this walk as defined
above. Second, three sequences C,D, ε induce at most one walk, but one walk
can be induced by many C,D, ε’s. (Without the ε it is possible that C,D
induce several walks.) Thus we get that Trace(Ak

F) can be bounded above by∣
∣
∣C,D, ε′s, with C,D ⊆ F inducing a closed walk of length k

∣
∣
∣ and this trans-

fers to the expectations over random formulas F . The notions distinct, quasi-
distinct, and duplicated transfer naturally from graphs to D, C. We decompose
the expected number of C,D, ε’s which induce a closed walk of length k accord-
ing to all combinations of C,D being distinct, quasi-distinct or duplicated. The
reader with some experience can now easily fill in the remaining technical detail
alogn the lines of the proof of Lemma 2. ut

Now our algorithm is obvious: We pick ε, ν sufficiently small such that the
f(ν, ε) from Theorem 3 is < 1/20 (because 1/5+1/20 = 1/4). Given F ∈Formn,p

where p = 1/n1+γ we construct GF . Corollary 2 and Theorem 4 imply that
GF is ε-balanced and ν-separated with high probability. We efficiently check
if maximum degree/minimum degree ≤ (1 + ε)/(1 − ε). This holds with high
probability, in case it does not the algorithm fails. Now we determine λ1 and λ
with sufficient precision. We have that λ ≤ νλ1 with high probability. If the last
estimate does not hold, we fail. By Theorem 3 the algorithm now has certified
that GF has no independent set of size ≥ n2/4. We do the same for HF . With
high probability we succeed and by Theorem 1 F is certified unsatisfiable.

Our algorithm works with high probability with respect to the binomial space
Fromn,p where p is such that the expected number of clauses is the announced
n3/2+ε. In case we want to show that it works for the space Formn,m with
m = n3/2+ε additional consideration is necessary: We would have to show that
the algorithm fails in Formn,p only with probability of o(1/

√
n). This is sufficient

because the Local Limit Theorem implies that the set of formulas in Formn,p

having exactly the expected number of clauses has probability bounded below
by Ω(1/

√
n). We leave the detailed asymptotics required (we guess that k must

go slowly to infinity for this) to the full version.

Acknowledgement. Helpful and detailed remarks of a referee improve presen-
tation.

Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently 321

References

[Ac2000] Dimitris Achlioptas. Setting 2 variables at a time yields a new lower
bound for random 3-SAT. In Proceedings SToC 2000.

[AcFr99] Dimitris Achlioptas, Ehud Friedgut. A threshold for random k-
colourability. Random Structures and Algorithms 1999.

[AlKa94] Noga Alon, Nabil Kahale. A spectral technique for colouring random
3-colourable graphs (preliminary version). In Proceedings SToC 1994.
ACM. 346-355.

[AlSp92] Noga Alon, Joel H. Spencer. The probabilistic method. Wiley & Sons
Inc. 1992.

[Be et al97] Paul Beame, Richard Karp, Toniann Pitassi, Michael Saks. On the
complexity of unsatisfiability proofs for random k-CNF formulas. 1997.

[BePi96] Paul Beame, Toniann Pitassi. Simplified and improved resolution lower
bounds. In Proceedings FoCS 1996. IEEE. 274-282.

[Bo85] Bela Bollobas. Random Graphs. Academic Press. 1985.
[Ch97] Fan R. K. Chung. Spectral Graph Theory. American Mathematical

Society. 1997.
[ChRe92] Vasek Chvatal, Bruce Reed. Mick gets some (the odds are on his side).

In Proceedings 33nd FoCS 1992. IEEE. 620-627.
[ChSz88] Vasek Chvatal, Endre Szemeredi. Many hard examples for resolution.

Journal of the ACM 35(4), 1988, 759-768.
[CrAu96] J. M. Crawford, L. D. Auton. Experimental results on the crossover

point in random 3SAT. Artificial Intelligence 81, 1996.
[Fr91] Joel Friedman. Combinatorica, 1991.
[Fr99] Ehud Friedgut. Necessary and sufficient conditions for sharp thresholds

of graph properties and the k-SAT problem. Journal of the American
Mathematical Society 12, 1999, 1017-1054.

[FrSu96] Alan M. Frieze, Stephen Suen. Analysis of two simple heuristics on a
random instance of k-SAT. Journal of Algorithms 20(2), 1996, 312-355.

[Fu98] Xudong Fu. The complexity of the resolution proofs for the random set
of clauses. Computational Complexity, 1998.

[Go96] Andreas Goerdt. A threshold for unsatisfiability. Journal of Computer
and System Sciences 53, 1996, 469-486.

[GoKr2000] Andreas Goerdt, Michael Krivelevich. Efficient recognition of random
unsatisfiable k-SAT instances by spectral methods. In Proceedings
STACS 2001. LNCS.

[ImNa96] Russel Impagliazzo, Moni Naor. Efficient cryptographic schemes prov-
ably as secure as subset sum. Journal of cryptology 9, 1996, 199-216.

[KiKrKr98] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, Yiannis Sta-
matiou. Approximating the unsatisfiability threshold of random formu-
las. Random Structures and Algorithms 12(3), 1998, 253-269.

[PeWe89] A. D. Petford, Dominic Welsh. A randomised 3-colouring algorithm.
Discrete Mathematics 74, 1989, 253-261.

[Sch] Uwe Schöning. Logic for Computer Science. Birkhäuser.
[SeMiLe96] Bart Selman, David G. Mitchell, Hector J. Levesque. Generating hard

satisfiability problems. Artificial Intelligence 81(1-2), 1996, 17-29.
[St88] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace

Jovanovich, Publishers, San Diego. 1988.

Weisfeiler-Lehman Refinement Requires at Least
a Linear Number of Iterations

Martin Fürer?

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
furer@cse.psu.edu,

http://www.cse.psu.edu/˜furer

Abstract. Let Lk,m be the set of formulas of first order logic containing
only variables from {x1, x2, . . . , xk} and having quantifier depth at most
m. Let Ck,m be the extension of Lk,m obtained by allowing counting
quantifiers ∃ixj , meaning that there are at least i distinct xj ’s.
It is shown that for constants h ≥ 1, there are pairs of graphs such
that h-dimensional Weisfeiler-Lehman refinement (h-dim W-L) can
distinguish the two graphs, but requires at least a linear number of
iterations. Despite of this slow progress, 2h-dim W-L only requires
O(

√
n) iterations, and 3h− 1-dim W-L only requires O(logn) iterations.

In terms of logic, this means that there is a c > 0 and a class of
non-isomorphic pairs (Gh

n, H
h
n) of graphs with Gh

n and Hh
n having O(n)

vertices such that the same sentences of Lh+1,cn and Ch+1,cn hold
(h + 1 variables, depth cn), even though Gh

n and Hh
n can already be

distinguished by a sentence of Lk,m and thus Ck,m for some k > h and
m = O(logn).

Keywords: Graph Isomorphism Testing, Weisfeiler-Lehman Refine-
ment, Games, Descriptive Complexity

1 Introduction

A simple and important preprocessing procedure for the graph isomorphism
problem is the k-dimensional Weisfeiler-Lehman refinement (k-dim W-L). The
algorithm tries to color k-tuples of vertices with different colors, if they belong to
different orbits of the automorphism group. This goal is not always achieved. If
two k-tuples have the same color, it is still possible that no automorphism maps
one to the other, but the algorithm has not discovered a significant difference
between the two k-tuples. On the other hand, if two k-tuples have different
colors, then they always belong to different orbits.

For k = 1, this is the straightforward vertex classification algorithm where
vertices are initially colored by their degrees. During every later refinement step,
? Research supported in part by NSF Grant CCR-9700053

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 322–333, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Weisfeiler-Lehman Refinement 323

each vertex is colored by the multi-set of the colors of its neighbors. The process
stops, when no color class is split anymore.

The case k = 2 has also been well studied. It is edge coloring. The algorithm
starts with three classes of pairs of vertices: pairs (u, v) with or without an edge,
and pairs (u, u). During each refinement step, every directed edge (u, v) is colored
by the multi-set of pairs of colors on paths of length two from u to v.

As an example, consider the path of length n− 1. Applying 1-dim W-L, the
vertices of distance d from an endpoint receive their unique color during step
d. The algorithm stops when every vertex “knows” its distance from its closer
endpoint. Obviously, this requires Θ(n) iterations. Using 2-dim W-L, distances
up to 2s are measured in s steps. After only log n steps, the color of (u, u) (which
may be interpreted as the color of vertex u) determines the distance of u from
the closer endpoint.

This and other examples suggest, that for k > 1, k-dim W-L might always run
in just O(log n) rounds for graphs of size n. In particular, it is very suggestive to
make this conjecture for k = 2, because this case allows an algebraic treatment.
Indeed, it has initiated a vast development in algebra (cellular algebras [11,4]
and coherent configurations [7]). It is easy to see that 2-dim W-L corresponds
to squaring a matrix A of indeterminates and replacing identical expressions by
the same new indeterminate (starting with a modified adjacency matrix where
3 different indeterminates are used for edges, non-edges and diagonal elements).

Assume, instead of this special “squaring” operation, one would do a sequence
of corresponding “multiplications” by A. As there can be at most n2 colors
of vertex pairs, this process would stop at the latest with An

2−2. All higher
“powers” would be equal to this one. As a result of this reasoning, one might
jump to the conclusion that O(log n) squaring operations were always sufficient.
We will show in this paper that this is not at all the case. This somewhat
counterintuitive result is possible, because the just described matrix “product”
is not associative.

Section 2 reviews some background information on the basic techniques con-
necting Weisfeiler-Lehman refinement to logic and games. Section 3 presents
the examples for which upper and lower bounds will be proved in Section 5. A
simplified view of the pebble games is discussed in Section 4.

2 The Cai-Fürer-Immerman Method

The strength of k-dim W-L has long been an open problem. It has been difficult
to find graphs, for which k-dim W-L does not succeed immediately. Already
1-dim W-L identifies random graphs in linear time [1]. For regular graphs, 1-
dim W-L cannot even get started. But 2-dim W-L is strong enough to identify
shortest cycles and classify the vertices by their distance from the set of vertices
covered by shortest cycles. Refining this classification is likely to identify random
regular graphs [10] in linear time. It seemed reasonable to conjecture that f(k)-
dim W-L could identify all degree k graphs for some slow growing function f ,
e.g., f(k) = k. Cai, Fürer, and Immerman [2] have shown that this is very far

324 M. Fürer

from the truth. Indeed k = Ω(n) is required for graphs of degree 3. We use a
modification of their counter-examples to produce graphs which can be identified
by k-dim W-L, but only after a linear number of iterations.

Cai, Fürer, and Immerman [2] exhibit an intimate connection between three
different approaches to the graph isomorphism problem. These approaches are
based on Weisfeiler-Lehman refinement, descriptional complexity, and a version
of Ehrenfeucht-Fräıssé games [3,5].

To understand the present paper, it is required to know many definitions and
techniques from the Cai, Fürer, and Immerman [2] paper. We start by reviewing
some of these notions and their applications.

2.1 Logic Background

Definition 1. For a given language L, the graphs G and H are L-equivalent
(G ≡L H) iff the same sentences of L hold for G and H. Formally, this is
expressed as

G |= ϕ ⇔ H |= ϕ .

for all sentences ϕ ∈ L.
We say that L identifies the graph G, if G ≡L H implies G and H are

isomorphic.

We define Lk to be the set of first-order formulas ϕ, such that the variables
in ϕ are a subset of x1, x2, . . . , xk. To see the full power of Lk, one has to reuse
the same variable many times for different purposes in the same formula — a
practice that is not very common in everyday mathematics.

For example, consider the following sentence in L2.

ψ ≡ ∀x1∃x2

(
E(x1, x2) ∧ ∃x1

(¬E(x1, x2)
))

The sentence, ψ, says that every vertex is adjacent to some vertex which is itself
not adjacent to every vertex. Note that the first quantifier (∀x1) refers only to
the free occurrence of x1 within its scope.

The language Lk is weak in expressing quantitative properties. For example,
it is impossible to say that there are k vertices of degree k. On the other hand,
it is possible to say that three are k − 3 vertices of degree 2, even though it has
to be formulated somewhat cumbersome.

The language Ck is a natural extension of Lk, enabling such statements or
making them more elegant. For every positive integer i, Ck allows a quantifier
(∃i x) with a straightforward meaning. For example, (∃3x)ϕ(x) means that there
are at least 3 distinct vertices with property ϕ.

As an example, the following formula in C2 says that xi is adjacent to at least
two vertices of degree 7.

(∃2x2)(E(x1, x2) ∧ (∃7x1)E(x1, x2))

Weisfeiler-Lehman Refinement 325

2.2 Pebbling Games

Let G and H be two graphs, and let m and k be natural numbers. Define the
m-move Lk game on G and H as follows. There are two players, and for each
variable xi (i = 1, . . . , k), there is a pair of pebbles labeled xi. Initially, the
pebbles lie outside the game board containing the graph.

In each move, Player I starts by selecting an i ∈ {1, . . . , k} and picking up the
pair of xi pebbles. Then he places one of them on a vertex in one of the graphs.
Player I is free to select pebbles that have or have not already been placed on
the board. Player II must then place the other xi pebble on a vertex of the other
graph.

To define win or loss, consider the subgraphs G′ and H ′ of G and H induced
by the pebbled vertices. The pebble respecting mapping f (if it exists) assigns
the vertex of G′ pebbled by xi to the vertex of H ′ pebbled by xi. Player II loses,
if after some move, f does not exist or is not an isomorphism of G′ and H ′.
Player I loses, if Player II plays m moves without losing. Player II has a winning
strategy for the Lk game (without restriction) on the number of moves) if she
can play indefinitely without losing against any strategy of Player I.

Some authors call Player II the duplicator, because she wants the two graphs
to look the same. They call Player I the spoiler, as he tries to interfere with this
goal.

Theorem 1. [9] Player II has a winning strategy for the Lk game on G,H iff
G ≡Lk

H.

A modification of the Lk games provides a combinatorial tool for analyzing
the expressive power of Ck. The game board looks the same, and inning is defined
as for Lk. Just as in the Lk game, the two players use k pairs of pebbles. The
difference is that each move now has two parts.

– Player I picks up the xi pebble pair for some i and selects a set A of vertices
from one of the graphs. Player II answers with a set B of vertices from the
other graph such that |B| = |A|.

– Player I places one of the xi pebbles on some vertex v ∈ B. Player II answers
by placing the other xi pebble on some u ∈ A.

We interpret the first part of a move as an assertion of Player I that there
exist |A| vertices in G with a certain property. Player II answers with the same
number of such vertices in H. Player I challenges one of the vertices in B and
Player II replies with an equivalent vertex from A. Note that it is never an
advantage for Player I to include vertices with obviously different properties in
A. Again, games and logic are just two sides of the same coin.

Theorem 2. [8] Player II has a winning strategy for the Ck game on G,H if
and only if G ≡Ck

H.

326 M. Fürer

2.3 Weisfeiler-Lehman Refinement

One-dimensional Weisfeiler-Lehman refinement (1-dim W-L) is just vertex clas-
sification, first by the degree and then by the multi-set of colors of the neighbors,
until no color class is split anymore.

For k > 1, k-dim W-L is defined as follows. Let G be a graph and let u =
(u1, . . . , uk) be a k-tuple of vertices of G. The initial color W 0(u) is defined
according to the isomorphism type of u. That is, W 0(u) = W 0(v) iff

∀i ∀j ((ui, uj) ∈ E ⇐⇒ (vi, vj) ∈ E)

For each vertex w, we define

siftt(u,w) = 〈W t(w, u2, u3, . . . , uk−1, uk),W t(u1, w, u3, . . . , uk−1, uk), . . .
. . . ,W t(u1, u2, u3, . . . , w, uk),W t(u1, u2, u3, . . . , uk−1, w)〉

Thus siftt(u, v) is the k-tuple of W t-colors of the k-tuples of vertices obtained
by substituting vertex w in turn for each of the k occurrences of a vertex in the
k-tuple u.

At time t+1, the new colors W t+1(u) and W t+1(v) are the same, if W t(u) =
W t(v) and the number of w’s for which siftt(u,w) has any specific value is the
same as the number of w’s for which siftt(v, w) has that same value.

Finally W (u) is the stable color of u. It is obtained after at most nk iterations,
i.e., W (u) = Wnk

(u).
Building on previous work [9,8] the following result has shown the close con-

nection between logic, games, and Weisfeiler-Lehman refinement. Here, the for-
mulas are allowed to have free variables, which are interpreted by the k-tuples
u and v respectively.

Theorem 3. [2] Let G,H be a pair of colored graphs and let (u, v) be a k-
configuration on G,H, where k ≥ 1. Then the following are equivalent:

1. Wm(u) = Wm(v) for k-dim W-L
2. G, u ≡Ck+1,m

H, v
3. Player II has a winning strategy for the m-move Ck+1 game on (G,H), whose

initial configuration is (u, v).

3 An Example Where k-Dim W-L Is Slow

Our construction of counter-examples starts with a graph Ghn (see Figure 1),
which we call the global graph. We modify Ghn to obtain 2 graphs X(Ghn) and
X̃(Ghn) (“X twist of Ghn”) which are difficult to distinguish by k-dim W-L. For
the purpose of forcing k to be big, the global graph has been chosen as an
expander [2]. For this paper, we choose the pretty simple grid graph Ghn.

Now we describe how to modify Ghn to obtain X(Ghn). Every vertex of degree
d of Ghn is replaced by 2d−1 vertices, which we want to view as the four corners

Weisfeiler-Lehman Refinement 327

uv

w

rows
k

n columns (n > k)

Fig. 1. The global graph Gh
n with kn+ 1 vertices, where k ≥ 1 is a constant

u

x y z

Fig. 2. This figure shows a meta-vertex y and its 3 neighbors u, x, and z. All 4 meta-
vertices correspond to vertices of degree 3 in Gh

n. They are therefore represented by
3-dimensional half-cubes. For each meta-vertex, only the 4 dark points are vertices.
The 4 white points and the dashed lines are just there to illustrate the cubes. Note the
3 different types of connections of y to its neighbors. The connections to u are left to
left and right to right. The connections to x are front to front and back to back. The
connections to z are top to top and bottom to bottom. A top to left and bottom to right
connection would also be fine, as long as every vertex of degree 3 is represented by a
meta-vertex whose connections represent the 3 basic partitions: left-right, top-bottom,
and front-back.

328 M. Fürer

of a d-dimensional cube with an even number of coordinates being 1. We refer
to these vertices as a half-cube or meta-vertex (see Figure 2).

We might denote the vertices of the half-cube at a vertex v of Ghn by v(0, 0, 0),
v(0, 1, 1), v(1, 0, 1), v(1, 1, 0). If two vertices u and v of Ghn are adjacent, then their
half-cubes are connected as follows. Say, u is of degree 4 and and {u, v} is the
third edge of u, and v is of degree 3 and {u, v} is the first edge of v. Then, for
all i1, i2, i4, j2, j3, ` ∈ {0, 1}, the vertex u(i1, i2, `, i4) is adjacent to v(`, j2, j3)
(provided these vertices exist, i.e., the sum of their coordinates is even).

X̃(Ghn) is constructed almost exactly as X(Ghn) with one exception. We say
one edge of Ghn is twisted.

Definition 2. To twist an edge {u, v} of the global graph Ghn means to replace
every edge between the meta-vertex u and the meta-vertex v by a non-edge, and
every non-edge by an edge.

It is not difficult to see that X̃(Ghn) andX(Ghn) are not isomorphic. We cannot
make the twist disappear, but we can move it around to any edge of the connected
global graph Ghn. For example, mapping u(i1, i2, i3, i4) to u(1 − i1, i2, i3, 1 − i4)
moves a twist from a the first edge of u to its fourth edge.

4 The Global Game

The graphs X(Ghn) and X̃(Ghn) are nicely structured. Nevertheless it is somewhat
complicated to analyze the games played on them. Therefore, we investigate a
simpler game Gk that can still adequately describe the original game Ck. The new
game is played on the global graph Ghn rather than the pair (X(Ghn), X̃(Ghn)).
We therefore call it the global game.

The moves of Player I are very much the same as before. He picks up one of
his k pebbles and puts it on a vertex of Ghn. The moves of Player II are of a very
different kind. To describe them, we introduce the following notion of connected
components of edges in Ghn.

Definition 3. The edges e, e′ are connected if there is a path v0, v1, . . . , v`−1, v`
in Ghn with e = (v0, v1), e′ = (v`−1, v`), and none of the interior vertices
v1, v2, . . . , v`−1 is holding a pebble.

We just use the term component when we mean a connected component of edges.
A move of Player II just consists of declaring certain components as twisted.

The game Gk starts with no pebbles on the board, and the only component
being twisted. At any time, the number of twisted components is odd. When
Player I picks up a pebble from the board, two or more components might
merge into one component. The new component is twisted iff the number of
merged twisted components was odd. When Player I places a pebble on the
board, then one component might be replaced by two or more newly formed
components. Player II declares the new components as twisted or straight, with
the only restriction that the parity of the number of twisted components does
not change. When a move of Player I does not split any component, then the
answer of Player II consists of doing nothing.

Weisfeiler-Lehman Refinement 329

Definition 4. If a twisted component has size 1, then we say the twist is
trapped.

Player II loses the global game Gk as soon as any twist is trapped. Player II
wins the m-move game, if she can do m moves without losing.

Intuitively, the original game Ck and the new global game Gk are equivalent,
because of the following reasoning.

– Player I does not really have a reason to place a pebble on any node other
than the origin u(0, . . . , 0) of a meta-vertex u. So we might just view him as
placing the pebble on the meta-vertex (or the corresponding vertex of the
global graph Ghn).

– Unless risking inevitable defeat, Player II better place her pebble on the
corresponding meta-vertex. Thus, no selection of a meta-vertex has to be
done by Player II. She just selects among the vertices of the given meta-
vertex. She does this by selecting twists to move her choice on u into the
origin of u.

– Here, we only consider graphs Ghn without any non-trivial automorphisms.
Furthermore, every vertex can easily be identified. Therefore, the global game
can be played L-like rather than C-like. No player makes any claims about
the existence of more than one vertex with certain properties.

In summary, we are not claiming that every play of the original game Ck could
be simulated by the global game Gk, but we will show that it is of no significant
disadvantage for a player to play in a way that can be so simulated.

Definition 5. Player II plays proper in the game Ck, if after any of her moves,
it is possible to apply an odd number of twists to X̃(Ghn) such that there is a
pebble respecting isomorphism between X(Ghn) and the modified graph X̃(Ghn).

In particular, if Player II plays proper, then she answers every move by a
move in the corresponding meta-vertex. Likewise, she answers any set of potential
moves by a set of potential moves in corresponding meta-vertices. She is further
restricted in placing a pebble within a meta-vertex, should Player I place more
than one pebble on the same meta-vertex.

Our graphs Ghn have the property that there is a unique vertex u of degree
1, distinguishing its neighbor v, and the unique vertex w of degree 2 at distance
h from u. All the other vertices are characterized by their distances from v and
w.

Lemma 1. Let the number of pebbles be at least 3. If at any time, Player II
does not play proper in Ck, then Player I can force a win in O(log n) additional
moves.

Proof. The unique characterization of the vertices in Ghn implies that some dis-
tance is wrong, whenever Player II selects a non-matching meta-vertex. With 3
pebbles, Player I can easily exhibit the shorter distance in O(log n) moves by
a divide-and-conquer approach. Hereby, Player I might have a need to identify
the vertices u or w of Ghn. As these vertices are (partly) characterized by their
degrees, Player I will use the full power of Ck-moves as follows. When Player II

330 M. Fürer

matches a low degree vertex by a high degree vertex, then Player I proposes
the set of neighbors of the high degree vertex, and Player II has no appropriate
answer.

Assume now that Player II has always played in the correct meta-vertices,
but no set of twists can produce a pebble respecting isomorphism. Then it is not
hard to see that there has to be an inconsistency within a meta-vertex containing
multiple pebbles. E.g., X(Ghn) might have 2 pebbles in the front of the half-cube,
while X̃(Ghn) has one of the corresponding pebbles in the front and one in the
back. By selecting in that neighboring meta-vertex which distinguishes front
from back, Player I wins in one move.

ut
As it does not pay off for Player II to play improper, we can focus now on

the case where Player II always plays proper.

Theorem 4. Assume Player II is restricted to play proper in the game Ck on
the pair (X(Ghn), X̃(Ghn)). Then a player has a strategy to win the m-move Ck
game on the pair (X(Ghn), X̃(Ghn)) if and only if that player has a strategy to
win the m-move global Gk-game.

Proof. We have to prove four parts.

(a) Player I wins the m-move Ck game on the pair (X(Ghn), X̃(Ghn)). In the
simulating global game Gk, Player I has only to be specific about the selection of
meta-vertices, but not about his choice within any meta-vertex, while Player II
still shows her complete selection. Thus Player I can follow his old winning
strategy. When Player I wins the simulated game, some pair of pebble is adjacent
in one copy, but not adjacent in the other one. These two pairs correspond to a
trapped twist in Ghn, indicating a win in the simulating game too.

(b) Player I wins the m-move Gk game on the pair (X(Ghn), X̃(Ghn)). In the
simulating game Ck, Player I has to make choices within meta-vertices. He always
chooses the origin. A trapped twist in the global game Gk corresponds to an edge
vs. non-edge pair in the simulating game implying a win too.

(c) Player II wins the m-move Ck game on the pair (X(Ghn), X̃(Ghn)). As
Player II is restricted to proper plays, there is always a placement of twists
onto the edges such that her moves are exactly matching the moves of Player I.
The placements of twists on edges determine a unique parity of twists in each
component, producing the simulating move of Player II. The simulated move
produces no conflict if the simulated move did not.

(d) Player II wins the m-move Gk game on the pair (X(Ghn), X̃(Ghn)). The moves
of Player II in the Gk-game really describe her strategy to reply to any move of
Player I on the same meta-vertex. Player II just follows this strategy. ut

Weisfeiler-Lehman Refinement 331

5 Upper and Lower Bounds

Theorem 5. The number of moves sufficient for Player I to win the game Ck
varies as follows depending on the number of pebbles.

(a) Player I has a winning strategy in the C3h game on the pair (X(Ghn), X̃(Ghn))
in O(log n) moves.

(b) Player I has a winning strategy in the C2h+1 game on the pair
(X(Ghn), X̃(Ghn)) in O(

√
n) moves.

(c) Player I has a winning strategy in the Ch+1 game on the pair
(X(Ghn), X̃(Ghn)) in O(n) moves.

Proof. It is sufficient to consider the corresponding Gk game. We say that Player I
builds a wall if he places pebbles on all vertices of a cut disconnection the leftmost
column form the rightmost (full) column. For example the vertices of one column
of Ghn form a wall.

(a) Having enough pebbles to produce 3 walls in Ghn, Player I can employ a
divide-and-conquer strategy. The pebbles of one wall have only to be removed
when the twist is captured between the other 2 walls.

(b) Player I builds a new wall at distance
√
n from the previous wall starting

in the middle and moving towards the twist. As soon as a wall is built that
keeps the twist away from the other one, the old wall is no longer needed
and its pebbles can be reused. If the twist is located between two walls, then
Player I moves one of them slowly inside using the additional pebble.

(c) Player I builds a wall anywhere (best in the middle). Then move it slowly
towards the side containing the twist. ut

Note that Player I can win the Gk game on Ghn by a particularly simple
winning strategy. He can build a wall on the left hand side and move it towards
the right hand side, step by step decreasing the size of the component containing
the twist. All moves of Player I are independent of the moves of Player II.

Theorem 6. For k ≤ h, Player II has a winning strategy in the Ck game on the
pair of graphs (X(Ghn), X̃(Ghn)).

Proof. We may look at the corresponding Gk game. Even for k = h, Player I
has just enough pebbles to build a wall, but in the next move he has to break
it down again. Player II easily maintains a single twist, always in the largest
component. ut

Corollary 1. h − 1-dim W-L cannot detect a difference between the graphs
X(Ghn) and X̃(Ghn).

Corollary 2. X(Ghn) and X̃(Ghn) agree on all formulas of Ch.

Definition 6. The size of a component in Ghn is the number of empty columns
in it. A component is good if its size is positive.

332 M. Fürer

Theorem 7. For k ≤ 2h, every winning strategy of Player I in the Gk game on
Ghn requires at least Ω(n) moves.

Proof. Let us start with the trivial observation that in Ghn there are h vertex-
disjoint paths between any pair of distinct good components. Thus there is a
wall consisting of at least h pebbled vertices between these components. Thus
with at most 2h pebbles, there are at any time at most 3 components.

We now want to describe a strategy for Player II, that sufficiently delays
a win of Player I. In this strategy, Player II always maintains just a single
twist. Assume that one good component C1 of size s1 exists, and another good
component containing the twist is just split into into good component C2, C3
with sizes s2 and s3 respectively. Let C2 be the component between C1 and C3.
Then Player II puts the twist into C3 if s1 + s2 ≤ s3, and otherwise into C2.
The following removal of any pebble by Player I breaks a wall, again producing
2 components with the twist being in a component of size at least s3.

When two good components are formed after m′ moves, the twist is in the
larger component of size at least (n−m′)/2. After m moves, the twist is usually
in a component of size at least (n−m′)/2−(m−m′) = (n+m′)/2−m > n/2−m.
There is an exception for the isolated times, when 3 components exist, in which
case n/2 − m is a lower bound on the sum of the sizes of the middle and any
outer component. Player II does not lose before the twist is in a bad component
(of size 0). Thus the number of moves is at least n/2 = Ω(n). ut
Corollary 3. For k ≤ 2h, every winning strategy of Player I in the Ck game on
the pair (X(Ghn), X̃(Ghn)) requires at least Ω(n) moves. ut
Theorem 8. For k ≤ 2h+ 1, every winning strategy of Player I in the Gk game
on Ghn requires at least Ω(

√
n) moves.

Proof. As in the proof of Theorem 7, there are at most 3 good components
at any time. When 2 good components are formed for the first time, a good
strategy for Player II is to move the twist into the larger one. When 3 good
component C1, C2, C3 (with si = size of Ci) are formed, she has a choice between
say C2 and C3 where C2 is between C1 and C3. She chooses C2 if s2 >

√
n

and s3 < n/2 − k. (This selection could be slightly better optimized without
improving the Theorem.) Consider the integer r defined by

r = min(s1 + s2, s3 + s2, s2
√
n)

if there are 3 good components, and the twist is in C2. If there are less than
3 good components, then r is defined to be the size of the larger or only good
component. When two components are formed form one, then r gets a value of
at least (n− k)/2. Once the value of r is less than n/2 − k, it can never decrease
by more than

√
n in a single move. This can be shown by case analysis, where

the only interesting case is going form 2 good components to 3. The Ω(n) lower
bound follows immediately. ut
Corollary 4. For k ≤ 2h+1, every winning strategy of Player I in the Ck game
on the pair (X(Ghn), X̃(Ghn)) requires at least Ω(

√
n) moves. ut

Weisfeiler-Lehman Refinement 333

A recent result of Grohe [6] says that determining whether two graphs are
Ck+1 equivalent, and thus whether they can be distinguished by k-dimensional
Weisfeiler-Lehman refinement, is P-complete. Grohe shows the same result for
Lk+1 equivalence too. This does not imply, but certainly strongly suggests that
k-dimensional Weisfeiler-Lehman refinement is slow. Indeed the method of Grohe
could also be used to prove Theorem 7. It seems that such a proof would be much
more complicated than the proof given in this paper.

Acknowledgment. I want to thank Luitpold Babel for an email conversation in
1994 on some results that implicitly assumed associativity of the multiplication
in coherent algebras. This has caused me to discover the main result of this
paper.

References

1. L. Babai and L. Kučera, Graph canonization in linear average time, 20th Annual
Symposium on Foundations of Computer Science (Long Beach, Ca., USA), IEEE
Computer Society Press, October 1979, pp. 39–46.

2. Jin-Yi Cai, Martin Fürer, and Neil Immerman, An optimal lower bound on the
number of variables for graph identification, Combinatorica 12 (1992), no. 4, 389–
410.

3. A. Ehrenfeucht, An application of games to the completeness problem for formalized
theories, Fund. Math. 49 (1960/1961), 129–141.

4. I. A. Faradžev, M. H. Klin, and M. E. Muzichuk, Cellular rings and groups of au-
tomorphisms of graphs, Investigations in algebraic theory of combinatorial objects,
Kluwer Acad. Publ., Dordrecht, 1994, pp. 1–152.

5. Roland Fräıssé, Sur quelques classifications des systèmes de relations, Publ. Sci.
Univ. Alger. Sér. A. 1 (1954), 35–182 (1955).

6. Martin Grohe, Equivalence in finite-variable logics is complete for polynomial time,
Combinatorica 19 (1999), no. 4, 507–532.

7. D. G. Higman, Coherent configurations. I. Ordinary representation theory, Geome-
triae Dedicata 4 (1975), no. 1, 1–32.

8. N. Immerman and E. S. Lander, Describing graphs: A first-order approach to graph
canonization, Alan L. Selman, Editor, Complexity Theory Retrospective, In Honor
of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, Springer-
Verlag, 1990, pp. 59–81.

9. Neil Immerman, Upper and lower bounds for first order expressibility, Journal of
Computer and System Sciences 25 (1982), no. 1, 76–98.

10. L. Kučera, Canonical labeling of regular graphs in linear average time, Proceedings
of the 28th Annual Symposium on Foundations of Computer Science (Los Ange-
les, CA) (Ashok K. Chandra, ed.), IEEE Computer Society Press, October 1987,
pp. 271–279.

11. Boris Weisfeiler (ed.), On construction and identification of graphs, Springer-
Verlag, Berlin, 1976, With contributions by A. Lehman, G. M. Adelson-Velsky,
V. Arlazarov, I. Faragev, A. Uskov, I. Zuev, M. Rosenfeld and B. Weisfeiler, Lec-
ture Notes in Mathematics, Vol. 558.

On Interactive Proofs with a Laconic Prover
(Extended Abstract)

Oded Goldreich1,?, Salil Vadhan2,??, and Avi Wigderson3,? ? ?

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
oded@wisdom.weizmann.ac.il

2 Division of Engineering & Applied Sciences, Harvard University, Cambridge, MA
salil@eecs.harvard.edu, http://eecs.harvard.edu/˜salil

3 School of Mathematics, Institute for Advanced Study, Princeton, NJ
avi@ias.edu

Abstract. We continue the investigation of interactive proofs with
bounded communication, as initiated by Goldreich and H̊astad (IPL
1998). Let L be a language that has an interactive proof in which the
prover sends few (say b) bits to the verifier. We prove that the comple-
ment L̄ has a constant-round interactive proof of complexity that depends
only exponentially on b. This provides the first evidence that for NP-
complete languages, we cannot expect interactive provers to be much
more “laconic” than the standard NP proof.
When the proof system is further restricted (e.g., when b = 1, or when
we have perfect completeness), we get significantly better upper bounds
on the complexity of L̄.

Keywords: interactive proofs, Arthur-Merlin games, sampling proto-
cols, statistical zero knowledge, game theory

1 Introduction

Interactive proof systems were introduce by Goldwasser, Micali and Rack-
off [GMR89] in order to capture the most general way in which one party can effi-
ciently verify claims made by another, more powerful party.1 That is, interactive
proof systems are two-party randomized protocols through which a computation-
ally unbounded prover can convince a probabilistic polynomial-time verifier of
? Supported by the MINERVA Foundation.

?? Work done while at the Institute for Advanced Study, Princeton, NJ, supported by
an NSF Mathematical Sciences Postdoctoral Research Fellowship.

? ? ? Partially supported by NSF grants CCR-9987845 and CCR-9987077.
1 Arthur-Merlin games, introduced by Babai [Bab85], are a special type on interactive

proofs in which the verifier is restricted to send the outcome of each coin it tosses.
Such proof systems are also called public coin, and are known to be as expressive
as general interactive proofs [GS89]. We warn that the latter assertion refers to the
entire class but not to refined complexity measures such as the number of bits sent
by the prover (considered below).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 334–345, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On Interactive Proofs with a Laconic Prover 335

the membership of a common input in a predetermined language. Thus, interac-
tive proof systems generalize and contain as a special case the traditional “NP-
proof systems” (in which verification is deterministic and “non-interactive”).

It is well-known that this generalization buys us a lot: The IP Characteri-
zation Theorem of Lund, Fortnow, Karloff, Nisan and Shamir [LFKN92,Sha92]
states that every language in PSPACE has an interactive proof system, and it
is easy to see that only languages in PSPACE have interactive proof systems.

It is well-known that the strong expressive power of interactive proofs is
largely due to the presence of interaction. In particular, interactive proofs in
which a single message is sent (like in NP-proofs) yield a complexity class (known
as MA) that seems very close to NP. It is interesting to explore what happens
between these extremes of unbounded interaction and no interaction. That is,
what is the expressive power of interactive proofs that utilize a bounded, but
nonzero, amount of interaction?

Interactive Proofs with Few Messages. The earliest investigations of the above
question examined the message complexity of interactive proofs, i.e., the number
of messages exchanged. (Sometimes, we refer to rounds, which are a pair of
verifier-prover messages.) The Speedup Theorem of Babai and Moran [BM88]
(together with [GS89]) shows that the number of messages in an interactive proof
can be always be reduced by a constant factor (provided the number of messages
remains at least 2). On the other hand, there is a large gap between constant-
round interactive proofs and unrestricted interactive proofs. As mentioned above,
all of PSPACE has a general interactive proof [LFKN92,Sha92]. In contrast,
the class AM of problems with constant-round interactive proofs is viewed as
being relatively close to NP. Specifically, AM lies in the second level of the
polynomial-time hierarchy [BM88], cannot contain coNP unless the polynomial-
time hierarchy collapses [BHZ87], and actually equals NP under plausible circuit
complexity assumptions [AK97,KvM99,MV99].

Laconic Provers. A more refined investigation of the above question was initi-
ated by Goldreich and H̊astad [GH98], who gave bounds on the complexity of
languages possessing interactive proofs with various restrictions on the number
of bits of communication and/or randomness used. One of the restrictions they
considered, and the main focus of our investigation, limits the number of bits
sent from the prover to the verifier by some bound b. That is, what languages
can be proven by “laconic” provers?

Since the prover is trying to convey something to the verifier, this seems to
be the most interesting direction of communication. Moreover, for applications
of interactive proofs (e.g., in cryptographic protocols), it models the common
situation in which communication is more expensive in one direction (e.g., if the
prover is a handheld wireless device).

On one hand, we know of interactive proofs for several “hard”
problems (Quadratic Nonresiduosity [GMR89], Graph Nonisomor-
phism [GMW91], and others [GK93,GG00,SV97]) in which the communication
from the prover to the verifier is severely bounded (in fact, to one bit). On the

336 O. Goldreich, S. Vadhan, and A. Wigderson

other hand, no such proof systems were known for NP-complete problems, nor
was there any indication of impossibility (except when additional constraints are
imposed [GH98]). In this work, we provide strong evidence of impossibility.

Our Results. Consider interactive proofs in which the prover sends at most
b = b(n) bits to the verifier on inputs of length n. Goldreich and H̊astad [GH98,
Thm. 4] placed such languages in BPTIMENP(T), where T = poly(n) ·2poly(b),
which clearly implies nothing for languages in NP. In contrast, we show that
the complements of such languages have constant-round interactive proofs of
complexity T (i.e., the verifier’s computation time and the total communication
is bounded by T). In particular, NP-complete problems cannot have interactive
proofs in which in which the prover sends at most polylogarithmically many bits
to the verifier unless coNP is in the quasipolynomial analogue of AM. In fact,
assuming NP has constant-round interactive proofs with logarithmic prover-to-
verifier communication we conclude coNP ⊂ AM. As mentioned above, this is
highly unlikely.

We obtain stronger results in two special cases:

1. We show that if a language has an interactive proof of perfect completeness
(i.e., , zero error probability on yes instances) in which the prover sends at
most b(n) bits, then it is in coNTIME(T), where T (n) = 2b(n) · poly(n).
Thus, unless NP = coNP, NP-complete languages cannot have interactive
proof systems of perfect completeness in which the prover sends at most
logarithmically many bits.

2. We show that if a language has an interactive proof in which the prover
sends a single bit (with some restrictions on the error probabilities), then
it has a statistical zero-knowledge interactive proof; that is, is in the class
SZK. This is a stronger conclusion than our main result because SZK ⊆
AM ∩ coAM, as shown by Fortnow [For89] and Aiello and H̊astad [AH91].
Recalling that Sahai and Vadhan [SV97] showed that any language in SZK
has an interactive proof in which the prover sends a single bit, we obtain a
surprising equivalence between these two classes.2

Lastly, we mention one easy, but apparently new, observation regarding mes-
sage complexity. A question that is left open by the results mentioned earlier
is what happens “in between” constant rounds and polynomially many rounds.
Phrased differently, can the Speedup Theorem of Babai and Moran be improved
to show that m(n)-message interactive proofs are no more powerful than m′(n)-
message ones for some m′ = o(m)? By combining careful parameterizations of
[LFKN92,BM88], we observe that such an improvement is unlikely. More pre-
cisely, for every nice function m, we show that there is a language which has an
m(n)-message interactive proof but not an o(m(n))-message one, provided that
#SAT is not contained in the subexponential analogue of coAM.
2 In addition, if the error probabilities are sufficiently small, we also are able to reduce

interactive proofs in which the prover sends a single message of several bits (e.g.,
O(loglog n) bits) to the 1-bit case above. But we omit these results from this extended
abstract due to space constraints.

On Interactive Proofs with a Laconic Prover 337

Additional Related Work. It should be noted that the results of Goldreich and
H̊astad are significantly stronger when further restrictions are imposed in addi-
tion to making the prover laconic. In particular, they obtain an upper bound
of BPTIME(T) (rather than BPTIMENP(T)), with T = 2poly(b) · poly(n)
for languages possessing either of the following kinds of interactive proofs: (a)
public-coin proofs in which the prover sends at most b bits, (b) proofs in which
the communication in both directions is bounded by b.

There has also been a body of research on the expressive power of multi-prover
interactive proofs (MIP’s) and probabilistically checkable proofs (PCP’s) with low
communication, because of the importance of the communication parameter in
their applications to inapproximability. In particular, Bellare, Goldreich, and
Sudan [BGS98] give negative results about the expressive power of “laconic”
PCP’s and MIP’s. One-query probabilistically checkable proofs are equivalent
to interactive proofs in which the prover sends a single message, so our results
provide bounds on the former.

Our work is also related to work on knowledge complexity. Knowledge com-
plexity, proposed by [GMR89], aims to measure how much “knowledge” is leaked
from the prover to the verifier in an interactive proof. Several measures of knowl-
edge complexity were proposed by Goldreich and Petrank [GP99], and series of
works provided upper bounds on the complexity of languages having interactive
proofs with low knowledge complexity [GP99,GOP98,PT96,SV97]. These results
are related to, but incomparable to ours.

For example, Petrank and Tardos [PT96] showed that languages having
knowledge complexity k = O(log n) are contained in AM ∩ coAM. While it
is true that the knowledge complexity of an interactive proof is bounded by the
amount of prover-to-verifier communication, their result does not yield anything
interesting for laconic interactive proofs. The reason is that their result only
applies to interactive proofs with error probabilities significantly smaller than
2−k, and it is easy to see that interactive proofs with prover-to-verifier commu-
nication k = O(log n) error probability � 2−k only capture BPP (and hence
are uninteresting). Our results apply even for constant error probabilities.

Sahai and Vadhan [SV97] (improving [GP99]) showed that languages with
logarithmic knowledge complexity in the “hint sense” collapse to SZK, and
their result applies even if the error probabilities are constant. However, this is
also incomparable to ours, for the “hint sense” is the one measure of knowledge
complexity which is not bounded by the prover-to-verifier communication.

Finally, it is important to note that the situation is dramatically different
for argument systems [BCC88] (also known as computationally sound proofs).
These are like interactive proofs, but the soundness condition is restricted to
polynomial-time provers. Kilian [Kil92] showed that NP has laconic argument
systems if strong collision-resistant hash functions exist. Specifically, under a
strong enough (but still plausible) assumption, NP has public-coin arguments
in which the verifier’s randomness and the communication in both directions is
polylogarithmic. Combined with [GH98], this provides a strong separation be-
tween the efficiency of arguments versus interactive proofs for NP; and our

338 O. Goldreich, S. Vadhan, and A. Wigderson

results extend this separation to the case that only the prover-to-verifier com-
munication is counted (and the interactive proof is not required to be public
coin).

2 Preliminaries

We assume that the reader is familiar with the basic concepts underlying inter-
active proofs (and public-coin interactive proofs) (see e.g., [Sip97,Gol99,Vad00]).
Throughout, we work with interactive proofs for promise problems rather than
languages. More precisely, a promise problem Π = (ΠY , ΠN) is a pair of dis-
joint sets of strings, corresponding to yes and no instances, respectively. In other
words, a promise problem is simply a decision problem in which some inputs are
excluded. The definition of interactive proofs is extended to promise problems
in the natural way: we require that when the input is a yes instance, the prover
convinces the verifier to accept with high probability (completeness); and when
the input is a no instance, the verifier accepts with low probability no matter
what strategy the prover follows (soundness). Working with promise problems
rather than languages only makes our results stronger (except for one direction
of Theorem 4.4).

We denote by IP(b, m) (resp., AM(b, m)) the class of problems having in-
teractive proofs (resp., public-coin interactive proofs) in which the prover sends
a total of at most b bits, and the total number of messages exchanged (in both
directions) is at most m. Note that b and m are integer functions of the common
input length, denoted n. When b is not polynomial in n, it will be understood
that we talk of a generalization in which the verifier is allowed time polynomial
in b and n (rather than just in n). Unless specified differently, we refer to proof
systems with completeness probability 2/3 and soundness probability 1/3.

We denote IP(b) = IP(b, 2b); that is, making only the trivial bound on the
number of messages exchanged. We denote by IP+ the analogue of IP when
the proof system has perfect completeness (i.e., completeness probability 1).
The class of problems with constant-round interactive proofs is denoted AM def=
AM(poly(n), 2) = IP(poly(n), O(1)). (The second equality is by Thms 2.3 and
2.4 below.) When we wish to specify the completeness probability c = c(n) and
soundness probability s = s(n) we will use subscripts: IPc,s and AMc,s.

Using the above notations, we recall the main results of Goldreich and
H̊astad, which are the starting point for our work.

Theorem 2.1 ([GH98]). AM(b, m) ⊆ BPTIME(poly(2b, mm, n))

Theorem 2.2 ([GH98]). IP(b, m) ⊆ BPTIME(poly(2b, mm, n))NP

We also state some standard results that we will use:

Theorem 2.3 ([BM88]). AM(b, m) ⊆ AM(b2 ·poly(m), dm/2e) ⊆ AM((b ·
m)O(m), 2).

Theorem 2.4 ([GS89]). IP(b, m) ⊆ AM(poly(b, n), m).

On Interactive Proofs with a Laconic Prover 339

Theorem 2.5 ([BHZ87]). If coNP ⊆ AM(b, 2), then Σ2 ⊆ Π2(poly(n, b)).
In particular, if coNP ⊂ AM, then the polynomial-time hierarchy collapses to
PH = Σ2 = Π2.

Above and throughout the paper, Σi(t(n)) (resp., Πi(t(n))) denotes the
class of problems accepted by t(n)-time alternating Turing machines with i
alternations beginning with an existential (resp., universal) quantifier. Thus,
Σi

def=Σi(poly(n)) and Πi
def=Πi(poly(n)) comprise the i’th level of the polynomial-

time hierarchy.
We will also consider SZK, the class of problems possessing statistical zero-

knowledge interactive proofs. Rather than review the definition here, we will
instead use a recent characterization of it in terms of complete problems which
will suffice for our purposes. For distributions X and Y , let ∆(X, Y) denote their
statistical difference (or variation distance, i.e., ∆(X, Y) = maxS | Pr [X ∈ S] −
Pr [Y ∈ S] |. We will consider distributions specified by circuits which sample
from them. More precisely, a circuit with m input gates and n output gates can
be viewed as a sampling algorithm for the distribution on {0, 1}n induced by
evaluating the circuit on m random input bits. Statistical Difference is the
promise problem SD = (SDY ,SDN), where

SDY = {(X, Y) : ∆(X, Y) ≥ 2/3}
SDN = {(X, Y) : ∆(X, Y) ≤ 1/3} ,

where X and Y are probability distributions specified by circuits which sample
from them. More generally, for any 1 ≥ α > β ≥ 0, we will consider variants
SDα,β , where the thresholds of 2/3 and 1/3 are replaced with α and β respec-
tively.

Theorem 2.6 ([SV97]). For any constants 1 > α2 > β > 0, SDα,β is complete
for SZK.

The following results about SZK are also relevant to us.

Theorem 2.7 ([For89,AH91]). SZK ⊆ AM ∩ coAM.

Theorem 2.8 ([Oka00]). SZK is closed under complement.

Theorem 2.9 ([SV97]). SZK ⊆ IP1−2−n,1/2(1).

3 Formal Statement of Results

We improve over Theorem 2.2, and address most of the open problems suggested
in [GH98, Sec. 3]. Our main results are listed below.

For one bit of prover-to-verifier communication, we obtain a collapse to SZK.

Theorem 3.1. For every pair of constants c, s such that 1 > c2 > s > c/2 > 0,
IPc,s(1) = SZK.

With Theorem 2.8, this gives:

340 O. Goldreich, S. Vadhan, and A. Wigderson

Corollary 3.2. For every c, s as in Thm. 3.1, IPc,s(1) is closed under comple-
ment.

For more rounds of communication, we first obtain the following result for
interactive proofs with perfect completeness (denoted by IP+):

Theorem 3.3. IP+(b) ⊆ coNTIME(2b · poly(n)). In particular,
IP+(O(log n)) ⊆ coNP.

In the general case (i.e., with imperfect completeness), we prove:

Theorem 3.4. IP(b, m) ⊆ coAM(2b · poly(mm, n), O(m)). In particular,
IP(O(log n), m) ⊆ coAM(poly(n), O(m)), for m = O(log n/ log log n),

The above theorems provide first evidence that NP-complete problems can-
not have interactive proof systems in which the prover sends very few bits.
Further evidence toward this claim is obtained by applying Theorems 2.3 and
2.5:

Corollary 3.5. IP(b, m) ⊆ coAM(poly(2b, mm, n)m, 2). In particular,
IP(O(log n), O(1)) ⊂ coAM and IP(polylog n) ⊂ coÃM.

Corollary 3.6. NP 6⊆ IP(O(log n), O(1)) unless the polynomial-time hierarchy
collapses (to Σ2 = Π2). NP 6⊆ IP(polylog n) unless Σ2 ⊆ Π̃2.

Above, coÃM and Π̃2 denote the quasipolynomial-time (2polylog n) analogues
of coAM and Π2.

Finally, we state our result on message complexity.

Theorem 3.7. Let m(n) ≤ n/ log n be any “nice” growing function. Then
AM(poly(n), m(n)) 6= AM(poly(n), o(m(n)) unless #SAT ∈ AM(2o(n), 2).

Note that, by Theorem 2.4, it is irrelevant whether we use IP or AM in this
theorem.

Due to space constraints, we only present proofs of Theorems 3.1 and 3.3 in
this extended abstract. The proof of our main result (Theorem 3.4) is signifi-
cantly more involved, and will be given in the full version of the paper.

4 Extremely Laconic Provers (Saying Only One Bit)

In this section, we prove Theorem 3.1. The proof is based on the following lemma,
along with previous results.

Lemma 4.1. Every problem in IPc,s(1) reduces to SDc,s.

Proof. Let (P, V) be an interactive proof for some problem so that the prover
sends a single bit during the entire interaction. We may thus assume that on
input x and internal coin tosses r, the verifier first sends a message y = Vx(r),
the prover answers with a bit σ ∈ {0, 1}, and the verifier decides whether to
accept or reject by evaluating the predicate Vx(r, σ) ∈ {0, 1}.

On Interactive Proofs with a Laconic Prover 341

A special case — unique answers. To demonstrate the main idea, we consider
first the natural case in which for every pair (x, r) there exists exactly one σ such
that Vx(r, σ) = 1. (Note that otherwise, the interaction on input x and verifier’s
internal coin tosses r is redundant, since the verifier’s final decision is unaffected
by it.) For this special case (which we refer to as unique answers), we will prove
the following:

Claim 4.2. If a problem has an IPc,s(1) proof system with unique answers, then
it reduces to SD2c−1,2s−1.

Let σx(r) denote the unique σ satisfying Vx(r, σ) = 1. The prover’s ability to
convince the verifier is related to the amount of information regarding σx(r) that
is revealed by Vx(r). For example, if for some x, σx(r) is determined by Vx(r) then
the prover can convince the verifier to accept x with probability 1 (by replying
with σx(r)). If, on the other hand, for some x, σx(r) is statistically independent
of Vx(r) (and unbiased), then there is no way for the prover to convince the
verifier to accept x with probability higher than 1/2. This suggests the reduction
x 7→ (C1

x, C2
x), where C1

x(r) def= (Vx(r), σx(r)) and C2
x(r) def= (Vx(r), σx(r)), where

b denotes the complement of a bit b.
Now we relate the statistical difference between the distributions sampled by

C1
x and C2

x to the maximum acceptance probability of the verifier. Since the first
components of C1

x and C2
x are distributed identically, their statistical difference

is exactly the average over the first component Vx(r) of the statistical difference
between the second components conditioned on Vx(r). That is,

∆(C1
x, C2

x) = E
y←Vx

[∆ (σx|y, σx|y)] ,

where σx|y denotes the distribution of σx(r) when r is uniformly distributed
among {r′ : Vx(r′) = y}. For any y and b ∈ {0, 1}, let qb|y denote the probability
that σx|y = b. Then, for any fixed y, ∆ (σx|y, σx|y) = |q1|y − q0|y| = 2qy − 1,

where qy
def= maxb∈{0,1}{qb|y} ≥ 1

2 . So, we have:

∆(C1
x, C2

x) = E
y←Vx

[2qy − 1] .

On the other hand, the optimal prover strategy in (P, V) is: upon receiving y,
respond with b that maximizes qb|y. When the prover follows this strategy, we
have

Pr[V accepts x] = E
y←Vx

[qy] .

Putting the last two equations together, we conclude that ∆(C1
x, C2

x) = 2 ·
Pr[V accepts x] − 1.3 Thus if the proof system has completeness and sound-
ness error bounds c and s, respectively, then the reduction maps instances to
3 Note that under the hypothesis of the special case, for every x the prover may

convince the verifier to accept x with probability at least 1/2 (and so such a non-
trivial proof system must have soundness at least 1/2).

342 O. Goldreich, S. Vadhan, and A. Wigderson

pairs having distance bounds 2c − 1 and 2s − 1, respectively.4 This establishes
Claim 4.2.

The general case. We now proceed to deal with the general case in which there
may exist pairs (x, r) so that either both σ’s or none of them satisfy Vx(r, σ) = 1.
We do so by reducing this general case to the special case.
Claim 4.3. If a problem is in IPc,s(1), then it has an IP(1+c)/2,(1+s)/2(1) proof
system with unique answers.

Clearly, the lemma follows from this claim and the previous one, so we pro-
ceed to prove the claim.

Proof of claim. Let (P, V) be a general IPc,s proof system. Consider
the following modified verifier strategy.
V ′(x): Generate coin tosses r for the original verifier and do one of the

following based on the number j of possible prover responses σ for
which Vx(r, σ) = 1.
[j = 2] Send the prover a special message “respond with 1” and

accept if the prover responds with 1.
[j = 1] Randomly do one of the following (each with prob. 1/2):

– Send the prover y = Vx(r) and accept if the prover responds
with the unique σ such that Vx(r, σ) = 1.

– Send the prover a special message “respond with 1” and
accept if the prover responds with 1.

[j = 0] Choose a random bit σ. Send the prover a special message
“guess my bit” and accept if the prover responds with σ.

Clearly, V ′ has unique answers. It can be shown that if an optimal
prover makes V accept with probability δ, then an optimal prover makes
V ′ accept with probability (1 + δ)/2. Claim 4.3 follows. 2

Theorem 3.1 follows from Lemma 4.1, Theorem 2.6, and Theorem 2.9. Details
will be given in the full version of the paper. The c2 > s constraint in Theorem 3.1
is due to the analogous constraint in Theorem 2.6. Indeed, we can establish the
following equivalence (also to be proven the full version of the paper):
Theorem 4.4. The following are equivalent.

1. For every α, β such that 1 > α > β > 0, SDα,β is in SZK (and is therefore
also complete).

2. For every c, s such that 1 > c > s > c/2 > 0, IPc,s(1) = SZK.

Finally, we remark that the condition s > c/2 in Theorems 3.1 and 4.4 is
necessary, for IPc,s(1) = BPP for any s < c/2.
4 Note that this relationship is reversed by the natural IP(1) system for SDα,β in which

the verifier selects at random a single sample from one of the two distributions and
asks the prover to guess which of the distributions this sample came from. If the
distributions are at distance δ then the prover succeeds with probability 1

2 + δ
2 . Thus

applying this proof system to SD2c−1,2s−1 we obtain completeness and soundness
bounds c and s, respectively.

On Interactive Proofs with a Laconic Prover 343

5 Laconic Provers with Perfect Completeness

In this section, we prove Theorem 3.3.

Theorem 3.3 (restated): If a problem Π has an interactive proof system with
perfect completeness in which the prover-to-verifier communication is at most
b(·) bits then Π ∈ coNTIME(2b(n) · poly(n)).

Proof. We take a slightly unusual look at the interactive proof system for Π,
viewing it as a “progressively finite game” between two players P ∗ and V ∗. P ∗

corresponds to the usual prover strategy and its aim is to make the original
verifier accept the common input. V ∗ is a “cheating verifier” and its aim is to
produce an interaction that looks legal and still makes the original verifier reject
the common input.

To make this precise, let b = b(n) be the bound on the prover-to-verifier
communication in (P, V) on inputs of length n, and let m = m(n) be the number
of messages exchanged. Without loss of generality, we may assume that the V
sends all its coin tosses in the last message. A transcript is a sequence of m
strings, corresponding to (possible) messages exchanged between P and V . We
call a transcript t consistent (for x) if every verifier message in t is the message
V would have sent given input x, the previous messages in t, and the coin tosses
specified by the last message in t. We call a consistent t rejecting if V would
reject at the end of such an interaction.

Now, the game between P ∗x and V ∗x has the same structure as the interaction
between P and V on input x: a total of m messages are exchanged and P ∗x is
allowed to send at most b bits. The game between P ∗x and V ∗x yields a transcript t.
We say that V ∗x wins if t is consistent and rejecting, and that P ∗x wins otherwise.
We stress that V ∗x need not emulate the original verifier nor is it necessarily
implemented in probabilistic polynomial time.

This constitutes a “perfect information finite game in extensive form” (also
known as a “progressively finite game”) and Zermelo’s Theorem (cf., [Tuc95,
Sec 10.2]) says that exactly one of the two players has a winning strategy — that
is, a (deterministic) strategy that will guarantee its victory no matter how the
other party plays.

Using the perfect completeness condition, we infer that if the common input
x is a yes instance then there exists a winning strategy for P ∗x . (This is because
the optimal prover for the original interactive proof wins whenever V ∗x plays in
a manner consistent with some sequence of coin tosses for the original verifier,
and it wins by definition if the V ∗x plays inconsistently with any such sequence.)
On the other hand, by the soundness condition, if the common input is a no
instance then there exists no winning strategy for P ∗x . (This is because in this
case no prover strategy can convince the original verifier with probability 1.) By
the above, it follows that whenever the common input is a no instance there
exists a winning strategy for V ∗x .

Thus, a proof that x is a no instance consists of a winning strategy for
V ∗x . Such strategy is a function mapping partial transcripts of P ∗x messages to

344 O. Goldreich, S. Vadhan, and A. Wigderson

the next V ∗x message. Thus, such a strategy is fully specified by a function from
∪b

i=0{0, 1}i to {0, 1}poly(n), and has description length poly(n) ·2b(n)+1. To verify
that such a function constitutes a winning strategy for V ∗x , one merely tries all
possible deterministic strategies for the P ∗x (i.e., all possible b(n)-bit long strings).
The theorem follows.

References

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can
be recognized in two rounds. Journal of Computer and System Sciences,
42(3):327–345, June 1991.

[AK97] V. Arvind and J. Köbler. On resource-bounded measure and pseudoran-
domness. In Proceedings of the 17th Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 235–249. LNCS 1346,
Springer-Verlag, 1997.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of
the Seventeenth Annual ACM Symposium on Theory of Computing, pages
421–429, Providence, Rhode Island, 6–8 May 1985.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized
proof system and a hierarchy of complexity classes. Journal of Computer
and System Sciences, 36:254–276, 1988.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM Journal on Computing,
27(3):804–915 (electronic), 1998.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have
short interactive proofs? Information Processing Letters, 25:127–132, 1987.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, 37(2):156–
189, October 1988.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali,
editor, Advances in Computing Research, volume 5, pages 327–343. JAC
Press, Inc., 1989.

[Gol99] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseu-
dorandomness. Number 17 in Algorithms and Combinatorics. Springer-
Verlag, 1999.

[GG00] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability
of lattice problems. Journal of Computer and System Sciences, 60(3):540–
563, 2000.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs
with bounded communication. Information Processing Letters, 67(4):205–
214, 1998.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof
system for a problem equivalent to the discrete logarithm. Journal of
Cryptology, 6:97–116, 1993.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(1):691–729, 1991.

[GOP98] Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational
complexity and knowledge complexity. SIAM Journal on Computing,
27(4):1116–1141, August 1998.

On Interactive Proofs with a Laconic Prover 345

[GP99] Oded Goldreich and Erez Petrank. Quantifying knowledge complexity.
Computational Complexity, 8(1):50–98, 1999.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, February 1989.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In Silvio Micali, editor, Advances in Computing
Research, volume 5, pages 73–90. JAC Press, Inc., 1989.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In Proceedings of the Twenty-Fourth Annual ACM
Symposium on the Theory of Computing, pages 723–732, Victoria, British
Columbia, Canada, 4–6 May 1992.

[KvM99] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses.
In Proceedings of the Thirty-first Annual ACM Symposium on Theory of
Computing, pages 659–667, Atlanta, 1–4 May 1999.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. Journal of the ACM, 39(4):859–868,
October 1992.

[MV99] Peter Bro Miltersen and N.V. Vinodchandran. Derandomizing Arthur–
Merlin games using hitting sets. In 40th Annual Symposium on Founda-
tions of Computer Science, New York, NY, 17–19 October 1999. IEEE.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge
proofs. Journal of Computer and System Sciences, 60(1):47–108, February
2000.

[PT96] Erez Petrank and Gábor Tardos. On the knowledge complexity of NP.
In 37th Annual Symposium on Foundations of Computer Science, pages
494–503, Burlington, Vermont, 14–16 October 1996. IEEE.

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical
zero-knowledge. In 38th Annual Symposium on Foundations of Computer
Science, pages 448–457, Miami Beach, Florida, 20–22 October 1997. IEEE.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, October
1992.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publish-
ing, 1997.

[Tuc95] Alan Tucker. Applied combinatorics. John Wiley & Sons Inc., New York,
third edition, 1995.

[Vad00] Salil Vadhan. Probabilistic proof systems I: Interactive and zero-knowledge
proofs. Lecture Notes from the IAS/PCMI Graduate Summer School on
Computational Complexity, August 2000. Available from
http://eecs.harvard.edu/˜salil/.

Quantum Complexities of Ordered Searching,
Sorting, and Element Distinctness?

Peter Høyer 1,??, Jan Neerbek 2, and Yaoyun Shi 3

1 Dept. of Comp. Sci., University of Calgary, Alberta, Canada T2N 1N4
hoyer@cpsc.ucalgary.ca

2 Dept. of Comp. Sci., University of Aarhus, DK–8000 Århus C, Denmark
neerbek@daimi.au.dk

3 Dept. of Comp. Sci., Princeton University, Princeton, NJ 08544, USA
shiyy@cs.princeton.edu

Abstract. We consider the quantum complexities of the following three
problems: searching an ordered list, sorting an un-ordered list, and de-
ciding whether the numbers in a list are all distinct. Letting N be
the number of elements in the input list, we prove a lower bound of
1
π

(ln(N) − 1) accesses to the list elements for ordered searching, a lower
bound of Ω(N log N) binary comparisons for sorting, and a lower bound
of Ω(

√
N log N) binary comparisons for element distinctness. The previ-

ously best known lower bounds are 1
12 log2(N) − O(1) due to Ambainis,

Ω(N), and Ω(
√

N), respectively. Our proofs are based on a weighted
all-pairs inner product argument.

In addition to our lower bound results, we give a quantum algorithm
for ordered searching using roughly 0.631 log2(N) oracle accesses. Our
algorithm uses a quantum routine for traversing through a binary search
tree faster than classically, and it is of a nature very different from a
faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.

1 Introduction

The speedups of quantum algorithms over classical algorithms have been a main
reason for the current interests on quantum computing. One central question
regarding the power of quantum computing is: How much speedup is possible?
Although dramatic speedups seem possible, as in the case of Shor’s [16] algo-
rithms for factoring and for finding discrete logarithms, provable speedups are
found only in restricted models such as the black box model.

In the black box model, the input is given as a black box, so that the only
way the algorithm can obtain information about the input is via queries, and
the complexity measure is the number of queries. Many problems that allow
provable quantum speedups can be formulated in this model, an example being
the unordered search problem considered by Grover [14]. Several tight lower
? Research supported by the EU fifth framework program QAIP, IST-1999-11234, and

the National Science Foundation under grant CCR-9820855.
?? Research conducted in part while at BRICS, University of Aarhus, Denmark.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 346–357, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Quantum Complexities 347

bounds are now known for this model, most of them being based on techniques
introduced in [5,3,2].

We study the quantum complexities of the following three problems.

Ordered searching. Given a list of numbers x = (x0, x1, . . . , xN−1) in non-
decreasing order and some number y, find the minimal i such that y ≤ xi.
We assume that xN−1 = ∞ > y so that the problem is always well-defined.

Sorting. Given a list of numbers x = (x0, x1, . . . , xN−1), output a permutation
σ on the set {0, . . . , N − 1} so that the list (xσ(0), xσ(1), . . . , xσ(N−1)) is in
non-decreasing order.

Element distinctness. Given a list of numbers x = (x0, x1, . . . , xN−1), are
they all distinct?

These problems are closely related and are among the most fundamental and
most studied problems in the theory of algorithms. They can also be formulated
naturally in the black box model. For the ordered searching problem, we con-
sider queries of the type “xi =?”, and for the sorting and element distinctness
problems, we consider queries of the type “Is xi < xi′?”, which are simply binary
comparisons. Let Hi =

∑i
k=1

1
k denote the ith harmonic number. We prove a

lower bound for each of these three problems.
Theorem 1. Any quantum algorithm for ordered searching that errs with prob-
ability at most ε ≥ 0 requires at least

(

1 − 2
√
ε(1 − ε)

)
1
π

(HN − 1) (1)

queries to the oracle. In particular, any exact quantum algorithm requires more
than 1

π (ln(N) − 1) ≈ 0.220 log2N queries.

Theorem 2. Any comparison-based quantum algorithm for sorting that errs
with probability at most ε ≥ 0 requires at least

(

1 − 2
√
ε(1 − ε)

)
N

2π
(HN − 1) (2)

comparisons. In particular, any exact quantum algorithm requires more than
N
2π (ln(N) − 1) ≈ 0.110N log2N comparisons.

Theorem 3. Any comparison-based quantum algorithm for element distinctness
that errs with probability at most ε ≥ 0 requires at least

(

1 − 2
√
ε(1 − ε)

)√
N

2π
(HN − 1) (3)

comparisons.

The previously best known quantum lower bound for ordered searching is
1
12 log2(N) − O(1), due to Ambainis [1]. For comparison-based sorting and ele-
ment distinctness, the previously best known quantum lower bounds are respec-
tively Ω(N) and Ω(

√
N), both of which can be proven in many ways.

348 P. Høyer, J. Neerbek, and Y. Shi

We prove our lower bounds by utilizing what we refer to as a weighted all-
pairs inner product argument, or a probabilistic adversary argument. This proof
technique is based on the work of Bennett, Bernstein, Brassard, and Vazirani [5]
and Ambainis [2].

Farhi, Goldstone, Gutmann, and Sipser [12] have given an exact quantum
algorithm for ordered searching using roughly 0.526 log2(N) queries. We pro-
vide an alternative quantum algorithm that is exact and uses log3(N) +O(1) ≈
0.631 log2(N) queries. Our construction is radically different from the construc-
tion proposed by Farhi et al. [12], and these are the only constructions known
leading to quantum algorithms using at most c log2(N) queries for some con-
stant c strictly less than 1.

Whereas most quantum algorithms are based on Fourier transforms and am-
plitude amplification [7], our algorithm is based on binary search trees. We ini-
tiate several applications of the binary search algorithm in quantum parallel
and let them find the element we are searching for in teamwork. By cooperat-
ing, these applications can traverse the binary search tree faster than classically,
hereby reducing the complexity from log2(N) to roughly log3(N).

There are at least three reasons why the quantum complexities of the three
problems are of interest. Firstly because of their significance in algorithmics in
general. Secondly because these problems possess some symmetries and periodic-
ities of a different nature than other studied problems in quantum algorithmics.
Determining symmetries and periodicities seems to be a primary ability of quan-
tum computers and it is not at all clear how far-reaching this skill is. Thirdly
because searching and sorting represent non-Boolean non-symmetric functions.
A (partial) function is said to be symmetric if it is invariant under permuta-
tion of its input. Only few non-trivial quantum bounds for non-Boolean and
non-symmetric functions are known.

The rest of the paper is organized as follows. We first discuss the model in
Sect. 2, present our general technique for proving lower bounds in Sect. 3.1,
and then apply it to the three problems in Sects. 3.2–3.4. We give our quantum
algorithm for ordered searching in Sect. 4 and conclude in Sect. 5.

2 Quantum Black Box Computing

We give a formal definition of the black box model, which is slightly differ-
ent from, but equivalent to, the definition of Beals, Buhrman, Cleve, Mosca,
and de Wolf given in [3]. Fix some positive integer N > 0. The input x =
(x0, . . . , xN−1) ∈ {0, 1}N is given as an oracle, and the only way we can access
the bits of the oracle is via queries. A query implements the operator

Ox : |z; i〉 7−→
{

(−1)xi |z; i〉 if 0 ≤ i < N

|z; i〉 if i ≥ N .
(4)

Here i and z are non-negative integers. By a query to oracle x we mean an
application of the unitary operator Ox. We sometimes refer to Ox as the oracle.

Quantum Complexities 349

A quantum algorithm A that uses T queries to an oracle O is a unitary operator
of the form

A = (UO)T U. (5)

We always apply algorithm A on the initial state |0〉. For every integer j ≥ 0
and every oracle x, let

|ψj
x〉 = (UOx)jU |0〉 (6)

denote the state after j queries, given oracle x. After applying A, we always
measure the final state in the computational basis.

Consider the computation of some function f : S → {0, 1}m, where S ⊆
{0, 1}N . We say that algorithm A computes f with error probability bounded
by ε, for some constant ε with 0 ≤ ε < 1/2, if for any x ∈ S, the probability of
observing f(x) when the m rightmost bits of |ψT

x 〉 are measured is at least 1 − ε.

3 Lower Bounds

3.1 General Technique

We use the notation of Sect. 2. For any ε ≥ 0, let ε′ = 2
√
ε(1 − ε).

The computation always starts in the same initial state |0〉, so for all oracles
x ∈ S we have |ψ0

x〉 = |0〉. If for two input oracles x, y ∈ S, the correct answers
are different, i.e., if f(x) 6= f(y), then the corresponding final states |ψT

x 〉 and
|ψT

y 〉 must be almost orthogonal.

Lemma 4. For all oracles x, y ∈ S so that f(x) 6= f(y), |〈ψT
x |ψT

y 〉| ≤ ε′.

Now consider a probability distribution over those pairs of inputs (x, y) ∈
S × S for which f(x) 6= f(y). For each integer j ≥ 0, we use the following
quantity to quantify the average progress of the algorithm in distinguishing any
two inputs after applying (UO)jU,

Wj = E(x,y)
[〈ψj

x|ψj
y〉] .

Observe that W0 = 1 and that WT ≤ ε′ by Lemma 4. By proving that for every j
with 0 ≤ j < T , we have |Wj −Wj+1| ≤ δ, we conclude that T ≥ (1 − ε′)/δ.

For simplicity of presentation, we scale the probabilities by using a weight
function ω : S × S → R

+. From now on, we use the following definition of Wj

to quantify the overall progress of the algorithm,

Wj =
∑

x,y∈S

ω(x, y) 〈ψj
x|ψj

y〉. (7)

Our technique is a natural generalization of Ambainis’ approach [2], which
uses uniform distributions over subsets of S × S. Our lower bound proofs imply
that non-uniform distributions can give better lower bounds. Clearly, finding a

350 P. Høyer, J. Neerbek, and Y. Shi

“good” distribution is an important step in applying our technique. Another
important step is to find a tight bound on the progress after each oracle query.

We end this subsection by introducing some notation and stating two lemmas
we require when bounding the progress. For every i ≥ 0, let Pi =

∑
z≥0 |z; i〉〈z; i|

denote the projection operator onto the subspace querying the ith oracle bit. For
i < 0, operator Pi is taken as the zero projection. The following lemma, which
may be proven by the Cauchy–Schwarz inequality, bounds the quantified progress
that one oracle query makes in distinguishing two inputs x and y.

Lemma 5. For any oracles x, y ∈ {0, 1}N , and any integer j ≥ 0,

|〈ψj
x|ψj

y〉 − 〈ψj+1
x |ψj+1

y 〉| ≤ 2
∑

i:xi 6=yi

‖Pi|ψj
x〉‖ · ‖Pi|ψj

y〉‖. (8)

We sometimes write |ψx〉 as shorthand for |ψj
x〉 once integer j is fixed.

Let A = [αk,`]1≤k,`<∞ be the Hilbert matrix with αk,` = 1/(k + `− 1), and
|||·|||2 be the spectral norm, i.e., for any complex-valued matrix M ∈ C

m×m, the
norm |||M |||2 is defined as max{‖Mx‖2}, where the maximum is taken over all
unit vectors x ∈ C

m. Let BN = [βk,`]1≤k,`≤N be the matrix where entry βk,` is
1

k+`−1 if k+ ` ≤ N + 1, and 0 otherwise. Clearly |||BN |||2 ≤ |||A|||2 for any N > 0.
Our lower bound proofs rely on the following property of the Hilbert matrix.
Lemma 6 (E.g.: Choi [10]). |||A|||2 = π. Hence, |||BN |||2 ≤ π.

3.2 Lower Bound for Ordered Searching

The first non-trivial quantum lower bound on ordered searching proven was
Ω(
√

log2(N)/ log2 log2(N)), due to Buhrman and de Wolf [9] by an ingenious
reduction from the parity problem. Farhi, Goldstone, Gutmann, and Sipser [11]
improved this to log2(N)/2 log2 log2(N), and Ambainis [1] then proved the pre-
viously best known lower bound of 1

12 log2(N) −O(1). In [11,1], they use, as we
do here, an inner product argument along the lines of [5]. In this section, we
improve the lower bound by a constant factor.

For the purpose of proving the lower bound, we assume that each of the
N input numbers is either 0 or 1, and that the input does not consist of all
zeroes. That is, the set S of possible inputs are the ordered N -bit strings of
non-zero Hamming weight. The search function f : S → {0, 1}m is defined by
f(x) = min{0 ≤ i < N | xi = 1}, where we identify the result f(x) with
its binary encoding as a bit-string of length m = dlog2(N)e. As our weight
function ω, we choose the inverse of the difference in Hamming weights,

ω(x, y) =

{
1

f(y)−f(x) if 0 ≤ f(x) < f(y) < N

0 otherwise.
(9)

With this choice, we have that W0 = NHN − N and by Lemma 4 also that
WT ≤ ε′W0. Theorem 1 then follows from the next lemma.

Lemma 7. For every j with 0 ≤ j < T we have that |Wj −Wj+1| ≤ πN .

Quantum Complexities 351

Proof. As shorthand, we write |ψf(x)〉 for |ψj
x〉. By Lemma 5,

|Wj −Wj+1| ≤ 2
N−2∑

k=0

N−1∑

`=k+1

1
`− k

`−1∑

i=k

‖Pi|ψk〉‖ · ‖Pi|ψ`〉‖

= 2
N−1∑

d=1

d−1∑

i=0

1
d

N−d−1∑

k=0

‖Pk+i|ψk〉‖ · ‖Pk+i|ψk+d〉‖.

Let vectors γ = [γi]0≤i<N−1 ∈ R
N−1 and δ = [δi]0≤i<N−1 ∈ R

N−1 be defined by

γi =

(
N−1∑

k=0

‖Pk+i|ψk〉‖2

)1/2

and δi =

(
N−1∑

k=0

‖Pk−i−1|ψk〉‖2

)1/2

.

Then, by the Cauchy–Schwarz inequality,

|Wj −Wj+1| ≤ 2
N−1∑

d=1

d−1∑

i=0

1
d
γiδd−i−1 = 2γtBNδ, (10)

where t denotes matrix transposition. Since each vector |ψk〉 is of unit norm,
we have ‖γ‖2

2 + ‖δ‖2
2 ≤ N , so ‖γ‖2‖δ‖2 ≤ N/2. The matrix product 2γtBNδ is

upper bounded by 2‖γ‖2 · |||BN |||2 · ‖δ‖2, which is at most πN by Lemma 6. ut

3.3 Lower Bound for Sorting

We assume that the N numbers to be sorted, x = (x0, . . . , xN−1), correspond
to some permutation σ on {0, 1, . . . , N −1}. That is, xi = σ(i) for every 0 ≤ i <
N . We assume the input to the quantum algorithm is the comparison matrix
Mσ = [mii′]0≤i,i′<N with

mii′ =

{
1 if σ(i) < σ(i′)
0 otherwise.

One comparison corresponds to one application of the oracle operator

Oσ =
∑

z≥0

∑

i,i′≥0

(−1)mii′ |z; i, i′〉〈z; i, i′|.

To simplify notation, we sometimes identify the input Mσ with the underlining
permutation σ.

For every pair {i, i′} of indices with 0 ≤ i, i′ < N , let

Pii′ =
∑

z≥0

|z; i, i′〉〈z; i, i′| +
∑

z≥0

|z; i′, i〉〈z; i′, i|

denote the projection operator onto the subspace comparing the ith and (i′)th
elements. For any vector |ψ〉, we use |ψ�σ,k,`〉 as shorthand for Pσ−1(k),σ−1(`)|ψ〉.

352 P. Høyer, J. Neerbek, and Y. Shi

For every permutation σ, and every integers 0 ≤ k ≤ N − 2 and 1 ≤ d ≤
N − 1 − k, define a new permutation,

σ(k,d) = (k, k + 1, . . . , k + d) ◦ σ. (11)

If τ = σ(k,d), then

σ−1(i) =

τ−1(k) if i = k + d

τ−1(i+ 1) if k ≤ i < k + d

τ−1(i) otherwise.
(12)

This implies that the comparison matrices Mσ and Mτ differ only on the follow-
ing pairs of entries,

{
σ−1(k + d), σ−1(k + i)

}
=
{
τ−1(k), τ−1(k + i+ 1)

}
(13)

for all i with 0 ≤ i < d.
Informally, if Mσ corresponds to some list x, then Mτ corresponds to the

list y obtained by replacing the element of rank k + d in x by a new element of
rank k (the element in x that had rank k then has rank k + 1 in y, etc.). The
only way the algorithm can distinguish σ from τ is by comparing the element of
rank k + d in x with one of the d elements of rank k + i for some 0 ≤ i < d.

We choose the following weight function,

ω(σ, τ) =

{
1
d if τ = σ(k,d) for some k and d

0 otherwise.
(14)

Then one may verify that W0 = N ! (NHN − N), and WT ≤ ε′W0. To prove
Theorem 2, we need only to prove the following lemma.
Lemma 8. For any j with 0 ≤ j < T , |Wj −Wj+1| ≤ 2πN !.
Proof. Similar to the proof of Lemma 7. By Lemma 5 and (13),

|Wj −Wj+1| ≤ 2
N−1∑

d=1

d−1∑

i=0

1
d

∑

σ

N−d−1∑

k=0

‖|ψσ�σ,k+d,k+i〉‖ · ‖|ψσ(k,d)�σ,k+d,k+i〉‖.

Let γ = [γi]1≤i<N ∈ R
N−1 be such that γi =

(∑
σ

∑N−1
`=0

∥
∥|ψσ�σ,`,`+i〉

∥
∥2)1/2,

where we let ` range from 0 to N − 1 and simply set the thus caused undefined
projection operators to be zero operators. Then by (12),

∑

σ

N−d−1∑

k=0

∥
∥|ψσ(k,d)�σ,k+d,k+i〉

∥
∥2 =

∑

τ

N−d−1∑

k=0

∥
∥|ψτ�τ,k,k+i+1〉

∥
∥2 ≤ γ2

i+1.

Applying the Cauchy–Schwarz inequality, and in analogy with (10),

|Wj −Wj+1| ≤ 2
N−1∑

d=1

d−1∑

i=0

1
d
γd−iγi+1 = 2γtBN−1γ. (15)

Since ‖γ‖2
2 ≤ N !, we conclude that |Wj −Wj+1| ≤ 2πN !. ut

Quantum Complexities 353

3.4 Lower Bound for Element Distinctness

We modify the adversary for sorting as follows. As in Sect. 3.3, when we talk
about permutations, the underlying set is {0, 1, . . . , N − 1}.

Definition 9. An annotated permutation is a permutation τ with a marker on
a single element rτ for some 0 ≤ rτ < N − 1.

For every permutation σ, and every integers k and d as in Sect. 3.3, the annotated
permutation τ = σ(k,d) is the same permutation as in (11) but with the rank
k element marked. The only places where Mσ and Mτ differ, are at the same
entries as those in (13).

We use the same weight function as in (14). Then W0 = N !(NHN −N) and
WT ≤ ε′W0. We need only to prove the following lemma.

Lemma 10. For any integer j with 0 ≤ j < T , |Wj −Wj+1| ≤ 2πN !
√
N .

Proof. Almost identical to the proof for Lemma 8, except that we now require a
second vector δ = [δi]1≤i<N ∈ R

N−1 with δi =
(∑

τ

∥
∥|ψτ�τ,rτ ,rτ+i〉

∥
∥2)1/2. Then

by (12),

∑

σ

N−d−1∑

k=0

∥
∥|ψσ(k,d)�σ,k+d,k+i〉

∥
∥2 =

∑

τ :rτ <N−d

∥
∥|ψτ�τ,rτ ,rτ+i+1〉

∥
∥2 ≤ δ2i+1.

In analogy with (15), we have

|Wj −Wj+1| ≤ 2
N−1∑

d=1

d−1∑

i=0

1
d
γd−iδi+1 = 2γtBN−1δ.

Besides having ‖γ‖2 ≤ N ! as in the proof of Lemma 8, we also have that

‖δ‖2 =
N−1∑

i=1

∑

τ

∥
∥|ψτ�τ,rτ ,rτ+i〉

∥
∥2 ≤ N !(N − 1) ≤ N !N.

Therefore, |Wj −Wj+1| ≤ 2π
√
N !

√
N !N = 2πN !

√
N . ut

4 A log3(N) Algorithm for Ordered Searching

We begin by considering binary search trees on which our quantum algorithm is
based. Let T be a binary tree with N ≥ 2 leaves. We put colored pebbles on the
(internal) vertices of T subject to the following 2 conditions:

(A) on every path from the root of T to a leaf, there is exactly 1 pebble of each
color, and

(B) the number of pebbles pv on any vertex v ∈ T is at least as large as the total
number of pebbles on its proper ancestors.

354 P. Høyer, J. Neerbek, and Y. Shi

We say that T is covered by N ′ pebbles if we can satisfy the 2 above conditions
using at most N ′ pebbles of each color. We want to minimize the maximum
number N ′ of pebbles used of any color. We say a covering is fair if it uses
the same number of pebbles of every color. We say a covering is tight if, for all
vertices v ∈ T , we have that pv equals the total number of pebbles on its proper
ancestors, or there are no pebbles on any of the ancestors of v. We require the
following two lemmas.

Lemma 11. For every even integer N ≥ 2, there exists a binary tree with N
leaves that can be fairly and tightly covered by N ′ = b 1

3N + log2(N)c pebbles
using 2s colors, where s = blog4(N/2)c.

Lemma 12. Let integer-valued function F̃ be recursively defined by

F̃ (N) =

{
F̃
(b 1

3N + log2(N) + 1c)+ 1 if N > 8
1 if N ≤ 8.

Then F̃ (N) = log3(N) +O(1).

As in Sect. 3.2, we assume the oracle x = (x0, . . . , xN−1) ∈ {0, 1}N is a
binary string of non-zero Hamming weight. The problem is to determine the
leftmost 1 in x, that is, to compute f(x) = min{0 ≤ i < N | xi = 1}. Let T
be a binary tree with N leaves for which Lemma 11 holds. Let s = blog4(N/2)c
and N ′ = b 1

3N + log2(N)c be as in the lemma. We label the N leaves of T by
{0, . . . , N − 1} from left to right. Let `f(x) denote the leaf labelled by f(x), and
let P denote the path from the root of T to the parent of `f(x). We think of P
as the path the classical search algorithm would traverse if searching for f(x) in
tree T .

Let C = {c0, . . . , c2s−1} be the set of 2s colors used in Lemma 11. For each
color c ∈ C, let Vc denote the set of vertices in T populated by a pebble of color c.
By Condition (A), there are at most N ′ such vertices, that is, |Vc| ≤ N ′. Let vc

denote the unique vertex in Vc that is on path P. We think of vertex vc as the
root of the subtree “containing” leaf `f(x). Note that, by definition, vc ∈ P for
every color c ∈ C, and that

∑
v∈P pv = 2s by Condition (A).

Our algorithm utilizes 3 unitary operators, U1, O′
x, and U2. The first operator,

U1, is defined by

U1 : |v〉|0〉 7−→ |v〉
(

1√
pv

∑

c

|c〉
)

(v ∈ T), (16)

where the summation is over all colors c ∈ C that are represented by a pebble on
vertex v. We refer to U1 as the coloring operator and its inverse as the un-coloring
operator.

The query operator O′
x is defined by

O′
x : |v〉 7−→

{
|v ; xi〉 if there are no pebbles on the parent of v

(−1)xi |v〉 otherwise,
(17)

Quantum Complexities 355

where i denotes the label of the rightmost leaf in the left subtree of vertex v.
Query operator O′

x is clearly unitary (or rather, can be extended to a unitary
operator since it is only defined on a proper subspace). Operator O′

x is slightly
different from, but equivalent to, the query operator defined in Sect. 2. It mimics
the classical search algorithm by querying the bit xi that corresponds to the
rightmost leaf in the left subtree of v.

We also use a unitary operator U2 that maps each vertex to a superposition
over the leaves in its subtree. For every vertex and leaf u in T , let L(u) denote
the set of leaves in the subtree rooted at u, and let

|Φu〉 =
∑

`∈L(u)

1√
2d(u,`)

|`〉, (18)

where d(u, `) denotes the absolute value of the difference in depths of u and
leaf `. The unitary operator U2 is (partially) defined as follows. For every vertex
v ∈ T with no pebbles on its parent,

|v ; 0〉 7−→ |Φright(v)〉 (19.1)
|v ; 1〉 7−→ |Φleft(v)〉, (19.2)

and for every vertex v ∈ T with pebbles on its parent,

|v〉 7−→ 1√
2

(|Φright(v)〉 − |Φleft(v)〉
)
. (19.3)

Here left(v) denotes the left child of v, and right(v) the right child.
Our quantum algorithm starts in the initial state |0〉 and produces the final

state |`f(x)〉. Let F (N) denote the number of queries used by the algorithm on
an oracle x of size N .

1. We first set up a superposition over all 2s colors, 1√
2s

∑
c∈C |0〉|c〉.

2. We then apply our exact quantum search algorithm recursively. For each
color c ∈ C in quantum parallel, we search recursively among the vertices
in Vc, hereby determining the root vc ∈ Vc of the subtree containing the
leaf `f(x). Since |Vc| ≤ N ′, this requires at most F (N ′ +1) queries to oracle x
and produces the superposition 1√

2s

∑
c∈C |vc〉|c〉. Since every vertex vc in this

sum is on the path P, we can rewrite the sum as

1√
2s

∑

v∈P
|v〉

∑

c∈C:vc=v

|c〉.

3. We then apply the un-coloring operator U−1
1 , producing the superposition

1√
2s

∑
v∈P

√
pv |v〉|0〉. Ignoring the second register which always holds a zero,

this is
1√
2s

∑

v∈P

√
pv |v〉.

That is, we have (recursively) obtained a superposition over the vertices on
the path P from the root of T to the parent of the leaf `f(x) labelled by f(x).

356 P. Høyer, J. Neerbek, and Y. Shi

4. We then apply the operator U2O
′
x, producing the final state

U2O
′
x

1√
2s

∑

v∈P

√
pv |v〉 =

1√
2s

∑

v∈P

√
pv U2O

′
x |v〉,

which one can show equal to |`f(x)〉. Thus, a final measurement of this state
yields f(x) with certainty.

The total number of queries to the oracle x is at most F (N ′+1)+1, and thus,
by Lemma 12, the algorithm uses at most log3(N) + O(1) queries. Theorem 13
follows.

Theorem 13. The above described quantum algorithm for searching an ordered
list of N elements is exact and uses at most log3(N) +O(1) queries.

5 Concluding Remarks and Open Problems

The inner product of two quantum states is a measure for their distinguishability.
We have proposed a weighted all-pairs inner product argument as a tool for
proving lower bounds in the quantum black box model. The possibility of using
non-uniform weights seems particularly suitable when proving lower bounds for
non-symmetric (possibly partial) functions. It could be interesting to consider
other measures than inner products, as discussed, for instance, by Zalka [18],
Jozsa and Schlienz [15], and Vedral [17].

The result of Grigoriev, Karpinski, Meyer auf der Heide, and Smolensky [13]
implies that if only comparisons are allowed, the randomized decision tree com-
plexity of element distinctness has the same Ω(N logN) lower bound as sorting.
Interestingly, their quantum complexities differ dramatically: the quantum algo-
rithm by Buhrman et al. [8] uses only O(N3/4 logN) comparisons. There is still
a big gap between this upper bound and our lower bound of Ω(N1/2 logN). One
way of closing this gab might be to consider quantum time-space tradeoffs, as
has been done for the classical case [6,4].

Our algorithm for searching an ordered list with complexity log3(N)+O(1) is
based on the classical binary search algorithm. The quantum algorithm initiates
several independent walks/searches at the root of the binary search tree. These
searches traverse down the tree faster than classically by cooperating, and they
eventually all reach the leaf we are searching for in roughly log3(N) steps. It could
be interesting to consider if similar ideas can be used to speed up other classical
algorithms. For instance one may consider other applications of operators like U2
acting on rooted trees and graphs.

Acknowledgements. We are grateful to Andris Ambainis, Harry Buhrman,
Mark Ettinger, Gudmund S. Frandsen, Dieter van Melkebeek, Hein Röhrig,
Daniel Wang, Ronald de Wolf, Andy Yao, and especially Sanjeev Arora, for
their precious comments and suggestions.

Quantum Complexities 357

References

1. Ambainis, A.: A better lower bound for quantum algorithms searching an ordered
list. Proc. of 40th IEEE FOCS (1999) 352–357

2. Ambainis, A.: Quantum lower bounds by quantum arguments. Proc. of 32nd ACM
STOC (2000) 636–643

3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower
bounds by polynomials. Proc. of 39th IEEE FOCS (1998) 352–361

4. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20 (1991) 270–277

5. Bennett, C. H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computation. SIAM J. Comput. 26 (1997) 1510–1523

6. Borodin, A., Fischer, M. J., Kirkpatrick, D. G., Lynch, N A., Tompa, M.:
A time-space tradeoff for sorting on nonoblivious machines. J. Comput. Sys. Sci.
22 (1981) 351–364

7. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplifica-
tion and estimation. quant-ph/0005055, 2000

8. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M.,
de Wolf, R.: Quantum algorithms for element distinctness. Proc. of 16th IEEE
Computational Complexity (2001) (to appear)

9. Buhrman, H., de Wolf, R.: A lower bound for quantum search of an ordered list.
Inform. Proc. Lett. 70 (1999) 205–209

10. Choi, M.-D.: Tricks or treats with the Hilbert matrix. Amer. Math. Monthly 90
(1983) 301–312

11. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of
quantum computation for insertion into an ordered list. quant-ph/9812057, 1998

12. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Invariant quantum algo-
rithms for insertion into an ordered list. quant-ph/9901059, 1999

13. Grigoriev, D., Karpinski, M., Meyer auf der Heide, F., Smolensky, R.:
A lower bound for randomized algebraic decision trees. Comput. Complexity 6
(1996/1997) 357–375

14. Grover, L. K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Letters 79 (1997) 325–328

15. Jozsa, R., Schlienz, J.: Distinguishability of states and von Neumann entropy.
Phys. Rev. A 62 (2000) 012301

16. Shor, P. W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484–1509

17. Vedral, V.: The role of relative entropy in quantum information theory. quant-
ph/0102094, 2001

18. Zalka, Ch.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60
(1999) 2746–2751

Many of the above references can be found at the Los Alamos National
Laboratory e-print archive (http://arXiv.org/archive/quant-ph).

Lower Bounds in the Quantum Cell Probe Model

Pranab Sen1 and S. Venkatesh2

1 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai 400005, India.
pranab@tcs.tifr.res.in? ? ?.

2 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA.
venkat@ias.eduy.

Abstract. We introduce a new model for studying quantum data struc-
ture problems — the quantum cell probe model. We prove a lower bound
for the static predecessor problem in the address-only version of this
model where, essentially, we allow quantum parallelism only over the ‘ad-
dress lines’ of the queries. This model subsumes the classical cell probe
model, and many quantum query algorithms like Grover’s algorithm fall
into this framework. We prove our lower bound by obtaining a round
elimination lemma for quantum communication complexity. A similar
lemma was proved by Miltersen, Nisan, Safra and Wigderson [9] for clas-
sical communication complexity, but their proof does not generalise to
the quantum setting.
We also study the static membership problem in the quantum cell probe
model. Generalising a result of Yao [16], we show that if the storage
scheme is implicit, that is it can only store members of the subset and
‘pointers’, then any quantum query scheme must make Ω(logn) probes.
We also consider the one-round quantum communication complexity of
set membership and show tight bounds.

1 Introduction

A static data structure problem consists of a set of data D, a set of queries Q,
a set of answers A, and a function f : D × Q → A. The aim is to store the
data efficiently and succinctly, so that any query can be answered with only
a few probes to the data structure. In a seminal paper [16], Yao introduced
the (classical) cell probe model for studying static data structure problems in
the classical setting. Thereafter, this model has been used extensively to prove
upper and lower bounds for several data structure problems (see [4], [1], [9], [2]).
A classical (s, w, t) cell probe scheme for f has two components: a storage scheme
and a query scheme. Given the data to be stored, the storage scheme stores it
as a table of s cells, each cell w bits long. The query scheme has to answer

? ? ? Part of this work was done while visiting UC Berkeley and DIMACS, under a Sarojini
Damodaran International Fellowship grant.

y Supported by NSF grant CCR–9987845 and a joint IAS-DIMACS postdoctoral fel-
lowship.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 358–369, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Lower Bounds in the Quantum Cell Probe Model 359

queries about the data stored. Given a query, the query scheme computes the
answer to that query by making at most t probes to the stored table, where each
probe reads one cell at a time. The storage scheme is deterministic whereas the
query scheme can be deterministic or randomised. The goal is to study tradeoffs
between s, t and w. For an overview of results in this model, see the survey by
Miltersen [8].

In this paper, we study static data structure problems, such as the static
membership problem and the static predecessor problem, when the algorithm is
allowed to query the table using a quantum superposition. We formalise this by
defining the quantum cell probe model similar to the quantum bit probe model
of [13]. We show a lower bound for the predecessor problem in a restricted version
of this model, which we call the address-only quantum cell probe model. In the
predecessor problem, the storage scheme has to store a subset S of size at most
n from the universe [m], such that given any query element x ∈ [m], one can
quickly find the predecessor of x in S.

Result 1 (Lower bound for predecessor): Suppose that we have
an address-only quantum cell probe solution to the static predecessor
problem, where the universe size is m and the subset size is at most
n, using nO(1) cells each containing O(logm) bits. Then the number
of queries is at least Ω(

√
log logm) as a function of m, and at least

Ω(log1/3 n) as a function of n.

We then consider the static membership problem. Here one has to answer
membership queries instead of predecessor queries. Yao [16] showed that if the
universe is large enough, any classical deterministic implicit scheme for the static
membership problem must make Ω(log n) probes to the table in the worst case.
An implicit scheme either stores a ‘pointer value’ (viz. a value which is not an
element of the universe) or an element of S in a cell. In particular, it is not
allowed to store an element of the universe which is not a member of S. We
generalise Yao’s result to the quantum setting.

Result 2 (informal statement): If the storage scheme is implicit then,
if the universe is large enough compared to the number of cells of storage,
the quantum query algorithm must make Ω(log n) probes.

Remarks:
1. Our address-only quantum cell probe model subsumes the classical cell probe
model. Hence, our lower bound for the static predecessor problem is a generalisa-
tion of a similar result shown for the classical cell probe model with randomised
query schemes, by Miltersen et al [9]. This lower bound is the best known for
classical randomised query schemes, if the storage scheme uses nO(1) cells each
containing O(logm) bits. Thus, our quantum lower bounds are as strong as the
best known classical randomised lower bounds. The best upper bound known
uses O(n) cells of storage, each cell contains O(logm) bits, and answers prede-
cessor queries with O(min(log logm/ log log logm,

√
log n/ log logn)) probes. In

360 P. Sen and S. Venkatesh

fact, it is a classical deterministic query scheme. For deterministic schemes, the
above bound is tight. Both the above bound, and its optimality for deterministic
schemes, have been proved by Beame and Fich [1].
2. It is known that querying in superposition gives a speed up over classical algo-
rithms for certain data retrieval problems, the most notable one being Grover’s
algorithm [5] for searching an unordered list of n elements using O(

√
n) quantum

queries. The power of quantum querying for data structure problems was stud-
ied in the context of static membership by Radhakrishnan et al. [13]. In their
paper, they worked in the quantum bit probe model, which is our quantum cell
probe model where the cell size is just one bit. They showed, roughly speaking,
that quantum querying does not give much advantage over classical schemes for
the set membership problem. Our result above seems to suggest that quantum
search is perhaps not more powerful than classical search for the predecessor
problem as well.
3. In the next section, we formally describe the “address-only” restrictions we
impose on the query algorithm. Informally, they amount to this: we allow quan-
tum parallelism over the ‘address lines’ going into the table, but we have a fixed
quantum state on the ‘data lines’. This restriction on quantum querying does not
make the problem trivial. In fact, many non-trivial quantum search algorithms,
such as Grover’s algorithm [5] and Hoyer and Neerbek’s algorithm [6], already
satisfy these restrictions.
4. For the static membership problem, Fredman, Komlós and Szemerédi [4] have
shown a classical deterministic cell probe solution where the storage scheme uses
O(n) cells each containing O(logm) bits, and the query scheme makes only a
constant number of probes. In this solution, the storage scheme may store ele-
ments of the universe in the table which are not members of the subset to be
stored. Hence the restriction that the storage scheme be implicit is necessary
for any such result. We note that implicit storage schemes include many of the
standard storage schemes like sorted array, hash table, search trees etc.

1.1 Techniques

The lower bounds for the static membership problem shown in the quantum
bit probe model [13], relied on linear algebraic techniques. Unfortunately, these
techniques appear to be powerless for the quantum cell probe model. In fact,
to show the lower bound above for the static predecessor problem, we use a
connection between quantum data structure problems and two-party quantum
communication complexity, similar to what was used by Miltersen, Nisan, Safra
and Wigderson [9] for showing the classical lower bound. They proved a techni-
cal lemma in classical communication complexity called the round elimination
lemma and derived from it lower bounds for various static data structure prob-
lems. In this paper we prove an analogue of their round elimination lemma for
the quantum communication complexity model, which we then use to show the
quantum lower bound for the static predecessor problem. The quantum round
elimination lemma also has applications to other quantum communication com-
plexity problems, which might be interesting on their own.

Lower Bounds in the Quantum Cell Probe Model 361

Suppose f : X × Y → Z is a function. In the communication game corre-
sponding to f , Alice gets a string x ∈ X, Bob gets a string y ∈ Y and they have
to compute f(x, y). In the communication game corresponding to f (n), Alice gets
n strings x1, . . . , xn ∈ X; Bob gets an integer i ∈ [n], a string y ∈ Y , and a copy
of the strings x1, . . . , xi−1. Their aim is to compute f(xi, y). Suppose a protocol
for f (n) is given where Alice starts, and her first message is a bits long, where a
is much smaller than n. Intuitively, it would seem that since Alice does not know
i, the first round of communication cannot give much information about xi, and
thus, would not be very useful to Bob. The round elimination lemma justifies
this intuition. Moreover, we show that this is true even if Bob also gets copies
of x1, . . . , xi−1, a case which is needed in many data structure applications.

Result 3 (Quantum round elimination lemma, informal state-
ment): A t round quantum protocol for f (n) with Alice starting, gives
us a t − 1 round protocol for f with Bob starting, with similar message
complexity and error probability.

Round reduction arguments have been given earlier in quantum communica-
tion complexity, most notably by Nayak, Ta-Shma and Zuckerman [10]. However,
for technical reasons, the previous arguments do not go far enough to prove lower
bounds for the communication games arising from data structure problems like
the predecessor problem. We need a technical quantum version of the round
elimination lemma of Miltersen et al [9], to prove the desired lower bounds.

We also study the set membership communication game MEMm,n, where
Alice is given an element x of a universe of size m, and Bob is given a subset S
of the universe of size at most n. They have to communicate and decide whether
x ∈ S. We consider bounded error one round quantum communication protocols
for this problem in both the cases of Alice and Bob speaking. We give tight
upper and lower bounds for this problem in both these cases.

Result 4: The bounded error one round quantum communication com-
plexity of the set membership problem MEMm,n, when Alice starts, is
Θ(log n+ log logm), and when Bob starts, is Θ(n+ log logm).

1.2 Organisation of the Paper

Section 2 contains definitions of various terms that will be used throughout
the paper. In Section 3, we discuss some lemmas that will be needed in the
proofs of the main theorems. Section 4 contains the proof of the quantum round
elimination lemma. In Section 5, we prove our quantum lower bounds for the
static predecessor problem. The proofs of our results on implicit storage schemes
for the static membership problem, and the one round quantum communication
complexity of set membership, as well as proofs of various lemmas which have
been omitted due to lack of space, can be found in the full version [14].

2 Definitions

In this section we define some of the terms which we will be using in this paper.

362 P. Sen and S. Venkatesh

2.1 The Quantum Cell Probe Model

A quantum (s, w, t) cell probe scheme for a static data structure problem f :
D × Q → A has two components: a classical deterministic storage scheme that
stores the data d ∈ D in a table Td using s cells each containing w bits, and
a quantum query scheme that answers queries by ‘quantumly probing a cell at
a time’ at most t times. Formally speaking, the table Td for the stored data is
made available to the query algorithm in the form of an oracle unitary transform
Od. To define Od formally, we represent the basis states of the query algorithm
as |j, b, z〉, where j ∈ {0, . . . , s−1} is a binary string of length log s, b is a binary
string of length w, and z is a binary string of some fixed length. Here, j denotes
the address of a cell in the table Td, b denotes the qubits which will hold the
contents of a cell and z stands for the rest of the qubits in the query algorithm.
Od maps |j, b, z〉 to |j, b ⊕ (Td)j , z〉, where (Td)j is a bit string of length w and
denotes the contents of the jth cell in Td. A quantum query scheme with t probes
is just a sequence of unitary transformations

U0 → Od → U1 → Od → . . . Ut−1 → Od → Ut

where Uj ’s are arbitrary unitary transformations that do not depend on the data
stored. For a query q ∈ Q, the computation starts in an observational basis state
|q〉|0〉, where we assume that the ancilla qubits are initially in the basis state |0〉.
Then we apply in succession, the operators U0, Od, . . . , Od, Ut, and measure the
final state. The answer consists of the values on some of the output wires of the
circuit. We require that the answer be correct with probability at least 2/3.

We now formally define the address-only quantum cell probe model. Here the
storage scheme is as in the general model, but the query scheme is restricted to
be ‘address-only’. This means that the state vector before a query to the oracle
is always a tensor product of a state vector on the address and work qubits (the
|j, z〉 part in |j, b, z〉 above), which can depend on the query element and the
probe number, and a state vector on the data qubits (the |b〉 part in |j, b, z〉
above), which is independent of the query element but can vary with the probe
number. Intuitively, we are only making use of quantum parallelism over the
address lines. This mode of querying a table subsumes classical querying, and
also many non-trivial quantum algorithms like Grover’s algorithm [5], Hoyer and
Neerbek’s algorithm [6] etc. satisfy this condition. For Grover, and Hoyer and
Neerbek, the state vector on the data qubit is (|0〉− |1〉)/√2, independent of the
probe number.

2.2 Quantum Communication Protocols

We consider two party quantum communication protocols as defined by Yao [17].
Suppose f : X×Y → Z is a function. In the communication game corresponding
to f , Alice gets a string x ∈ X, Bob gets a string y ∈ Y and they have to compute
f(x, y). We say a quantum protocol computes f with ε-error, if for any input
(x, y) ∈ X × Y , the probability that the protocol outputs the correct result

Lower Bounds in the Quantum Cell Probe Model 363

f(x, y) is at least 1 − ε. The term ‘bounded error quantum protocol’ means that
ε = 1/3.

We require that Alice and Bob make a secure copy of their inputs before
beginning the protocol. This is possible since the inputs to Alice and Bob are
in computational basis states. Thus the qubits of Alice and Bob holding their
inputs are never sent as messages, remain unchanged throughout the protocol
and are never measured i.e. some work qubits are measured to determine the
result of the protocol. We call such protocols secure. We will assume henceforth
that all our protocols are secure.

We now define a class of quantum protocols called safe protocols, which will
be used in the statement of the round elimination lemma.

Definition 1 (Safe quantum protocol). A [t, c, a, b]A safe quantum protocol
P is a secure protocol where the per round message lengths of Alice and Bob
are a and b qubits respectively, Alice starts first and the communication goes on
for t rounds. The notation [t, c, a, b]B means the same as above, except that Bob
starts first. We allow the first message to have an overhead of c qubits i.e. if
Alice starts, the first message is a + c qubits long and if Bob starts, the first
message is b+ c qubits long. The density matrix of the overhead is independent
of the inputs to Alice and Bob. If c = 0, we abbreviate the notation to a [t, a, b]A

protocol.

Remark: The concept of a safe quantum protocol may look strange at first. The
reason we need to define it, intuitively speaking, is as follows. The communication
games arising from data structure problems often have an asymmetry between
the message lengths of Alice and Bob. This asymmetry is crucial to prove lower
bounds on the number of rounds of communication. In the previous quantum
round reduction arguments, the complexity of the first message in the protocol
increases quickly as the number of rounds is reduced and the asymmetry gets
lost. This leads to a problem where the first message soon gets big enough to
potentially convey substantial information about the input of one player to the
other, destroying any hope of proving strong lower bounds on the number of
rounds. The concept of a safe protocol allows us to get around this problem.
We show through a careful quantum information theoretic analysis of the round
reduction process, that in a safe protocol, though the complexity of the first
message increases a lot, this increase is confined to the safe overhead and so,
the information content does not increase much. This gives us an asymmetry in
the information flow. This is sufficient to let the round elimination arguments
go through in various applications.

In this paper we will deal with quantum protocols with public coins. Intu-
itively, a public coin quantum protocol is a probability distribution over (coin-
less) quantum protocols. We shall henceforth call the standard definition of a
quantum protocol as coinless. Our definition is similar to the classical scenario,
where a randomised protocol with public coins is a probability distribution over
deterministic protocols. We note however, that our definition of a public coin
quantum protocol is not the same as that of a quantum protocol with prior en-

364 P. Sen and S. Venkatesh

tanglement, which has been studied previously (see e.g. [3]). Our definition is
weaker, in that it does not allow the unitary transformations of Alice and Bob
to alter the ‘public coin’.

Definition 2 (Public coin quantum protocol). In a quantum protocol with
a public coin, there is a shared quantum state called a public coin, of the form∑

c

√
pc|c〉, where pc are non-negative real numbers and

∑
pc = 1. Alice and Bob

make a secure copy of the coin before commencing the protocol. Thus, if the coin
is in a basis state |c〉, the unitary transformations of Alice and Bob do not alter
it. The coin is never measured.

Hence, one can think of the public coin quantum protocol to be a probability
distribution, with probability pc, over coinless quantum protocols indexed by the
coin basis states c. A safe public coin quantum protocol is thus, a probability
distribution over safe coinless quantum protocols.

Remark: We need to define public coin quantum protocols, so as to make use of
the harder direction of Yao’s minimax lemma [15]. The minimax lemma is the
main tool which allows us to convert average case round reduction arguments
to worst case arguments. We need worst case type round reduction arguments
in proving lower bounds for the rounds complexity of communication games
arising from data structure applications. This is because many of these lower
bound proofs use some notion of “self-reducibility”, arising from the original
data structure problem, which fails to hold in the average case.

For an input x, y, we define the error εPx,y of the (coinless or public coin)
protocol P to be the probability that the result of P on x, y is not equal to
f(x, y). For a coinless quantum protocol P , given a probability distribution µ
on the inputs x, y of a specified size, we define the average error εPµ of P with
respect to µ as the expectation over µ of the error of P on inputs x, y. We define
εP to be worst case error of P on inputs x, y.

In the proof of the round elimination lemma, we need to do parallel repe-
titions of public coin protocols. We also construct new protocols from old ones
using both the directions of Yao’s minimax lemma. We note that all these oper-
ations preserve the “safety” of the protocol.

3 Preliminaries

In this section we state some facts which will be useful in what follows.

3.1 Quantum Cell Probe Complexity and Communication

In this subsection, we describe the connection between the quantum cell probe
complexity of a static data structure problem and the quantum communication
complexity of an associated communication game. Let f : D × Q → A be a
static data structure problem. Consider a two-party communication problem
where Alice is given a query q ∈ Q, Bob is given data d ∈ D, and they have to
communicate and find out the answer f(d, q). We have the following lemma.

Lower Bounds in the Quantum Cell Probe Model 365

Lemma 1. Suppose we have a quantum (s, w, t)-cell probe solution to the static
data structure problem f . Then we have a [2t, log s+w, log s+w]A safe coinless
quantum protocol for the corresponding communication problem. If the query
scheme is address-only, we can get a [2t, log s, log s+w]A safe coinless quantum
protocol.

Proof. The protocol just simulates the cell probe solution. Note that if the query
scheme is address-only, the messages from Alice to Bob need consist only of the
‘address’ part. The details are omitted. ut

3.2 Background from Quantum Information Theory

In this subsection, we discuss some basic facts from quantum information theory
that will be used in the proof of the round elimination lemma. We follow the
notation of Nayak, Ta-Shma and Zuckerman’s paper [10]. For a good account of
quantum information theory, see the book by Nielsen and Chuang [12].

If A is a quantum system with density matrix ρ, then S(A) ∆= S(ρ) ∆=
−Tr ρ log ρ is the von Neumann entropy of A. If A,B are two disjoint quantum
systems, their mutual information is defined as I(A : B) ∆= S(A)+S(B)−S(AB).

Suppose X is a classical random variable. Let X be in a mixed state {px, |x〉},
|x〉 orthonormal. Let Q be a quantum encoding of X i.e. it is an encoding |x〉 7→
σx, where σx is a density matrix. Thus, the joint density matrix of (X,Q) is
∑

x px|x〉〈x| ⊗ σx. Define σ ∆=
∑

x pxσx to be the density matrix of the average
encoding. Then, S(XQ) = S(X) +

∑
x pxS(σx), and hence, I(X : Q) = S(σ) −∑

x pxS(σx).
If X can be written as X = X1X2, where X1, X2 are classical random vari-

ables, and Q is a quantum encoding of X, we can define I((X1 : Q)|X2 = x2) to
be the mutual information between X1 and Q when X2 is fixed to x2.

We now state the following propositions, whose proofs are to be found in the
full version [14].

Proposition 1. Suppose M = M1M2 is a quantum encoding of a classical ran-
dom variable X, where the density matrix of M2 is independent of X. Let M1
be supported on a qubits. Then, I(X : M) ≤ 2a.

Proposition 2. Suppose M is a quantum encoding of a classical random vari-
able X. Suppose X = X1X2 . . . Xn, where the Xi are classical independent ran-
dom variables. Then, I(X1 . . . Xn : M) =

∑n
i=1 I(Xi : MX1 . . . Xi−1).

Proposition 3. Let X,Y be classical random variables and M be a quantum
encoding of (X,Y). Then I(Y : MX) = I(X : Y) + EX [I((Y : M)|X = x)].

We use the trace norm on linear operators to measure the “distance” between
two density matrices. For a linear operator A, the trace norm of A is defined
as ‖A‖t

∆= Tr
√
A†A. The trace distance between two density matrices ρ1, ρ2,

366 P. Sen and S. Venkatesh

‖ρ1 − ρ2‖t, bounds the `1 distance between the probability distributions on the
outcomes obtained by a measurement on ρ1 and ρ2.

In the proof of the round elimination lemma, we will use the “average encod-
ing theorem” in the strong form by Klauck [7]. We state it below in the version
required for our purposes, for completeness. A short proof sketch of the theorem
can be found in the full version [14].

Theorem 1 (Average encoding theorem). Let X,Q be two disjoint quan-
tum systems where X is a classical random variable, which takes value x with
probability px, and Q is a quantum encoding x 7→ σx of X. Let the density matrix
of the average encoding be σ ∆=

∑
x pxσx. Then

∑

x

px‖σx − σ‖t ≤
√

(2 ln 2)I(X : Q)

4 The Quantum Round Elimination Lemma

In this section we prove our round elimination lemma for safe public coin quan-
tum protocols. Since a public coin quantum protocol can be converted to a
coinless protocol at the expense of an additional “safe” overhead in the first
message, we also get a similar round elimination lemma for coinless protocols.
We can decrease the overhead to logarithmic in the total bit size of the inputs
by a technique similar to the public to private coins conversion for classical ran-
domised protocols [11]. But since the statement of the round elimination lemma
is cleanest for safe public coin quantum protocols, we give it below in this form
only.

Lemma 2 (Round elimination lemma). Suppose f : X × Y → Z is a
function. Suppose the communication game f (n) has a [t, c, a, b]A safe pub-
lic coin quantum protocol with worst case error at most δ. Then there is a
[t− 1, c+ a, a, b]B safe public coin quantum protocol for f with worst case error
at most ε ∆= 2δ + 2(8a ln 2/n)1/4.

Proof. By the harder direction of Yao’s minimax lemma [15], it suffices to give,
for any probability distribution D on X × Y , a [t − 1, c + a, a, b]B safe coinless
quantum protocol P for f with average distributional error εPD ≤ ε. To this end,
we will first construct a probability distribution D∗ on Xn × [n] × Y . By the
easier direction of the minimax lemma, we will get a [t, c, a, b]A safe coinless
protocol P ∗ for f (n) with distributional error, for distribution D∗, εP

∗
D∗ ≤ δ. We

shall construct the desired protocol P from the protocol P ∗.
The distribution D∗ is constructed as follows. Choose i ∈ [n] uniformly at

random. Choose independently, for each j ∈ [n], (xj , yj) ∈ X × Y according to
distribution D. Set y = yi and throw away yj , j 6= i.

Let M be the first message of Alice in P ∗. By the definition of a safe pro-
tocol, M has two parts, M1 a qubits long, and the “safe” overhead M2, c
qubits long. Let the input to Alice be denoted by the classical random vari-
able X = X1X2 . . . Xn where Xi is the classical random variable corresponding

Lower Bounds in the Quantum Cell Probe Model 367

to the ith input to Alice. Define εP
∗

D∗,i
x1,...,xi−1

to be the average error of P ∗ under

distribution D∗ when i is fixed and X1, . . . , Xi−1 are fixed to x1, . . . , xi−1. From
Propositions 1, 2, 3, using the fact that under distribution D∗ X1, . . . , Xn are
independent classical random variables, we get that

2a/n ≥ I(X : M)
n

= Ei[I(Xi : MX1, . . . , Xi−1)]
= Ei,X [I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1)]

Also

δ ≥ εP
∗

D∗ = Ei,X

[

εP
∗

D∗,i
x1,...,xi−1

]

By two applications of Markov’s inequality, we see that there exists a choice of i
and x1, . . . , xi−1 such that, if we define a new distribution D̃ to be distribution
D∗ where i is fixed to the above choice andX1, . . . , Xi−1 are fixed to x1, . . . , xi−1,
then the error of the protocol P ∗ on distribution D̃ εP

∗

D̃
≤ 2δ and the mutual

information between Xi and M under distribution D̃ ID̃(Xi : M) ≤ 4a/n.
Consider now the protocol P ′ for the function f defined as follows. P ′ is

a [t, c, a, b]A safe coinless quantum protocol. Alice is given x ∈ X and Bob is
given y ∈ Y . Both Alice and Bob set i to the above choice (which is known
to both parties) and X1 . . . Xi−1 to the known values x1 . . . xi−1. Alice puts an
independent copy of a pure state |ψ〉 for each of the inputs Xi+1, . . . , Xn. She
sets Xi = x and Bob sets his input Y = y. Then they run protocol P ∗ on these
inputs. Here |ψ〉 ∆=

∑
x∈X

√
px|x〉, where px is the (marginal) probability of x

under distributionD. Since P ∗ is a secure protocol, the probability that P ′ makes
an error for an input (x, y), εP

′
x,y, is the average probability of error of P ∗ under

distribution D̃ with Xi, Y fixed to x, y. Hence, the average probability of error
of P ′ under distribution D εP

′
D = εP

∗

D̃
≤ 2δ. Also, because of the “secureness”

of P ∗, we notice that the mutual information between Xi and the first message
of P ′ (under distribution D) is the same as the mutual information between
Xi and the first message of P ∗ (under distribution D̃). Thus, if M denotes the
first message of P ′ and X denotes the register Xi holding the input x, then the
mutual information under distribution D, ID(X : M) ≤ 4a/n.

Since in protocol P ′ the first message of Alice has small mutual information
with her input, we can give an argument similar to Nayak et al. [10], and finally
get a [t − 1, c + a, a, b]B safe coinless quantum protocol P for f with εPD ≤
εP

′
D + 2((2 ln 2)ID(X : M))1/4 ≤ 2δ + 2(8a ln 2/n)1/4 = ε. For this we have to

use the version of the “average encoding theorem” as in Theorem 1, instead of
the version of [10], which held for uniform probability distributions only. We
observe, in the construction of P from P ′, that though there is a overhead of
a+ c qubits on the first message of Bob, it is a “safe” overhead. The details are
left to the full version [14].

This completes the proof of the round elimination lemma. ut
From this lemma, we can prove the round elimination lemma in the form it

will be used in various applications.

368 P. Sen and S. Venkatesh

Lemma 3 (Round elimination lemma for fixed error). Suppose f : X ×
Y → Z is a function. There exist universal constants R,C such that the fol-
lowing holds: Suppose that the communication game f (Ra) has a [t, c, a, b]A safe
public coin quantum protocol with error probability at most 1/3. Then the com-
munication game f has a [t − 1, C(a + c), Ca, Cb]B safe public coin quantum
protocol with error probability at most 1/3. For example, R = 104 and C = 51
suffices.

Proof. (Sketch) Repeat the [t, c, a, b]A protocol for f (Ra) C times in parallel
and take the majority of the results. This brings the error probability down to
a suitably small value. Now apply Lemma 2 on the repeated protocol. ut

5 Quantum Lower Bounds for Predecessor

In this section, we prove our lower bounds for the static predecessor problem in
the address-only quantum cell probe model. The proof is essentially similar to
the classical proof in Miltersen et al. [9], and hence we give only a brief sketch.

Theorem 2. Suppose we have a (nO(1), O(logm), t) quantum address-only cell
probe solution to the static predecessor problem, where the universe size is m and
the subset size is at most n. Then the number of queries t is at least Ω(log1/3 n)
as a function of n, and it is at least Ω(

√
log logm) as a function of m.

Proof. (Sketch) We basically imitate the proof of Miltersen et al [9], but in
our quantum setting. By Lemma 1, it suffices to prove a lower bound on the
number of rounds of a communication game. For that, we alternately use “self-
reducibility” arguments and the round elimination lemma (Lemma 3) to keep
reducing the number of rounds in the communication game. One just has to
notice that the applicability of Lemma 3 does not depend on the “safe” overhead
at all, but rather on the per round message complexity of the first player. This
allows the quantum arguments to go through in a manner similar to the classical
arguments, and hence, proves our theorem. ut

Miltersen et al. also apply the round elimination lemma to prove lower bounds
for other data structure problems and communication complexity problems. We
remark that we can extend all those results in a similar fashion to the quantum
world.

Acknowledgements. We thank Ashwin Nayak, Jaikumar Radhakrishnan and
Rahul Jain for useful discussions, Hartmut Klauck for his clarifications on the
average encoding theorem, and Peter Bro Miltersen for telling us the “state-of-
the-art” about the classical complexity of the static predecessor problem. We
also thank Jaikumar Radhakrishnan for reading an early draft of this paper and
helping us to improve the presentation of this paper.

Lower Bounds in the Quantum Cell Probe Model 369

References

[1] P. Beame and F. Fich. Optimal bounds for the predecessor problem. In Pro-
ceedings of the 31st Annual ACM Symposium on Theory of Computing, pages
295–304, 1999.

[2] H. Buhrman, P. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors
optimal? In Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pages 449–458, 2000.

[3] R. Cleve, W. van Dam, , M. Nielsen, and A. Tapp. Quantum entanglement and
the communication complexity of the inner product function. In Proceedings of
the 1st NASA International Conference on Quantum Computing and Quantum
Communications, Lecture Notes in Computer Science, vol. 1509, pages 61–74,
1998. Also quant-ph/9708019.

[4] M. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the Association for Computing Machinery,
31(3):538–544, 1984.

[5] L. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing, pages
212–219, 1996. Also quant-ph/9605043.

[6] P. Høyer and J. Neerbek. Bounds on quantum ordered searching. Manuscript at
quant-ph/0009032, September 2000.

[7] H. Klauck. On rounds in quantum communication. Manuscript at quant-
ph/0004100, April 2000.

[8] P. B. Miltersen. Cell probe complexity — a survey. Invited talk at the pre-
conference workshop on Advances in data structures preceding the 19th conference
on the Foundations of Software Technology and Theoretical Computer Science,
December 11–12, 1999, Chennai, India. Also available from
http://www.daimi.au.dk/˜bromille/Papers/survey3.ps.

[9] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sci-
ences, 57:37–49, 1998.

[10] A. Nayak, A. Ta-Shma, and D. Zuckerman. Interaction in quantum communica-
tion complexity. Manuscript at quant-ph/0005106, May 2000.

[11] I. Newman. Private vs common random bits in communication complexity. In-
formation Processing Letters, 39:67–71, 1991.

[12] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[13] J. Radhakrishnan, P. Sen, and S. Venkatesh. The quantum complexity of set
membership. In Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science, pages 554–562, 2000. Also quant-ph/0007021.

[14] P. Sen and S. Venkatesh. Lower bounds in the quantum cell probe model. Full
version. Manuscript at quant-ph/0104100.

[15] A. C-C. Yao. Probabilistic computations: towards a unified measure of complexity.
In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, pages
209–213, 1977.

[16] A. C-C. Yao. Should tables be sorted? Journal of the Association for Computing
Machinery, 28(3):615–628, 1981.

[17] A. C-C. Yao. Quantum circuit complexity. In Proceedings of the 34th Annual
IEEE Symposium on Foundations of Computer Science, pages 352–361, 1993.

Axiomatizations for Probabilistic Bisimulation?

Emanuele Bandini and Roberto Segala

Department of Computer Science
Università di Bologna - Italy

Abstract. We study complete axiomatizations for different notions of
probabilistic bisimulation on a recursion free process algebra with prob-
ability and nondeterminism under alternating and non-alternating se-
mantics. The axioms that do not involve probability coincide with the
original axioms of Milner. The axioms that involve probability differ de-
pending on the bisimulation under examination and on the semantics
that is used, thus revealing the implications of the different choices.

1 Introduction

Probabilistic process algebras have been studied extensively in the literature [1,3,
4,6,8,13,16], and classical concepts from concurrency theory have been extended
to the probabilistic case. Probabilistic models of concurrent systems are classified
in [5] into reactive, generative, and stratified. Both in reactive and generative
systems the transitions that leave from a state are equipped with probabilities: in
generative systems the sum of the probabilities of the transitions that leave from
a state is required to be 1, while in reactive systems the sums of the probabilities
of the transitions that leave from a state and are labeled by the same action are
required to be 1. The stratified model imposes some extra structure which is not
relevant for the purpose of this paper.

Motivated by the fact that neither reactive nor generative nor stratified sys-
tems model real nondeterminism in the process algebraic sense, and motivated
as well by the desire to separate clearly probability from nondeterminism, in
[11] a model of probabilistic automata is introduced and studied. Probabilistic
automata, and more precisely the simple probabilistic automata of [11], are like
ordinary automata (labeled transition systems) except that a transition leads
to a probability distribution over states rather than to a single state. Thus, the
choice between different transitions is a nondeterministic choice, while the choice
of a state within a transition is a probabilistic choice. A similar model was pro-
posed in [6] based on the Concurrent Markov Chains of [15]. In such model,
also known as the alternating model, there is a clear distinction between non-
deterministic states, that enable only transitions leading to a unique state, and
probabilistic states, that enable a unique transition leading to a distribution over
states. There is a strict alternation between nondeterministic and probabilistic

? Supported by MURST project TOSCA.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 370–381, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Axiomatizations for Probabilistic Bisimulation 371

states. Both the alternating model and the model of [11], which in contraposi-
tion to the alternating model is also known as the non-alternating model, are
conservative extensions of labeled transition systems and in several contexts can
be seen as the same model from the point of view of expressiveness.

Yet, the alternating and non-alternating models do have some differences
that can be seen already when we study bisimulation relations. Probabilistic
bisimulation was first defined in [8], then extended to the alternating model in
[6] and extended to the non-alternating model in [12]. While defining proba-
bilistic bisimulation in the non-alternating model it was shown in [12] that we
obtain two different relations if we simulate a transition using deterministic and
randomized schedulers, respectively. Such difference does not appear in the al-
ternating model unless we change the definitions of probabilistic bisimulations
so that probabilistic states are not taken into account.

In this paper we show the differences and similarities of the alternating and
non-alternating models by analyzing the axiomatizations of the different bisimu-
lation relations in the different frameworks. We define a process algebra without
recursion and provide it with an alternating and non-alternating semantics. We
then define a strong bisimulation relation that coincides with the relation of [6]
in the alternating model and with the bisimulation of [12] in the non-alternating
model. We also define the version of strong bisimulation, called strong proba-
bilistic bisimulation, where a transition can be simulated by using randomized
schedulers. Finally, we study the complete axiomatizations of all the relations
that we introduce. Besides obtaining axioms where probability and nondetermin-
ism are separated clearly, thus confirming the original goal behind the definitions
of the models, we discover that the axiomatizations of strong bisimulation are
the same in the alternating and non-alternating models. Furthermore, the ax-
iomatizations of strong bisimulation and strong probabilistic bisimulation are
the same in the alternating model, while they differ by an axiom that expresses
the ability to combine transitions probabilistically in the non-alternating model.

We also study the weak bisimulations of [12], showing that the alternating
and non-alternating semantics are incomparable.

Other studies of axiomatizations for probabilistic bisimulation relations ap-
pear in [2,6,7,14]. Of these axiomatizations, only [6] deals with a reactive model.
The axiomatization of [6] includes recursion as well.

The rest of the paper is structured as follows. Section 2 gives some preliminary
definitions and notational conventions; Section 3 defines the Probabilistic Pro-
cess Algebra (PPA) and its alternating and non-alternating semantics; Section 4
defines the bisimulation relations that we axiomatize; Section 5 axiomatizes the
relations of Section 4, discusses the axioms, and outlines the main ideas behind
the proofs of completeness; Section 6 contains some concluding remarks.

2 Preliminaries

A discrete probability measure over a set X is a function µ : 2X → [0, 1] such
that µ(X) = 1 and for each countable family {Xi} of pairwise disjoint elements

372 E. Bandini and R. Segala

of 2X , µ(∪iXi) =
∑

i µ(Xi). Denote by Disc(X) the set of discrete probability
measures over X. Given an element x of X we denote by δ(x) the probability
measure µ such that µ({x}) = 1, and we call it the Dirac measure on x. Given two
measures µ1, µ2 and a real number p ∈ [0, 1] we define the convex combination
pµ1 + (1 − p)µ2 of µ1 and µ2 to be the probability measure µ such that, for each
set Y , µ(Y) = pµ1(Y) + (1 − p)µ2(Y).

A probabilistic automaton is a tuple (Q, q̄, Σ,D), where Q is a set of states,
q̄ ∈ Q is a start state, Σ is a set of actions, and D ⊆ Q×Σ×Disc(Q) is a transition
relation. An ordinary automaton can be seen as a probabilistic automaton where
each transition leads to a Dirac measure. Probabilistic automata are used as the
basis to give an operational semantics to our probabilistic process algebra.

3 Probabilistic Process Algebra

We denote by A the set of observable actions or labels, and let Act = L∪{τ} be
the full set of actions. We call τ the silent action and we let α range over Act .

Let NProc denote the set of nondeterministic processes, ranged over by E,
and PProc denote the set of probabilistic processes, ranged over by P . Finally,
let Proc 4= NProc ∪ PProc denote the set of processes, ranged over by Q. The
syntax for our Probabilistic Process Algebra is given by the following rules:

E ::= 0 | E + E | α.P
P ::= ∆(E)|P ⊕p P

The expression 0 is the inactive process having no transitions. The + opera-
tor is the classical nondeterministic sum as defined in [9]. Process α.P performs
action α and then offers a probabilistic choice described by the probabilistic
process P . A probabilistic process is either a Dirac distribution over a single
nondeterministic process, described by ∆(E), or a combination of the distribu-
tions associated with two probabilistic processes, described by the ⊕p operator.

For notational convenience we can represent sums of nondeterministic pro-
cesses by

∑
i∈I Ei and sums of probabilistic processes by

∑• i∈I [pi]Ei. Such rep-
resentations are justified by the fact that in this paper both the operators + and
⊕p turn out to be associative and commutative. We let µ range over distribu-
tions over nondeterministic processes and sometimes we represent a distribution
over nondeterministic processes by {[pi]Ei}i∈I .

Note that PPA is characterized by a strict alternation between probabilistic
and nondeterministic processes as in [6]. The alternation is kept in the alternating
semantics of the calculus and is removed in the non-alternating semantics.

Table 1 contains the operational semantics of PPA, where E
α−→ µ describes a

transition labeled by α that leaves from E and leads to a probability distribution
µ, while P 7−→ µ states that the probability distribution associated with P is µ.
The rules of Table 1 describe the transitions of a probabilistic automaton; thus,
the target of a transition of Table 1 is a probability distribution over expressions
rather than a single expression.

Axiomatizations for Probabilistic Bisimulation 373

Table 1. Operational semantics of PPA

Probabilistic rules

idle
−

∆(E) 7−→ δ(E)
pchoice

P1 7−→ µ1 P2 7−→ µ2

P1 ⊕p P2 7−→ pµ1 + (1 − p)µ2

Common nondeterministic rules

lchoice
E1

α−→ µ

E1 + E2
α−→ µ

rchoice
E2

α−→ µ

E1 + E2
α−→ µ

P − idle
P 7−→ µ

P
τ−→ µ

Rule for non alternating model Rule for alternating model

NA − prefix
P 7−→ µ

α.P
α−→ µ

A − prefix
−

α.P
α−→ δ(P)

Table 1 is subdivided into three sections. The first section defines the prob-
ability distributions associated with a probabilistic process. Specifically, process
∆(E) is associated with a Dirac distribution over the single process E (rule idle),
while the probability distribution associated with the probabilistic combination
P1 ⊕p P2 is obtained by convex combination weighted by p of the distributions
associated with P1 and P2, respectively (rule pchoice). The second section of
Table 1 describes the operators whose semantics does not change in the alter-
nating and non-alternating interpretations. Specifically, the semantics of the +
operator is the same as in CCS (rules lchoice and rchoice). Rule P-idle de-
scribes the unique transition that is enabled from a probabilistic process, which
moves silently to the distribution associated with the process. This rule is essen-
tial in the alternating semantics, where probabilistic processes can be reached;
however, the same rule is convenient also in the non-alternating semantics to
obtain an axiomatization of probabilistic bisimulation that reveals better the re-
lationship between the two semantics. The third section of Table 1 contains the
rules for action-prefixing, which constitute the key difference between the alter-
nating and non-alternating semantics. In the non-alternating semantics process
α.P moves with action α to the distribution identified by P (rule NA-prefix),
while in the alternating semantics process α.P moves with action α to process

374 E. Bandini and R. Segala

P (rule A-prefix) from which a silent move leads to the distribution identified
by P (cf. rule P-idle).

Remark 1. There is a folklore idea of how an alternating system can be trans-
lated into a non-alternating system and vice versa. Specifically, to move from an
alternating system to a non-alternating system it is sufficient to remove all the
probabilistic states and collapse the transitions that go through a probabilistic
state, while to move from a non-alternating system to an alternating system
it is sufficient to split each transition into two transitions, the first of which
leads to a probabilistic state. The operational semantics of Table 1 respects the
folklore transformation: for each process E the transformation of its alternating
semantics coincides with its non-alternating semantics and vice versa.

4 Bisimulation

In this section we define bisimulation relations in the strong and weak version
based on deterministic and randomized schedulers. In the non-alternating model
our definition of strong and weak (probabilistic) bisimulation coincide with those
of [12]; in the alternating model strong bisimulation coincides with the strong
bisimulation of [6], while weak probabilistic bisimulation coincides with the weak
bisimulation of [10].

4.1 Lifting Equivalence Relations

An equivalence relation over Proc can be lifted to a relation over distributions
over Proc by stating that two distributions are equivalent if they assign the same
probability to the same equivalence classes [8].

Formally, let R be an equivalence relation over Proc. Two probability distri-
butions µ1 and µ2 are R-equivalent, written µ Rp µ′, iff for every equivalence
class E ∈ Proc/ R we have µ(E) = µ′(E).

4.2 Strong Bisimulation

An equivalence relation R⊆ Proc × Proc is a strong bisimulation iff, for all
Q1, Q2 ∈ Proc such that Q1 R Q2, and for all α ∈ Act,

– if Q1
α−→ µ1, then there exists µ2 such that Q2

α−→ µ2 and µ1 Rp µ2;
– if Q2

α−→ µ2, then there exists µ1 such that Q1
α−→ µ1 and µ1 Rp µ2.

We write Q1 ∼ Q2 whenever there is a strong bisimulation that relates Q1, Q2.

Proposition 1. Strong bisimulation is a congruence in PPA.

In a strong bisimulation a transition of a process must be simulated by a single
transition of the other process chosen deterministically among the transitions
that are enabled. It was observed in [12] that deterministic schedulers may not
be enough in a randomized setting.

Axiomatizations for Probabilistic Bisimulation 375

Example 1. Consider E
4= α.(∆(E1) ⊕1/2 ∆(E2)) + α.(∆(E1) ⊕1/3 ∆(E2)) and

F
4= α.(∆(E1) ⊕1/2 ∆(E2)) + α.(∆(E1) ⊕5/12 ∆(E2)) + α.(∆(E1) ⊕1/3 ∆(E2))

whose non-alternating semantics is represented in Figure 1. Each bundle of edges
corresponds to a transition. The difference between E and F is that F enables

Fig. 1. Two processes not strongly bisimilar

an additional transition which is obtained by combining probabilistically the two
transitions of E. There is no strong bisimulation between E and F if E1 and E2
are not bisimilar; however, E and F would be bisimilar if we permit the use of
randomized schedulers to simulate the extra transition of F .

Example 1 suggests a new bisimulation relation where it is possible to com-
bine several transitions labeled by the same action in a unique transition. We
say that there is a combined transition labeled by action α from a process E to a
distribution µ, denoted by E

α−→C µ, iff there exists a collection {µi, pi}i∈I of dis-
tributions and probabilities such that

∑
pi = 1, µ =

∑• piµi, and ∀i : E
α−→ µi.

An equivalence relation R⊆ Proc ×Proc is a strong probabilistic bisimulation
iff, for all Q1, Q2 ∈ Proc such that Q1 R Q2, and for all α ∈ Act,

– if Q1
α−→ µ1, then there exists µ2 such that Q2

α−→C µ2 and µ1 Rp µ2;
– if Q2

α−→ µ2, then there exists µ1 such that Q1
α−→C µ1 and µ1 Rp µ2.

We write Q1 ∼C Q2 whenever there is a strong probabilistic bisimulation that
relates Q1 and Q2.

Proposition 2. Strong probabilistic bisimulation is a congruence in PPA.

It is easy to observe that strong bisimulation is just a particular case of
strong probabilistic bisimulation. An important result is that in the alternating
semantics strong bisimulation coincides with strong probabilistic bisimulation
(cf. Proposition 3). Thus, randomized schedulers do not add any extra power
to the ability of simulating a transition. Roughly speaking, in the alternating
model each probability distribution is declared explicitly through a probabilistic
state before being drawn. Strong bisimulation must preserve the declarations as
well, and on the other hand there is no way to declare the combination of two
transitions.

Proposition 3. Under the alternating semantics a strong probabilistic bisimu-
lation is also a strong bisimulation.

376 E. Bandini and R. Segala

Table 2. Weak transitions

E
α−→ µ

E
α=⇒ µ

E
τ−→ µ

E =⇒ µ

−
E =⇒ δ(E)

E
α=⇒ µ ∀Ei2µEi =⇒ µi

E
α=⇒
∑

Ei2µ

µ(Ei)µi

E =⇒ µ ∀Ei2µEi
α=⇒ µi

E
α=⇒
∑

Ei2µ

µ(Ei)µi

Proof sketch. Let ∼C be a strong probabilistic bisimulation and suppose Q1 ∼C

Q2. If Q1 and Q2 are probabilistic processes, then they enable only one transition,
the silent transition that selects probabilistically one process. Thus, there is
nothing to combine. If Q1 and Q2 are nondeterministic processes and Q1

α−→ µ,
then µ is a Dirac distribution over some probabilistic process P . The combined
transition Q2

α−→C µ′ that simulates Q1
α−→ µ leads to a distribution that

assigns probability 1 to the equivalence class of P . Thus, any transition from Q2
that contributes to Q2

α−→C µ′ leads to distribution that assigns probability 1
to the equivalence class of P . This shows that Q1 ∼ Q2.

4.3 Weak Bisimulation

Weak bisimulation is the same as strong bisimulation except that we replace
transitions by weak transitions. That is, we are not interested in observing the
silent behavior of a system. A weak transition, whose formal definition is given
in Table 2, is a probabilistic extension of the weak transitions of [9]. We schedule
several transitions as long as they always lead to the occurrence of a single exter-
nal action α, possibly interleaved by silent actions. For notational convenience,
given a sequence s of actions in Act, we denote by ŝ the sequence obtained from
s by removing all τ ’s.

An equivalence relation R⊆ Proc × Proc is a weak bisimulation iff, for all
Q1, Q2 ∈ Proc such that Q1 R Q2, and for all α ∈ Act,

– if Q1
α−→ µ1 then there exists µ2 such that Q2

α̂=⇒ µ2 and µ1 Rp µ2;

– if Q2
α−→ µ2 then there exists µ1 such that Q1

α̂=⇒ µ1 and µ1 Rp µ2.

We write Q1 ≈ Q2 whenever there is a weak bisimulation that relates Q1 and
Q2.

We can define a weak combined transition relation (=⇒C), as we have done
in the strong case, by combining simple weak transitions. Thus, it is possible
to define weak probabilistic bisimulation by replacing weak transitions by weak
combined transitions in the definition above.

Axiomatizations for Probabilistic Bisimulation 377

4.4 Observation Congruence

As in ordinary CCS [9], weak bisimulation is not preserved by the nondetermin-
istic choice operator +. The classical example is given by the pair of processes
a.0 ≈ τ.a.0, which are equivalent both according to weak bisimulation and weak
probabilistic bisimulation, where a.0 + b.0 6≈ τ.a.0 + b.0. Following the classical
approach of [9], we define observation congruence and probabilistic observation
congruence.

Two processes Q1, Q2 are congruent, written Q1 = Q2, if Q1 and Q2 are both
nondeterministic or both probabilistic, and for all α ∈ Act,

– if Q1
α−→ µ1 then there exists µ2 such that Q2

α=⇒ µ2 and µ1 ≈ µ2
– if Q2

α−→ µ2 then there exists µ1 such that Q1
α=⇒ µ1 and µ1 ≈ µ2

Two processes Q1, Q2 are probabilistically congruent, written Q1 =C Q2, if
Q1 and Q2 are both nondeterministic or both probabilistic, and for all α ∈ Act,

– if Q1
α−→ µ1 then there exists µ2 such that Q2

α=⇒ µ2 and µ1 ≈C µ2
– if Q2

α−→ µ2 then there exists µ1 such that Q1
α=⇒ µ1 and µ1 ≈C µ2

The only difference between congruence and weak bisimulation is that in the

former there is α=⇒ instead of α̂=⇒. This implies that every τ -transition of Q1
is related with at least one τ -transition of Q2, and vice versa. Observe that this
strong relationship is requested only for the first transitions of both Q1 and Q2:
in fact, it is sufficient that µ1 ≈p µ2, not µ1 =p µ2.

Proposition 4. The relations = and =C are congruences in PPA.

5 Axiomatizations

5.1 Discussion of the Axioms

The axioms that characterize completely the bisimulation relations of this paper
are listed in Table 3. The left side of Table 3 contains the axioms for the non-
alternating semantics of PPA, while the right part contains the axioms for the
alternating semantics of PPA. Table 3 is also subdivided into four horizontal sec-
tions. The first and third sections axiomatize strong bisimulation. By adding the
second section we obtain complete axiomatizations for observation congruence.
Finally, by adding the fourth section we obtain complete axiomatizations for the
probabilistic versions of our bisimulations, where axiom CW holds only for the
weak relations. Thus, sections 1, 3 and 4 provide complete axiomatizations for
the strong probabilistic bisimulations.

Observe that there is no C axiom in the right column of Table 3, which
confirms that strong bisimulation is the same under randomized and non-
randomized schedulers in the alternating semantics. Furthermore, there is no
CW axiom in the left column of Table 3, which shows that randomization adds
some restricted power to the ability of simulating a weak transition in the alter-
nating model. Axiom CW does not hold in the non-alternating semantics since

378 E. Bandini and R. Segala

the term τ.P reached after the α-labeled transition of α.(P + ∆(τ.P)) cannot
be simulated in general by the distribution identified by P in α.P . See also the
discussion about axiom A8.

Observe that the first and third sections of Table 3 contain the same axioms in
the two columns. This confirms that under strong bisimulation with deterministic
schedulers the alternating and non-alternating models are indeed the same. We
can observe a difference between alternating and non-alternating semantics in
the second section of Table 3. Specifically, axioms A6-7 of the right column are
more restrictive than the axioms of the left column (Pi replaced by P). On the
other hand, axiom A8 holds only in the alternating semantics, thus showing that
weak bisimulations are incomparable. Axiom A8 expresses the informal idea that
in the alternating model each distribution must be declared before being drawn.
Thus, adding further declarations does not matter. The left version of axiom A5
can be replaced by its right version. We have kept both versions to illustrate
better the analogies with the τ -laws of Milner.

Another important observation is that the axiomatizations of Table 3 keep
most of the structure of the axiomatizations for ordinary CCS [9]. The axioms
of the first section are exactly the axioms for strong bisimulation on CCS, and
the axioms of the third sections add the ingredients that are need for the new
probabilistic choice operator. The τ -laws of the second section have the same
structure of the τ -laws of Milner, except that within a prefix we have the proba-
bilistic choice operator. If we consider processes without the probabilistic choice
operator, then our τ -laws coincide with the τ -laws of Milner.

5.2 Proof Sketches

The proofs of the completeness results are similar to the corresponding proofs
for CCS [9]: a process is reduced to a normal form, possibly saturated, and then
processes are compared almost syntactically piece by piece. In this section we
give an overview of the normal forms that are needed in the proofs.

Definition 1. A nondeterministic process E is in normal form (NF) if

E ≡
∑

i∈I

αi.
∑
•

j∈Ji

[pi
j]Ei

j

where the processes Ei
j are in normal form as well.

Getting a process in normal form is almost immediate since it is sufficient to
remove all exceeding 0’s by using axiom A4 and the congruence rules.

Definition 2. A nondeterministic process E is in strict normal form (SNF) if

E ≡
∑

i∈I

αi.
∑
•

j∈Ji

[pi
j]Ei

j

where ∀i∀j,j′∈Ji
if S ` Ei

j = Ei
j′ , then j = j′. With S we denote the axioms of

the first and third sections of Table 3.

Axiomatizations for Probabilistic Bisimulation 379

Table 3. Axioms for strong and weak bisimulations

Non alternating semantics Alternating semantics

A1 E + F = F + E E + F = F + E
A2 E + (F + G) = (E + F) + G E + (F + G) = (E + F) + G
A3 E + E = E E + E = E
A4 E + 0 = E E + 0 = E

A5 α.(∆(τ.∆(E)) ⊕p P) = α.(∆(E) ⊕p P) ∆(τ.∆(E)) = ∆(E)

A6 τ.
∑
•

i2I

[pi](Ei + α.Pi) + α.
∑
•

i2I

[pi]Pi = τ.
∑
•

i2I

[pi](Ei + α.P) + α.P =

τ.
∑
•

i2I

[pi](Ei + α.Pi) τ.
∑
•

i2I

[pi](Ei + α.P)

A7 α.
∑
•

i2I

[pi](Ei + τ.Pi) + α.
∑
•

i2I

[pi]Pi = α.
∑
•

i2I

[pi](Ei + τ.P) + α.P =

α.
∑
•

i2I

[pi](Ei + τ.Pi) α.
∑
•

i2I

[pi](Ei + τ.P)

A8 - α.P = α.∆(τ.P)

P1 P ⊕p Q = Q ⊕(1−p) P P ⊕p Q = Q ⊕(1−p) P

P2 P ⊕p1(Q ⊕ p2
1−p1

R) = P ⊕p1(Q ⊕ p2
1−p1

R) =

(P ⊕ p1
p1+p2

Q) ⊕(p1+p2) R (P ⊕ p1
p1+p2

Q) ⊕(p1+p2) R

P3 P ⊕p P = P P ⊕p P = P

C α.P1 + α.P2 = α.P1 + α.P2 + α.(P1 ⊕p P2) -

CW - α.(P ⊕ ∆(τ.P)) = α.P

To get a process in strict normal form we first convert the process to normal
form. Then, whenever we find two elements Ei

j and Ei
j′ that are provably equiv-

alent, we use axiom P3 to collapse them. Of course we need also axioms P1 and
P2 to get the two terms next to each other.

Processes in strict normal form are sufficient for the proof of completeness
for strong bisimulation that works prefix by prefix as in [9]. To handle strong
probabilistic bisimulation we use axiom C to build the missing summands that
originate from convex combinations of other summands. Thus, we reduce strong
probabilistic bisimulation to strong bisimulation.

380 E. Bandini and R. Segala

To deal with weak bisimulation we need to saturate a process as in [9]. For
this purpose we define complete normal forms.

Definition 3. A nondeterministic process E is in complete normal form (CNF)
if

– E ≡
∑

i∈I

αi.
∑
•

j∈Ji

[pi
j]Ei

j

– the processes Ei
j are in CNF

– if E
α=⇒ µ, then E

α−→ µ.

The saturation process to get an expression in complete normal form consists
of using axiom A6 to move out of a τ -prefix each transition labeled by some
external action. The final step is to get a strict complete normal form in the same
way as we do for strong bisimulation. When axiomatizing weak probabilistic
bisimulation, once again we use axiom C to create the missing summands.

The normal form for weak bisimulation in the alternating semantics differs
from the normal form in the non-alternating semantics in that axiom A6 allows
us to saturate only those transitions that lead to Dirac distributions.

Definition 4. A nondeterministic process E is in alternating complete normal
form (ACNF) if

– E ≡
∑

i∈I

αi.
∑
•

j∈Ji

[pi
j]Ei

j

– the processes Ei
j are in ACNF

– if E
α=⇒ δ(P), then E

α−→ δ(P).

6 Concluding Remarks

We have studied axiomatizations of bisimulation relations for a recursion free
fragment of a probabilistic process algebra that includes probabilistic and non-
deterministic choices. Our analysis included strong and weak bisimulation, deter-
ministic and randomized schedulers, alternating and non-alternating semantics.

The axioms have a structure consistent with the original axioms of Milner and
separate clearly the concerns of nondeterminism and probability. The axiomati-
zations that we have found also highlight the main differences and similarities of
the alternating and non-alternating models of concurrent probabilistic systems.

We are currently planning to extend our axiomatizations to a probabilistic
process algebra with recursion and parallel composition. We do not expect any
special surprises with parallel composition since a probabilistic generalization of
the expansion law of Milner is easy to derive.

Axiomatizations for Probabilistic Bisimulation 381

References

1. S. Andova. Process algebra with probabilistic choice. In Formal Methods for Real-
Time and Probabilistic Systems, LNCS 1601, pages 111–129, 1999.

2. J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic pro-
cesses: ACP with generative probabilities. Information and Computation, 122:234–
255, 1995.

3. M. Bernardo, L. Donatiello, and R. Gorrieri. Modeling and analyzing concurrent
systems with MPA. In Proceedings of the Second Workshop on Process Algebras
and Performance Modelling (PAPM), Erlangen, Germany, pages 175–189, 1994.

4. A. Giacalone, C.C Jou, and S.A. Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Proceedings of the Working Conference on Programming
Concepts and Methods (IFIP TC2), Sea of Galilee, Israel, 1990.

5. R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121(1):59–80,
1996.

6. H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.
In Proceedings of the 10th IEEE Symposium on Real-Time Systems, 1989.

7. C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomati-
zations for probabilistic processes. In J.Proceedings of CONCUR 90, LNCS 458,
pages 367–383, 1990.

8. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
pages 344–352, 1989.

9. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
10. A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.

In Proceedings of CONCUR 2000, LNCS 1877, pages 334–349, 2000.
11. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. Technical report MIT/LCS/TR-676. PhD thesis, MIT, Dept. of EECS, 1995.
12. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In

Proceedings of CONCUR 94, LNCS 836, pages 481–496, 1994.
13. K. Seidel. Probabilistic communicating processes. Technical Report PRG-102,

Ph.D. Thesis, Programming Research Group, Oxford University Computing Lab-
oratory, 1992.

14. E.W. Stark and S.A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press, 1999.

15. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In Proceedings of 26th IEEE Symposium on Foundations of Computer
Science, pages 327–338, 1985.

16. W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
Protocol Specification, Testing and Verification XII, pages 47–61, 1992.

Noninterference for Concurrent Programs?

Gérard Boudol and Ilaria Castellani

INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis, France.

Abstract. We propose a type system to ensure the property of nonin-
terference in a system of concurrent programs, described in a standard
imperative language extended with parallelism. Our proposal is in the
line of some recent work by Irvine, Volpano and Smith. Our type system,
as well as our semantics for concurrent programs, seem more natural and
less restrictive than those originally presented by these authors. More-
over, we show how to adapt the type system in order to preserve the
noninterference results in the presence of scheduling policies, while re-
maining in a nonprobabilistic setting.

1 Introduction

The aim of this paper is to study the notion of secure information flow, and
more specifically of noninterference (a notion first introduced by Goguen and
Meseguer in [4]) in the setting of concurrency. Our starting point is the pa-
per [15] by Volpano, Smith and Irvine, and the subsequent paper [12] by Smith
and Volpano, where noninterference is enforced by means of a simple type system
in an imperative language with security levels. The language considered in [15]
is purely sequential, and is extended in [12] with asynchronous parallelism (in-
terleaving). In this introduction, and in the examples given in the paper, the
security levels will simply be high and low. High-level variables are supposed to
contain secret information, while low-level variables contain public information.
However all results will be given for an arbitrary lattice of security levels.

In Volpano et al.’s work, noninterference means that variables of a given level
do not interfere with those of lower levels: more precisely, the values of low-level
variables are not dependent on the values of high-level variables. Noninterference
is meant to model the absence of information flow from high level to low level.
Such information flow is considered insecure, as it amounts to the disclosure of
secret information into the public domain. Insecure flow can be explicit, when
assigning the value of a high variable to a low variable, or implicit, when testing
the value of a high variable and then assigning to a low variable, for instance.
In the approach of [15,12], these situations are prevented by means of a type
system. More precisely, explicit flow is prevented by requiring that the level of the
assigned variable be at least as high as that of the source variable, while implicit
flow is prevented by asking that the level of the commands in the branches of a
conditional (the level of a command being that of its lowest assigned variables)
? Research partially funded by the EU Working Group CONFER II and by the french

RNRT Project MARVEL.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 382–395, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Noninterference for Concurrent Programs 383

γ : if PIN = 0 then tβ := tt else tα := tt

α : while tα 6= tt do nil ; r := 0 ; tβ := tt

β : while tβ 6= tt do nil ; r := 1 ; tα := tt

PIN , tα, tβ : boolean variables of type H

r : boolean variable of type L

γ : thread of type H, α, β : threads of type L

Fig. 1. Information Flow through Control Flow

be at least as high as that of the tested variable. Implicit flow can also arise in
while-loops, and is prevented by a similar condition on the type of the body of
the loop.

In fact, because of while-loops, the definition of noninterference is more pre-
cise than what is stated above: it says that no change in the values of low-level
variables should be observed as a consequence of a change in high-level variables,
provided that the program terminates successfully. Using subscripts to explicitly
indicate the security level of a variable, consider the following program, that
terminates if xH 6= 0 and loops forever (doing nothing) otherwise:

while xH = 0 do nil ; yL := 1 (1)
Should this program be accepted, that is, should it be typable? According to
the above definition of noninterference the answer is “yes”, since whenever the
program terminates it produces the same value yL = 1 for its low-level variable.
Indeed, this program is typable in Volpano and Smith’s type system, since the
loop is typable and the sequential composition of typable programs is always
typable.

However, accepting such a program leads to problems when parallelism is
introduced in the language. These problems can be concisely described as “dis-
guising information flow as control flow”. Let us illustrate the problem by means
of an example, which is a simplified version of the PIN example given by Smith
and Volpano in [12]. In this example, given in Figure 1, three threads α, β and
γ are run (asynchronously) in parallel. There are four variables, a high-level
variable PIN tested by thread γ, two high-level variables tα and tβ serving as
“triggers” for threads α and β, and a low-level variable r written by α and β. As
can be easily seen, with initial values tα = tβ = ff the effect of the program is to
copy the value of the secret variable PIN into the public variable r. The illicit
information flow from PIN to r is implemented through the control flow from γ
to α or β. However, if we assume that a system of concurrent threads is typable
provided each component is typable, this particular system is to be accepted.

To circumvent this problem, Smith and Volpano propose in [12] to forbid the
use of high-level variables as guards in while-loops, that is, assuming that there
is a lowest security level, to accept only while-loops of low level. While ruling

384 G. Boudol and I. Castellani

out the program in (1), and also the threads α and β of the PIN example, this
solution seems a bit drastic. It excludes inoffensive programs such as while xH =
0 do nil. We shall propose here a different solution to the problem raised by
while-loops in the presence of parallelism, which allows this program to be typed,
while ruling out the programs of example (1) and Figure 1. Our solution is based
on the observation that a program such as

while xH = 0 do nil

should indeed be considered with some care in a concurrent setting, but only as
a “guard”, that is, as regards what may follow it. In the context of concurrent
threads, if the control comes back to this while loop, this may be with a value for
xH different from 0, contrarily to what happens in a sequential setting. In other
words, this program may observe the behaviour of other, concurrent components,
in the course of their execution, and influence accordingly the behaviour of the
thread in which it participates. Technically, this means that we will abandon the
big-step semantics which is the basis of Volpano et al.’s analysis in favor of a small
step semantics for programs, which is the approach usually adopted in dealing
with parallelism. Our aim is then to ensure a stronger form of noninterference,
where the course of values – not just the final value – of a low-level variable does
not depend upon the value of high variables. Typically, the program (1) is no
longer interference-free in this stronger sense. In order to reject it, we introduce
a refinement of the type system, where the level of a guard – the expression
tested by a while loop – is taken into account in sequential composition.

We will also examine the situation where a scheduling policy is in force in a
thread system: we will introduce a few new programming primitives to describe
formally such a situation, and show how to adapt the type system for this new
setting, where new interference phenomena arise. As can be expected, this will
result in a slight restriction on the type of certain programs, though not as severe
as that prefigured in [12].

The rest of the paper is organised as follows. In Section 2 we introduce the
language, its operational semantics and its type system. Section 3 presents the
properties of typed programs, including subject reduction and noninterference.
Finally, in Section 4 we consider the extended language with scheduling policies.
The proofs are omitted from this extended abstract. They are to be found in the
full version of the paper [2].

2 The Language and Type System

The language we consider is essentially that of [12] (where e stands for a boolean
or arithmetic expression, whose syntax we do not detail here). We use the follow-
ing two-level syntax, where U, V denote sequential programs, while P, Q denote
general (concurrent) programs:

U, V . . . := nil | x := e | U ; V | if e then U else V | while e do U

P, Q . . . := U | U ; P | if e then P else Q | while e do P | P ‖ Q

Noninterference for Concurrent Programs 385

Note that on the left of a sequential composition, we must have a sequential
program. Thus programs of the form (P ‖ Q); R are not allowed. With this
restriction, our language is still more general than that of [12], which describes
concurrent systems as collections of threads, thus allowing only top-level paral-
lelism, while we allow the dynamic spawning of new threads.

The operational semantics of the language is given in terms of transitions
between configurations (P, µ) → (P ′, µ′) where P, P ′ are programs and µ, µ′

stand for memories, that is mappings from variables to values. These mappings
are extended in the obvious way to expressions, whose evaluation is assumed to
be atomic as in [12]. We use the notation µ[v/x] for memory update. The rules
specifying the operational semantics of programs are presented in Figure 2. As
pointed out already in the introduction, the semantics used here is a small step
semantics, as opposed to the big step semantics of [12]1. The rules are fairly
standard, and we shall not comment on them.

In the introduction we argued that, in a small-steps semantics, the pro-
gram (1) should be treated as another case of implicit information flow. Intu-
itively, when exiting a loop one gets some information about its guard; it seems
then appropriate to require that what follows the loop – its “continuation” –
have level at least as high as that of the loop guard. This will be the basic idea
of our new type system, which is closely inspired by that given by Volpano et
al. in [15] – however as suggested by the above example it will be more restrictive
than that of [15] on the sequential sublanguage, because of our more detailed
observation of programs.

The types of data and expressions are security levels, that is elements of a
lattice (S,≤). We denote the operations of meet and join respectively by u and t.
These types are ranged over by τ, σ. In the examples, the lattice of security levels
will simply be {L, H}, with L < H. The types of variables (when used in the left-
hand side of an assignment) are of the form τ var. Our first point of departure
from [15] concerns the types for programs. Type judgements in [15] are of the
form Γ ` P : τ cmd, where Γ is a mapping from variables to types of variables,
i.e. elements of {τ var | τ ∈ S}. The meaning of Γ ` P : τ cmd is that in the
type environment Γ , τ is a lower bound for the level of the assigned variables
of P . In line with this intuition, subtyping for programs is contravariant, that is
τ cmd ≤ τ ′ cmd if τ ′ ≤ τ . Thus for instance any program of type H cmd can
be downgraded to type L cmd. A program of type H cmd is guaranteed not to
contain any assignment to a low variable.

To take into account loop guards, we shall use here more refined types
(τ, σ)cmd, where the first component τ plays the same rôle as in the type τ cmd,
while the second component σ is the guard type, an upper bound on the level of
the loop guards occurring in a program. Accordingly, the subtyping for programs
is contravariant in its first component and covariant in the second:

(τ, σ) cmd ≤ (τ ′, σ′) cmd if τ ′ ≤ τ and σ ≤ σ′

1 In fact, the semantics of [12] is a mixture of small and big step semantics: tran-
sitions are given between configurations but there are two kinds of configurations,
intermediate and final ones, suggesting that termination should be observed.

386 G. Boudol and I. Castellani

(Assign-Op)
(x := e, µ) → (nil, µ[µ(e)/x])

(Seq-Op1)
(U, µ) → (U 0, µ0)

(U ; P, µ) → (U 0; P, µ0)

(Seq-Op2)
(P, µ) → (P 0, µ0)

(nil; P, µ) → (P 0, µ0)

(Cond-Op1)
µ(e) = tt

(if e then P else Q, µ) → (P, µ)

(Cond-Op2)
µ(e) 6= tt

(if e then P else Q, µ) → (Q, µ)

(While-Op1)
µ(e) = tt

(while e do P, µ) → (P ; while e do P, µ)

(While-Op2)
µ(e) 6= tt

(while e do P, µ) → (nil, µ)

(Par-Op1)
(P, µ) → (P 0, µ0)

(P ‖ Q, µ) → (P 0 ‖ Q, µ0)

(Par-Op2)
(Q, µ) → (Q0, µ0)

(P ‖ Q, µ) → (P ‖ Q0, µ0)

Fig. 2. Operational Semantics for Parallel Programs

The guard type will be set up by while-loops and looked up by sequential compo-
sition. The complete type system for programs is shown in Figure 3. Notice that
the guard type plays no particular rôle in rules (Nil), (Assign) and (Cond),
which are plain adaptations of the ones in [15]. Let us comment a little on the
rules for while-loops and sequential composition, which are the main novelty
w.r.t. [15,12]. As explained, the guard type is σ for a while-loop testing an ex-
pression of level σ, and from then onwards it should stay equal to σ to prevent
concatenation with low-level programs. Rule (Seq) is precisely designed to avoid
sequencing “low” assignments after a program with “high” guards. This rules
out the kind of implicit flow exhibited by the program (1). One may notice that
rule (While) imposes types of the form (τ, τ) cmd to while-loops (by subtyping
they also have types (θ, σ) cmd with θ ≤ σ). We let the reader check that, had
we accepted for instance (H, L) cmd, we would not avoid interferences, as shown
by the example

Noninterference for Concurrent Programs 387

(Nil)
Γ ` nil : (τ, σ) cmd

(Assign)
Γ ` e : τ, Γ (x) = τ var

Γ ` x := e : (τ, σ) cmd

(Seq)
Γ ` U : (τ, σ) cmd, Γ ` P : (τ 0, σ0) cmd, σ ≤ τ 0

Γ ` U ; P : (τ u τ 0, σ t σ0) cmd

(Cond)
Γ ` e : τ, Γ ` P : (τ, σ) cmd, Γ ` Q : (τ, σ) cmd

Γ ` if e then P else Q : (τ, σ) cmd

(While)
Γ ` e : τ, Γ ` P : (τ, τ) cmd

Γ ` while e do P : (τ, τ) cmd

(Par)
Γ ` P : (τ, σ) cmd, Γ ` Q : (τ, σ) cmd

Γ ` P ‖ Q : (τ, σ) cmd

(Subtyping)
Γ ` P : (τ, σ) cmd, τ 0 ≤ τ, σ ≤ σ0

Γ ` P : (τ 0, σ0) cmd

Fig. 3. Typing Rules for Concurrent Programs

if xH = 0 then while yL = 0 do nil

else nil ;
uL := uL + 1

(2)

Similarly, we have to rule out the insecure program

while tt do (yL := yL + 1 ; while xH = 0 do nil) (3)

and this shows why loops having (L, H) cmd as their unique type should be
forbidden.

3 Properties of Typed Programs

In this section we prove some desired properties of our type system. The first
property, subject reduction, states that types are preserved along execution.

Theorem 3.1. (Subject Reduction)
If Γ ` P : (τ, σ) cmd and (P, µ) → (P ′, µ′), then Γ ` P ′ : (τ, σ) cmd.

Proof: By induction on the inference of Γ ` P : (τ, σ) cmd, and then case
analysis on the last rule used in this inference. 2

388 G. Boudol and I. Castellani

We shall use the following assumptions about expressions:

Assumption 3.2 (Termination of Expression Evaluation)
For any memory µ and expression e, the value µ(e) is defined.

Assumption 3.3 (Simple Security)
If Γ ` e : τ , then every variable occurring in e has type τ ′ var in Γ , with τ ′ ≤ τ .

We introduce now, for any type environment Γ and security level ω, a notion
of equality on memories which formalises the idea that two memories coincide
on variables of level less than or equal to ω in Γ . Intuitively, such memories are
indistinguishable for an observer of level ω.

Definition 3.4 (ω-Equality of Memories)
µ =ω

Γ ν ⇔def ∀x. Γ (x) = τ var & τ ≤ ω ⇒ µ(x) = ν(x).

Definition 3.5 ((Γ, ω)-Bisimulation)
A relation R on configurations is a (Γ, ω)-bisimulation if (P, µ) R (Q, ν) implies

(i) µ =ω
Γ ν

(ii) (P, µ) → (P ′, µ′) ⇒ ∃Q′, ν′. (Q, ν) →∗ (Q′, ν′) ∧ (P ′, µ′) R (Q′, ν′)
(iii) (Q, ν) → (Q′, ν′) ⇒ ∃P ′, µ′. (P, µ) →∗ (P ′, µ′) ∧ (P ′, µ′) R (Q′, ν′)

The (Γ, ω)-bisimulation equivalence on configurations, noted ≈ω
Γ , is the largest

(Γ, ω)-bisimulation.

The following two lemmas confirm the intuition, discussed earlier, behind the
type judgements Γ ` P : (τ, σ) cmd.

Lemma 3.6 (Confinement)
If Γ ` P : (τ, σ) cmd then every variable assigned to in P has type θ var in Γ ,
with τ ≤ θ.

Lemma 3.7 (Guard Safety)
If Γ ` P : (τ, σ) cmd then every loop guard in P has type θ in Γ , with θ ≤ σ.

Definition 3.8 (ω-Boundedness)
A program P is ω-bounded if Γ ` P : (τ, σ) cmd implies τ ≤ ω.

Definition 3.9 (ω-Guardedness)
A program P is ω-guarded if there exist τ, σ, with σ ≤ ω, such that Γ ` P :
(τ, σ) cmd.

Note that by the Confinement Lemma, a program which is not ω-bounded cannot
write on variables of level less than or equal to ω. Similarly, by the Guard Safety
Lemma, a program which is ω-guarded does not contain loop guards of level
higher than or incomparable with ω. As a consequence of subject reduction,
both non-ω-boundedness and ω-guardedness are preserved by execution.

Noninterference for Concurrent Programs 389

Proposition 3.10 (Bisimilarity of Non ω-Bounded Programs)
Let SΓ,ω be the relation consisting of the pairs ((P, µ), (Q, ν)) such that µ =ω

Γ ν
and there exist τ, σ and τ ′, σ′ with τ 6≤ ω, τ ′ 6≤ ω, such that Γ ` P : (τ, σ) cmd
and Γ ` Q : (τ ′, σ′) cmd. Then SΓ,ω is a (Γ, ω)-bisimulation.

Proof: Let ((P, µ), (Q, ν)) ∈ SΓ,ω and (P, µ) → (P ′, µ′). This can be matched
by (Q, ν) →∗ (Q, ν), since by the Confinement Lemma µ′ =ω

Γ µ =ω
Γ ν, and by the

Subject Reduction Theorem Γ ` P ′ : (τ, σ). 2

Note that (Γ, ω)-bisimilarity does not preserve termination. For instance, for any
memories µ and ν such that µ =ω

Γ ν we have:

(nil, µ) ≈ω
Γ (while tt do nil, ν)

We introduce now a notion which will play a key rôle for noninterference.

Definition 3.11 (ω-Constrainment)
A program P is ω-constrained if there exist τ, σ, with τ 6≤ ω and σ ≤ ω, such
that Γ ` P : (τ, σ) cmd.

By definition any ω-constrained program is both ω-guarded and not ω-bounded.
It is worth stressing that the converse is not true, as shown by the program
while tt do nil. Clearly, for any type environment Γ , this program is ω-
guarded for any security level ω and not ω-bounded if ω 6= >. However it is not
ω-constrained, as a consequence of the uniform typing in rule (While). Indeed,
an important property of ω-constrained programs is the following.

Lemma 3.12 (Termination of ω-Constrained Sequential Programs)
If U is ω-constrained, then for any µ there exist µ′, U ′ such that (U, µ) →∗

(U ′, µ′) and U ′ = nil ; · · · ; nil.

Finally we can state our main result:

Theorem 3.13. (Noninterference)
If P is typable in Γ , then (P, µ) ≈ω

Γ (P, ν) for any µ, ν such that µ =ω
Γ ν.

Proof: We define inductively the relation RΓ,ω
0 on configurations as follows:

(P, µ) RΓ,ω
0 (Q, ν) if and only if P and Q are typable, µ =ω

Γ ν and one of the
following holds:

1. (P, µ) ≈ω
Γ (Q, ν)

2. P = Q and P is ω-bounded
3. P = U ; R and Q = V ; R, where both U and V are ω-constrained
4. P = U ; R and Q = V ; R, where (U, µ) RΓ,ω

0 (V, ν) and R is not ω-bounded
5. P is not ω-bounded and Q = V ; R, where (nil, µ) RΓ,ω

0 (V, ν) and R is not
ω-bounded (or symmetrically)

6. P = P1 ‖ P2 and Q = Q1 ‖ Q2 with (Pi, µ) RΓ,ω
0 (Qi, ν).

We show that RΓ,ω
0 is a (Γ, ω)-bisimulation. The theorem will be a consequence

of this fact, since if P is typable, then either P is not ω-bounded, in which case
(P, µ) ≈ω

Γ (P, ν) by Proposition 3.10, or P is ω-bounded and (P, µ) RΓ,ω
0 (P, ν)

by the second clause of the definition. In the case of Clause 3, we use the
Lemma 3.12. 2

390 G. Boudol and I. Castellani

4 Adding a Scheduler

As pointed out by Smith and Volpano in [12], noninterference results such as
those of the previous section rely on the hypothesis of a purely nondeterministic
execution of concurrent programs. These results would break down if particular
scheduling policies were enforced. We recall the example given in [12]. Assume
a round robin time slicing scheduler, with a time slice of t steps, t ≥ 2, and
consider the composition P = α ‖ β of the following two threads:

α : if xH = 0 then Q else nil ;

yL := 0 (4)

β : yL := 1

Then, supposing that Q is a convergent program that takes at least t − 1 steps
to execute, and that the scheduler gives precedence to α, the value of yL will
depend on that of xH . The solution proposed in [12] to preserve noninterference
in the presence of an arbitrary scheduler consists in forbidding conditionals with
high guards2, that is, again assuming that there is a lowest security level, to
accept only conditional branching on low level expressions. This condition, com-
bined with the exclusion of loops with high guards, required for multi-threading,
resulted in [12] in a very severe limitation: the impossibility for any program to
test a variable, except at the lowest level.

We present here a different solution for scheduling, which does not rule out
conditionals with high guards. To this end we first formalise what it means for
a system of concurrent programs to be controlled by a scheduler. Essentially,
this means running the system in lockstep with a program that implements the
scheduling policy. To describe controlled execution, we use a construction P [Q],
which makes P and Q move hand in hand, but allows the controller, P , to
proceed by itself whenever Q is unable to move. Then a system consisting of n
parallel programs Pi controlled by a scheduler Sched will be described as:

Sched [P ′
1 ‖ · · · ‖ P ′

n]

where the P ′
i are adaptations of the Pi, so that the processes can be triggered

and suspended by the scheduler. To this end we introduce a new construct
when e do P , whose semantics is that P is allowed to proceed, for one step,
when the condition e holds. It is technically convenient to introduce another
level in the syntax: besides the programs P , written according to the grammar
given in Section 2, there is a set of “systems” S, T built as follows:

S ::= P | S ‖ T | S[T] | when e do S

Letting w(S) denote the set of variables written (assigned to) by S, the construct
S[T] is only legal under the condition w(S) ∩ w(T) = ∅.
2 It is also suggested there that a better approach to scheduling would be probabilistic.

Indeed a whole line of research on probabilistic noninterference has been developed,
but this will not be our concern here, where we stick to a possibilistic setting.

Noninterference for Concurrent Programs 391

(Control-Op1)
(S, µ) → (S0, µ0), (T, µ) → (T 0, µ00)

(S[T], µ) → (S0[T 0], µ0 tµ µ00)

(Control-Op2)
(S, µ) → (S0, µ0), (T, µ) 6→

(S[T], µ) → (S0[T], µ0)

(When-Op)
µ(e) = tt , (S, µ) → (S0, µ0)

(when e do S, µ) → (when e do S0, µ0)

Fig. 4. Additional Operational Rules for Systems

(Control)
Γ ` S : (τ, σ) cmd, Γ ` T : (τ, σ) cmd, τ ≥ σ

Γ ` S[T] : (τ, σ) cmd

(When)
Γ ` e : θ, Γ ` S : (τ, σ) cmd, θ ≤ τ

Γ ` when e do S : (τ, θ t σ) cmd

Fig. 5. Additional Typing Rules for Systems

Notation 4.1 We use (S, µ) → to mean ∃S′, µ′ such that (S, µ) → (S′, µ′), and
(S, µ) 6→ for the negation of (S, µ) →.

The semantics of the new constructs is given in Figure 4, where µ′tµµ′′ represents
the memory µ with the conjunction of the updates operated by S and by T , that
is µ′\µ ∪ µ′′\µ ∪ (µ′ ∩ µ′′). Then for instance the scheduled programs may be
written P ′

i = when si do Pi where si is the “proceed” signal for program Pi, set
up by the scheduler. The following program

Sched t
n = i := 0 ; while tt do i := [i + 1]mod n; k := 0;

while k < t do si := tt ; si := ff ; k := k + 1

describes a scheduler for a system of n threads, implementing round robin with
time slice t, provided that all the si’s are initially false. It is easy to imagine how
to program other scheduling policies in a similar style.

The typing rules for the new operators are given in Figure 5. The side-
conditions in rules (Control) and (When) need some comments. First, note
that a when statement can induce an implicit flow, just like the conditional and
while statements, as for instance in the system:

when xH = 0 do yL := yL + 1

392 G. Boudol and I. Castellani

This explains the requirement θ ≤ τ in rule (When). On the other hand, the
condition that the guard of the when statement should affect its guard type may
seem superfluous at first sight, since a when statement can never be followed (in
sequential composition) by any other system. The reason for this condition is
that in a controlled system S[T], a blocked behaviour of the controller S can
create interferences if the controlled system T is low, and this blocked behaviour
of S may be due to a when statement. Consider for instance the system S[T]
where P is a high program that does at least one step:

S = when xH = 0 do P

T = yL := yL + 1

We let the reader check that this system can lead to interference. Now if the
when statement S were allowed to have type (L, L) cmd, the whole system S[T]
would be typable.

As regards the rule (Control), the condition τ ≥ σ excludes for instance – if
the security levels are L and H – systems S[T] whose unique type is (L, H) cmd.
Consider for instance the controlled system S′[T ′], where:

S′ = while xH = 0 do nil

T ′ = yL := 0 ; yL := yL + 1

Here again there is a possible interference due to the blocking of the controller
after one step if the guard of the loop is false. Note that the only possible type
of S′[T ′] would be indeed (L, H) cmd, since it affects a low variable and has a
high loop guard.

To extend our noninterference result to the new setting, we also need to
restrict the typing rule for conditional branching, recording the tested expression
as a guard (note the similarity with the rule for the when statement):

(Cond-Strict)

Γ ` e : θ, Γ ` P : (τ, σ) cmd, Γ ` Q : (τ, σ) cmd, θ ≤ τ

Γ ` if e then P else Q : (τ, θ t σ) cmd

This rules out for instance the thread α of our initial example (4), because a low
assignment can no longer be performed after a high test.

It is easy to check that the Subject Reduction Theorem and the Confine-
ment Lemma extend to the new language. Similarly, the definitions of (Γ, ω)-
bisimulation and ω-boundedness remain formally the same as those for the
base language (modulo the replacement of programs by systems). Obviously,
the Guard Safety Lemma may now be strengthened into:

Lemma 4.2 (Strong Guard Safety)
If Γ ` S : (τ, σ) cmd then every loop, conditional or when statement guard in S
has type θ in Γ , with θ ≤ σ.

Noninterference for Concurrent Programs 393

Lemma 4.3 (Deterministic Behaviour of ω-Guarded Systems)
If S is ω-guarded in Γ and µ=ω

Γ ν, then (S, µ) → (S′, µ′) implies (S, ν) → (S′, ν′),
with µ′ =ω

Γ ν′.

We are now able to generalise our noninterference result.

Theorem 4.4. (Extended noninterference)
If S is typable in Γ , then (S, µ) ≈Γ (S, ν) for any µ, ν such that µ =Γ ν.

Proof: We define inductively the relation RΓ,ω
1 as follows: (S, µ) RΓ,ω

1 (T, ν) if
and only if S and T are typable, µ =ω

Γ ν and one of the following holds:

1. (S, µ) RΓ,ω
0 (T, ν), where RΓ,ω

0 is the relation considered in the proof of The-
orem 3.13

2. (S, µ) ≈ω
Γ (T, ν)

3. S = T and S is ω-bounded
4. S = S0 ‖ S1 , T = T0 ‖ T1 and (Si, µ)RΓ,ω

1 (Ti, ν)
5. S = when e do S1, T = when e do T1, Γ (e) ≤ ω and (S1, µ)RΓ,ω

1 (T1, ν)

Then we show that RΓ,ω
1 is a (Γ, ω)-bisimulation. In Clause 3, for the case of the

control construct, we use the Lemma 4.3. 2

5 Conclusion and Related Work

We have addressed the question of secure information flow in systems of con-
current programs. This covers one of the security problems that can arise, for
instance, when a mobile program visits different sites, namely that of preserving
the confidentiality of the visited sites’ private data. In fact, in [3], it is shown how
a form of noninterference called non deducibility on composition may be used
to model also other security properties like authenticity , non repudiation and
fairness. Noninterference thus appears as a rather interesting notion to study
when security is concerned. On the other hand, it may be argued [8] that covert
channels, that is implicit information flows of the kind considered here, are un-
avoidable in practice, as they can arise also at the hardware level. Thus the
aim of statically ensuring the absence of covert channels might be a hard one
to realise. We certainly do not claim here to cover the whole range of possible
attacks from a hostile party.

The issue of noninterference has been largely studied in the literature, using
different models, and it is not our intention here to review the various approaches.
We focussed on the approach of Volpano et al., as it applies to a fairly standard
language, which can be assumed to be the kernel of more sophisticated practical
languages.

The question of secure flow and noninterference has also started to be in-
vestigated in the setting of process calculi, and in particular in mobile process
calculi [6], [7], [10] and [5]. The treatment in the first two papers seems however
overly restrictive: it amounts (at least in the core calculus) to forbid all con-
trol flow from actions on high channels to actions on low channels. In [7], the

394 G. Boudol and I. Castellani

core calculus is extended with more sophisticated constructs; in the extended
calculus some actions may be classified as “innocuous”, and the restriction on
control flow may be relaxed when these actions are involved. The last two pa-
pers, [10] and [5], are less restrictive and closer in spirit to our approach, as they
try to distinguish the dangerous control flow (implementing information flow)
from the harmless control flow which should not be restricted. Another related
paper is [1], which studies secrecy properties in security protocols expressed in
the spi-calculus.

As concerns noninterference in the presence of scheduling policies, the most
popular approach has been so far the probabilistic one, taken for instance in [14]
and [11]. Our stand here was to handle scheduling within a possibilistic setting.

An issue which has not been addressed here, but is planned for future work,
is the feasibility of checking noninterference using a type inference algorithm,
in the line of [13]. Current work is also oriented towards the treatment of more
realistic languages, as advocated for instance in [9], including exceptions and
some form of higher-order.

Acknowledgements. We would like to thank the anonymous referees for help-
ful comments.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, 1999.

[2] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs.
Research report, INRIA, 2001.

[3] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proceedings ICALP’00, number 1853 in LNCS, 2000.

[4] J. A. Goguen and J. Meseguer. Security policies and security models. In Proceed-
ings 1982 IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[5] M. Hennessy. The security π-calculus and noninterference. Computer Science
Technical Report 2000:05, University of Sussex, 2000.

[6] M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous
pi-calculus (extended abstract). In Proceedings ICALP’00, number 1853 in LNCS,
2000.

[7] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed
process behaviour. In Proceedings ESOP’00, number 1782 in LNCS, 2000.

[8] J. Millen. 20 years of covert channel modeling and analysis. In IEEE Symposium
on Security and Privacy, 1999.

[9] A. Myers. Jflow: Practical mostly-static information flow control. In 26th ACM
Symposium on Principles of Programming Languages (POPL), 1999.

[10] F. Pottier and S. Conchon. Information flow inference for free. In Proceedings
ICFP’00, 2000.

[11] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In IEEE Computer Security Foundations Workshop, 2000.

[12] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In ACM, editor, Proceedings POPL ’98, pages 355–364. ACM Press,
1998.

Noninterference for Concurrent Programs 395

[13] D. Volpano and G. Smith. A type-based approach to program security. In TAP-
SOFT’97, number 1214 in LNCS, pages 607–621, 1997.

[14] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
Journal of Computer Security, 7(2-3), 1999.

[15] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

Distributed Controller Synthesis for Local
Specifications

P. Madhusudan1 and P.S. Thiagarajan2

1 The Institute of Mathematical Sciences madhu@imsc.ernet.in
2 CREST, School of ECE, Georgia Institute of Technology, Atlanta, USA (On leave

from Chennai Mathematical Institute, Chennai, India) thiagu@ece.gatech.edu

Abstract. We consider the problem of synthesizing distributed con-
trollers for reactive systems against local specifications. We show that a
larger class of architectures become decidable in comparison to the anal-
ogous problem for global specifications. We identify the exact class of
architectures for which the problem is decidable. Our results also show
the decidability of a related realizability problem for local specifications.

1 Introduction

An open reactive system is one which interacts with its environment on a sys-
tematic basis and whose behaviour crucially depends on this interaction. The
key feature of open systems is that one is required to distinguish between the
capabilities of the system and its environment. Typically, one views such an
open system as getting inputs from the environment and reacting to it by out-
putting values. Realizability and controller synthesis problems arise naturally in
the study of open systems.

The realizability problem is to determine, given a specification of an open
system, say as a temporal logic formula, whether there exists a program for the
system such that no matter how the environment behaves, the overall behaviour
satisfies the specification. The program will fix the value the system outputs on
receiving a particular input and this choice can depend on the past history of
the interaction with the environment. The environment is allowed to input any
value at any point.

The controller synthesis problem on the other hand, starts with an open sys-
tem — often called a plant in this context — and a specification, say, a temporal
logic formula. The plant is viewed as an existing program which specifies the
ways in which the system can react to its inputs. The goal now is to come with
a strategy to interact with the environment in a way allowed by the plant, such
that all behaviours satisfy the specification. Thus the strategy, in this setting,
acts as a controller for the plant which restricts the behaviours of the plant so
that the specification is met.

There is a wealth of literature on realizability and controller synthesis prob-
lems for open systems as evidenced in [BL69,Rab72,Tho95,RW89,PR89,ALW89]
for linear-time specifications and [KV96,MT98,KV99,KMTV00] for branching-
time specifications. All of these studies are confined to programs and plants that

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 396–407, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Distributed Controller Synthesis for Local Specifications 397

consist of a single sequential module. However, these problems often arise in
a distributed context and here, the main results presently available are due to
Pnueli and Rosner [PR90]. We extend here their results and the point of depar-
ture is to consider local specifications. Before going into this in more detail, we
wish to mention the work reported in [dAHM00,dAH00,AHK97] which are also
concerned with control-related issues in a distributed setting but not directly
connected to the concerns of the present work.

Pnueli and Rosner consider distributed programs by using the notion of an
architecture which basically consists of a set of sites and some communication
channels between them. The sites also have external input and output channels
through which they interact with the environment. The specification consists of
linear time temporal logic formulas whose atomic propositions can state proper-
ties of the values on the external input and output channels. The specification
is hence a global one which can talk about simultaneous channel-values at differ-
ent sites. The surprising main result is that even in the case of an architecture
consisting of two sites and no internal communication channels, the realizability
problem is undecidable. They also consider pipeline architectures which consists
of a linear array of sites s0 → s1 → . . . → sn with an external input channel
allowed only for s0. They show that the realizability problem is decidable for
this class of architectures.

It turns out that many results of [PR90] extend also to the control-synthesis
problem that we wish to study. Here, we are given in addition to the specification,
a set of programs at each site and the problem is to come up with local strategies
for the sites to restrict the programs; by a local strategy at a site, we mean
a strategy which only knows the values which the input channels to this site
have carried so far. In [PR90], realizability is actually shown to be decidable
for a larger class of architectures (called hierarchical architectures) but only the
decidability results for pipelines carry over for the control-synthesis problem.

In this paper, we drop global specifications since they turn out to be unrea-
sonably expressive, and instead consider local specifications and, for convenience,
study only the controller synthesis problem. We identify a special class of ar-
chitectures called clean pipelines (see Figure 1) which are just like the pipelines
mentioned above except external inputs are also allowed for the right-end site sn.
Our main result is that the controller synthesis problem for local specifications
is decidable for an architecture A iff each connected component of A is a clean
pipeline or is a sub-architecture of a clean pipeline.

Our undecidability results go through for weaker acceptance conditions down
to reachability. Thus our negative results show that even in the presence of
local specifications, the controller synthesis problem is intractable for almost
all architectures. However, on the positive side, our results show that for local
specifications, one can handle the nontrivial distributed reactive system which
consists of two sites, both of them interacting with the environment, and with
an internal channel from one to the other. Indeed, our results show that the
realizability problem can also be effectively solved in this important setting,

398 P. Madhusudan and P.S. Thiagarajan

where the specifications at the sites can state properties of the internal channels
as well.

The undecidability result of [PR90] follows from the study of multi-player
games of incomplete information by Peterson and Reif [PR79]. In this context,
our results show that there are certain games where two players, playing against
an adversary, have incomplete information about each other, and yet determining
whether they have a winning strategy is decidable.

In the next section we introduce the formal setting for our work, Section 3
establishes our decidability results and in Section 4 we prove the undecidability
results. Due to lack of space, we provide only the main proof ideas — more
details can be found in [MT01].

2 Problem Setting

An architecture is a tuple A = (S, X, T, r, w) where S = {s1, . . . , sk} is a finite
nonempty set of sites, X = {x1, . . . , xl} is a set of external (or environment)
input channels and T = {t1, . . . , tn} is a set of internal channels. r is a function
r : X ∪ T → S which identifies for each channel a process which reads the
channel; w : T → S identifies for each internal channel, a process which writes
into it. We assume, without loss of generality, that each process has at most one
external input channel and that there is at most one channel from one site to
another.

We represent architectures graphically as directed graphs whose nodes are
the sites and every channel z ∈ X ∪T is represented by an edge — if z ∈ T , then
it is an edge from w(z) to r(z) and if z ∈ X, then it is a sourceless edge to r(z).
We only consider acyclic architectures — i.e. those architectures whose graph
representation does not have a directed cycle. We assume further that every site
has at least one input (external or internal) channel.

In our framework, each site runs a program which reads its external and
internal channel inputs and reacts by sending outputs along the internal channels
to other processes and changing its state. The moves are synchronous — i.e.
the programs read a set of external inputs and make one collective move while
respecting the partial order imposed by the architecture.

For example, in the architecture A2 in Figure 2, in a synchronous step, s1
will read the environment’s input on x1, change its state and write onto t1; s2
will read this input on t1 and the input on x2, change its state and write onto
t2; s3 will read this value and change its internal state.

For a site s ∈ S, let in(s) = r−1(s), the set of channels which s reads from
and out(s) = w−1(s), the set of channels S writes into. Given an architecture A,
a domain definition for A is a function D which associates with each z ∈ X ∪ T
a finite set of values which can be sent along the channel z. We denote D(z)
sometimes as Dz. For a set of channels Z, a valuation function for Z is a function
h whose domain is Z and which maps each z ∈ Z to an element of Dz. Let HZ

denote the set of all valuation functions for Z.

Distributed Controller Synthesis for Local Specifications 399

Definition 1. A plant is a tuple (A, D, P̂) where A is an architecture (say hav-
ing k sites {s1, . . . , sk}), D is a domain definition for A, P̂ is a set of programs,
one at each site — i.e. P̂ is a tuple 〈P1, . . . Pk〉. Each Pi is a transition system
(Qi, q

in
i , δi) where Qi is a set of states, qin

i ∈ Qi is the initial state, δi is a non-
deterministic transition function δi : Qi × Hin(si) → P(Qi × Hout(si)).1 ut
The transition function of each program defines the different ways in which a
site can react to a set of inputs on its input channels, by giving the possible
sets of values which can be written on the output channels together with a
corresponding state change. We say a plant is finite if Qi is finite for each Pi.

Let (A, D, P̂) be a plant. For a program P = (Q, qin, δ) at a site s in A, a
local strategy for P is a function f : Q×H+

in(s) → Q×Hout(s) such that ∀q ∈ Q,
π ∈ H+

in(s), if π = π′ · h then f(q, π) ∈ δ(q, h). Thus the local strategy f is an
advice function for P which looks at the history of values (π′) on the local input
channels and the current values on them (h), and prescribes a move which the
local program P should take.

A distributed control-strategy is a set of local strategies, one for each site:
i.e. a tuple f = 〈f1, . . . fk〉 where fi is a local strategy for Pi. We call a plant
along-with a strategy ((A, D, P), f) a controlled system. Let us fix for now a
controlled system ((A, D, P), f).

We need some notations for talking about sequences. For a sequence α, let
α[i] denote the ith atom in α and α[i, j] denote the finite subsequence of α from
the ith to the jth element, both inclusive, for 0 ≤ i ≤ j, i, j ∈ N. Also, we denote
by inf (α) the set of elements which occur infinitely often in α. If α is a sequence
of functions on a domain Z, let α ↓ Z ′, where Z ′ ⊆ Z, denote the sequence of
functions obtained by restricting each function in α to Z ′.

Consider an environment input sequence (on the channels in X) α ∈ HX .
Since P , when controlled by the strategy f , is deterministic, there is a unique
way in which the plant and controller respond to the external input — i.e. there
is a unique sequence of states each program takes and a unique set of channel
values sent along each channel. We can define these sequences as follows. Let
β ∈ (HX∪T)ω and γ ∈ (Q1 × . . . Qk)ω be such that:

1. γ[0] = 〈qin
1 , . . . , qin

k 〉
2. β ↓ X = α
3. ∀t ∈ T , j ∈ N, if w(t) = si and γ[j] = 〈q1, . . . qk〉 with

fi(qi, β[0, j] ↓ in(si)) = (q′
i, h), then β[j](t) = h(t)

4. ∀j ∈ N, if γ[j] = 〈q1, . . . qk〉 and γ[j+1] = 〈q′
1, . . . q

′
k〉, then it must be the case

that ∀i ∈ {1, . . . , k}: fi(qi, β[0, j] ↓ in(si)) = (q′
i, h) for some h ∈ Hout(si)

The definitions above formalize how the programs behave when they get an
external input. (1) says that the global state-sequence starts with the initial
states. The next condition requires that the values which the external channels
take are defined by the external input α. (3) and (4) demand that the values
the internal channels take and the evolution of states are according to the moves
1 P(R) denotes the power-set of R

400 P. Madhusudan and P.S. Thiagarajan

defined by the local strategy. It is easy to see that, since the architecture is
acyclic, there are unique sequences β and γ which satisfy the above conditions.
We call γ the state-behaviour of the system for the input α.

The specification is now defined on the local state-behaviours of the system.
Since we wish to capture local linear-time properties, we have local Rabin win-
ning conditions and the specification then demands that the local runs of the
controlled system meet these conditions. We could instead work with temporal
logic specifications, one at each site, which describes the behaviour of the local
channels (external and internal) and the local states. However, since we can cast
this problem in terms of Rabin conditions (by building a deterministic Rabin
automaton accepting the desired behaviours [Saf88] and taking its intersection
with the local plant), we can reduce this problem to our setting. coded into the
states of the plant.

A local Rabin winning condition Ri for a site si is a set
{(R1, G1), . . . (Rm, Gm)} where Rj , Gj are subsets of Qi. A Rabin win-
ning condition W is a tuple 〈R1, . . .Rk〉 where each Ri is a local Rabin winning
condition for si. Let γ ∈ (Q1 × . . . Qk)ω be a sequence of global states of
the system. Let γ ↓ i denote the sequence in Qω

i obtained by projecting γ to
the component involving Qi. γ is said to satisfy a Rabin condition W if for
each site si, there is a pair (R, G) in Ri such that inf (γ ↓ i) ∩ R = ∅ and
inf (γ ↓ i) ∩ G 6= ∅.

Finally, a controlled system is said to satisfy a Rabin winning condition W if
for every sequence of external inputs α ∈ (HX)ω, the state-behaviour γ defined
by α satisfies W. Given a winning condition, a strategy f for a plant (A, D, P)
is said to be winning if the controlled system ((A, D, P), f) satisfies the winning
condition. Now, the control-synthesis problem for an architecture A is: Given a
finite plant (A, D, P), and a Rabin winning condition, does there exist a winning
strategy for the plant?

An important class of architectures are the class of clean pipelines which are
pipelines that have external inputs only at the two endpoints (see Fig. 1): An
architecture A is said to be a clean pipeline if it has k sites s1, . . . sk (for some
k ∈ N), two external input channels x1 and x2, k−1 internal channels t1, . . . tk−1,
with r(x1) = s1, r(x2) = sk, w(ti) = si and r(ti) = si+1, for i ∈ {1, . . . , k − 1}.

tk-1

x2

sks1

x1

t1

s2
tk-2t2

sk-1

Fig. 1. A generic clean pipeline

We also need the notion of a sub-architecture — an architecture A′ is a sub-
architecture of an architecture A if the graph of A′ is isomorphic to a subgraph

Distributed Controller Synthesis for Local Specifications 401

of the graph of A. Note that an architecture is a sub-architecture of itself. We
can now state the main result of the paper.

Theorem 1. Let A be an architecture. The control-synthesis problem for A is
decidable iff each connected component of A is a sub-architecture of a clean
pipeline. ut

3 Decidable Architectures

In this section, we show that architectures where each connected component is
a sub-architecture of a clean pipeline is decidable. Since we have local winning
conditions, it is easy to observe that the control-synthesis problem for an archi-
tecture A is decidable iff the control-synthesis problem is decidable for each of its
connected components. Hence it suffices to prove that the problem is decidable
for architectures which are sub-architectures of clean pipelines.

We use alternating and non-deterministic tree automata to prove our decid-
ability results. Due to lack of space, we assume a standard presentation of these
automata [Tho90,MS95].

A tree is a directed acyclic graph T = (V, E) which has a designated root r
which does not have a parent. Every other node is reachable from r and has a
unique parent. We say v′ is a child of v if (v, v′) ∈ E. For a set Σ, a Σ-labelled
tree is a pair (T, τ) where T = (V, E) is a tree and τ : V → Σ. Let Υ be a finite
set. Then Υ ∗ can be viewed as a tree TΥ = (Υ ∗, E) where (x, x ·d) ∈ E, for every
x in Υ ∗ and d in Υ . We refer to this as the Υ -tree.

Consider a plant (A, D, P) and a distributed control-strategy f for it. Let s
be a site with an output channel t in A. Let L ⊆ Dω

t be the language of infinite
strings output on t (by considering all possible inputs on the external input
channels of the plant). We call such a language of infinite words, a communication
language for the channel t. Let Pref (L) = {x | ∃β ∈ L, x is a prefix of β}.
Then it is not difficult to see that L = lim(Pref (L)) where lim(L) = {α ∈ Σω |
for every prefix x of α, x ∈ L}. Also, L 6= ∅.

So L = Pref (L) ⊆ D∗
t , the set of finite sequences sent along t represents the

set of infinite sequences sent along the channel as well. So L can be represented
(uniquely) by a {>,⊥}-labelled Dt-tree T = (D∗

t , τ), where τ(x) = > if x ∈ L
and τ(x) = ⊥, otherwise. In such a tree if a node has label > then it will have
at least one child with the label > and if a node has label ⊥ then all its children
will have the label ⊥. Also, the root, ε is labelled >. Clearly each such {>,⊥}-
labelled Dt-tree (which we call t-type trees) uniquely represents a communication
language of the channel t and our automata run over such trees. If T is a t-type
tree then we let Lang(T) denote the language of infinite strings it represents.

Let us fix a clean pipeline which has k sites, as shown in Figure 1. We refer
to s1 as the left-site, sk as the right-site and each of the si’s, 1 < i < k as middle
sites.

Let s be the left-site of a clean pipeline with input channel x and output
channel t. Suppose P is the program at s, and there is is a local winning strategy
f at s and L is the language of infinite words sent along t as a result of the pair

402 P. Madhusudan and P.S. Thiagarajan

(P, f) reacting to all possible inputs on x. Then L is said to be an s-successful
language. For a right-site s, with input channels t and x, we say that a language
L of infinite strings over Dt is s-successful, if there is a strategy f at s which can
work on these inputs, and arbitrary inputs on x, and win locally. For a middle-
site s with input channel t and output channel t′, we say that L′ ⊆ D(t′)ω is
successfully generable by s on L ⊆ D(t)ω if there is a strategy at s which wins
locally on reading inputs from L on t and produces L′ on t′.

Lemma 1. Let s be the left-site of a clean pipeline with input channel x, output
channel t and program P . Then there is an alternating tree automaton (on t-
type trees) which accepts a t-type tree T iff the language represented by T has an
s-successful sublanguage.

Proof: The automaton we construct, while running over a t-type tree T ,
guesses a local strategy f for the program at s, makes sure that f produces no
string which is not in Lang(T) and also checks that f is locally winning.

The automaton has, in its state-space, a component encoding which state of
the program it is currently simulating. Then reading a node y of T , it does the
following:
– Guess a set of moves from the current state for each possible input d in D(x).
– The automaton propagates, for each d ∈ D(x), a copy along the direction

d′ ∈ D(t) where d′ is the output of the plant on d according to the guessed
move. The corresponding successor state of the program is also propagated
and the automaton will check in these copies whether the labels of the nodes
it reads are >. This will ensure that the outputs are allowed by T .

The acceptance condition ensures that paths on a run encode state-sequences
which satisfy the local winning condition of P . Since each node in a run corre-
sponds to a unique input history, the independent guessing of the strategy at
these nodes is justified. ut

Note that the automaton accepts a tree provided the language represented
by the tree merely contains an s-successful language. It seems hard to strengthen
this containment to equality. However, the present version will suffice.

Lemma 2. Let s be a right-site of a pipeline with in(s) = {x, t} and let the
program at s be P . Then there is an alternating tree automaton on t-type trees
which accepts a tree T iff the language that T represents is s-successful.

Proof: The automaton guesses a local strategy for P at s on input sequences
α ∈ Lang(T) along t and arbitrary input sequences β ∈ D(x)ω on x and makes
sure that f is winning for all local runs on these sequences.

The automaton keeps track in its state-space the current state of P it is
simulating. Reading a node y of the input tree, it does the following:
– Guess Y ⊆ D(t) corresponding to the set of successors of y labelled >. The

automaton will (in its next move) check if Y is indeed the set of >-successors.
– The strategy has to handle all inputs in Y on the channel t along with

an arbitrary input in D(x) on channel x. The automaton guesses such a
strategy at this point by guessing moves from the current state of P on each

Distributed Controller Synthesis for Local Specifications 403

h ∈ H{x,t} with h(t) ∈ Y . It then propagates along each direction d in Y ,
a copy of the automaton for each d′ ∈ D(x) corresponding to the chosen
move when channel t carries d and channel x carries d′. It propagates the
corresponding state of P as well.

The acceptance condition is that all paths on a run encode a state-sequence
in P which satisfies the local winning condition of P . Again, since each node in a
run corresponds to a unique input history, the guessing of the strategy at these
points independently is justified. ut
Theorem 2. The two-site clean pipeline is decidable.
Proof: Let the sites and channels of the pipeline be labelled as in Figure 1.
Using Lemma 1, construct an automaton A1 which accepts a t1-type tree T iff s1
can successfully generate a sublanguage of Lang(T). Using Lemma 2, construct
A2 which accepts t1-type trees which represent languages which s2 can win on.
The claim now is that a distributed winning strategy exists iff L(A1) ∩ L(A2) is
nonempty.

Assume T ∈ L(A1) ∩ L(A2) and let L be the language it represents. Then
there is a strategy f2 at s2 which wins on L. Also, there is a local winning strategy
f1 at S1 which generates a sublanguage L′ of L. However, since the local winning
conditions are linear-time specifications, f2 wins on L′ as well. Hence 〈f1, f2〉 is
a distributed winning strategy. Furthermore, one can construct, from the runs of
A1 and A2 on a regular tree in L(A1) ∩ L(A2), a strategy which can be realized
as a finite-state transition system. Also, it is easy to see that if 〈f1, f2〉 is any
winning distributed strategy, then the tree corresponding to the language f1
generates is accepted by A1 as well as A2. ut
Lemma 3. Let s be a middle-site of a clean pipeline with in(s) = {t} and
out(s) = {t′}, and let the program at s be P . Let A be a nondeterministic
automaton accepting t-type trees. Then there is an automaton on {>,⊥}-labelled
t′-type trees that accepts a tree T ′ iff there is a t-type tree T accepted by A and a
language L0 ⊆ Lang(T ′) such that L0 is successfully generable by s on Lang(T).

Proof: Let T ′ be an input to the automaton and L′ be the language it
represents. The automaton, while reading T ′, guesses a t-type tree T , guesses a
run of A on T , guesses a strategy f on the strings represented in T and makes
sure that the run on T is accepting, makes sure that the strategy outputs strings
which are included in L′ and makes sure that the strategy locally wins.

A node in the run on T ′ corresponds to a node y′ in T ′ as well as a node
x of the tree T being guessed — here x is the sequence in D(t)∗ on which the
guessed strategy has output y′. Note that each sequence in D(t)∗ can lead to at
most one sequence in D(t′)∗ being output and hence guessing of the tree T at
nodes of the run is justified.2

The state-space of the automaton has both the current state of P as well as
a state of the automaton A which represents the state-label of the correspond-
ing node in T in the guessed run on T . The automaton at a node in the run
corresponding to the node y′ in T ′ and x in T does the following:
2 If the site also has an external input, this will not be the case.

404 P. Madhusudan and P.S. Thiagarajan

– Guess the set Y ′ ⊆ D(t′) which corresponds to the children of y′ labelled >.
– Guess the labels of the children of x in T . This is the point where T is being

guessed. Let X ⊆ D(t) be the children of x labelled >.
– The automaton now guesses a move of P from the current state on each

d ∈ X and makes sure that the output on t is in Y ′. It then propagates along
each direction d′ ∈ Y ′ in T , many copies of itself — each corresponding to a
d ∈ D(t) on which the guessed move outputs d′. The appropriate successor
state of P is propagated. The automaton also guesses a transition of A from
the node x and propagates these automaton states as well.

The acceptance condition makes sure that along any path in the run, the state-
sequence of P meets the local winning condition of P and the state-sequence of
the automaton meets the winning condition of A. ut
Theorem 3. The control-synthesis problem for clean pipelines is decidable.

Proof: We start with the left-site of the pipeline, use Lemma 1 and walk down
the pipeline by successively using Lemma 3. After each site, we have to convert
the alternating automata we get to a nondeterministic one [MS95] so as to apply
Lemma 3. In the end, we intersect the automata we have got with that obtained
using Lemma 2. Then by an argument similar to the one in Theorem 2, we can
show that there is a nonempty intersection iff there is a distributed controller
and if a controller exists, we can synthesize one which is finite-state. ut

The results imply the decidability of a related realizability problem: given a
clean pipeline and localised temporal logic specifications at each site, where each
specification can express properties of the local channels at that site, is there a
program at each site such that the combined behaviour meets the specification?
This problem can be reduced to the control-synthesis problem by choosing a
trivial plant at each site which permits all possible ways of writing onto the
local output channels.

4 Undecidable Architectures

We show now that any architecture which is not a sub-architecture of a clean
pipeline is undecidable. We show first the undecidability of the three basic ar-
chitectures in Figure 2. The reductions are from the halting problem for deter-
ministic Turing machines starting with blank tapes. Our proofs are extensions
of the the undecidability proof developed in [PR90].

A configuration of a deterministic Turing machine M is a sequence C ∈
Γ ∗ · Q · Γ+ where Γ is the set of tape symbols and Q is the set of states. If
C = xqy, with q ∈ Q, then the machine has x · y written on the tape with
the head position on the cell after x. The initial configuration, Cin = qin · [
where qin is the initial state and [is the special tape symbol called blank. The
transition relation ` on configurations is defined in the obvious way. We say that
the machine halts on the blank-tape if Cin `∗ Ch where the state in Ch is qh, a
designated halt state.

Distributed Controller Synthesis for Local Specifications 405

s1

t1

x2

t1

s3

s2

x1

s

t2
s2

t2

x2

s1

x1

t t

x

s

s2s1

1 2

3

A1 A2 A3

Fig. 2. Basic undecidable architectures

The sites host programs which have associated strategies to output configu-
rations. The (finite state) program outputs words in Γ ∗ ·Q ·Γ+ with the strategy
deciding which configurations are output. The input channels carry two symbols
S (Start outputting a new configuration) and N(output the next symbol of the
current configuration). On receiving S, a program will output $, followed by a
configuration while reading N and finish the configuration by outputting $. It
waits while reading N , and outputs a special symbol ∗ during this time, till it get
an S on which it starts outputting another configuration. The first configuration
output by the program is always Cin.

Lemma 4. The control-synthesis problem for the architecture A1 is undecidable.

Proof: The main idea of the proof is to make s1 and s2 always send their current
states to s3. Site s3 now has the global view of s1 and s2 and a global specification
of s1 and s2 (exploited in [PR90] to get the undecidability argument) can be
stated as a local specification for s3. ut
Lemma 5. The control-synthesis problem for the architecture A2 is undecidable.

Proof: Site s1 will output configurations when prompted by the environment
through channel x1. Site s3 will, when prompted by s2 on t2, “accept” configura-
tions instead of outputting them; when it starts a configuration, it will generate
it one unit time in advance and keep the generated symbol of Γ ∪Q in its state-
space. It proceeds from this state only if the input it receives on t2 is the same
as the symbol it has committed to. It then proceeds to commit the next symbol.
This can be looked upon as s3 generating configurations which s2 has to predict
correctly.

Site s2 can go into two modes, A and B, the decision being taken according
to the first environment input on x2. In Mode A, the program at s2 simply
passes the configurations which it receives on t1 to t2. In Mode B, the program
first outputs the initial configuration to s3 and after that, each time it receives
a configuration C on t, it propagates online C ′ to t2 where C ` C ′.

If s3 receives a symbol it has not committed to, it goes to a reject state. Mode
A ensures that the two sites output/accept the same configuration sequences
while Mode B ensures that if the ith configuration output by s1 is C and the
(i + 1)th configuration accepted by s2 is C ′, then C ` C ′. So the only way the

406 P. Madhusudan and P.S. Thiagarajan

plant can hope to win is by s1 and s3 accepting the configuration sequence of
M . By introducing a winning condition on s2 which makes sure that s2 locally
wins only if it outputs the halting configuration, one can show that the plant
has a distributed winning strategy iff M halts on the blank tape. ut
Lemma 6. The control-synthesis problem for the architecture A3 is undecidable.

Proof: As done by s3 of A2 in the previous lemma, s1 and s2 will now accept
configuration of M . Site s can be in two modes, A and B, the mode chosen by the
first input on x. In Mode A, the program at s1 passes the initial configuration Cin

to s1 and makes s2 wait. Then, while getting as input an arbitrary configuration
C from the environment on x, it passes C to s2 and simultaneously passes C ′ to
s1 where C ` C ′. Mode B is analogous with the roles of s1 and s2 interchanged.

To force s1 and s2 to accept the correct configuration sequence of M , we
would like the environment to win iff it can get the site scheduled first to be
unstuck and get the other stuck. The trick is to have another mode C for s
where the plant is forced to emulate the combined (product) behaviour of s1
and s2. The winning condition can now be stated on the state-space of s. Then
one can make make sure that one of the sites, say s1, wins when it accepts the
halting configuration. One can show now that a distributed controller exists iff
M halts on the blank tape. ut

Using Lemma 4 we can show that any architecture which has a site s with
two internal input channels is undecidable. The idea is to pick the minimal sites
above the two internal channels for s and make the rest of the sites “dummy” by
making them just pass their input to their output and always win locally. We can
then reduce the control-synthesis problem of A1 to that over this architecture.
Similarly, using Lemma 6 we can show that any architecture which has a site
with two internal output channels is undecidable.

What we are left with are pipelines. Since we require each process to have an
input channel, the left-site of the pipeline must have an external input channel.
Consider a pipeline (which is not a clean pipeline) with sites {s′

1, . . . , s
′
k}, k > 2,

with s′
i having an external input channel where 1 < i < k. We can reduce

the control-synthesis problem for A2 to the control-synthesis problem for this
pipeline, by coding the program at s1 into s′

1, the program at s2 into s′
i and

the program at s3 into s′
k. The remaining sites of the pipeline will be “dummy”.

Hence we have:

Theorem 4. If A is an architecture which has a connected component which is
not a sub-architecture of a clean pipeline, then the control-synthesis problem for
A is undecidable. ut
The results above can be suitably changed to show that even for weaker winning
conditions such as Büchi, co-Büchi, or even safety conditions, the architectures
remain undecidable.

Acknowledgement. We would like to thank Wolfgang Thomas and Christof
Löding for several fruitful discussions on early drafts of this paper.

Distributed Controller Synthesis for Local Specifications 407

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In Proc. 38th IEEE FOCS, pages 100–109, October 1997.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable con-
current program specifications. In Proc. 16th ICALP, vol. 372, pages 1–17.
LNCS, Springer-Verlag, July 1989.

[BL69] J.R. Büchi and L.HG. Landweber. Solving sequential conditions by finite-
state strategies. Trans. AMS, 138:295–311, 1969.

[dAH00] Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular
games. In Proc., LICS ’00, 15th Annual Conf., pages 141–154, 2000.

[dAHM00] Luca de Alfaro, Thomas A. Henzinger, and F.Y.C. Mang. The control of
synchronous systems. In Proc., CONCUR ’00, 11th Int. Conf., vol. 1877
of LNCS, pages 458–473, Penn. State Univ, USA, Sept. 2000.

[KMTV00] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Open
systems in reactive environments: Control and synthesis. In Proc., CON-
CUR ’00, 11th Int. Conf., vol. 1877 of LNCS, USA, Sept. 2000.

[KV96] O. Kupferman and M.Y. Vardi. Module checking. In CAV, Proc. 8th Intl.
Conf., vol. 1102 of LNCS, pages 75–86. Springer-Verlag, 1996.

[KV99] O. Kupferman and M.Y. Vardi. Church’s problem revisited. The Bulletin
of Symbolic Logic, 5(2):245 – 263, June 1999.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of theorems of
Rabin, McNaughton and Safra. Theoretical Computer Science, 141:69–
107, 1995.

[MT98] P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event
systems via morphisms. In In Proc., CONCUR’98, 9th Int. Conf., vol.
1466 of LNCS, pages. 18–33, France, September 1998.

[PR79] G.L. Peterson and J.H. Reif. Multiple-person alternation. In Proc. 20th
IEEE Symp. on FOCS, pages 348–363, 1979.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
16th ACM Symp. on Principles of Prog. Languages, Austin, January 1989.

[PR90] A. Pnueli and R. Rosner. Distributed reactive systems are hard to syn-
thesize. In Proc. 31st IEEE Symp. FOCS, pages 746–757, 1990.

[Rab72] M.O. Rabin. Automata on infinite objects and Church’s problem. Amer.
Mathematical Society, 1972.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event sys-
tems. IEEE Transactions on Control Theory, 77:81–98, 1989.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp.
FOCS, pages 319–327, White Plains, October 1988.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Com-
puter Science, pages 165–191, 1990.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In E.W.
Mayr and C. Puech, editors, Proc. 12th Symp. on Theoretical Aspects of
Comp. Sc., vol. 900 of LNCS, pages 1–13. Springer-Verlag, 1995.

[MT01] P. Madhusudan and P. S. Thiagarajan. Distributed Controller Synthesis
for Local Specifications. Technical Report TCS-01-1, Chennai Mathemat-
ical Institute, India. Available at http://www.smi.ernet.in

A Distributed Abstract Machine for Safe
Ambients

(Extended Abstract)

Davide Sangiorgi1 and Andrea Valente2

1 INRIA Sophia-Antipolis, France. davide.sangiorgi@inria.fr
2 Università di Torino, Italy. valente@di.unito.it

1 Introduction

The Ambient calculus [4] is a model for mobile distributed computing. An am-
bient is the unit of movement. Processes within the same ambient may exchange
messages; ambients may be nested, so to form a hierarchical structure. The
three primitives for movement allow: an ambient to enter another ambient,
n[inm. P | Q] | m[R] −→ m[n[P | Q] | R]; an ambient to exit another ambi-
ent, m[n[outm. P | Q] | R] −→ n[P | Q] | m[R]; a process to dissolve an am-
bient boundary thus obtaining access to its content, openn. P | n[Q] −→ P | Q.

Several studies of the basic theory of the Ambient calculus have recently
appeared, concerning for instance behavioural equivalences, types, logics, static
analysis techniques [5,6,1,7,12]. In comparison, little attention has been given
to implementations. The only implementations of Ambients we are aware of are
Cardelli’s [2,3], and Fournet, Lévy and Schmitt’s [9]. The latter, formalised as a
translation of Ambients into the distributed Join Calculus, is the only distributed
implementation. Although ingenious, the algorithms that these implementations
use for simulating the ambient reductions are fairly complex.

One of the difficulties of a distributed implementation of an ambient-like
language is that each movement operation involves ambients on different hier-
archical levels. For instance, the ambients affected by an out operation are the
moving ambient, and its initial and its final parent; at the beginning they re-
side on three different levels. In [2,3] locks are used to achieve a synchronisation
among all ambients affected by a movement. In a distributed setting, however,
this lock-based policy can be expensive. For instance, the serialisations intro-
duced diminish the parallelism of the whole system. In [9] the synchronisations
are simulated by means of protocols of asynchronous messages. The problems
of implementation have been a restraint to the development of programming
languages based on Ambients and to experimentation of Ambients on concrete
examples. In our opinion, implementation is one of the aspects of Ambients that
most need investigations.

In this paper we study an abstract machine for a distributed implementation
of an ambient-like calculus. The algorithms of our abstract machine are quite
different from, and simpler than, those of [2,3,9], mainly for two reasons. The
first – the most important — is that the calculus that we actually take is typed
Safe Ambients [11] (SA) rather than untyped Ambients. SA is a variant of the

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 408–420, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Distributed Abstract Machine for Safe Ambients 409

original calculus that eliminates certain forms of interference in ambients, the
grave interferences. They are produced when an ambient tries to perform two
different movement operations at the same time, as for instance n[inh. P |
outn. Q | R]. The control of mobility is obtained in SA by a modification of the
syntax and a type system. In [11] the absence of grave interferences is used to
develop an algebraic theory and prove the correctness of some examples. One of
the contributions of this paper is to show that the absence of grave interferences
also brings benefits in implementations.

The second reason for the differences in our abstract machine is the separation
between the logical structure of an ambient system and its physical distribution.
Exploiting this, the interpretation of the movement associated to the capabilities
is reversed: the movement of the open capability is physical, that is, the location
of some processes changes, whereas that of in and out is only logical, that
is, some hierarchical dependencies among ambients may change, but not their
physical location. Intuitively, in and out are acquisition of access rights, and
open is exercise of them.

The differences also show up in the correctness proof of the abstract machine,
which is much simpler than the correctness proof of the Join implementation.

Of course another difference is that our algorithms are formulated as an
abstract machine. The machine is independent of a specific implementation lan-
guage, and can thus be used as a basis for implementations on different languages.
In the paper we sketch one such implementation, written in Java.

2 Safe Ambients: Syntax and Semantics

We briefly describe typed Safe Ambient (SA), from [11]. In the reduction rules
of the original Ambient calculus, mentioned in Section 1, an ambient may enter,
exit, or open another ambient. The second ambient undergoes the action; it
has no control on when the action takes place. In SA this is rectified: coactions
inn, outn, openn are introduced with which any movement takes place only if
both participants agree. The syntax of SA is the following, where n, m, . . . are
names, x, y, . . . are variables, X, Y, . . . are recursion variables:

M,N := x | n | inM | inM | outM | outM | openM | openM

P,Q,R := 0 | P | Q | (νn) P | M .P | M [P] | 〈M〉 | (x)P | X | recX.P

Expressions that are not variables or names are the capabilities. We often
omit the trailing 0 in processes M . 0. Parallel composition has the least syntactic
precedence, thus m[M . P | Q] reads m[(M . P) | Q]. An ambient, or a parallel
composition, or variable, is unguarded if it is not underneath a capability or an
abstraction. In a recursion recX. P , the recursion variable X should be guarded
in P . For simplicity of presentation we omit path expressions in the syntax.

Below are the reduction axioms: those for movement, and the communica-
tion rule (communication is asynchronous, takes place inside ambients, and is
anonymous—it does not use channel or process names):

410 D. Sangiorgi and A. Valente

n[inm.P1 | P2] | m[inm.Q1 | Q2] −→ m[n[P1 | P2] | Q1 | Q2] [R-in]

m[n[outm.P1 | P2] | outm.Q1 | Q2] −→ n[P1 | P2] | m[Q1 | Q2] [R-out]

openn.P | n[openn.Q1 | Q2] −→ P | Q1 | Q2 [R-open]

〈M〉 | (x)P −→ P{M/x} [R-msg]

The inference rules allow a reduction to occur underneath a restriction, a
parallel composition, and inside an ambient. Moreover, the structural congruence
relation (≡) can be applied before a reduction step. Structural congruence is used
to bring the participants of a potential interaction into contiguous positions; its
definition is standard, and includes rules for commuting the positions of parallel
components, for stretching the scope of a restriction, for unfolding recursions.
We write =⇒ for the reflexive and transitive closure of −→. The use of coactions,
in the syntax and operational rules, is the only difference between (untyped) SA
and and the original Ambient calculus.

Up to structural congruence, every ambient in a term can be rewritten into
a normal form

n[P1 | . . . | Ps | m1[Q1] | . . . | mr[Qr]]

where Pi (i = 1. . s) does not contain unguarded ambients or unguarded parallel
compositions. In this case, P1, . . . , Ps are the local processes of the ambient, and
m1[Q1] | . . . | mr[Qr] are the subambients.

SA has two main kinds of types: single-threaded and immobile. We consider
them separately. We begin with the single-threaded types, which we informally
describe below. We consider immobility types in Section 6.

The capabilities of the local processes of an ambient control the activities of
that ambient. In an untyped (or immobile) ambient such control is distributed
over the local processes: any of them may exercise a capability. In a single-
threaded (ST) ambient, by contrast, at any moment at most one process has
the control thread, and may therefore use a capability. An ST ambient n is
willing to engage in at most one interaction at a time with external or in-
ternal ambients. Inside n, however, several activities may take place concur-
rently: for instance, a subambient may reduce, or two subambients may interact
with each other. Thus, if an ambient n is ST, the following situation, where
at least two local processes are ready to execute a capability, cannot occur:
n[inm. P | outh. Q | R]. The control thread may move between processes local
to an ST ambient by means of an open action. Consider, for instance, a reduction
n[openm. P | m[openm. Q]] −→ n[P | Q] where n and m are ST ambients.
Initially openm. P has the control thread over n, and openm. Q over m. At
the end, m has disappeared; the control thread over n may or may not have
moved from P to Q, depending on the type of m. If the movement occurs, Q can
immediately exercise a capability, whereas P cannot; to use further capabilities
within n, P will have to get the thread back.

For simplicity, we assume here a strong notion of ST, whereby a value message
〈M〉 never carries the thread. In [11] a weaker notion is used, where also messages
may carry the thread. In the remainder, all processes are assumed to be well-
typed, and closed (i.e., without free variables).

A Distributed Abstract Machine for Safe Ambients 411

a b

c

a b

c
{open}

b

c

a cb

c
{migrate}

a

match {register P }

a b

c

match

b

c

{out}

a a b

c

{go c}

a b

c

a b

c
{in} {in} match

a b

c
{ok in}{go b}

Fig. 1. The simulation of the reductions R-in, R-out, and R-open in PAN

3 The Abstract Machine, Informally

We describe the data structures and the algorithms of the abstract machine,
called PAN. PAN separates between the logical and the physical distribution
of the ambients. The logical distribution is given by the tree structure of the
ambient syntax. The physical distribution is given by the association of a location
to each ambient.

In PAN, an ambient named n is represented as a located ambient h: n[P]k,
where h is the location, or site, at which the ambient runs, k is the location
of the parent of the ambient, and P collects the processes local to the ambient.
While the same name may be assigned to several ambients, a location univocally
identifies an ambient; it can be thought of as its physical address.

A tree of ambients is rendered, in PAN, by the parallel composition of the
(unguarded) ambients in the tree. In this sense, the physical and the logical
topology are separated: the space of physical locations is flat, and each location
hosts at most one ambient, but each ambient knows the location at which its
parent resides. For instance, an SA term n[P1 | P2 | m1[Q1] | m2[Q2]], where
P1 and P2 are the local processes of n, and Qi (i = 1, 2) is a local process of mi

(i.e., mi has no subambients), becomes in PAN:

h: n[P1 | P2]root ‖ k1: m1[Q1]h ‖ k2: m2[Q2]h

where h, k1, k2 are different location names, root is a special name indicating
the outermost location, and ‖ is parallel composition of located ambients. (The
above configuration is actually obtained after two creation steps, in which the
root ambient spawns off the two ambients located at k1 and k2.) Since ambients
may run at different physical sites, they communicate with each other by means
of asynchronous messages.

412 D. Sangiorgi and A. Valente

All the actions (in , out , and open) can modify the logical distribution. Only
open , however, can modify the physical distribution. The algorithms that PAN
adopts to model reduction in SA are based on 3 steps: first, a request message is
sent upward, from a child ambient that wants to move (logically or physically)
to its parent; second, a match is detected by the parent itself; third, a completion
message is sent back to the child, for its relocation. The only exception is the
algorithm for open , where a further message is needed to migrate the child’s
local processes to the parent. These steps are sketched in Figure 1, where a, b, c
represent three ambients, a straight line represents a pointer from an ambient
to its parent, and a curved line represents the sending of a message. Thus in
first row of Figure 1, at the beginning a and b are sibling ambients and c is their
parent. This figure illustrates an R-in reduction in which a becomes a child of
b. In the first phase, a demands to enter b (precisely, if n is the name of b, then
a demands of entering an ambient with name n), and b accepts an ambient in.
For this, a and b send requests in and in to their parent c (the actual messages
may also contain the name and location of the sender; these are not shown in the
figures). In the second phase, c sees that two matching requests have been sent
and authorises the movement. Finally, in the third phase, c sends completion
messages to a and b. The message sent to a also contains the location of b, which
a will use to update its parent field. An ambient that has sent a request to
its parent but has not yet received an acknowledgement back, goes into a wait
state, in which it will not send further requests. In the figures, this situation is
represented by a circle that encloses the ambient. An ambient in a wait state,
however, can still receive and answer requests from its children and can perform
local communications.

The second row of Figure 1 sketches an R-out reduction. In the first phase,
ambient a demands its parent b to exit. When b authorises the movement (phase
2), it sends a an acknowledgement containing the location of the parent of b,
namely c, and upon receiving this message (phase 3) a updates its parent field.
The grandparent ambient c is not affected by the dialog between a and b. The
third row of Figure 1 sketches an R-open reduction. Ambient a accepts to be
opened, and thus notifies its parent c. If a matching capability exists, that is, one
of the processes local to c demands to open a, then c authorises a to migrate its
local processes into c. Ambient a then becomes a forwarder (a B c in the figure)
whose job is just to forward any messages sent to a on to c. Such a forwarder
is necessary, in general, because a may have subambients, which would run at
different locations and which would send their requests of movement to a.

Using R-open, rather than R-in or R-out, for the physical movements may
appear counterintuitive. One should however bear in mind that, in an ambient-
like formalism, entering and exiting ambients is not very useful without opening
some ambients.

4 The Abstract Machine, Formally

Syntax. The syntax of PAN is shown in Table 1. A term of PAN, a net, is
the parallel composition of agents and messages, with some names possibly re-
stricted. An agent can be a located ambient or a forwarder. Located ambients are

A Distributed Abstract Machine for Safe Ambients 413

Table 1. The syntax of PAN

a, b, . . ∈ Names h, k, . . ∈ Locations p, q, . . ∈ Names ∪ Locations

Nets

A := 0 (empty)

| Agent (agent)

| h{MsgBody} (message)

| A1 ‖ A2 (composition)

| (νp)A (restriction)

Agents

Agent := h B k (forwarder)

| h:n[P]k (located ambient)

Message body

MsgBody := Request (request)

| Completion (completion)

Request := in n, h (the agent at h wants to enter n)

| in n, h (the agent at h, named n, accepts someone in)

| out n, h (the agent at h wants to go out of n)

| open n, h (the agent at h, named n, accepts to be opened)

Completion := go h (change the parent to be h)

| OKin (request in accepted)

| migrate (request open accepted)

| register P (add P to the local processes)

Process-related syntax:

P := 0

| P1 | P2

| (νn)P

| M . P

| M [P]

| 〈M〉

| (x) P

| X

| recX.P

| wait.P

| {Request}

M := x

| n

| inM

| inM

| outM

| outM

| openM

| openM

the basic unit of PAN, and represent ambients of SA with their local processes.
The syntax of the processes inside located ambients is similar to that of processes
in SA. The only additions are: the prefix wait. P , which appears in an ambient
when this has sent a request to its parent but has not received an answer yet;
and the requests, which represent messages received from the children and not
yet served. We use A to range over nets.
Semantics. The reduction relation of PAN, 7−→, from nets to nets, is defined
by the rules below. The rules for local reductions, and the associated inference
rule par-proc, have a special format. We write P k−−−−→

h:n
Q � M̃sg to mean a

414 D. Sangiorgi and A. Valente

process P , local to an ambient n that is located at h, and whose parent is located
at k, becomes Q and, as a side effect, the messages in M̃sg are generated. We use
M̃sg to indicate a possibly empty parallel composition of messages. For instance,
if P k−−−−→

h:n
Q � M̃sg , then, using proc-agent and par-agent, we have, for

any net A:
A ‖ h: n[P]k 7−→ A ‖ h: n[Q]k ‖ M̃sg

When n or h or k are unimportant, we replace them with −, as in P k−−−−→−:n

Q � M̃sg . The rule struct-cong make use of the structural congruence relation
≡, whose definition is similar to that for SA, and includes the standard rules for
changing the orders of parallel compositions and restrictions, and for unfolding
recursions.

The side condition of rule par-proc ensures that all subambients of an am-
bients are activated as soon as possible, before any local reduction takes place
(here we exploit the fact that recursions are guarded, otherwise there could be
an infinite number of ambients to create).

Local reductions

〈M〉 | (x).P −−−−−−→−:− P{M/x} � 0 [local-com]

{in n, h} | {in n, k} −−−−−−→−:− 0 � h{go k} | k{OKin} [local-in]

{out n, h} | outn.P k−−−−−→−:n
P � h{go k} [local-out]

openn.P | {open n, h} −−−−−−→−:− wait.P � h{migrate} [local-open]

Creation

h:n[m[P] | Q]h′ 7−→ h:n[Q]h′ ‖ νk (k:m[P]h) [new-locamb]

h:n[νmP]k 7−→ νm (h:n[P]k) [new-res]

Forwarder

h B k ‖ h{MsgBody} 7−→ h B k ‖ k{MsgBody} [fw-msg]

Consumption of request messages

h:n[P]h′ ‖ h{Request} 7−→ h:n[P | {Request}]h′ [consume-req]

Emission of request messages (should be h 6= root)

inm.P k−−−−−→
h:− wait.P � k{inm,h} [req-in]

inn.P k−−−−−→
h:n

wait.P � k{in n, h} [req-coin]

outm.P k−−−−−→
h:− wait.P � k{outm,h} [req-out]

A Distributed Abstract Machine for Safe Ambients 415

openn.P k−−−−−→
h:n

wait.P � k{open n, h} [req-coopen]

Consumption of completion messages

h:n[P | wait.Q]k ‖ h{go h0} 7−→ h:n[P | Q]h′ [compl-parent]

h:n[P | wait.Q]k ‖ h{OKin} 7−→ h:n[P | Q]k [compl-coin]

h:n[P | wait.Q]k ‖ h{migrate} 7−→ h B k ‖ k{register P | Q} [compl-migr]

h:n[P | wait.Q]k ‖ h{registerR} 7−→ h:n[P | Q | R]k [compl-reg]

Inference rules

P k−−−−−→
h:n

P 0 � M̃sg Q does not have unguarded ambients

P | Q k−−−−−→
h:n

P 0 | Q � M̃sg
[par-proc]

P k−−−−−→
h:n

P 0 � M̃sg

h:n[P]k 7−→ h:n[P 0]k ‖ M̃sg
[proc-agent]

A 7−→ A0

A ‖ B 7−→ A0 ‖ B [par-agent]

A 7−→ A0

νpA 7−→ νpA0 [res-agent]
A ≡ A0 A0 7−→ A00 A00 ≡ A000

A 7−→ A000 [struct-cong]

5 Correctness of the Abstract Machine

For lack of space we only report the main correctness result. We refer to the
full version of the paper, or to the version on the authors’s Web page, for more
details.

Let [[.]] be the translation of terms of SA into terms of PAN, so defined:

[[P]] def= root: rootname[P]rootparent

We write A ⇓n if A is observable at n; this means, intuitively, that A contains
an agent n that accepts interactions with the external environment. Formally:
A ↓n if A ≡ νp̃ (h: n[µ. Q1 | Q2]root ‖ A′) where µ ∈ {inn, openn} and n 6∈ p̃.
Then, using �=⇒ for the reflexive and transitive closure of 7−→, we write A ⇓n if
A �=⇒ ↓n. Observability in SA is defined similarly: P ⇓n if P =⇒ P ′, for some
P ′ such that P ′ ≡ νñ (n[µ. Q1 | Q2] | Q3) where µ ∈ {inn, openn} and n 6∈ ñ.

Theorem 1. Let P ∈ SA. It holds that P ⇓n iff [[P]] ⇓n, for all n.

The key steps in the proof of Theorem 1 are the following. First, since PAN
separates between the logical and physical distribution of ambients, we need to
make sure that the two are consistent. For instance, the graph of the dependen-
cies among locations in the physical distribution, which represents the logical
structure, should be a tree. We also need conditions that ensure that the wait
state is used as described informally in previous sections. We therefore introduce
the notion of well-formed nets and then prove that well-formedness is invariant
under reductions. Secondly, we prove that on well-formed nets administrative
reductions do not affect behavioural equivalences, where a reduction A 7−→ A′ is
administrative if its derivation proof does not use the axioms of local reductions.
Thirdly, we establish an operational correspondence between the reductions of
a well-typed SA process and of its PAN translation.

416 D. Sangiorgi and A. Valente

6 Immobile Ambients

The other important type of ambients in SA are the immobile ambients. (A
typed SA program may therefore contain both single-threaded and immobile
ambients.) These are ambients that: (i) cannot jump into or out of other ambi-
ents; (ii) cannot be opened. Thus the only capabilities that an immobile ambient
can execise are inn, outn, and openn; several of them can be ready for execu-
tion at the same time.

The same rules for the abstract machine in Section 4 could be adopted for
immobile ambients. This has however the following problem. Consider the pro-
cess

P
def= n[rec X. (inn | νm (openm. X | m[openm]))]

(Using replication, the behaviour of P can be expressed as n[!inn].) With the
rules of Section 4, ambient n could flood its parent with in requests. To avoid
the problem, we modify par-proc:

P k−−−−−→
h:n

P 0 � M̃sg

n is an immobile ambient
Q does not have unguarder ambients
Q or P 0 do not contain any wait

P | Q k−−−−−→
h:n

P 0 | Q � M̃sg
[Imm-par-proc]

We then have to modify also local-open and par-proc, so that an immo-
bile ambient does not go into a wait state while opening a child ambient:

n is an immobile ambient

openm.P | {openm,h} −−−−−−→−:n
P � h{migrate}

[Imm-local-open]

n is an immobile ambient
h:n[P]k ‖ h{registerR} 7−→ h:n[P | R]k

[Imm-compl-reg]

The original rules local-open, par-proc, and compl-reg are now used
only for ST ambients, therefore the corresponding side conditions is added.

With the new rules, the following property holds (for both ST and immobile
ambients): an agent can send only one request message at a time to its parent.
An immobile ambient can exercise several capabilities at the same time. Sending
one request at a time to the parent is correct because the only capability that
may produce a request from an immobile ambient named n to its parent is inn
(the protocol for in can however be executed in parallel with several protocols
for out and open operations). With the new rules, the addition of immobile
ambients requires few modifications to the correctness proof of Section 5.

7 Comparisons and Remarks

Cardelli [2,3] has produced the first implementation, called Ambit, of an ambient-
like language; it is a single-machine implementation of the untyped Ambient
calculus, and is written in Java. The algorithms are based on locks: all the
ambients involved in a movement (three ambients for an in or out movement,

A Distributed Abstract Machine for Safe Ambients 417

two for an open) have to be locked for the movement to take place. More recently,
Fournet, Lévy and Schmitt [9] have presented a distributed implementation of
the untyped Ambient calculus, as a translation of the calculus into Jocaml [10] (a
programming language based on the distributed Join Calculus [8]). Our abstract
machine is quite different from the above mentioned implementations mainly
because:

(i) We are implementing a variant of the Ambient calculus (the Safe Ambients)
that has coactions and types for single-threadness and immobility.

(ii) We separate the logical and physical distribution of an ambient system.

The combination of (i) and (ii) allows us considerable simplifications, both in the
abstract machine and in its correctness proof. We are not aware of correctness
proofs for Ambit. The correctness proof for the Join implementation is very
ingenious and makes use of sophisticated techniques, such as coupled simulation
and decreasing diagram techniques. Below, we focus on the differences with the
Join implementation, which is a distributed implementation, and which we will
refer to as AtJ (Ambients to Join).

– In AtJ open is by far the most complex operation, because the underlying
Jocaml language does not have primitives with a similar effect. In AtJ, every
ambient has a manager that collects the requests of operations from the sub-
ambients and from the local processes. If the ambient is opened, its manager
becomes a forwarder of messages towards the parent ambient. The processes
local to the opened ambient are not moved.
As a consequence, in AtJ the processes local to an ambient can be distributed
on several locations. Therefore, also the implementation of the communica-
tion rule R-msg may require exchange of messages among sites, which does
not occur in PAN, where forwarders are always empty.

– In AtJ, forwarders are also introduced with in and out operations, to cope
with possible asynchronous messages still travelling after the move is finished.
These forwarders are not needed in PAN.

– In PAN, the presence of coactions dispenses us from having backward point-
ers from an ambient to its children. In the example of the first row of Figure
1, without in , ambient c would not know the location of b and therefore
could not communicate this location to a. Backward pointers, as in AtJ,
make bookkeeping and correctness proof more complex.
In PAN, the absence of backward pointers and the presence of coactions
make the implementation of forms of dynamic linking straightforward: new
machines hosting ambients can be connected to existing machine running an
ambient system; it suffices that the new machines know the location of one
of the running ambients; no modifications or notifications is needed to the
running ambients themselves.

– In PAN, since any moving ambient (an ambient that tries to enter or exit
another ambient, or that can be opened) is single-threaded, each ambient
requests at most one operation at a time to its parent. By contrast, in AtJ
an ambient can send an unbounded number of requests to the parent (an
example is n[!inm1 | !outm2]).

418 D. Sangiorgi and A. Valente

Moreover, due to this property, in PAN no ambient needs a log of pending
requests received from a given children or sent to the parent. Without the
property, both forms of log are needed, as it happens in AtJ. To see why,
consider two ambients a and b, where b is the parent of a. If moving ambients
can request several operations concurrently, b must of course keep a log of the
pending requests from a. A copy of the same log must however be kept by a,
because messages exchanged among ambients are asynchronous and therefore
the following situation could arise. Suppose a requests two operations, say
inn and inm. The request for inn could reach b first. The request for inm
could reach b only when the movement for inn has been completed (indeed,
a might have completed other movements). The request inm must now be
resent to the new parent of a, but b does not possess this information. This
task must therefore be accomplished by a, which, for this, must have stored
inm in its log of pending requests to the parent.
The example also shows that, aside from message retransmission in for-
warders, some requests may have to be retransmitted several times, to dif-
ferent parents (in the example, inm); in PAN every request is sent at most
once.

– In PAN, any movement for a given ambient is requested to the parent, which
(assuming this is not a forwarder) makes decisions and gives authorisations;
the grandparent is never contacted. This homogeneity property breaks in
presence of backward pointers from an ambient to its children. For instance,
the simulation of the out reduction in the second row of Figure 1 would
then need also the involvement of the grandparent c.

– In AtJ, the domain of physical distribution is a tree. The in and out op-
erations produce physical movements in which an ambient, and all its tree
of subambients, must move. To achieve this, the tree of ambients is first
“frozen” so that all the activities in the ambients of the tree stop while the
movement takes place. In PAN, where the domain of physical distribution
is flat, in and out only give logical movement; no freezing of ambients is
required. On the other hand, in PAN, but not in AtJ, open gives physical
movement.

– PAN is an abstract machine, and is therefore independent of a specific target
language.

8 Implementation Architecture

Our implementation, written in Java, follows the definition of the abstract ma-
chine (as usual in process calculi, rules for arbitrary changing the order of parallel
components need some randomisation mechanism to be implemented; we do not
do this, which may reduce non-determinism). Perhaps the main difference is
that the implementation allows clustering of agents on the same IP node (i.e. a
physical machine). Therefore the implementation is made of three layers: agents,
nodes and the network. The address k of an agent is composed of the IP-name
of the node on which its resides, plus a suffix, which is different for each agent in
that node. Each agent is executed by an independent Java thread; the processes

A Distributed Abstract Machine for Safe Ambients 419

local to an ambient are scheduled using a round-robin policy. Each agent knows
its name, its address, its parent’s address, and keeps a link to its node.

From a physical point of view, the messages exchanged between agents are of
two kinds: local, when both agents reside on the same node, and remote, when
two distinct nodes are involved. In each node a special Java RMI object, with
its own thread of execution, takes care of inter-node communications. For this,
nodes act alternatively as clients (requiring that a message is sent to another
computer) and as servers (receiving a message and pushing it into a local mail-
box). The node layer is implemented using Java RMI and serialization, and the
network layer simply provides IP-name registry for RMI communications to take
place (using Java RMIregistry).

An agent acts as an interpreter for the ambient expressions that constitute its
local processes. When the agent wants to create a subambient, it sends a special
message to its node, which will spawn a new agent hosting the subambient code.
We also allow remote creation of new agents: an agent may send a message to
a node different from its own, to demand the creation of a subambients. This
corresponds to the addition of a primitive create n[P] at h, where h is the
IP-name of a node, to the abstract machine. When the execution of an ambient
expression begins on a given node, the first action is the local creation of a root
agent. An agent resides on the same node until it is opened; then, its processes
are serialised and sent via RMI to the parent agent. The implementation also
allows dynamic linking of ambients, as hinted at in Section 7.

9 Further Developments

In the abstract machine presented, a message may have to go through a chain of
forwarders before getting to destination. A (partial) solution to this problem is
a modification of the rules that guarantees the following property: every agent
sends a message to a given forwarder at most once. The modification consists in
adding the source field to the completion messages h{OKin}, which thus becomes
h{OKin, k}, where k is the ambient that is authorising the move. Thus the rules
local-in and compl-coin become

{in n, h} | {in n, k} −−−−−−→
h′:−

0 � h{go k} ‖ k{OKin, h0} [local-in2]

h:n[P | wait.Q]k ‖ h{OKin, h0} 7−→ h:n[P | Q]h′ [compl-coin2]

The reason why these rules may be useful is that the parent of an ambient
that has sent a in request may have become a forwarder; thus the real parent
is another ambient further up in the hierarchy. With the new rules, the parent
of the ambient that has sent the in request is updated and hence this ambient
will not go through the forwarder afterwards. With the other capabilities that
may originate a request from an ambient to is parent (open , out , in), the issue
does not arise, because either the requesting ambient is dissolved (open), or its
parent is anyway modified (out , in).

Even with the rules above, however, the forwarder introduced in an open
operation is permanent. We plan to study the problem of the garbage-collection

420 D. Sangiorgi and A. Valente

of forwarders. We also plan to experiment the addition of backwards pointers,
from an ambient to its children; this should avoid the introduction of forwarders
in an open , but may complicate other parts of the abstract machine.

In the abstract machine, open is the only operation that gives movement
of terms. Although at present we do not see the need of enhancing this, the
modifications for allowing movement of terms also with in and out would be
simple. The main price is the introduction of additional forwarders, as we have
now in the open case.

Acknowledgements. We have benefitted from comments by Jean-Jacques
Lévy and Alan Schmitt.

References

1. M. Bugliesi, G. Castagna. Secure safe ambients. 28th POPL. 2001.
2. L. Cardelli. Ambit. http://www.luca.demon.co.uk/Ambit/Ambit.html 1997.
3. L. Cardelli. Mobile ambient synchronisation. Technical Report 1997-013, Digital

SRC, 1997.
4. L. Cardelli, A.D. Gordon. Mobile ambients. FoSSaCS ’98, LNCS 1378, 1998.
5. L. Cardelli, A.D. Gordon. Equational properties of mobile ambients. FoSSaCS’99,

LNCS 1578, 1999.
6. L. Cardelli, A.D. Gordon. Types for mobile ambients. 26th POPL, 1999.
7. L. Cardelli, A.D. Gordon. Anytime, anywhere: Modal logics for mobile ambients.

27th POPL, 2000.
8. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy. A calculus of mobile

processes. CONCUR ’96, LNCS 1119, 1996.
9. C. Fournet, J.-J. Lévy, A. Schmitt. An asynchronous distributed implementation

fo mobile ambients. IFIP TCS2000, LNCS 1872, 2000.
10. F. Le Fessant. The Jocaml system prototype. join.inria.fr/jocaml. 1998.
11. F. Levi, D. Sangiorgi. Controlling interference in ambients. 27th POPL, 2000.
12. F. Nielson, H.R. Nielson Shape analysis for mobile ambients. 27th POPL, 2000.

Towards Quantitative Verification of
Probabilistic Transition Systems

Franck van Breugel1 and James Worrell2

1 York University, Department of Computer Science
4700 Keele Street, Toronto, M3J 1P3, Canada

2 Tulane University, Department of Mathematics
6823 St Charles Avenue, New Orleans LA 70118, USA

Abstract. It has been argued that Boolean-valued logics and associated
discrete notions of behavioural equivalence sit uneasily with semantic
models featuring quantitative data, like probabilistic transition systems.
In this paper we present a pseudometric on a class of reactive proba-
bilistic transition systems yielding a quantitative notion of behavioural
equivalence. The pseudometric is defined via the terminal coalgebra of a
functor based on the Hutchinson metric on the space of Borel probability
measures on a metric space. We also characterize the distance between
systems in terms of a real-valued modal logic.

1 Introduction

The majority of verification methods for concurrent systems only produce qual-
itative information. Questions like “Does the system satisfy its specification?”
and “Do the systems behave the same?” are answered “Yes” or “No”. Huth
and Kwiatkowska [13] and Desharnais, Gupta, Jagadeesan and Panangaden [8]
have pointed out that such discrete Boolean-valued reasoning sits uneasily with
continuous semantic models like probabilistic transition systems. For instance,
the probabilistic modal logic of Larsen and Skou [16] adds probability thresh-
olds to traditional modal logic. In this logic one has a formula like �qφ which is
satisfied if the sum of the probabilities of transitions to states satisfying φ ex-
ceeds q ∈ [0, 1]. Such a formalism does not support approximate reasoning: any
inexactness in the calculation of the semantics of φ may result in an incorrect
conclusion as to the truth or falsity of �qφ. This is particularly problematic if
one wants to reason about infinite state systems in terms of finite approximants.

In a similar vein, Desharnais et al. [7] and Giacalone, Jou and Smolka [10]
have criticized all-or-nothing notions of operational equivalence for probabilistic
systems such as Larsen and Skou’s probabilistic bisimulation [16]. Recall that
a probabilistic bisimulation is an equivalence relation on the state space of a
1 Supported by Natural Sciences and Engineering Research Council of Canada.
2 Supported by the US Office of Naval Research.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 421–432, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

422 F. van Breugel and J. Worrell

transition system such that related states have exactly the same probability of
making a transition into any equivalence class. Thus, for instance, the proba-
bilistic transition systems

x0

1
��

x11
2

}}zz
zz

1
2

""DD
DD

x2

1
��

x3

x4

y01
2

vvmmmmmmmmm 1
2

((QQQQQQQQQ

y11
2

}}{{
{{

1
2

!!CC
CC

y21
2+ε

}}{{
{{

1
2 −ε

!!CC
CC

y3

1
��

y4 y5 y6

1
��

y7 y8

are only probabilistic bisimilar if ε is 0. However, the two systems behave almost
the same for very small ε different from 0. In the words of [7] behavioural equiv-
alences like probabilistic bisimilarity are not robust, since they are too sensitive
to the exact probabilities of the various transitions.

To address some of the issues raised above, Huth and Kwiatkowska introduce
a non-standard semantics for formulas of the modal µ-calculus over a probabilis-
tic transition system. Formulas take truth values in the unit interval [0, 1]: in
particular the modal connective is interpreted by integration. A related though
quite distinct real-valued modal logic is introduced by Desharnais et al. [7].
Their logic is used to define a notion of approximate equivalence for proba-
bilistic transition systems; this is formalized as a pseudometric1on the class of
all such systems. The pseudometric is intended to provide for compositional rea-
soning about the approximate equivalence of concurrent interacting probabilistic
systems. Processes are at 0 distance just in case they are probabilistic bisimilar.

Many different kinds of transition system can be viewed as coalgebras; Rutten
[19] provides numerous examples. De Vink and Rutten [21] have shown that both
discrete and continuous (labelled) probabilistic transition systems can be seen
as coalgebras. By viewing these systems as coalgebras one can transfer results
from the theory of coalgebra to the setting of probabilistic systems. This theory
includes a general definition of bisimilarity which De Vink and Rutten studied
for probabilistic transition systems with discrete and ultrametric state spaces.

In this paper we obtain a metric-space domain for reactive probabilistic pro-
cesses as the terminal coalgebra of an endofunctor F on the category of pseu-
dometric spaces and nonexpansive maps. The definition of F is based on the
Hutchinson metric on probability measures [14]. F -coalgebras can be seen as re-
active probabilistic transition systems with discrete or continuous state spaces.
Unlike the terminal coalgebras studied by De Vink and Rutten [21] and Baier and
Kwiatkowska [3] the metric on our domain varies continuously with transition
probabilities. It provides for a notion of approximate equivalence of probabilistic
processes similar to the pseudometric of Desharnais et al. mentioned above. In
fact, we define a pseudometric on the state space of a reactive transition system
(seen as an F -coalgebra) as the metric kernel of the unique map to the terminal
1 A pseudometric differs from an ordinary metric in that different elements can have

distance 0.

Towards Quantitative Verification of Probabilistic Transition Systems 423

F -coalgebra. That is, the distance between two states is the distance between
their images under the unique map to the terminal coalgebra. We show that our
pseudometric can also be obtained by adding negation to the logic of Desharnais
et al. Furthermore we compare our pseudometric with the distance functions of
De Vink and Rutten and of Norman.

2 The Pseudometric

In this section we introduce an endofunctor on the category of pseudometric
spaces and nonexpansive maps based on the Hutchinson metric. We prove that
the functor has a terminal coalgebra, and we use this to define our pseudometric
on reactive probabilistic transition systems.

In [14], Hutchinson introduced a metric on the set of Borel probability mea-
sures on a metric space. Here, we generalize his definition to pseudometric spaces.
We restrict ourselves to spaces whose points have distance at most 1, since they
serve our purpose and simplify the definition of the distance function a little. Let
X be a 1-bounded pseudometric space. We denote the set of Borel probability
measures on X by M (X).

Definition 1. The Hutchinson metric2 dM (X) : M (X) × M (X) → [0, 1] is
defined by

dM (X) (µ1, µ2) = sup
{ ∫

X

fdµ1 −
∫

X

fdµ2 | f ∈ X → [0, 1] is nonexpansive
}

.

A function is nonexpansive if it does not increase any distances. For a proof that
dM (X) is a 1-bounded pseudometric we refer the reader to, for example, Edgar’s
textbook [9, Proposition 2.5.14].

In a pseudometric space, compactness is a natural generalization of finiteness.
In the rest of this paper, we focus on Borel probability measures which are
completely determined by their values for the compact subsets of the space X.

Definition 2. A Borel probability measure µ on X is tight if for all ε > 0 there
exists a compact subset Kε of X such that µ (X \ Kε) < ε.

Under quite mild conditions on the space, for example, completeness and sepa-
rability, every measure is tight (see, for example, Parthasarathy’s textbook [18,
Theorem II.3.2]). We denote the set of tight Borel probability measures on X
by Mt (X). We are interested in these tight measures because of the following

Theorem 1.

1. X is complete if and only if Mt (X) is complete.
2. X is compact if and only if Mt (X) is compact.

Proof. See, for example, [9, Theorem 2.5.25]. ut
2 The Hutchinson metric is also known as the Kantorovich metric.

424 F. van Breugel and J. Worrell

Mt can be extended to an endofunctor on the category PMet1 of 1-bounded
pseudometric spaces and nonexpansive functions as follows. Let X and Y be
1-bounded pseudometric spaces. Let f : X → Y be a nonexpansive function.

Definition 3. The function Mt (f) : Mt (X) → Mt (Y) is defined by

Mt (f)(µ) = µ ◦ f−1.

It is readily verified that the measure Mt (f)(µ) is tight, that the function Mt (f)
is nonexpansive and that the action of Mt on arrows is functorial.

Next we state and explain a property of Mt which will later allow us to
exploit the terminal coalgebra theorem of Turi and Rutten [20].

Proposition 1. The functor Mt is locally nonexpansive: for all nonexpansive
functions f1, f2 ∈ X → Y ,

dMt (X)→Mt (Y) (Mt (f1),Mt (f2)) ≤ dX→Y (f1, f2).

ut
A continuous probabilistic transition system with label set L consists of a 1-
bounded pseudometric space X of states together with a Borel subprobability
measure µl,x for each label l and state x. The transition function µl is a condi-
tional probability determining the reaction of the system to an action l selected
by the environment. µl,x assigns to each Borel set B ⊆ X the probability that
the system makes a transition to a state in the set B given that it was in the
state x before the action l. We consider Borel subprobability measures3to allow
for the possibility that the system may refuse l. We also require that for each
Borel set B the map x 7→ µl,x(B) is measurable, i.e. that λxλB.µl,x(B) is a
stochastic kernel. This is the so-called reactive model of probabilistic systems.
For a detailed discussion of the importance of studying these continuous systems,
rather than concentrating on the discrete ones, we refer the reader to the work
of Desharnais et al. [5,6]. In the present paper we stick to discrete systems when
we come to exemplify our work. Also, for ease of exposition, we only consider
unlabelled transition systems. That is, we assume L is a singleton space and
write µx for µl,x. Our results extend easily to the labelled case.

A discrete probabilistic transition system is just a special case of a continuous
one where the metric on the state space is discrete and the transition probability
is given by a subprobability distribution. We can picture such a system as a
directed graph with arcs labelled by probabilities: there is no need to mention
Borel sets.

Next, we demonstrate that a large class of continuous probabilistic transition
systems can be viewed as coalgebras. But first we review some basic notions.

Definition 4. Let C be a category. Let F : C → C be a functor. An F -coalgebra
consists of an object C in C together with an arrow f : C → F (C) in C. An
3 In a subprobability measure µl,x we have that µl,x (X) ≤ 1 rather than µl,x (X) = 1.

Towards Quantitative Verification of Probabilistic Transition Systems 425

F -homomorphism from F -coalgebra 〈C, f〉 to F -coalgebra 〈D, g〉 is an arrow
h : C → D in C such that F (h) ◦ f = g ◦ h.

C
h //

f
��

D
g

��

F (C)
F (h)

// F (D)

The F -coalgebras and F -homomorphisms form a category. The terminal object
in this category, if it exists, is called the terminal F -coalgebra.

We consider the functor

F = 1
2 · Mt (1 + −) : PMet1 → PMet1,

where 1 is the terminal object4 functor, + is the coproduct5 functor, Mt is
the Hutchinson functor introduced above, and 1

2 · is the scaling6 functor. An
F -coalgebra consists of a 1-bounded pseudometric space X together with a non-
expansive function µ : X → 1

2 ·Mt (1+X). A continuous probabilistic transition
system such that

· for all states x, the Borel probability measure µx is tight, and
· for all states x1, x2, 1

2 · dMt (1+X) (µx1 , µx2) ≤ dX (x1, x2),

can be viewed as an F -coalgebra. For now we observe that this class certainly
includes all discrete probabilistic transition systems, and we refer the reader
forward to the conclusion for further discussion of these two restrictions.

Theorem 2. There exists a terminal F -coalgebra.

Proof. Since the functors 1, +, and Mt are locally nonexpansive (Proposition 1)
and the scaling functor 1

2 · is locally contractive, the functor F is locally con-
tractive. According to Theorem 1, the functor Mt, and hence the functor F ,
preserves the subcategory CMet1 of 1-bounded complete metric spaces and non-
expansive functions. According to [20, Theorem 7.3], this functor restricted to
CMet1 has a terminal coalgebra 〈fix (F), ι〉. It is not too hard to see from the
proof of that theorem that 〈fix (F), ι〉 is also a terminal F -coalgebra. ut
4 The terminal object of PMet1 is the singleton space.
5 The coproduct object of the objects X and Y in PMet1 is the disjoint union of the

sets underlying the spaces X and Y endowed with the pseudometric

dX+Y (v, w) =

dX (v, w) if v ∈ X and w ∈ X
dY (v, w) if v ∈ Y and w ∈ Y
1 otherwise.

6 The scaling by 1
2 · of an object in PMet1 leaves the set unchanged and multiplies

all distances by a half.

426 F. van Breugel and J. Worrell

The distance in the terminal coalgebra is a trade-off between the depth of obser-
vations needed to distinguish systems, and the amount each observation differ-
entiates the systems. The relative weight given to these two factors is determined
by the contraction introduced in the definition of the functor F .

Now we present the definition of our pseudometric on probabilistic transition
systems. Instead of directly defining a pseudometric on systems, we define it on
the states of a system. The distance between two systems can be obtained by
combining the two systems into one and taking the distance between the initial
states of the original systems in the combined one. For a continuous probabilistic
system represented by the F -coalgebra 〈X, µ〉, let us write [[−]]〈X,µ〉 for the unique
map 〈X, µ〉 → 〈fix (F), ι〉.
Definition 5. The distance function dH : X × X → [0, 1] is defined by

dH (x1, x2) = dfix (F) ([[x1]]〈X,µ〉, [[x2]]〈X,µ〉)

Note that we now have two pseudometrics on the state space X: the original
pseudometric dX which defines the Borel sets and the above introduced pseu-
dometric dH which captures the difference in behaviour in a quantitative way.
Since the function [[−]]〈X,µ〉 is nonexpansive, the dX -distances are greater than
or equal to the dH-distances.

3 Desharnais, Gupta, Jagadeesan, and Panangaden

We compare our pseudometric with the one introduced by Desharnais, Gupta,
Jagadeesan and Panangaden in [7]. We argue that our distances are more in-
tuitive than theirs. Furthermore, we extend one of their definitions a little and
show that the pseudometric so obtained coincides with ours.

Consider the following three probabilistic transition systems.

x0

1

QQ
y0 4

10

!!CC
CC6

10

}}{{
{{

y1 y2

1

RR

z0

4
10

QQ6
10

}}{{
{{

z1

The first system terminates with probability 0, the second one with probabil-
ity 6

10 and the third one with probability 1. The probability that the systems
make, for example, at most three transitions is 0, 6

10 and 113
125 , respectively. Based

on these kind of observations, one may infer that the first system behaves more
like the second one than the third one. This is reflected by our pseudometric,
since the first and second system are 3

20 apart whereas the first and third system
are at distance 3

16 . However, in the pseudometric introduced by Desharnais et
al. both the first and the second system and the first and third system are 3

20
apart.

Desharnais et al. defined their pseudometric in terms of a real-valued logic.
Their work builds on an idea of Kozen [15] to generalize logic to handle proba-
bilistic phenomena. An extension of their real-valued modal logic is introduced
in the following definition.

Towards Quantitative Verification of Probabilistic Transition Systems 427

Definition 6. The set F of functional expressions is defined by

f ::= 1 | � f | max (f, f) | 1 − f | f −· q

where q is a rational in [0, 1].

Informally, there is the following correspondence between functional expressions
and formulae in the probabilistic modal logic of Larsen and Skou [16] (see also [5,
6]). True is represented by 1, disjunction is represented by max, negation by 1− ,
and the connective �q decomposes as � and −· q. The main difference between the
above definition of functional expressions and the one presented by Desharnais
et al. is the presence of negation.7

Given a continuous probabilistic transition system represented by the F -
coalgebra 〈X, µ〉, each functional expression f can be interpreted as a function
f〈X,µ〉 from X to [0, 1] as follows.

Definition 7. For each f ∈ F , the function f〈X,µ〉 : X → [0, 1] is defined by

1〈X,µ〉 (x) = 1
(� f)〈X,µ〉 (x) = 1

2 · ∫
X

f〈X,µ〉 dµx

(max (f, g))〈X,µ〉 (x) = max (f〈X,µ〉 (x), g〈X,µ〉 (x))
(1 − f)〈X,µ〉 (x) = 1 − f〈X,µ〉 (x)
(f −· q)〈X,µ〉 (x) = f〈X,µ〉 (x) −· q

where

r −· q =
{

r − q if r ≥ q
0 otherwise.

It is readily verified that for all f ∈ F the function f〈X,µ〉 is nonexpansive, and
hence measurable. The functional expressions induce a pseudometric as follows.

Definition 8. The distance function dDGJP : X × X → [0, 1] is defined by

dDGJP (x1, x2) = sup
f∈F

f〈X,µ〉 (x1) − f〈X,µ〉 (x2).

Clearly, the above introduced distance function is a 1-bounded pseudometric.
Now we have three different distance functions on the state space X: dX , dH
and dDGJP. To distinguish these three pseudometric spaces we denote them by
〈X, dX〉, 〈X, dH〉 and 〈X, dDGJP〉. Since the functions f〈X,µ〉 are nonexpansive,
the dX -distances are greater than or equal to the dDGJP-distances.

In the rest of this section, we give an outline of a proof that dH and dDGJP
coincide. In fact we concentrate on proving the inequality dH ≤ dDGJP, the
converse being more straightforward. To this end we introduce a transition func-
tion µ′ such that 〈〈X, dDGJP〉, µ′〉 is an F -coalgebra. Since the dX -distances are
greater than or equal to the dDGJP-distances, every Borel set on 1 + 〈X, dDGJP〉
is a Borel set on 1+ 〈X, dX〉. Therefore, we can define for every x ∈ X the Borel
probability measure µ′

x as µx restricted to the Borel sets on 1 + 〈X, dDGJP〉. Of
course, we have to check that µ′ is an arrow in PMet1.
7 In a draft version, but not in the final version, of [8] negation was considered.

428 F. van Breugel and J. Worrell

Proposition 2. The function µ′ is nonexpansive.

Proof. Let ε>0. Let x ∈ X. Since the measure µx is tight, there exists a compact
subset K of 〈X, dX〉 such that µx (X \K)<ε. Since the dX -distances are greater
than or equal to the dDGJP-distances, K is also a compact subset of 〈X, dDGJP〉.
From the definition of µ′ we can conclude that µ′

x (X \ K) < ε.
Let g : X → [0, 1] be a function which is nonexpansive with respect to dDGJP.

Then there exists a functional expression f such that g � K and f〈X,µ〉 � K are
at most ε apart. This can be proved by exploiting [1, Lemma A.7.2]8. Using all
the above, we can show that

∫

X

g dµ′
x and

∫

X

f〈X,µ〉 dµx are at most 3ε apart. (1)

Let x1, x2 ∈ X. Without loss of generality, we may assume that µ′
x1

(1) ≤
µ′

x2
(1). Hence,

dF 〈X,dDGJP〉 (µ′
x1

, µ′
x2

)

= 1
2 · sup

{ ∫

X

g dµ′
x1

−
∫

X

g dµ′
x2

| g ∈ 〈X, dDGJP〉 → [0, 1] is nonexpansive
}

≤ 1
2 · sup

f∈F

∫

X

f〈X,µ〉 dµx1 −
∫

X

f〈X,µ〉 dµx2 [(1)]

= sup
f∈F

(� f)〈X,µ〉 (x1) − (� f)〈X,µ〉 (x2)

≤ sup
f∈F

f〈X,µ〉 (x1) − f〈X,µ〉 (x2)

= dDGJP (x1, x2),

that is, µ′ is nonexpansive. ut
Note that �, min and max (which is a combination of min and 1 −) play a role
in the above proof. Also −· q and 1 are needed in some of the details of the proof
which are not presented here.

One can easily verify that the nonexpansive function i from 〈X, dX〉 to
〈X, dDGJP〉 mapping x to x is an F -homomorphism.

〈X, dX〉

i

**

µ
��

[[−]]〈X,µ〉
// fix (F)

ι
��

〈X, dDGJP〉
µ′

��

[[−]]〈X,µ′〉
oo

F 〈X, dX〉

F (i)

44F ([[−]]〈X,µ〉)
// F (fix (F)) F 〈X, dDGJP〉

F ([[−]]〈X,µ′〉)
oo

8 Let K be a compact Hausdorff space. Let A be a set of the real-valued continuous
functions on K such that f ∈ A and g ∈ A implies max (f, g) ∈ A and min (f, g) ∈ A.
If a function f can be approximated at each pair of points by functions in A then f
is in the closure of A.

Towards Quantitative Verification of Probabilistic Transition Systems 429

Hence, [[−]]〈X,µ〉 and [[−]]〈X,µ′〉 ◦ i are both F -homomorphisms from 〈X, dX〉 to
fix (F). Since fix (F) is terminal they are equal, i.e. for all x ∈ X,

[[x]]〈X,µ〉 = [[x]]〈X,µ′〉 (2)

Theorem 3. For all x1, x2 ∈ X, dH (x1, x2) ≤ dDGJP (x1, x2).

Proof.

dH (x1, x2)
= dfix (F) ([[x1]]〈X,µ〉, [[x2]]〈X,µ〉)
= dfix (F) ([[x1]]〈X,µ′〉, [[x2]]〈X,µ′〉) [(2)]
≤ dDGJP (x1, x2) [[[−]]hX,µ′i is nonexpansive]

ut

Thus we have shown that our pseudometric can also be characterized by a real-
valued modal logic similar to the one studied by Desharnais et al.

4 De Vink and Rutten

We make another comparison, this time with the distance function introduced
by De Vink and Rutten in [21]. Remarks similar to the ones made below about
their distance function apply also to the distance functions presented by Baier
and Kwiatkowska [3] and Den Hartog [12].

Consider the following two probabilistic transition systems.

x01
2

}}zz
zz

1
2

""DD
DD

x1

1
��

x2

x3

y01
2+ε

}}{{
{{

1
2 −ε

!!CC
CC

y1

1
��

y2

y3

Clearly, the smaller ε is, the more alike these systems behave. Our pseudometric
captures this since dH (x0, y0) = ε

4 . However, in De Vink and Rutten’s setting
these systems are 1

2 apart if ε 6= 0. More generally, the distance between two
systems in their setting is 2−n−1 where n is the depth of probabilistic bisimilarity
between them.

De Vink and Rutten consider the functor

G = 1 + Mc (1
2 · −) : CUMet1 → CUMet1,

where Mc denotes the Borel probability measures with compact support. The
main differences between our functor F and their functor G are the following.

430 F. van Breugel and J. Worrell

· They consider a distance function on Borel probability measures [21, Defini-
tion 5.3] different from the one of Hutchinson (Definition 1). Their distance
function only captures qualitative information as the above example illus-
trates.

· They consider the category CUMet1 of 1-bounded complete ultrametric
spaces and nonexpansive functions whereas we consider the considerably
larger category PMet1. This allows us to captures many more interesting
continuous probabilistic transition systems as coalgebras, including systems
where the state space is the real interval [0, 1] endowed with the Euclidean
metric.

· They consider Borel probability measures with compact support whereas we
consider the more general tight Borel probability measures. Again this allows
us to represent more systems as coalgebras.

· Their model only allows processes to refuse transitions with probability 0 or
1.

We have generalized all the results for the functor G in [21, Section 5]9 to our
setting.

5 Norman

We compare our pseudometric with the pseudometric introduced by Norman in
[17, Section 6.1]. Consider the following two probabilistic transition systems.

x0

1
��

x11
2

}}zz
zz

1
2

""DD
DD

x2 x3

1
��

x4

y01
2

}}{{
{{

1
2

!!CC
CC

y1

1
��

y2

1
��

y3 y4

1
��

y5

These systems are not probabilistic bisimilar. In Norman’s pseudometric the
systems have distance 0. In our pseudometric, systems only have distance 0 if
they are probabilistic bisimilar. In our setting the systems are 1

16 apart. This
example also shows that his pseudometric gives rise to a topology different from
ours.

The main differences between his and our pseudometric are the following.

· He uses a linear-time model whereas we consider a branching-time model.
· He considers only discrete probabilistic transition systems whereas we also

consider continuous ones.
· We use the usual categorical machinery and various standard constructions

whereas his definitions are more ad-hoc. We believe however that his pseu-
dometric can also be characterized by means of a terminal coalgebra.

9 The proof of [21, Theorem 5.8] is incomplete. We also have no proof for this result
in our setting.

Towards Quantitative Verification of Probabilistic Transition Systems 431

Conclusion

In this paper, we have presented a new pseudometric on a class of probabilistic
transitions systems. The pseudometric was defined via the terminal coalgebra
of a functor based on the Hutchinson metric on the space of Borel probability
measures on a pseudometric space. We also characterized the distance between
systems in terms of a real-valued modal logic. Similar results have been presented
by the second author in his thesis [22] in the setting of bimodules and generalized
metric spaces.

Let us isolate two distinct consequences of our use of the Hutchinson met-
ric. We can talk about approximate equivalence of processes and we can model
continuous-state systems as coalgebras. An apparent restriction with regard to
the latter point is the requirement that the structure map of an F -coalgebra
be nonexpansive. Properly speaking, continuous probabilistic transition systems
as formulated in Section 2 are coalgebras of (a variant of) the Giry monad on
the category of measurable spaces [11]. However, we conjecture that the termi-
nal F -coalgebra 〈fix (F), ι〉is also terminal when seen as a coalgebra of the Giry
functor, and that our results can be extended to continuous-state systems in
general.

Exploiting Theorem 1 and some results by Alessi et al. [2] we have shown
that our terminal coalgebra is compact and hence separable. Furthermore we
have shown that the unique map from the initial algebra of a finitary version
of F—representing finite discrete probabilistic transition systems with rational
probabilities—to the terminal F -coalgebra is a dense embedding. Hence, every
continuous system can be approximated by a finite one (see also [8]).

Making use of linear programming, we have developed an algorithm that
calculates our distance between finite state systems to a prescribed degree of
accuracy in polynomial time, cf. [4].

Many system combinators can be shown to be nonexpansive with respect to
our pseudometric. This quantitative analogue of congruence allows for composi-
tional verification (see also [7,10]).

Acknowledgements. The authors would like to thank the Amsterdam Coordi-
nation Group, Josée Desharnais, Abbas Edalat, Joel Ouaknine, Prakash Panan-
gaden, Jan Rutten and Erik de Vink for discussion. The first author is thankful
to Stephen Watson for the joint study of the Hutchinson metric.

References

1. R.B. Ash. Real Analysis and Probability, Academic Press, London, 1972.
2. F. Alessi, P. Baldan and G. Bellè. A Fixed-Point Theorem in a Category of Com-

pact Metric Spaces. Theoretical Computer Science, 146(1/2):311-320, July 1995.
3. C. Baier and M. Kwiatkowska. Domain Equations for Probabilistic Processes. In

Proceedings of the 4th International Workshop on Expressiveness in Concurrency,
volume 7 of Electronic Notes in Theoretical Computer Science, Santa Margherita
Ligure, September 1997, Elsevier.

432 F. van Breugel and J. Worrell

4. F. van Breugel and J. Worrell. An Algorithm for Quantitative Verification of Prob-
abilistic Transition Systems. Report CS-2001-01, York University, Toronto, April
2001.

5. J. Desharnais, A. Edalat and P. Panangaden. A Logical Characterization of Bisimu-
lation for Labelled Markov Processes. In Proceedings of the 13th Annual IEEE Sym-
posium on Logic in Computer Science, pages 478-487, Indianapolis, 1988. IEEE.

6. J. Desharnais, A. Edalat and P. Panangaden. Bisimulation for Labelled Markov
Processes. Information and Computation, to appear.

7. J. Desharnais, V. Gupta, R. Jagadeesan and P. Panangaden. Metrics for Labelled
Markov Systems. In Proceedings of the 10th International Conference on Concur-
rency Theory, vol. 1664 of Lect. Notes in Comp. Sci, pages 258-273, Eindhoven,
August 1999. Springer-Verlag.

8. J. Desharnais, V. Gupta, R. Jagadeesan and P. Panangaden. Approximating La-
belled Markov Processes. In Proceedings of the 15th Annual IEEE Symposium on
Logic in Computer Science, pages 95-106, Santa Barbara, June 2000. IEEE.

9. G.A. Edgar. Integral, Probability, and Fractal Measures, Springer-Verlag, 1998.
10. A. Giacalone, C.C. Jou and S.A. Smolka. Algebraic Reasoning for Probabilistic

Concurrent Systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference
on Programming Concepts and Methods, pages 443-458, Sea of Galilee, April 1990,
North-Holland.

11. M. Giry. A Categorical Approach to Probability Theory. In Proceedings of the
International Conference on Categorical Aspects of Topology and Analysis, volume
915 of Lect. Notes in Math., pages 68-85, Ottawa, 1981, Springer-Verlag.

12. J.I. den Hartog. Comparative Semantics for a Process Language with Probabilistic
Choice and Non-Determinism, Report IR-445, Free University, Amsterdam, 1998.

13. M. Huth and M. Kwiatkowska. Quantitative Analysis and Model Checking. In
Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science,
pages 111-122, Warsaw, June/July 1997. IEEE.

14. J.E. Hutchinson. Fractals and Self Similarity. Indiana University Mathematics
Journal, 30(5):713-747, 1981.

15. D. Kozen. A Probabilistic PDL. Journal of Computer and System Sciences,
30(2):162-178, April 1985.

16. K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information
and Computation, 94(1):1-28, September 1991.

17. G.J. Norman. Metric Semantics for Reactive Probabilistic Systems. PhD thesis,
University of Birmingham, 1997.

18. K.R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.
19. J.J.J.M. Rutten. Universal Coalgebra: a Theory of Systems, Theoretical Computer

Science, 249(1), pages 3-80, October 2000.
20. D. Turi and J.J.M.M. Rutten. On the Foundations of Final Semantics: non-

standard sets, metric spaces, partial orders. Mathematical Structures in Computer
Science, 8(5):481-540, October 1998.

21. E.P. de Vink and J.J.M.M. Rutten. Bisimulation for Probabilistic Transition Sys-
tems: a Coalgebraic Approach. Theoretical Computer Science, 221(1/2):271-293,
June 1999.

22. J. Worrell. On Coalgebras and Final Semantics. PhD thesis, Oxford University,
2000.

Efficient Generation of Plane Triangulations
without Repetitions

Zhangjian Li and Shin-ichi Nakano

Gunma University, Kiryu 376-8515, Japan,
kenlee@msc.cs.gunma-u.ac.jp, nakano@cs.gunma-u.ac.jp

Fax: +81-277-30-1812

Abstract. A “based” plane triangulation is a plane triangulation with
one designated edge on the outer face. In this paper we give a simple
algorithm to generate all biconnected based plane triangulations with
at most n vertices. The algorithm uses O(n) space and generates such
triangulations in O(1) time per triangulation without duplications. The
algorithm does not output entire triangulations but the difference from
the previous triangulation. By modifying the algorithm we can gener-
ate all biconnected based plane triangulation having exactly n vertices
including exactly r vertices on the outer face in O(1) time per triangu-
lation without duplications, while the previous best algorithm generates
such triangulations in O(n2) time per triangulation. Also we can gener-
ate without duplications all biconnected (non-based) plane triangulations
having exactly n vertices including exactly r vertices on the outer face
in O(r2n) time per triangulation, and all maximal planar graphs having
exactly n vertices in O(n3) time per graph.

1 Introduction

Generating all graphs with some property without duplications has many appli-
cations, including unbiased statistical analysis[M98]. A lot of algorithms to solve
these problems are already known [A96,B80,M98,W86, etc]. See nice textbooks
[G93,KS98].

In this paper we wish to generate all biconnected “based” plane triangu-
lations, which will be defined precisely in Section 2, with at most n vertices.
Such triangulations play an important role in many algorithms, including graph
drawing algorithms [CN98,FPP90,S90, etc].

To solve these all-graph-generating problems some types of algorithms are
known.

Classical method algorithms [G93, p57] first generate all the graphs with
given property allowing duplications, but output only if the graph has not been
output yet. Thus this method requires quite a huge space to store a list of graphs
that have already been output. Furthermore, checking whether each graph has
already been output requires a lot of time.

Orderly method algorithms [G93, p57] need not to store the list, since they
output a graph only if it is a “canonical” representative of each isomorphism
class.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 433–443, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

434 Z. Li and S.-i. Nakano

Reverse search method algorithms [A96] also need not to store the list. The
idea is to implicitly define a connected graph H such that the vertices of H
correspond to the graphs with the given property, and the edges of H correspond
to some relation between the graphs. By traversing an implicitly defined spanning
tree of H, one can find all the vertices of H, which correspond to all the graphs
with the given property.

The main idea of our algorithm is that for some problems we can define a
tree (not a general graph) as the graph H of reverse search method. Thus our
algorithm does not need to find a spanning tree of H, since H itself is a tree.
With some other ideas we give the following four simple but efficient algorithms.

Our first algorithm generates all biconnected based plane triangulations with
at most n vertices. A based plane triangulation means a plane triangulation with
one designated “base” edge on the outer face. For instance there are four bi-
connected based plane triangulations with at most four vertices, as shown in
Fig. 1(a). The base edges are depicted by thick lines. However, there are only
three biconnected plane triangulations with at most four vertices. See Fig. 1(b).
The algorithm uses O(n) space and runs in O(f(n)) time, where f(n) is the
number of nonisomorphic biconnected based plane triangulations with at most
n vertices. The algorithm generates triangulations without duplications. So the
algorithm generates each triangulation in O(1) time on average. The algorithm
does not output entire triangulations but the difference from the previous trian-
gulation.

(a) (b)

Fig. 1. (a) Biconnected based plane triangulations, and (b) biconnected plane trian-
gulations.

By modifying our first algorithm we can generate without duplications all
biconnected based plane triangulations having exactly n vertices including ex-
actly r vertices on the outer face. The algorithm uses O(n) space and runs in
O(f(n, r)) time, where f(n, r) is the number of nonisomorphic such triangula-
tions. So the algorithm generates each triangulation in O(1) time on average,
while the previous best algorithm [A96] generates such triangulations in O(n2)
time per triangulation.

Efficient Generation of Plane Triangulations without Repetitions 435

Also we can generate all biconnected (non-based) plane triangulations having
exactly n vertices including exactly r vertices on the outer face in O(r2n) time
(on average) per triangulation. Another algorithm with O(n2) time per triangu-
lation is also claimed in [M98] without detail but using a complicated theoretical
linear-time plane graph isomorphism algorithm [HW74], while our algorithm is
simple and does not need the isomorphism algorithm.

Also we can generate all maximal planar graphs having exactly n vertices in
O(n3) time (on average) per graph.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 shows a tree structure among biconnected based plane triangulations.
Section 4 presents our first algorithm. By modifying the algorithm we give three
more algorithms in Section 5. Finally Section 6 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n vertices. An edge connecting vertices x

and y is denoted by (x, y). The degree of a vertex v is the number of neighbors
of v in G. A cut is a set of vertices whose removal results in a disconnected
graph or a single-vertex graph K1. The connectivity κ(G) of a graph G is the
cardinality of the minimum number of vertices consisting a cut. G is k−connected
if k ≤ κ(G).

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed planar embedding. A plane graph
divides the plane into connected regions called faces. The unbounded face is
called the outer face, and other faces are called inner faces. We regard the contour
of a face as the clockwise cycle formed by the vertices and edges on the boundary
of the face. We denote the contour of the outer face of plane graph G by Co(G).
A plane graph is called a plane triangulation if each inner face has exactly three
edges on its contour. A based plane triangulation is a plane triangulation with
one designated edge on the contour of the outer face. The designated edge is
called the base edge.

3 The Removing Sequence and the Genealogical Tree

Let Sn be the set of all biconnected based plane triangulations with at most n
vertices. In this section we explain a tree structure among the triangulations in
Sn.

Let G be a biconnected based plane triangulation having four or more ver-
tices. Let Co(G) = w1, w2, · · · , wk, and (w1, wk) be the base edge of G.

A vertex ws, 1 < s < k, on Co(G) is removable if removing ws from G
preserves biconnectivity. Since G is a biconnected based plane triangulation, the
resulting graph after removing a removable vertex v is also a biconnected based
plane triangulation with the same base edge.

436 Z. Li and S.-i. Nakano

An edge (wi, wj) in G is called a chord of G if i + 2 ≤ j. Intuitively, each
chord is an edge connecting two non-consecutive vertices on Co(G). However,
especially, the base edge (w1, wk) is also a chord. So G always has at least one
chord.

We have the following lemma.

Lemma 1. Every biconnected based plane triangulation with four or more ver-
tices has at least one removable vertex.

Proof. Let G be a biconnected based plane triangulation having four or more
vertices. Let (wi, wj) be a chord with the minimum j − i, where i < j. Then
each ws, i < s < j, is removable, because no cut consisting of exactly one vertex
appears after removing ws. ut

(1,3)(1,2)

(1,2)

(1,3)

(1,4)

(1,4)

(2,3) (2,3)

(2,3)

(2,4)

(3,4)

(1,3)

(1,3)

(1,2) (1,2)

(2,3)

Fig. 2. Genealogical tree T5.

If ws is removable but w2, w3, · · · , ws−1 are not, then ws is called the leftmost
removable vertex of G. We can observe that if ws is the leftmost removable vertex
then each of w2, w3, · · · , ws−1 is an end of at least one chord. (So they are not
removable.)

For each triangulation G in Sn except K3, if we remove the leftmost remov-
able vertex then the resulting triangulation, denoted by P (G), is also a triangu-
lation in Sn having one less vertices. Thus we can define the unique triangulation
P (G) in Sn for each G in Sn except K3. We say G is a child triangulation of
P (G).

Given a triangulation G in Sn, by repeatedly removing the leftmost removable
vertex, we can have the unique sequence G, P (G), P (P (G)), · · · of triangulations
in Sn which eventually ends with K3. By merging those sequences we can have
the genealogical tree Tn of Sn such that the vertices of Tn correspond to the

Efficient Generation of Plane Triangulations without Repetitions 437

triangulations in Sn, and each edge corresponds to each relation between some
G and P (G). For instance T5 is shown in Fig. 2, in which each leftmost removable
vertex is depicted by a white circle. We call the vertex in Tn corresponding to
K3 the root of Tn.

4 Algorithm

Given Sn we can construct Tn by the definition, possibly with a huge space and
much running time. However, how can we construct Tn efficiently only given an
integer n? Our idea is by reversing the removing procedure as follows.

v

w1 wk

wi
wj

Fig. 3. Illustration for G(i, j).

Given a biconnected based plane triangulation G in Sn with at most n−1 ver-
tices, we wish to find all child triangulations of G. Let Co(G) = w1, w2, · · · , wk,
and (w1, wk) be the base edge of G, and ws be the leftmost removable vertex of
G. Since K3 has no removable vertex, for convenience, we regard wk(= w3) as
the leftmost removable vertex for K3. We denote by G(i, j), 1 ≤ i < j ≤ k, the
based plane triangulation obtained from G by adding new vertex v on the outer
face of G, and adding j − i + 1 ≥ 2 edges (wi, v), (wi+1, v), · · · , (wj , v), as shown
in Fig. 3. G(i, j) is a child triangulation of G if and only if v is the leftmost
removable vertex of G(i, j).

Since ws is the leftmost removable vertex of G, each wt, 1 < t < s, has at least
one chord (wt, wu) such that s < u. (Otherwise, ws is not the leftmost removable,
a contradiction.) We denote by q(t) the largest index such that (wt, wq(t)) is a
chord.

We have the following four cases to consider.
Case 1: j ≤ s.

In this case v is the leftmost removable vertex of G(i, j). Thus P (G(i, j)) = G.
Case 2: i < s < j.

If j > wq(i), then wi not v is the leftmost removable vertex of G(i, j), and
P (G(i, j)) 6= G. Otherwise, v is the leftmost removable vertex of G(i, j), and
P (G(i, j)) = G.
Case 3: i = s.

If j = i+1 then v is the leftmost removable vertex of G(i, j), and P (G(i, j)) =
G. Otherwise, j ≥ i + 2 holds then ws is a (possibly leftmost) removable vertex
of G(i, j), and P (G(i, j)) 6= G.

438 Z. Li and S.-i. Nakano

Case 4: i > s.
In this case v is not the leftmost removable vertex of G(i, j). Thus

P (G(i, j)) 6= G.

Based on the case analysis above we can find all child triangulations of given
triangulation in Sn. If G has k child triangulations, then we can find them in
O(k) time. This is an intuitive reason why our algorithm generates triangulations
in O(1) time per triangulation.

And recursively repeating this process from the root of Tn corresponding to
K3 we can traverse Tn without constructing whole Tn. During the traversing of
Tn, we assign a label (i, j) to each edge connecting G and G(i, j) in Tn, as shown
in Fig. 2. Each label denotes how to add a new vertex to G to generate a child
triangulation G(i, j), and each sequence of labels on a path starting from the
root specifies a triangulation in Sn. For instance (1, 2), (1, 2) specify the leftmost
triangulation in Fig. 2. During our algorithm we will maintain these labels only
on the path from the root to the “current” vertex, because those are enough
information to generate the “current” triangulation. To generate next triangula-
tion, we need to maintain some more information (the leftmost removable vertex
ws, and wq(t) for each 1 < t < s, etc.) only for the triangulations on the “current”
path, which has length at most n. This is an intuitive reason why our algorithm
uses only O(n) space, while the number of triangulations may not be bounded
by a polynomial in n.

Our algorithm is as follows.

Procedure find-all-child-triangulations(G)
begin

1 output G { Output the difference from the previous triangulation}
2 if G has exactly n vertices then return
3 for i = 1 to s − 1
4 for j = i + 1 to s
5 find-all-child-triangulations(G(i, j)) { Case 1}
6 for i = 1 to s − 1
7 for j = s + 1 to q(i)
8 find-all-child-triangulations(G(i, j)) { Case 2}
9 find-all-child-triangulations(G(s, s + 1)) { Case 3}

end

Algorithm find-all-triangulations(T3)
begin

1 output K3
2 G = K3
3 find-all-child-triangulations(G(1, 2))
4 find-all-child-triangulations(G(2, 3))
5 find-all-child-triangulations(G(1, 3))

end

Efficient Generation of Plane Triangulations without Repetitions 439

Theorem 1. The algorithm uses O(n) space and runs in O(f(n)) time, where
f(n) is the number of nonisomorphic biconnected based plane triangulations with
at most n vertices.

Proof. We need to maintain for current triangulation (i) a doubly linked list of
vertices on Co, (ii) the leftmost removable vertex ws, and (iii) wq(t) for each
1 < t < s. When we recursively call the find-all-child-triangulation, we need
to update the (i)–(iii) above, and when we return from the recursive call we
need to restore the (i)–(iii) above. We can do these in (1) time, respectively, as
follows.

We can update (i) easily.
When we recursively call, one of Case 1–3 occurs, and then the newly added

vertex always becomes the leftmost removable vertex of G(i, j). Also by recoding
this update on a stack we can restore (ii) when return occurs. Thus we can update
(ii), too.

Also, when we recursively call, if either Case 1 or 2 occurs, then we already
have all (iii), since (iii) of G(i, j) is a prefix of (iii) of G, otherwise Case 3 occurs,
then we only need to set the ws+1 of G as wq(s) of G(i, j). Again by recoding
this update on a stack we can restore (iii) when return occurs.

Thus we can update (i)–(iii) in O(1) time.
For other part our algorithm needs only a constant time of computations for

each edge of the tree. Thus the algorithm runs in O(f(n)) time.
For each recursive call we need a constant number of space, and the depth

of recursive call is bounded by n. Thus the algorithm uses O(n) space. ut

5 Modification of the Algorithm

Then we consider our second problem.
A vertex v of G is called an inner vertex of G if v is not on Co(G). Let Sn−rn−1

be the set of biconnected based plane triangulation having at most n−1 vertices
including at most n − r inner vertices. And let S=n−r

=n be the set of biconnected
based plane triangulation having exactly n vertices including exactly n− r inner
vertices.

We wish to generate all triangulations in S=n−r
=n without duplications.

For each triangulation G in S=n−r
=n if we remove the leftmost removable vertex

v then the resulting triangulation P (G) is a triangulation in Sn−rn−1 having one less
vertices, and if v has exactly two neighbors on Co(P (G)), then G has the same
number of inner vertices with P (G), otherwise v has three or more neighbors on
Co(P (G)), and then G has more inner vertices than P (G) has.

Also, for each triangulation G in Sn−rn−1 except K3 if we remove the leftmost
removable vertex then the resulting triangulation P (G) is also a triangulation in
Sn−rn−1 having one less vertices and having less or equal number of inner vertices.

Thus for each G in S=n−r
=n ∪ Sn−rn−1 except K3 we can again define the unique

triangulation P (G) in Sn−rn−1 . Thus we again have the genealogical tree Tn−rn such
that (i) the leaf vertices of Tn−rn correspond to the triangulations in S=n−r

=n , (ii)

440 Z. Li and S.-i. Nakano

the non-leaf vertices of Tn−rn correspond to the triangulations in Sn−rn−1 , and (iii)
each edge corresponds to each relation between some G and P (G). For instance
T 5−4

5 is shown in Fig. 4, in which each leftmost removable vertex is depicted by a
white circle. The vertex in Tn−rn corresponding to K3 is called the root of Tn−rn .

Given a triangulation G in Sn−rn−1 , we wish to find all child triangulations of
G. Let Co(G) = w1, w2, · · · , wk, and (w1, wk) be the base edge of G, and ws be
the leftmost removable vertex of G. We denote by G(i, j), 1 ≤ i < j ≤ k, the
based plane triangulation obtained from G by adding new vertex v on the outer
face of G, and adding j − i + 1 ≥ 2 edges (wi, v), (wi+1, v), · · · , (wj , v), as shown
in Fig. 3.

We have the following lemma.

(1,3)(1,2)

(1,3)

(2,3)
(2,4)

(1,3)

(1,2)

(2,3)

Fig. 4. Genealogical tree T 5−4
5 .

Lemma 2. Let G be a based plane triangulation in Sn−rn−1 . (a) If G has at most
n − 2 vertices then G has at least two child triangulations in Sn−rn−1 . (b) If G has
exactly n − 1 vertices then G has at least one child triangulation in S=n−r

=n .

Proof. If G = K3 then the claim holds. Assume otherwise.
Let Co(G) = w1, w2, · · · , wk, and (w1, wk) be the base edge of G. Let ws be

the leftmost removable vertex of G.
(a) G(s − 1, s) and G(s, s + 1) are child triangulations of G and in Sn−rn−1 .
(b) Let t be the number of inner vertex of G. By the definition of Tn−rn ,

t ≤ n − r holds. Any child triangulation of G must have exactly n − r inner
vertices by the definition of Tn−rn . Thus we have to add a new vertex to G with
exactly n − r − t + 2 edges to have n − r − t more inner vertices. Since v is the
leftmost removable vertex of G(1, n − r − t + 2), G(1, n − r − t + 2) is a child
triangulations of G and in S=n−r

=n . ut

Efficient Generation of Plane Triangulations without Repetitions 441

Now we wish to find all child triangulations of G. We have the following two
cases to consider.

Let Co(G) = w1, w2, · · · , wk, and (w1, wk) be the base edge of G, and ws be
the leftmost removable vertex of G. Let t be the number of inner vertices of G.
Case 1: G has exactly n − 1 vertices.

If t = n − r then only G(i, i + 1) such that 1 ≤ i ≤ s is a child triangulation
of G.

Otherwise t < n−r holds, and we need to add a new vertex to G with exactly
n−r−t+2 edges to have n−r−t > 0 more inner vertices. Now only G(i, j) such
that (i) i ≤ s, (ii) j ≤ q(i), and (iii) j − i − 1 = n − r − t, is a child triangulation
of G. (If i > s or j > q(i) then the new vertex v is not the leftmost removable
vertex of G. And if j − i − 1 6= n − r − t then the resulting graph cannot have
exactly n − r inner vertices.)
Case 2: G has at most n − 2 vertices.

If t = n − r then only G(i, i + 1) such that 1 ≤ i ≤ s is a child triangulation
of G.

Otherwise t < n − r holds, and we need to preserve the number of inner
vertices at most n − r after adding a new vertex to G.

We have the following four subcases similar to the four cases in Section 4.
Case 2(a): j ≤ s.

If t + (j − i − 1) ≤ n − r then P (G(i, j)) = G, otherwise P (G(i, j)) 6= G.
Case 2(b): i < s < j.

If j ≤ q(i) and t + (j − i − 1) ≤ n − r then P (G(i, j)) = G, otherwise
P (G(i, j)) 6= G.
Case 2(c): i = s.

If j = i+ 1 (now t+ (j − i−1) ≤ n− r holds) then P (G(i, j)) = G, otherwise
P (G(i, j)) 6= G.
Case 2(d): i > s. In this case P (G(i, j)) 6= G.

Based on the case analysis above we can have an algorithm to find all trian-
gulations in S=n−r

=n . We have the following lemma.

Lemma 3. The algorithm uses O(n) space and runs in O(f(n, r)) time, where
f(n, r) is the number of nonisomorphic biconnected based plane triangulations
having exactly n vertices including exactly r vertices on the outer face.

Proof. By Lemma 2 the number of vertices in Tn−rn is at most 3 · |S=n−r
=n | =

3 · f(n, r). And the algorithm need only a constant time of computation for each
edge of Tn−rn . Thus the algorithm runs in O(f(n, r)) time. The algorithm clearly
uses O(n) space. ut

We modify our second algorithm so that it output all biconnected (non-based)
plane triangulations having exactly n vertices including exactly r vertices on the
outer face, as follows.

At each leaf v of the genealogical tree Tn−rn , the triangulation G correspond-
ing to v is checked whether the adding sequence of G with the base edge is the
lexicographically first one among the r adding sequences of G for r choice of

442 Z. Li and S.-i. Nakano

the base edge on Co(G), and only if so G is output. Thus we can output only
canonical representative of each isomorphism class.

Lemma 4. The algorithm uses O(n) space and runs in O(r2n · g(n, r)) time,
where g(n, r) is the number of nonisomorphic biconnected (non-based) plane tri-
angulations having exactly n vertices including exactly r vertices on the outer
face.

Proof. Given a biconnected based plane triangulation G, by counting (and up-
dating) the number of chord incident to each vertex on Co(G), we can find the
adding sequence in O(n) time. For each triangulation corresponding to a leaf of
Tn−rn , we construct r adding sequences for r choice of the base edge on Co(G),
and find the lexicographically first one in O(rn) time, and for each output tri-
angulation our tree may contain r isomorphic ones corresponding to r choices of
the base edge. Thus the algorithm runs in O(r2n · g(n, r)) time. The algorithm
clearly uses O(n) space. ut

A planar graph with n vertices is maximal if it has exactly 3n − 6 edges.
Every maximal planar graph except K3 is triconnected, and every triconnected
planar graph has a unique embedding on a sphere only up to mirror copy[HW74].
And in the embeddig every face has exactly three edges on its contour. Thus,
for every maximal planar graph by choosing the outer face and the base edge,
there are exactly 2m (biconnected) based plane triangulation G with exactly 3
vertices on the outer face, where m is the number of edges of G. We modify the
algorithm further as follows. At each leaf v of the genealogical tree Tn−3

n , the
triangulation G corresponding to v is checked whether the adding sequence of
G with the base edge is the lexicographically first one among the 2m adding
sequences of G (3 choice of the base edge on Co(G) for each of 2m/3 choice of
the outer face of G), and only if so G is output. Thus we have the following
theorem, which is an answer for an open problem in [A96].

Theorem 2. The modified algorithm generate all maximal planar graphs in
O(n3 · h(n)) time, where h(n) is the number of nonisomorphic maximal planar
graphs with exactly n vertices. The algorithm uses O(n) space.

6 Conclusion

In this paper we have given four simple algorithms to generate all graphs with
some property. Our algorithms first define a genealogical tree such that each
vertex corresponds to each graph of the given property, then output each graph
without duplications by traversing the tree.

To find other all-something-generating problems to which our method can
be applied is remained as an open problem.

Efficient Generation of Plane Triangulations without Repetitions 443

References

[A96] D. Avis, Generating rooted triangulations without repetitions, Algorithmica,
16, (1996), pp.618-632.

[B80] T. Beyer and S. M. Hedetniemi, Constant time generation of rooted trees,
SIAM J. Comput., 9, (1980), pp.706-712.

[CN98] M. Chrobak and S. Nakano, Minimum-width grid drawings of plane graphs,
Computational Geometry: Theory and Applications, 10, (1998), pp.29-54.

[FPP90] H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a
grid, Combinatorica, 10, (1990), pp.41-51.

[G93] L. A. Goldberg, Efficient algorithms for listing combinatorial structures,
Cambridge University Press, New York, (1993).

[HW74] J. E. Hopcroft and J.K. Wong, Linear time algorithm for isomorphism of
planar graphs, Proc. of 6th STOC, (1974), pp.172-184.

[KS98] D. L. Kreher and D. R. Stinson, Combinatorial algorithms, CRC Press, Boca
Raton, (1998).

[M98] B. D. McKay, Isomorph-free exhaustive generation, J. of Algorithms, 26,
(1998), pp.306-324.

[S90] W. Schnyder, Embedding planar graphs on the grid, Proc. 1st Annual ACM-
SIAM Symp. on Discrete Algorithms, San Francisco, (1990), pp.138-148.

[W86] R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay, Constant time
generation of free trees, SIAM J. Comput., 15, (1986), pp.540-548.

The Longest Common Subsequence Problem for
Sequences with Nested Arc Annotations

(Extended Abstract)

Guo-Hui Lin1,2 ?, Zhi-Zhong Chen3 ??, Tao Jiang2,4 ? ? ?, and Jianjun Wen4 †

1 Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada.

2 Department of Computing and Software, McMaster University,
Hamilton, Ontario L8S 4L7, Canada.

3 Department of Mathematical Sciences, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan.

4 Department of Computer Science, University of California,
Riverside, CA 92521.

Abstract. Arc-annotated sequences are useful in representing the struc-
tural information of RNA and protein sequences. The Longest Arc-
Preserving Common Subsequence (LAPCS) Problem has been intro-
duced in [11] as a framework for studying the similarity of arc-annotated
sequences. Several algorithmic and complexity results on the LAPCS
problem have been presented in [11,17]. In this paper, we continue this
line of research and present new algorithmic and complexity results on
the LAPCS problem restricted to two nested arc-annotated sequences,
denoted as LAPCS(nested, nested). The restricted problem is perhaps
the most interesting variant of the LAPCS problem and has important
applications in the comparison of RNA secondary and tertiary structures.
Particularly, we prove that LAPCS(nested, nested) is NP-hard, which
answers an open question in [11]. We then present a polynomial-time ap-
proximation scheme for LAPCS(nested, nested) with an additional c-
diagonal restriction. An interesting special case, unary LAPCS(nested,
nested), is also investigated.

1 Introduction

Given two sequences S and T over some fixed alphabet Σ, sequence T is said
to be a subsequence of S if T can be obtained from S by deleting some letters
? Supported in part by NSERC Research Grant OGP0046613 and a CITO grant.
ghlin@math.uwaterloo.ca.

?? Supported in part by the Grant-in-Aid for Scientific Research of the Ministry
of Education, Science, Sports and Culture of Japan, under Grant No. 12780241.
chen@r.dendai.ac.jp. Work done while visiting at UC Riverside.

? ? ? Supported in part by a UCR startup grant and NSF Grants CCR-9988353 and
ITR-0085910. jiang@cs.ucr.edu.

y Supported in part by NSF Grant CCR-9988353. wjianju@cs.ucr.edu.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 444–455, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Longest Common Subsequence Problem 445

(also called bases) from S. Notice that the order of the remaining letters of S
must be preserved. The length of a sequence S, denoted by |S|, is the number of
letters in S. Given two sequences S1 and S2 (over some fixed alphabet Σ), the
classical Longest Common Subsequence (LCS) problem asks for a longest
sequence T that is a subsequence of both S1 and S2. Suppose |S1| = n1 and
|S2| = n2, then a longest common subsequence of S1 and S2 can be computed
by dynamic programming in time O(n1n2) [16,23,24]. For simplicity, we use S[i]
to denote the ith letter in sequence S, and S[i1, i2] (1 ≤ i1 ≤ i2 ≤ |S|) to denote
the substring of S consisting of the i1th letter through the i2th letter.

For any sequence S, an arc annotation set (or simply an arc set) P of S
is a set of unordered pairs of positions in S. Each pair (i1, i2) ∈ P , where
1 ≤ i1 < i2 ≤ |S|, is said to connect the two letters at positions i1 and i2
and is called an arc annotation (or simply, arc) between the two letters. Such a
pair (S, P) of sequence and arc annotation set is referred to as an arc-annotated
sequence [11]. Observe that a (plain) sequence without any arc can be viewed as
an arc-annotated sequence with an empty arc set.

CAGCGUCACACCCGCGGGGUAAACGCU

� �� �� �� �� �� �� �' $' $

C
A U
G C
C GG

C
U
A

C
A
C

C G
C G

G
C

G

G
C

U
A

A
A

Fig. 1. A tRNA and its corresponding arc-annotated sequence.

Arc-annotated sequences are useful in describing the secondary and tertiary
structures of RNA and protein sequences [2,10,11,14,18,22,26]. For example, one
may use arcs to represent bonds between nucleotides in an RNA (more precisely,
transfer RNA or tRNA) sequence (see Figure 1) or contact forces between amino
acids in a protein sequence. Therefore, the problem of comparing arc-annotated
sequences has applications in the structural comparison of RNA and protein
sequences and has received much attention in the literature recently [2,11,14,17,
18,26]. In this paper, we follow the LCS approach proposed in [11] and study
the Longest Arc-Preserving Common Subsequence Problem for arc-
annotated sequences.

Given two arc-annotated sequences S1 and S2 with arc sets P1 and P2,
respectively, if S1[i] = S2[j] for some pair of integers i and j, we name the
pair 〈i, j〉 a base match; and if S1[i1] = S2[j1], S1[i2] = S2[j2], (i1, i2) ∈ P1,
and (j1, j2) ∈ P2, for some integers i1 < i2 and j1 < j2, we name the pair
〈(i1, i2), (j1, j2)〉 an arc match. A common subsequence T of S1 and S2 induces
a bijective mapping from a subset of {1, 2, . . . , n1} to a subset of {1, 2, . . . , n2},

446 G.-H. Lin et al.

where n1 = |S1| and n2 = |S2|. Let M denote this mapping and suppose that
M = {〈i`, j`〉, ` = 1, . . . , |T |}, then we say that T induces the base matches
〈i`, j`〉, ` = 1, . . . , |T |. The common subsequence T is arc-preserving if the arcs
induced by the mapping are preserved, i.e. for any 〈i`1 , j`1〉, 〈i`2 , j`2〉 ∈ M :

(i`1 , i`2) ∈ P1 ⇐⇒ (j`1 , j`2) ∈ P2;

and we say in this case that T induces the arc match 〈(i`1 , i`2), (j`1 , j`2)〉 if
(i`1 , i`2) ∈ P1 and (j`1 , j`2) ∈ P2 in addition. The Longest Arc-Preserving
Common Subsequence (LAPCS) problem is to find a longest common sub-
sequence of S1 and S2 that is arc-preserving (with respect to the given arc sets
P1 and P2) [11].

It is shown in [11] that the LAPCS problem is NP-hard, if the arc annotation
structures are unrestricted. Since in the practice of RNA and protein sequence
comparisons arc sets are likely to satisfy some constraints (e.g. bond arcs do
not cross in the case of tRNA sequences), it is of interest to consider various
restrictions on arc structures. The following four natural restrictions on an arc
set P have been discussed in the literature [11].

1. No two arcs share an endpoint:
∀ (i1, i2), (i3, i4) ∈ P , i1 6= i4, i2 6= i3, and i1 = i3 ⇐⇒ i2 = i4.

2. No two arcs cross each other:
∀ (i1, i2), (i3, i4) ∈ P , i1 ∈ [i3, i4] ⇐⇒ i2 ∈ [i3, i4].

3. No two arcs nest:
∀ (i1, i2), (i3, i4) ∈ P , i1 ≤ i3 ⇐⇒ i2 ≤ i3.

4. There are no arcs at all:
P = ∅.

These restrictions are used progressively and inclusively to produce five dis-
tinct levels of permitted arc structures on the sequences in the LAPCS problem:

– unlimited — no restrictions.
– crossing — restriction 1.
– nested — restrictions 1 and 2.
– chain — restrictions 1, 2 and 3.
– plain — restriction 4.

In the following, we use the notation LAPCS(level-1, level-2) [17] to
represent the LAPCS problem where the arc structure of sequence S1 is of
level level-1 and the arc structure of sequence S2 is of level level-2. Without
loss of generality, we always assume that level-1 is at the same level of or
higher than level-2. Problem LAPCS(unlimited, level-2) is NP-hard [11]
and is not approximable within ratio nε, ε ∈ (0, 1

4) [17], where n = max{n1, n2}.
Problem LAPCS(crossing, level-2) is also NP-hard [11], and is MAX SNP-
hard [17], and admits a 2-approximation [17]. If level-1 is at most nested and
level-2 is lower than nested, then LAPCS(level-1, level-2) is solvable
in polynomial time [11,16,17,23,24]. Prior to this work, the most interesting

The Longest Common Subsequence Problem 447

yet unsolved case is LAPCS(nested, nested), except that it inherits the 2-
approximation algorithm designed for LAPCS(crossing, crossing) [17].

Notice that the problem LAPCS(nested, nested) effectively models the
similarity between two tRNA sequences, particularly the secondary structures,
and is generally thought of as the most important variant of the LAPCS prob-
lem. For example, the arc structure in Figure 1 is nested. In this paper, we inves-
tigate the computational complexity of this problem and show its NP-hardness,
answering an open question in [11]. The hardness result in fact also holds for
a rather special case, denoted by 2-fragmented LAPCS(nested, nested),
where all base matches induced by an LAPCS are required to have the form
〈2i+ 1

2 ± 1
2 , 2i+ 1

2 ± 1
2 〉. In the positive aspect, we present a polynomial-time ap-

proximation scheme (PTAS) for a much more general problem called c-diagonal
LAPCS(nested, nested) than 2-fragmented LAPCS(nested, nested).
Here, for any constant c ≥ 1, c-diagonal LAPCS(nested, nested) is the spe-
cial case of LAPCS(nested, nested) where base S1[i] (respectively, S2[j]) is al-
lowed only to match bases in the range S2[i−c, i+c] (respectively, S1[j−c, j+c]).
The c-diagonal restriction has been studied extensively for sequence alignment
problems in the literature [15,19]. The c-diagonal LAPCS(nested, nested)
problem is relevant in the comparison of conserved tRNA sequences where we
already have a rough idea about the correspondence between bases in the two
sequences. The PTAS is based on an interesting application of the bounded
treewidth decomposition technique for planar graphs due to Baker [3].

The rest of the paper is organized as follows. Section 2 proves the hard-
ness results. Section 3 presents a PTAS for c-fragmented LAPCS(nested,
nested), for any constant c ≥ 2, and then extends it to a PTAS for c-diagonal
LAPCS(nested, nested), for any constant c ≥ 1. Section 3 also presents an
efficient exact algorithm for 1-fragmented LAPCS(crossing, crossing).
Section 4 deals with an interesting special case called unary LAPCS(nested,
nested), proves its NP-hardness, and presents a 4

3 -approximation algorithm.
Section 5 concludes the paper with some future research topics. In this extended
abstract, proofs of some lemmas and theorems are omitted and are available in
the full paper [20] (http://www.math.uwaterloo.ca/˜ghlin).

2 Hardness Results

We begin with reviewing hardness results for some graph-theoretic problems.

Lemma 1. The Maximum Independent Set (MIS) problem restricted to cu-
bic planar graphs is NP-hard [13]. On the other hand, it admits a PTAS [3].

A book embedding of a graph consists of an embedding of its vertices along
the spine of a book (i.e. a linear ordering of the vertices), and an embedding of
its edges on the pages so that edges embedded on the same page do not cross.
The objective of the Book Embedding Problem is to minimize the number of
pages used. The minimum number of pages in which a graph can be embedded
is called the pagenumber of the graph. Computationally, the Book Embedding

448 G.-H. Lin et al.

Problem is hard: it is NP-complete to tell if a graph can be embedded in two
pages [9]. The restricted problem of embedding the edges optimally for a fixed
vertex-ordering is also NP-complete [12]. Nonetheless, we have the following
positive results due to Yannakakis.
Lemma 2. [25] Graphs with pagenumber one are exactly the outerplanar graphs.
Graphs with pagenumber two are the subhamiltonian planar graphs, i.e. the sub-
graphs of Hamiltonian planar graphs. There exists an algorithm which embeds
a given planar graph in four pages in time linear in the number of edges in the
graph. Moreover, there exist planar graphs which cannot be embedded in three
pages.

From Lemmas 1 and 2, we can use the reduction technique in [11,17] to con-
struct a simple reduction showing the NP-hardness of the LAPCS problem for
four nested arc-annotated sequences (the definition is a straightforward exten-
sion of that of LAPCS(nested, nested)). In Theorem 1 below, we prove the
hardness result for two nested arc-annotated sequences. We need the following
improvements on Lemmas 1 and 2 to prove the theorem.
Lemma 3. [5] The Vertex Cover (VC) problem restricted to cubic tricon-
nected planar graphs is NP-hard.

Corollary 1. The MIS problem restricted to cubic planar bridgeless connected
graphs is NP-hard.

Lemma 4. Any cubic planar bridgeless graph has a perfect matching [21], which
can be computed in linear time [4].

The following lemma is crucial to the proof [20] of the theorem.
Lemma 5. [20] Cubic planar bridgeless connected graphs are subhamiltonian.
Moreover, there is a linear-time algorithm that, given any cubic planar bridge-
less connected graph G, finds a Hamiltonian planar supergraph H(G) of G with
maximum degree at most 5, and finds a 2-page book embedding of G such that
every vertex has a degree at least one (and thus at most two) in each page.
Theorem 1. LAPCS(nested, nested) is NP-hard.

The reader may notice that the proof [20] of Theorem 1 can be made much
simpler by employing a reduction similar to those in [11,17]. The reason why
we prefer a more complicated reduction is that this reduction actually shows
the NP-hardness of the problem of finding a canonical LAPCS for two given
nested arc-annotated sequences. Here, in a canonical LAPCS, the allowed forms
of base matches are 〈2i − 1, 2i − 1〉, 〈2i − 1, 2i〉, 〈2i, 2i − 1〉, and 〈2i, 2i〉. We use
2-fragmented LAPCS(nested, nested) to denote the problem of finding a
canonical LAPCS for two given nested arc-annotated sequences. Generally, we
can define c-fragmented LAPCS(nested, nested) for any positive integer
c, in which the two given sequences are chopped into fragments of lengths at
most c, and the allowed base matches are those between fragments at the same
location. Notice that c-fragmented LAPCS(nested, nested) is actually a
further restriction of (c − 1)-diagonal LAPCS(nested, nested).
Theorem 2. c-fragmented LAPCS(nested, nested) is NP-hard when c ≥
2. c-diagonal LAPCS(nested, nested) is NP-hard when c ≥ 1.

The Longest Common Subsequence Problem 449

3 c-Fragmented LAPCS and c-Diagonal LAPCS

3.1 1-Fragmented LAPCS(Crossing, Crossing)

Let (S1, P1), (S2, P2) be the two sequences in an instance of 1-fragmented
LAPCS(crossing, crossing). Assume without loss of generality that n =
|S1| = |S2|. Clearly, ignoring the arcs we may easily compute a classical LCS T
of S1 and S2 by a linear scan in O(n) time. We construct a graph G associated
with T as follows. If T induces base match 〈i, i〉, then create a vertex vi. If T
induces a pair of base matches 〈i, i〉 and 〈j, j〉, and (i, j) is an arc in either P1 or
P2 but not both, then we impose an edge connecting vi and vj in G. It is clear
that G has maximum degree 2, and thus every independent set of G one-to-one
corresponds to an arc-preserving common subsequence of (S1, P1) and (S2, P2).
Therefore, by computing a maximum independent set of G, which can be easily
done in linear time since G is composed of a collection of disjoint cycles and
paths, we get an LAPCS for (S1, P1) and (S2, P2).

Theorem 3. The 1-fragmented LAPCS(crossing, crossing) problem is
solvable in O(n) time.

3.2 c-Fragmented LAPCS(Nested, Nested)

Before describing the PTAS, we review the notion of tree decomposition of a
graph and k-outerplanar graph, which play important roles in our construction.

A tree decomposition of a graph G = (V, E) is a pair D = (T, X) where
T = (U, F) is a tree and X = {Xu | u ∈ U} is a family of |U | subsets of V such
that the following hold:

– ∪u∈UXu = V .
– For each edge (v1, v2) ∈ E, there is a vertex u ∈ U such that {v1, v2} ⊆ Xu.
– If u2 ∈ U is on the path connecting u1 and u3 in T , then Xu1 ∩ Xu3 ⊆ Xu2 .

The treewidth associated with this decomposition is tw(G, D) = maxu∈U |Xu|−1.
The treewidth of G, denoted by tw(G), is the minimum tw(G, D) taken over all
tree decompositions D of G.

The following lemma is widely known in the literature (see, e.g. [1]):

Lemma 6. The MIS problem restricted to bounded-treewidth graphs is solvable
in linear time.

The notion of k-outerplanar graphs was introduced by Baker [3]. These
graphs are defined inductively as follows. 1-outerplanar graphs are exactly out-
erplanar graphs. For k ≥ 2, k-outerplanar graphs are those planar graphs that
have a planar embedding such that deleting all vertices on the exterior face
of the embedding and all edges incident to them from the embedding yields a
(k − 1)-outerplanar graph.

Lemma 7. [6] For k ≥ 1, k-outerplanar graphs have treewidth less than or equal
to 3k − 1.

450 G.-H. Lin et al.

By Lemmas 6 and 7, the MIS problem restricted to k-outerplanar graphs is
solvable in linear time. This result was originally due to Baker [3] but based on
a different approach.

For any integer k ≥ 2, a k-cover of a graph G = (V, E) is a family F of k
subsets of V such that each vertex of G appears in at least k − 1 subsets in F .
The notion of k-covers of graphs was introduced by Chen [8]. The idea behind
Baker’s PTAS [3] for the MIS problem restricted to planar graphs is to compute
a k-cover F of a given planar graph G such that each subset in F induces a
(k − 1)-outerplanar subgraph of G. Extending this idea and applying Lemma 6,
Chen proved the following:

Lemma 8. [8] Suppose that C is a class of graphs G = (V, E) such that given
G and an integer k ≥ 2, we can compute a k-cover F of G in time polynomial
in k|V | such that each subset in F induces a subgraph of G whose treewidth
is bounded from above by a number independent of G. Then, the MIS problem
restricted to graphs in C admits a PTAS.

Now we are ready to present the PTAS for c-fragmented LAPCS(nested,
nested).

Theorem 4. The c-fragmented LAPCS(nested, nested) problem admits
a PTAS.

Proof. Given an instance of c-fragmented LAPCS(nested, nested), say
(S1, P1) and (S2, P2), and an integer k, we are asked to compute an arc-preserving
common subsequence whose length is at least k−1

k of the optimum. Without loss
of generality, we assume that |S1| = |S2| = mc (= n), and let Sj

i denote the jth
fragment of length c in Si. We construct two graphs G and H in the following.

Let Vj , 1 ≤ j ≤ m, denote the set of vertices each corresponding to a base
match 〈(j − 1)c + `1, (j − 1)c + `2〉 in the jth fragment (i.e. S1[(j − 1)c + `1] =
S2[(j − 1)c + `2]), where 1 ≤ `1, `2 ≤ c. Clearly, |Vj | ≤ c2 for all j. Let V =
∪1≤j≤mVj . Two vertices in V are connected via an edge if and only if they are
conflicting base matches (i.e. they cross each other or violate the arc-preserving
constraint). This forms a graph G. Observe that an independent set in G one-
to-one corresponds to an arc-preserving common subsequence of (S1, P1) and
(S2, P2) (with the c-fragmented restriction). So, by Lemma 8, it suffices to show
that given G and an integer k ≥ 2, we can compute a k-cover F of G in time
polynomial in k|V | such that each subset in F induces a subgraph of G whose
treewidth is bounded from above by a number independent of G.

Consider an integer k ≥ 2. We obtain a new graph H from G by merging
the vertices in each subset Vj into a super-vertex vj and keeping at most one
edge between each pair of super-vertices. Since both P1 and P2 are nested, H is
a simple planar graph. Notice that the number of vertices in H is 2m.

Since H is planar, we can emulate Baker [3] to compute a k-cover FH of H
in time linear in 2mk such that each subset in FH induces a (k − 1)-outerplanar
subgraph of G. Let FH = {U1, . . . , Uk}. For each Ui ∈ FH , we can compute a
tree decomposition Di = (Ti,Xi) of the subgraph Hi of H induced by Ui with
tw(Hi,Di) ≤ 3k − 4, in time linear in |Ui| [7].

The Longest Common Subsequence Problem 451

For each Ui ∈ FH , let Wi be the subset of V obtained from Ui by replacing
each super-vertex v ∈ Ui with the original vertices merged into v. Similarly, for
each 1 ≤ i ≤ k and each subset Xi,j ∈ Xi, we obtain a subset Zi,j of V from
Xi,j by replacing each super-vertex v ∈ Xi,j with the original vertices merged
into v. It is easy to verify that (1) {W1, . . . , Wk} is a k-cover of G, and (2)
each Di = (Ti, {Zi,j | Xi,j ∈ Xi}) is a tree decomposition of the subgraph of
G induced by Wi. Note that the treewidth of each Di is less than or equal to
(3k − 4)c2. This finishes the proof of the theorem. 2

3.3 c-Diagonal LAPCS(Nested, Nested)

The PTAS in Section 3.2 can be easily extended to a PTAS for c-diagonal
LAPCS(nested, nested).

Theorem 5. The c-diagonal LAPCS(nested, nested) problem admits a
PTAS.

Proof. Given an instance of c-diagonal LAPCS(nested, nested), say
(S1, P1) and (S2, P2), and an integer k, we are asked to compute an arc-preserving
common subsequence whose length is at least k−1

k of the optimum. Without loss
of generality, we assume that |S1| = |S2| = n. The algorithm uses the PTAS
designed for c-fragmented LAPCS(nested, nested) as a subroutine.

Fix a constant b (to be specified later). For every i ∈ [1, b], let Qi denote the
b-fragmented LAPCS(nested, nested) problem for (S1, P1) and (S2, P2)
where the first fragment has length i, each of the others but the last fragment
has length b. Let `∗

i denote the length of an LAPCS, say Ti, for problem Qi.
Suppose that R is an LAPCS for the original problem. Then, every base match
in R is a legal base match in at least (b − c + 1) out of b problems Q1, Q2,
· · ·, Qb. Therefore, the maximum among `∗

1, `∗
2, · · ·, `∗

b is at least as large as
b−c+1

b |R|. Notice that by Theorem 4 we may compute an arc-preserving common
subsequence Ci for problem Qi in polynomial time such that the length of Ci is
at least as large as b

b+1`∗
i .

Let C be the longest one among C1, . . . , Cb. By the discussions in the previous
paragraph, |C| ≥ b

b+1 · b−c+1
b |R| = b−c+1

b+1 |R|. By setting b = ck − 1, we have
|C| ≥ k−1

k |R|. Thus, the algorithm that outputs C on input (S1, P1), (S2, P2)
and an integer k is a PTAS for the c-diagonal LAPCS(nested, nested)
problem. 2

4 Unary LAPCS(Nested, Nested)

Unary LAPCS(nested, nested) is a special case where all the bases are the
same. Although the problem has no direct applications in molecular biology, it
arises in several other domains such as query optimization (parenthesis match-
ing) and planning.

Theorem 6. The unary LAPCS(nested, nested) problem is NP-hard.

The following corollary follows from the construction in the proof [20].

452 G.-H. Lin et al.

Corollary 2. c-fragmented unary LAPCS(nested, nested) when c ≥ 4
and c-diagonal unary LAPCS(nested, nested) when c ≥ 3 are NP-hard.

Theorem 7. Unary LAPCS(nested, nested) admits a 4
3 -approximation al-

gorithm.

Proof. Given a pair of unary sequences with nested arcs (S1, P1) and (S2, P2),
where |S1| = n1 ≤ n2 = |S2|, an arc-preserving common subsequence T satisfies
left-priority if for every arc (i1, i2) ∈ P1, T does not contain S1[i2] unless it
contains S1[i1]. For the ease of exposition, we call such an arc-preserving common
subsequence satisfying left-priority a Lep-APCS. A longest Lep-APCS is denoted
for short by Lep-LAPCS. A key ingredient of our approximation algorithm is a
polynomial-time algorithm for computing a Lep-LAPCS, as shown below.

The basic idea is dynamic programming. For every pair of integers i and i′,
where 1 ≤ i ≤ i′ ≤ n1, let S̃1[i, i′] denote the subsequence of S1[i, i′] by deleting
the bases that are the right endpoints of arcs whose left endpoints are not in the
interval [i, i′] 1, ı̃ (or ı̃′) the index of the base to the right (or left, respectively)
of S1[i] (or S1[i′], respectively) in S̃1[i, i′], and P1[i, i′] the subset of arcs whose
both endpoints are in the interval [i, i′].

Let DP (i, i′; j, j′) denote the length of a Lep-LAPCS for the subsequences
(S̃1[i, i′], P1[i, i′]) and (S2[j, j′], P2[j, j′]), where 1 ≤ i ≤ i′ ≤ n1 and 1 ≤ j ≤
j′ ≤ n2. Here we require that the pair j and j′ satisfy that there is no arc in
P2 such that its one endpoint is in the interval [j, j′] while the other is not. The
solution to our original Lep-LAPCS problem would be stored in DP (1, n1; 1, n2).
In the following, when we say that S1[k] (or S2[k]) is free, it is not an endpoint
of any arc in P1[i, i′] (or P2[j, j′], respectively). The dynamic programming is a
two-step computation.

Step 1. For every (j1, j2) ∈ P2, we do the following two-phase pre-computation.

Phase I: If j2 − j1 > 1, then let j = j1 + 1. Let j′ be a position in range
[j1 +1, j2 −1] such that (j, j′) /∈ P2 and no arc in P2 has exactly one endpoint in
range [j, j′]. The recurrence relation for the computation of entry DP (i, i′; j, j′)
is defined for several cases.

If S2[j′] is free, then in the case that S1[i′] is free,

DP (i, i′; j, j′) = max

DP (i, i′; j, j′ − 1),
DP (i, ı̃′; j, j′),
DP (i, ı̃′; j, j′ − 1) + 1;

In the other case, i.e. S1[i′] is the right endpoint of some arc in P1[i, i′],

DP (i, i′; j, j′) = max
{

DP (i, i′; j, j′ − 1),
DP (i, ı̃′; j, j′).

1 Note: We may assume without loss of generality that S1[i] and S1[i0] are both in
S̃1[i, i0]. Otherwise, if, for example, S1[i] is not in S̃1[i, i0], then S̃1[i, i0] = S̃1[i+1, i0].

The Longest Common Subsequence Problem 453

If (j′′, j′) ∈ P2 for some j′′ ∈ [j + 1, j′ − 1], then

DP (i, i′; j, j′) = max
i≤i′′≤i′

{DP (i, i′′ − 1; j, j′′ − 1) + DP (i′′, i′; j′′, j′)} .

Phase II: If S1[i] is free but S1[i′] isn’t, then

DP (i, i′; j1, j2) = max

DP (̃ı, i′; j1, j2),
DP (̃ı, i′; j1 + 1, j2 − 1) + 1,
DP (i, ı̃′; j1, j2).

Similarly, if S1[i′] is free, then no matter whether or not S1[i] is free,

DP (i, i′; j1, j2) = max

DP (̃ı, i′; j1, j2),
DP (̃ı, i′; j1 + 1, j2 − 1) + 1,
DP (i, ı̃′; j1, j2),
DP (i, ı̃′; j1 + 1, j2 − 1) + 1.

If (i, i′) ∈ P1[i, i′], then

DP (i, i′; j1, j2) = DP (̃ı, ı̃′; j1 + 1, j2 − 1) + 2.

If neither of S1[i] and S1[i′] is free, but (i, i′) /∈ P1[i, i′], then

DP (i, i′; j1, j2) = max

DP (i, i′; j1 + 1, j2 − 1),
DP (̃ı, i′; j1 + 1, j2 − 1) + 1,
DP (i, ı̃′; j1, j2),
DP (̃ı, i′; j1, j2).

Step 2. Let j′ be a position in range [1, n2] such that (1, j′) /∈ P2 and no arc
in P2 has exactly one endpoint in range [1, j′]. The recurrence relation for the
computation of entry DP (i, i′; 1, j′) is defined for several cases.

If S2[j′] is free, then in the case that S1[i′] is free,

DP (i, i′; 1, j′) = max

DP (i, i′; 1, j′ − 1),
DP (i, ı̃′; 1, j′),
DP (i, ı̃′; 1, j′ − 1) + 1;

In the other case, i.e. S1[i′] is the right endpoint of some arc in P1[i, i′],

DP (i, i′; 1, j′) = max
{

DP (i, i′; 1, j′ − 1),
DP (i, ı̃′; 1, j′).

If (j′′, j′) ∈ P2 for some j′′ ∈ [2, j′ − 1], then

DP (i, i′; 1, j′) = max
i≤i′′≤i′

{DP (i, i′′ − 1; 1, j′′ − 1) + DP (i′′, i′; j′′, j′)} .

Therefore, DP (1, n1; 1, n2) can be computed in O(n3
1n2) time, since there are

O(n2
1n2) entries and each entry is obtained by checking at most O(n1) terms.

454 G.-H. Lin et al.

Employing a standard back-tracing technique, a Lep-LAPCS can be recovered
in O(n1n2) time. Let n∗

1 denote the length of a Lep-LAPCS.
We can similarly define arc-preserving common subsequences satisfying right-

priority, and denote the longest ones as Rip-LAPCS’s. Using the same compu-
tation technique as in the above, a Rip-LAPCS and its length can be computed
in O(n3

1n2) time too. Let n∗
2 denote the length of a Rip-LAPCS.

Let T0 denote a longest APCS under the constraint that it contains no arc-
match at all, and n∗

0 = |T0|. Such a T0 can be easily computed by deleting all
bases which are right endpoints of arcs in P1 and P2 from both sequences and
then taking the shorter one. Let n∗ denote the length of a (genuine) LAPCS
T ∗ for (S1, P1) and (S2, P2), and m∗ denote the number of arc-matches in T ∗.
If m∗ ≤ 1

4n∗, then we conclude that n∗
0 ≥ n∗ − m∗ ≥ 3

4n∗. Otherwise, the
number of base-matches in T ∗ which do not form arc-matches is less than 1

2n∗.
Therefore, max{n∗

1, n
∗
2} > 3

4n∗. It follows that by taking the longest one among
T0, a Lep-LAPCS, and a Rip-LAPCS, as the approximate solution, its length is
guaranteed to be at least 3

4 of the optimum. Notice that the overall algorithm
runs in O(n3

1n2) time. 2

5 Concluding Remarks

We have completely answered an open question proposed in [11] on whether
or not it is NP-hard to compute an LAPCS for two nested arc-annotated se-
quences. However, does it admit a PTAS? We leave it as an open question.
Designing better approximations for Unary LAPCS(nested, nested) and/or
LAPCS(crossing crossing) constitutes another challenging problem.

References

1. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability: a survey. BIT, 25:2–23, 1985.

2. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. In Proceedings of 6th Annual Symposium on Combinatorial Pattern Match-
ing (CPM’95), LNCS 937, pages 1–16, 1995.

3. B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41:153–180, 1994.

4. T.C. Biedl, P. Bose, E.D. Demaine, and A. Lubiw. Efficient algorithms for Peter-
son’s matching theorem. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’99), pages 130–139, 1999.

5. T.C. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under
the four-connectivity constraint. Algorithmica, 19:427–446, 1997.

6. H.L. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-
CS-88-14, Department of Computer Science, Utrecht University, The Netherlands,
March 1988.

7. H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

8. Z.-Z. Chen. Efficient approximation schemes for maximization problems on K3,3-
free or K5-free graphs. Journal of Algorithms, 26:166–187, 1998.

The Longest Common Subsequence Problem 455

9. F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Embedding graphs in books: a
graph layout problem with applications to VLSI design. SIAM Journal on Algebraic
and Discrete Methods, 8:33–58, 1987.

10. F. Corpet and B. Michot. RNAling program: alignment of RNA sequences using
both primary and secondary structures. Computer Applications in the Bio-sciences,
10:389–399, 1994.

11. P.A. Evans. Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria, 1999.

12. M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete
Methods, 1:216–227, 1980.

13. M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976.

14. D. Goldman, S. Istrail, and C.H. Papadimitriou. Algorithmic aspects of protein
structure similarity. In IEEE Proceedings of the 40th Annual Conference of Foun-
dations of Computer Science (FOCS’99), pages 512–521, 1999.

15. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge, 1997.
16. D.S. Hirschberg. The Longest Common Subsequence Problem. PhD thesis, Prince-

ton University, 1975.
17. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence prob-

lem for arc-annotated sequences. In Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching (CPM 2000), LNCS 1848, pages 154–165, 2000.
Full paper accepted by Journal of Discrete Algorithms.

18. H. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA sequence
structure alignment. In Proceedings of the Second Annual International Conference
on Computational Molecular Biology (RECOMB’98), pages 153–159, 1998.

19. M. Li, B. Ma, and L. Wang. Near optimal multiple sequence alignment within a
band in polynomial time. In ACM Proceedings of the 32nd Annual Symposium on
Theory of Computing (STOC’00), pages 425–434, 2000.

20. G.-H. Lin, Z.-Z. Chen, T. Jiang, and J.-J. Wen. The longest common subsequence
problem for sequences with nested arc annotations, February 2001. Manuscript.

21. J. Peterson. Die theorie der regulären graphs (the theory of regular graphs). Acta
Mathematica, 15:193–220, 1891.

22. D. Sankoff. Simultaneous solution of the RNA folding, alignment, and protose-
quence problems. SIAM Journal on Applied Mathematics, 45:810–825, 1985.

23. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

24. R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21:168–173, 1974.

25. M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer and
System Sciences, 38:36–67, 1989.

26. K. Zhang, L. Wang, and B. Ma. Computing similarity between RNA structures.
In Proceedings of 10th Annual Symposium on Combinatorial Pattern Matching
(CPM’99), LNCS 1645, pages 281–293, 1999.

Visibility-Based Pursuit-Evasion in a Polygonal
Region by a Searcher?

Sang-Min Park1, Jae-Ha Lee2, and Kyung-Yong Chwa1

1 Dept. of Computer Science, KAIST, Korea
{smpark,kychwa}@jupiter.kaist.ac.kr

2 Max-Planck-Institut für Informatik, Germany
lee@mpi-sb.mpg.de

Abstract. We consider the most basic visibility-based pursuit-evasion
problem defined as follows: Given a polygonal region, a searcher with
360� vision, and an unpredictable intruder that is arbitrarily faster than
the searcher, plan the motion of the searcher so as to see the intruder.
In this paper, we present simple necessary and sufficient conditions for a
polygon to be searchable, which settles a decade-old open problem raised
in [13]. We also show that every searchable polygon is also searchable by
a searcher with two flashlights (that is, two ray visions). This implies,
combined with the previous work [7], that there is an O(n2)-time algo-
rithm for constructing a search path for an n-sided polygon.

1 Introduction

Background. The visibility-based pursuit-evasion problem is that of planning the
motion of one or more searchers in a polygonal environment to eventually see
an intruder that is unpredictable, has unknown initial position, and is capable
of moving arbitrarily fast. This problem can model many practical applications
such as search for an intruder in a house, rescue of a victim in a dangerous
house and other surveillance with autonomous mobile robots. The motion plan
calculated could be used by robots or human searchers.

This paper discusses the most basic problem with a single searcher. Imagine
that a detective has to find a fugitive in a house with no way out. Probably,
she should drive the fugitive into a corner by looking at every suspicious corner
one by one. Can she eventually see the fugitive who is much faster? Or can the
fugitive keep sneaking out of sight of the detective? It depends on the geometry of
the house. More formally, we assume that the searcher’s environment is a simple
polygon. The searcher is equipped with the 360◦ vision that provides the visibility
polygon in real time (also called ∞-searcher in [13,1]). The intruder is assumed
to have an unknown initial position and to be capable of moving arbitrarily fast,
whereas the searcher can move at bounded speed. The question is whether the
searcher can eventually see the intruder controlled by the adversary. If this is
the case, the polygon is said to be searchable.
? This work was supported by KOSEF(Korea Science and Engineering Foundation)

under grant 98-0102-0701-3.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 456–468, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 457

Related Work. There have been many studies on detecting the unpredictable
intruder. The general problem was first studied in the context of graphs, where
the searchers and the intruder can move from vertex to vertex until a searcher
and the intruder eventually lie in one vertex [11,9]. After adopting geometric
free-space constraints and visibility of the searchers, this problem has attracted
much attention in computational geometry and robotics [13,3,1,2,15,6,8,4].

As the first attempt, Suzuki and Yamashita [13] introduced the polygon
search problem, which is the topic of this paper. They presented some necessary
or sufficient conditions for a polygon to be searchable by a single searcher but
no complete characterizations. Guibas et al. [2] presented a complete algorithm
to search a polygon by a single searcher, but the complexity of this problem,
including the analysis of their algorithm, remains open. Recently, there was an
erroneous result on the polygon search problem [14], which turned out to consider
the restricted searcher [10].

As a characterizable variant of the polygon, many researchers considered
rooms and corridors. A room is a polygonal region having one door and the
searcher should detect the intruder while not allowing the intruder to reach the
door. Lee et al. [8] characterized the class of searchable rooms and presented an
O(n2)-time algorithm for constructing a search path. A corridor is a polygonal
region having two doors and should be searched from one door d to the other door
d′ in such a way that an intruder should be detected or evicted through d′. Crass
et al. [1] characterized the class of searchable corridors. The characterizations
for rooms and corridors rely on the ‘orientation’ implicitly defined by the doors
and thus cannot be applied to the polygon search problem.

Suzuki and Yamashita [13] defined searchers with various visibilities. The
k-searcher has k flashlights each of which provides the scene along one ray that
can be rotated at some bounded speed. It has been conjectured that any search-
able polygon is also searchable by a 2-searcher, which is the motivation of the
introduction of the k-searcher. This conjecture is important from the algorith-
mic point of view because the authors of the present paper gave an O(n2)-time
algorithm for constructing a search schedule of the 2-searcher [7], which is also
complete for the ∞-searcher if the above conjecture is true.

Our Results. This paper solves the polygon search problem. We first give three
necessary conditions, say N1, N2, and N3, for a polygon to be searchable and
show that they are sufficient. As a by-product, we show that any searchable
polygon is also searchable by a 2-searcher, which means that the O(n2)-time
algorithm for the 2-searcher [7] is also complete for the general searcher. Due to
the lack of space, we sometimes omit the detailed proof, which can be found in
the full paper [10].

2 Preliminaries

2.1 Definitions and Notations

We are given a simple polygon P in the plane. The searcher and the intruder
are modeled as points that move continuously within P . Let φ(t) denote the

458 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

position of the intruder at time t ≥ 0. It is assumed that φ : [0,∞) → P is a
continuous function, and the intruder is unpredictable in that he is capable of
moving arbitrarily fast and his path φ is unknown to the searcher.

Let γ(t) denote the position of the searcher at time t≥0. Let γ represent a
continuous path of the searcher of the form γ : [0,∞) → P . The initial position
of the searcher has no importance because she can move to any point and start
searching there. Two points p and q are visible from each other if the segment pq
does not intersect the exterior of P . For any point q ∈ P , let Vis(q) denote the
set of all points in P that are visible from q. The searcher has the 360◦ vision,
i.e., she sees all the points in Vis(γ(t)) at t. The polygon P is searchable if there
exists a path γ such that for every continuous function φ : [0,∞) → P , there is
a time instant t∈ [0,∞) such that φ(t)∈Vis(γ(t)). That is, the intruder will be
seen by the searcher regardless of his path φ. Figure 1 depicts an example of a
searchable polygon and its search path.

(a) (b) (c) (d)

Fig. 1. Some snapshots of a search path of the searcher. Gray region is currently visible
from the searcher and dark region might contain the intruder.

Let ∂P denote the boundary of P . Since the intruder has unbounded speed,
any path of the undetected intruder can be mapped to a path of the undetected
intruder along ∂P . Thus, we assume w.l.o.g. that the intruder always moves along
the boundary of P in the rest of this paper. It is assumed that ∂P is oriented
in the clockwise direction. For points p, q ∈ ∂P , the chain [p, q] denotes the
connected boundary chain from p to q in the clockwise direction. Analogously,
(p, q) denotes [p, q] \ {p, q}, (p, q] does [p, q] \ {p}, and [p, q) does [p, q] \ {q}.

An edge e of P is contained in a line l; an extended edge is a maximal line
segment e′ ⊂ (l∩P) such that it shares only one endpoint (but no interior point)
with e and its other endpoint also lies on ∂P . Each edge induces at most two
extended edges. We call an extended edge e′ a cut and we call e the inner edge of
the cut e′ (see Figure 2a). Every cut e′ divides the polygon into two parts: one
containing e, called the inside of e′, and the other. Let us denote two endpoints
of a cut e′ by B(e′) and U(e′) such that the inside of e′ is bounded by e′ and the
chain [B(e′), U(e′)]. A chain C is said to contain a cut e′, if [B(e′), U(e′)] ⊆ C. A
cut e′ is an essential cut if [B(e′), U(e′)] contains no other cuts (see Figure 2a).

For a region R in P , the visibility polygon of R, written Vis(R), specifies the
set of all points in P each of which is visible from some point in R. See Figure
2b. We define a cave of a cut e′ to be a (open) connected chain of ∂P whose two
endpoints lie in Vis(e′) but no other points. A cave of e′ is called a left cave if
it lies to the left of the boundary of Vis(e′); otherwise, it is called a right cave.

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 459

(b)(a)

��
��
��
��
��

��
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�

��
��
��

��
��
��

Vis(e′)
e′

non-essential cut

∩ ∂P : a left cave of e′
e′

B(e′) U(e′)

e

∩ ∂P : right caves of e′

essential cut

Fig. 2. Definition of cuts, essential cuts and caves.

2.2 Clear vs. Contaminated

Any region that might contain an undetected intruder is said to be contaminated;
otherwise, it is said to be clear. And a cut c is defined to be clear if the inner
edge of c is clear; otherwise it is contaminated. Initially, the whole polygon P is
contaminated and the searcher should clear P . The searcher crosses or touches
every cut, because to clear the inner edge of a cut, the searcher must visit the
inside of the cut. We assume that P has at least two essential cuts; otherwise the
searching is trivial. Actually, if you visited two essential cuts a and b, you must
have visited all the cuts containing one of a and b. Thus, we will concentrate on
essential cuts only.

Suppose that γ is a search path for P . Consider a fixed time t. If a region is
contaminated right before t and is clear at t, it is said to be cleared or becomes
clear at t. The following observations are easily seen from the assumption that
the intruder can move arbitrarily fast.

Fact 1 Any region that is disjoint from Vis(γ(t)) is entirely clear or entirely
contaminated at t.

Fact 2 If a cut c is cleared at t, γ(t) lies in the inside of c.

However, simply visiting all the essential cuts does not make a successful search.
Sometimes the searcher should clear a particular region again, if the intruder
sneaked into the region; we say that the region is recontaminated. To deal with
the recontamination, we focus on the cuts that are unable to prevent the neigh-
boring cuts being recontaminated. Let c0, c1, · · · , cm(= c0) denote essential cuts
ordered by B(ci) in the clockwise direction. If a cave of ci contains ci+1, we call
it the cw-cave of ci. Symmetrically, if a cave of ci contains ci−1, we call it the
ccw-cave of ci. Notice that a cave of ci may contain both ci−1 and ci+1 (for
example, see cut a in Figure 3a); in this case, the cw-cave of ci is the same as
the ccw-cave of ci and we say that ci is a deep cut. Observe that the cw-cave
of ci may be a left or a right cave of ci (for example, see cut a in Figure 3a).
Let NL be the set of cuts that have a cw-cave and NR be the set of cuts with a
ccw-cave. We denote the union of NL and NR by N .

If a cut ci has both a cw-cave and a ccw-cave which are different (i.e., ci
is not deep), then we duplicate ci, in N , into imaginary twin cuts, say cli and
cri , so that each copy has the unique cw-cave or ccw-cave but not both. For a

460 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

cut ci ∈ NL(or NR), we denote the cw-cave (or ccw-cave) of ci by Q(ci) and
its complement by D(ci). That is, D(ci) = ∂P \ Q(ci). (Observe that points in
D(ci) are not necessarily visible from ci.) Two cuts ci and cj are said to be non-
dominating each other if ci is contained in Q(cj) and cj is contained in Q(ci).
Then the following is easily shown.

Lemma 1 Let a and b be cuts that are non-dominating each other. If {a} ∪ {b}
becomes clear at t, either Q(a) or Q(b) is clear right before t.

3 Necessary Conditions for Searchable Polygons

In this section we present three necessary conditions for a polygon to be search-
able. Sufficiency of these conditions will be shown in Section 4.

u-triple. Let us begin with examples that are known to be not searchable. See
Figure 3a. We call them an unguarded triple, shortly u-triple. Formally, three
cuts a, b, and c form a u-triple, if any two of them are contained in one cave of
the other. The following theorem is not new (refer to [13]).

Theorem 2 (N1) If a polygon contains a u-triple, it is not searchable.

(a)

a

b
c

a

c

b

(b)

c1 c2

c3

c4

c0

Fig. 3. Examples violating N1(a) and N2(b) :shaded regions denote the inside of cuts.

2-cover. Another example that is known to be not searchable consists of five
cuts (Figure 3b). This is called 5-windmill. Interestingly, we can extend this
forbidden pattern into k-windmill using k cuts in NL(or NR) for any k ≥ 5.
We introduce a new concept of 2-cover that explains why k-windmills are not
searchable. A set X ⊆ ∂P covers a cut c if [B(c), U (c)] ∩ X is non-empty.

Definition 1 For a subset S of NL(or NR), two essential cuts a and b form a
2-cover of S if a, b ∈ S and D(a) ∪ D(b) covers every cut in S.

Theorem 3 (N2) If a polygon is searchable, there exists a 2-cover of S for any
set S that is a subset of NL or NR.

Sketch of Proof: An example violating N2 is given in Figure 3b. The set {ci ∈
NL | 0 ≤ i ≤ 4} has no 2-cover.

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 461

c1 c2
c3

c5c0

c4

(a)

c2

c1

c3 c4

c5
c6

c7c0

(b)

Fig. 4. Examples of non-searchable polygons that violate N3.

For contradiction, suppose that a set S has no 2-cover and that the polygon
P is searchable. We assume w.l.o.g. that S is a subset of NL. We fix a search
path γ for P . Let c ∈ S denote the cut whose Q(c) becomes clear first among
the cuts in S by γ. Let t denote that time instant.

We claim that Q(c) contains two cuts in S that are non-dominating each
other. Let Q(c) = (p, q). To show this claim, we first pick a cut in S ∩ Q(c) that
is first met when we traverse ∂P from q counterclockwise; let a denote that cut.
Since S has no 2-cover, at least one cut of S is contained in Q(c) ∩ Q(a). Let
b be the cut of S in Q(c) ∩ Q(a) which is met first when we traverse ∂P from
B(a) counterclockwise. It is easily checked that a and b are non-dominating each
other.

Thus {a} ∪ {b} is clear at t and there is a time instant t′ (≤ t) at which
{a} ∪ {b} becomes clear. Since a and b are non-dominating each other, either
Q(a) or Q(b) is clear right before t′ by Lemma 1, which is a contradiction to
the fact that Q(c) becomes clear first among the cuts in S.

s-triple. The third condition generalizes the idea used in the last necessary
condition for a room to be searchable, described in [8].

Let S = 〈c1, c2, c3〉 be a triple of essential cuts that appear along ∂P in this
order. We call S an s-triple if c1 has the cw-cave that is a left cave and both c2
and c3 lie in it, and c3 has the ccw-cave that is a right cave and both c1 and
c2 lie in it (in Figure 4b, 〈c1, c3, c4〉 is an s-triple). This definition is a slight
modification of the s-triple defined in [8] and the proof of the following lemma
is exactly same as that of Lemma 1 in [8].

Lemma 4 Suppose that a polygon P is searchable and that γ is its search path.
If 〈c1, c2, c3〉 is an s-triple, γ clears c1 or c3 last among {c1, c2, c3}.

If 〈c1, c2, c3〉 is an s-triple, we say that c2 has an s-pair 〈c1, c3〉. Lemma 4 says
that any cut having an s-pair is not cleared last. The third necessary condition
is a direct extension of this statement.

Theorem 5 (N3) If every cut in P has an s-pair, P is not searchable.

Examples that violate N3 are given in Figure 4. In Figure 4a, each ci has an
s-pair 〈ci−1, ci+1〉. In Figure 4b, both c2i and c2i+1 have an s-pair 〈c2i−1, c2i+2〉.

462 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

4 Sufficiency

Theorem 6 A polygon P is searchable, if it satisfies N1, N2, and N3.

Throughout this section, we prove Theorem 6. To show that the polygon P is
searchable, we consider a searcher with restricted visibility, called a 2-searcher
[13]. The 2-searcher has two flashlights whose visibility is limited to two rays
emanating from her position, where the direction of each ray can be changed
independently and continuously with bounded angular rotation speed. We will
show that the polygon is 2-searchable if it satisfies three necessary conditions.
This implies that the 2-searcher has the same search capability as the searcher
with 360◦ vision, because any 2-searchable polygon is searchable. Actually, the
2-searcher has been used in the sufficiency proof of all previously-known charac-
terizations [1,8].

The basic idea is to divide the search into three steps and to use a greedy
algorithm within each step.

– FIRST STEP: The 2-searcher clears D(c) for some c ∈ N .
– SECOND STEP: The 2-searcher clears Q(c). During this step, we allow the

points in D(c) to be recontaminated.
– THIRD STEP: If D(c) was contaminated in the SECOND STEP, the 2-

searcher clears it.

For example see Figure 1, where c is the lower right cut. The searcher clears
D(c) in (a), clears Q(c) in (b), (c), and (d); during this SECOND STEP, D(c)
is recontaminated, so the searcher must visit c again in the THIRD STEP.

4.1 Movements of the 2-Searcher

Let us denote two flashlights of the 2-searcher by FL and FR. Suppose that the
searcher stands at a point s∈P , aiming FL and FR at points p and q respectively
(see Figure 5). Intuitively, we view the polygonal chain p, s, q as a variable-
length two-segment chain V and search P by sweeping it with V, satisfying the
following invariant: when V is p, s, q, the chain [q, p] is clear. Especially, during
the search, we keep V straight as long as possible. (Details about when we bend
V are explained later.) While V is straight, we use a shorthand p, q to denote
p, s, q.

(a)

c s c

(b)

s
q

p
q

p

Fig. 5. Currently, V is at p, s, q. The chain [q, p] is clear.

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 463

We will use the sub-movements defined in [1] to advance V. See Figure 6.
Suppose that the current V is p, q. If some chain [p, r] is entirely visible from
q, we can advance the left endpoint of V continuously to r, fixing the right
endpoint (Figure 6a); we call this movement l-advance-by-sweep. If the clockwise
neighborhood of p along ∂P is not visible from q, we take the point r ∈ (p, q),
closest to p, that is visible from q. Note that r lies on the line extending the
segment pq. If [p, r] does not contain any essential cut, we can move V from
p, q to r, q by performing l-advance-along-lid (Figure 6b and c), in which the
searcher first moves to p fixing FR at q and then clears [p, r] by moving along
the segment pr and by scanning the chain [p, r] with FL. (Note that V bends in
this case.) Sometimes we can advance V by l-advance-by-rotation (Figure 6d),
which is the ‘rotation’ from p, q to a, b centered at r′ where a ∈ (p, q) and
b ∈ (q, p) and [p, a] is entirely visible from r′. Although the right endpoint of
V may jump backwards in l-advance-by-rotation, no intruder can sneak into the
region below V. Actually, during the execution of all sub-movements no intruder
can sneak into the region below V. The r-advance-by-sweep,r-advance-along-
lid, and r-advance-by-rotation are defined symmetrically. It will turn out that
the above six types of sub-movements suffice to search any searchable polygon.
Proofs of all previously-known characterizations used these sub-movements only
[1,8].

a

p r′
r

r rpp p

(a)
b

(d)(c)(b)

q q q
q

Fig. 6. The left endpoint of V is advancing.

Lemma 7 If the 2-searcher moves from p, s, q to p′, s′, q′ using sub-movements
only, the 2-searcher can move from q′, s′, p′ to q, s, p using sub-movements only.

By this lemma, the THIRD STEP can be successfully done by the reverse exe-
cution of the FIRST STEP, if the latter is successfully done.

4.2 A Characterization of Searchable Corridors

To simplify the proof, we utilize a previously-known characterization of the class
of searchable corridors. A corridor is a polygon with two edge doors, d = pq
and d′ = p′q′. A corridor is searchable if the searcher starting at d can find
the intruder or evict him through d′ out of P in such a way that the intruder
couldn’t make a dash for the door d. Crass et al. [1] presented a characterization
of searchable corridors and showed that the 2-searcher can search any searchable
corridor, using sub-movements only. We restate it here in our notation.

464 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

Theorem 8 [1] A corridor (P , d, d′) for d = pq and d′ = p′q′ is searchable if
and only if the following three conditions C1,C2, and C3 hold:
(C1) Every cut in [p, p′] is visible from some point in [q′, q]; and every cut in
[q′, q] is visible from some point in [p, p′].
(C2) There are no cuts a and b such that (i) a is contained in [p, p′] and b is
contained in [q′, q], (ii) a has the cw-cave that is a left cave and that contains b
and d′, and (iii) b has the ccw-cave that is a right cave and that contains a and
d′.
(C3) There are no cuts a and b such that (i) a is contained in [p, p′] and b is
contained in [q′, q], (ii) a has the ccw-cave that is a right cave and that contains
b and some point of d, and (iii) b has the cw-cave that is a left cave and that
contains a and some point of d.

A pair of cuts that violates C2 or C3 is called “deadlock”.

4.3 Second Step

The starting configuration of the SECOND STEP would be as in Figure 5: D(c)
is clear, Q(c) = (p, q) is the cw-cave of c and contaminated, and V is p, q. We
will call such a configuration Room(c, p, q). (In this paper, we mostly consider
a cw-cave as a Room. This choice is arbitrary and symmetric arguments apply
equally well to the case that a Room is a ccw-cave.)

The next lemma says that V can advance locally.

Lemma 9 Suppose that the current configuration is Room(c, p, q). If N1 holds,
the 2-searcher either can clear the polygon or arrive at the configuration
Room(u, ·, ·) for the most counterclockwise cut u of N in Q(c) such that q lies
in the cw-cave of u.

Sketch of Proof: Suppose the current configuration is Room(c, p, q). See Fig-
ure 5. Thus V is p, q. Let u be the most counterclockwise cut of N contained
in Q(c) such that q lies in the cw-cave of u. If such a cut u does not exist, the
2-searcher can clear Q(c) using sub-movements.

Let c1 = c, α(c1) = q, ᾱ(c1) be some point in [B(c1), U(c1)] that is visible
from q. We define ci, α(ci) and ᾱ(ci) for i ≥ 2 inductively: ci is the cut of N first
met when we traverse ∂P from B(ci−1) clockwise such that α(ci−1) lies in the
cw-cave or the ccw-cave of ci. If α(ci−1) is contained in the cw-cave (resp. ccw-
cave) of ci, α(ci) is set to the point that is visible from some boundary point,
say ᾱ(ci), in the inside of ci and that is first met when we traverse ∂P from
α(ci−1) clockwise (resp. counterclockwise). V advances step by step following
ci’s. Suppose that V is currently at ᾱ(ci−1), α(ci−1). There are two cases (see
Figure 7):

– Case 1. α(ci−1) lies in the cw-cave (say S) of ci. Assume that S is a left cave of
ci. See Figure 7a. Let d1(= ci−1), d2, · · · , dj(= ci) be the essential cuts in this
order. Let β(dk) denote the point that is visible from some boundary point
in the inside of dk, say β̄(dk), and that is first met when we traverse ∂P from
α(ci−1) clockwise. Then V can go through β̄(dk), β(dk), for all 1 ≤ k ≤ j,

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 465

using sub-movements. (In Figure 7a, V advances using l-advance-by-sweep
and l-advance-by-rotation and dark regions are cleared by l-advance-along-
lid.) If S is a right cave of ci, we can show that no cut is contained in
[α(ci), ᾱ(ci)]. Thus the 2-searcher can easily move to ᾱ(ci), α(ci).

– Case 2. α(ci−1) lies in the ccw-cave of ci. See Figure 7b. In this case we can
find a cut cj ∈ N with the largest index j (< i) such that α(ci) lies in the cw-
cave of cj . Let us temporarily view [ᾱ(cj), ᾱ(ci)]∪ [α(ci), α(cj)] as a corridor,
where two doors are line segments ᾱ(cj)α(cj) and ᾱ(ci)α(ci). It is easily seen
that this corridor satisfies C1 (that is, every cut in [ᾱ(cj), ᾱ(ci)] is visible from
some point in [α(ci), α(cj)] and vice versa) because otherwise we can find a
u-triple. Moreover it is easily seen that “deadlock” does not occur (otherwise,
we can find a u-triple again). This means [ᾱ(cj), ᾱ(ci)] ∪ [α(ci), α(cj)] is a
searchable corridor and V can advance to ᾱ(ci), α(ci) using the algorithm
described in [3].

d2

(a) (b)

ci−1

ᾱ(ci)

α(ci)

ci−1

α(ci)

α(ci−1)

α(cj)
cj

ᾱ(ci)

α(ci−1) = β(d2)

ᾱ(cj)

Fig. 7. Proof of Lemma 9. (a) Case 1. (2) Case 2.

In this way, the 2-searcher can advance step by step. Thus, either the 2-searcher
can complete searching or the 2-searcher can move to Room(u, ·, ·).

The procedure in the proof of Lemma 9 is called Local-Advance. Let us
return to the proof of the SECOND STEP. From the starting configuration
Room(c, p, q), we repeatedly apply Lemma 9 – to find a new cut u ∈ N and
move to Room(u, ·, ·) by the procedure Local-Advance – until either the left end-
point of V reaches q or the right endpoint of V reaches p. If the first event occurs
before the second event, it means the 2-searcher has already cleared Q(c), and
so we can complete the SECOND STEP by simply moving the right endpoint
of V clockwise to p. If the second event occurs before the first event, the right
endpoint of V must be moving clockwise. When this execution of Local-Advance
finishes, we have the configuration like this : the 2-searcher has cleared D(r) for
some r ∈ N and the cw-cave Q(r) of r contains both p and q. See Figure 8. To
complete the SECOND STEP, it suffices to show the following lemma.

Lemma 10 Suppose that the current configuration is Room(r, s′, s) and that
there is a cut c ∈ N such that c and r are contained in the cw-cave of each
other. If N1 and N2 hold, the 2-searcher can clear Q(c).

466 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

q

s′

p
s

c

r

Fig. 8. Lemma 10.

Proof: See Figure 8. Suppose that V is currently at s′, s and D(r) is clear. First
let us view [p, s] ∪ [s′, q] as a corridor with doors s′s and qp. If it is 2-searchable
we are done. Thus assume otherwise. If it contains “deadlock”, we can find a
u-triple. Thus some cut in the chains [p, s] is not visible from the chain [s′, q], or
vice versa.

To simplify the proof, we imagine that a pair of 2-searchers, say b and u,
start to move from configurations Room(c, p, q) and Room(r, s′, s), respectively,
and show that they will meet at some time instant so that Vb and Vu correspond
to each other. Then it follows that we can clear the corridor [p, s] ∪ [s′, q] by
first executing the movements of Vu and then executing the movements of Vb
reversely.

Let L and R be subsets of N , initially L = {c} and R = {r}. If some cut in the
chain [p, s] is not visible from the chain [s′, q], take the most counterclockwise cut
of N in [p, s] whose cw-cave or ccw-cave contains [s′, q]. (Symmetric arguments
using Lemma 7 hold for the case that some cut in [s′, q] is not visible from [p, s].)
Let u denote it and assume that u is contained in [p, s]. First we claim that [s′, q]
is contained in the cw-cave of u, because otherwise, that is, if it lies in the ccw-
cave of u, then the three cuts c, r, and u form a u-triple. So q is in the cw-cave
of u and by Lemma 9 Vb can advance to Room(u, ·, ·). Moreover since the set
L ∪ R ∪ {u} must have a 2-cover (by N2), D(u) must contain all cuts in L. We
push u into L and update p and q to be the endpoints of D(u).

We repeat the above procedure until the two boundary chains between
Vb and Vu contain no cut that is not visible from the opposite chain. Why
does not this procedure fall into an infinite loop? Notice that whenever u is
picked in [p, s], D(u) must cover the cuts in L and especially cut c, to satisfy
N2. This means the right endpoint of Vb cannot backtrack past U(c) and
thus the left endpoint of Vu cannot go past U(c). Since one of Vb and Vu ro-
tates each time but cannot go past some fixed point, this procedure will finish.

4.4 First Step

We will show that if N1 and N3 hold, the 2-searcher can clear D(c) for some
cut c ∈ N . By Lemma 7, it suffices to show that the 2-searcher can clear P ,
assuming that Q(c) is clear. Actually this step is very similar to the SECOND
STEP, except that we use N3 instead of N2.

Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher 467

Let us briefly describe the outline. Since the polygon satisfies N3, some es-
sential cut has no s-pair; let g denote such a cut. Using the procedure Local-
Advance, either the 2-searcher can clear D(c) or she moves to the configuration
Room(x, p, q) such that g is contained in (p, U (u)] for the most counterclockwise
cut u of N in Q(x) whose cw-cave contains q. We view Q(x) as a corridor with
two doors pq and B(g)U (g). If it is 2-searchable we are done. Assume otherwise.
From the characterization of the class of searchable corridors, there are four cases
and we can show that Q(x) is searchable for each case. Details can be found in
the full paper.

5 Concluding Remarks

There are some open problems. First our proof is quite complicated. One might
want a simple proof (without using chracterizations) to show that the searcher
with 360◦ vision and the 2-searcher have the same search capability. Some partial
results can be found in [12,5]. Second, no results are known about computing a
shortest search path in a searchable polygon, except [3].

Acknowledgement. We are grateful to anonymous referees for helpful com-
ments.

References

1. D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a
corridor–the open edge variant of the polygon search problem. Int. J. of Comp.
Geom. and Appl., 5(4):397–412, 1995.

2. L.J. Guibas, J.C. Latombe, S.M. Lavalle, D. Lin, and R. Motwani. A visibility-
based pursuit-evasion problem. Int. J. of Comp. Geom. and Appl., 9(4):471–493,
1999.

3. C. Icking and R. Klein. The two guards problem. In Proc. 7th Annu. ACM Sympos.
Comp. Geom., pages 166–175, 1991.

4. S. M. LaValle, B. H. Simov, and G. Slutzki. An algorithm for searching a polygonal
region with a flashlight. In Proc. of 16th ACM Symp. on Comp. Geom., pages 260–
269, 2000.

5. J.-H. Lee, S.-M. Park, and K.-Y. Chwa. On the Polygon-Search Conjecture. Tech-
nical Report TR-2000-157, CS department, KAIST, 2000.

6. J.-H. Lee, S.-M. Park, and K.-Y. Chwa. Searching a polygonal room with one door
by a 1-searcher. Int. J. of Comp. Geom. and Appl., 10(2):201–220, 2000.

7. J.-H. Lee, S.-M. Park, and K.-Y. Chwa. Simple algorithms for searching a polygon
with flashlights. Submitted, 2000.

8. J.-H. Lee, S.Y. Shin, and K.-Y. Chwa. Visibility-based pursuit-evasion in a polyg-
onal room with a door. In Proc. 15th ACM Sympos. on Comp. Geom., pages
281–290, 1999.

9. N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. Journal of the ACM, pages 18–44, 1988.

10. S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-evasion in a polyg-
onal region by a searcher. Technical Report TR-2001-161, CS department, KAIST,
2001.

468 S.-M. Park, J.-H. Lee, and K.-Y. Chwa

11. T.D. Parsons. Pursuit-evasion in a graph. In Theorey and Applications of Graphs
Y. Alavi and D.R. Lick eds. Lecture Notes in Mathematics, Springer-Verlag., pages
426–441, 1976.

12. I. Suzuki, Y. Tazoe, M. Yamashita, and T. Kameda. Searching a polygonal re-
gion from the boundary. TR-20000925, EECS Department, Univ. of Wisconsin-
Milwaukee, 2000.

13. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM J. Comp., 21(5):863–888, 1992.

14. X. Tan. Searching a simple polygon by a k-searcher. In Proc. of 11th ISAAC,
pages 503–514, 2000.

15. M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for mobile
intruders in a polygonal region by a group of mobile searchers. In Proc. 13th
Annu. ACM Sympos. Comp. Geom., pages 448–450, 1997.

A New Method for Balancing Binary Search
Trees?

Salvador Roura

Departament de LSI, Universitat Politècnica de Catalunya,
E-08028 Barcelona, Catalonia, Spain.

roura@lsi.upc.es

Abstract. A new balancing method for binary search trees is presented,
which achieves logarithmic worst-case cost on searches and updates. The
method uses the sizes of the subtrees as balancing information; therefore
operations by rank are efficiently performed without any changes in the
data structure. Compared to weighted binary search trees [7], which also
achieve logarithmic worst-case cost by making use of the sizes of the
subtrees, the operations involved with our method are likely to be less
costly in most real situations.

1 Introduction

The binary search tree (BST) data structure is fundamental to computer science.
Since BSTs perform poorly when they are skewed, many variants of balanced
BSTs have been devised so far. Weighted BSTs [7] achieve logarithmic worst-case
cost by using the sizes of the subtrees as balancing information. Other variants,
like AVL trees [1] and red-black trees [4], use information different from the
sizes of the subtrees; thus rank operations are not efficiently supported unless an
additional field is included at every node. The same comment applies to splay
trees [9] and general balanced trees [2], which achieve logarithmic amortised
costs without storing any structural information at the nodes. Other variants
of balanced trees make use of the sizes of the subtrees but do not guarantee
logarithmic worst-case cost; for instance, randomised BSTs [6].

This paper presents a new balancing method for BSTs, which, like weighted
BSTs, achieves logarithmic worst-case cost by using the sizes of the subtrees as
balancing information. So let us first briefly recall weighted BSTs. Suppose that
L and R are the subtrees of a weighted BST, with x and y leaves respectively, and
assume w.l.o.g. that x ≤ y. The balancing property of weighted BSTs states that
y < (1+

√
2)x, or alternatively, that 2y2 < (x+y)2, which is anyway an expensive

property to check. This seems to be the main reason not to use weighted BSTs as
default balancing method: “However, it appears that the bookkeeping required
for maintaining weight balance takes more time than Algorithm A1 . . . ” [5,
? This research was partially supported by the IST Programme of the EU IST-1999-

14186 (ALCOM-FT), and by the project DGES PB98-0926 (AEDRI).
1 Insertion in AVL trees.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 469–480, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

470 S. Roura

page 476]. As shown in the next sections, the method introduced in this paper
is likely to be more efficient than weighted BSTs in most practical situations.

The next sections are organised as follows. Section 2 introduces the main
definitions, including the concept of Logarithmic BST (LBST), and proves that
the height of an LBST is always logarithmical w.r.t. the size of the tree. Sec-
tion 3 presents the insertion and deletion algorithms for LBSTs. The former is
implemented in Sect. 4, where some empirical evidence that LBSTs are faster
than weighted BSTS is provided. Section 5 ends the paper with some further
comments.

2 Basic Definitions

Definition 1. For positive n, let `(n) be defined as

`(n) =
{

0, if n = 0
1 + blog2 nc, if n ≥ 1 .

Note that, except for n = 0, `(n) is the largest position with a bit equal to one
in the binary representation of n; in other words, `(n) is the unique integer such
that 2`(n)−1 ≤ n ≤ 2`(n) − 1.

Given a BST T , let |T | denote the number of keys in T , and let `(T) = `(|T |).
We call our trees Logarithmic BSTs, since their fundamental property is that, at
every node, the discrete logarithm of the size of the left subtree and the discrete
logarithm of the size of the right subtree differ at most in one unit.

Definition 2 (Logarithmic BST). A BST T is an LBST if and only if

– T is an empty tree,
– or T is a non-empty tree with subtrees L and R, such that L and R are

LBSTs and −1 ≤ `(L) − `(R) ≤ 1.

Let us consider the case where T is non-empty. Let λ = `(L), and assume w.l.o.g.
that |L| ≤ |R|. Then `(R) is either λ or λ + 1. We analyse both cases separately.
Suppose first that `(R) = λ:

– If λ > 0, from 2λ−1 ≤ |L|, |R| ≤ 2λ−1 we deduce that 2λ+1 ≤ |T | ≤ 2λ+1−1.
Therefore `(T) = λ + 1.

– If λ = 0, we have |T | = 1 and `(T) = λ + 1 as well.

Suppose now that `(R) = λ + 1:

– If λ > 0, the fact that 2λ−1 ≤ |L| ≤ 2λ − 1 and 2λ ≤ |R| ≤ 2λ+1 − 1 implies
3 · 2λ−1 + 1 ≤ |T | ≤ 3 · 2λ − 1. In this case `(T) equals either λ + 1 or λ + 2.

– If λ = 0, then |T | = 2 and `(T) = λ + 2.

A New Method for Balancing Binary Search Trees 471

These two cases are summarised in Fig. 1, using the symbolism that we
will keep for the rest of the paper. Every node is labeled with the name of the
subtree rooted at that node. For every combination of the weights and every
subtree S, the several possibilities for `(S) are shown, unless `(S) is the same
in all situations (in that case it is shown just once). For example, in Fig. 1 we
have that `(L) = λ and `(R) = λ imply `(T) = λ + 1, whilst `(L) = λ and
`(R) = λ + 1 imply `(T) = λ + 1 or `(T) = λ + 2.

l
l+1

l

l+1/l+2
l+1

T

L R

Fig. 1. Cases for an LBST with right subtree larger than left subtree

It is not difficult to prove that the height of an LBST T is always Θ(log |T |).
Let λ = `(T). It is enough to notice that every grandchild G of T must satisfy
`(G) ≤ λ − 1. Otherwise we would have the situation of Fig. 2. Since both the
brother of P and the brother of G would include at least 2λ−2 nodes, and G
would include at least 2λ−1 nodes, T would have at least 2λ + 2 nodes, which is
a contradiction. Therefore, every path from the root of T to a leaf visits at most
2(λ + 1) nodes, where λ = log2 |T | + O(1).

T

lP

G

l

l

Fig. 2. Impossible case for an LBST

472 S. Roura

Theorem 3 below states that the constant 2 is in fact asymptotically tight,
i.e., that the worst-case height of an LBST T is ∼ 2 log2 |T |. But first we need
to introduce two functions. For every N ≥ 0, define I(N) = 4 · 2N + 2N , and
J(N) = 6 · 2N + 2N + 1. Observe that 4 = I(0) < J(0) < I(1) < J(1) < · · ·
Hence, for every n ≥ 4, there is a unique N such that either I(N) ≤ n < J(N)
or J(N) ≤ n < I(N + 1).

Theorem 3. Let H(n) be the maximum height of an LBST with n keys. Then
H(0) = 0, H(1) = 1, H(2) = H(3) = 2, and for every n ≥ 4,

H(n) =
{

2N + 3, if I(N) ≤ n < J(N)
2N + 4, if J(N) ≤ n < I(N + 1) .

(The proof is by induction on N .)

We thus know that, if I(N) ≤ n < I(N + 1), H(n) ≤ 2(N + 2). But N + 2 ≤
log2 I(N) ≤ log2 n, and we can conclude that the height of an LBST with n ≥ 2
keys is never larger than 2 log2 n. Note that the constant 2 is asymptotically
tight, i.e., H(n) ∼ 2 log2 n. Recall that the worst-case height of a weighted BST
with n keys is also ∼ 2 log2 n.

3 The Insertion and Deletion Algorithms

In the insertion and deletion algorithms, we will make use of the following algo-
rithm, which obtains an LBST from a BST such that its left subtree L and its
right subtree R are LBSTs, where `(L) = λ − 2 and `(R) = λ. Let A and D be
the left and right subtrees of R, respectively. Figure 3 includes the five possible
combinations for `(A) and `(D), provided that `(R) = λ.

A D

R

l-1

l-1
l-1

l-1
l-1

l-1

l

l-2

l

l-2
l

Fig. 3. Five possible cases for an LBST R with `(R) = λ

As shown in Fig. 4, a single rotation suffices for the first, second and fourth
cases of Fig. 3. For instance, consider the first case, where `(A) = `(D) = λ − 1.

A New Method for Balancing Binary Search Trees 473

After the rotation, the left subtree of R, labeled T in the figure, is such that
λ − 1 ≤ `(T) ≤ λ, and thus `(T) differs in at most one unit with `(D).

D

R

L

T

R

A D

T

L A

l

l-1

l-1
l-1
l-1

l-2

l-2
l

l-1

l-1

l-1
l-1

l-2
l-2

l

l-1/l
l-1

l-1/l

Fig. 4. Cases of Fig. 3 for which a single rotation suffices

Figure 5 proves that, for the third case of Fig. 3, a double rotation suffices. Let
B and C be the left and right subtrees of A, respectively (notice that `(A) ≥ 1
implies that A is never empty). As in Fig. 3, there are five possible combinations
for `(B) and `(C). For each one and after two rotations, the first rotation between
A and R, the second between A and T , the balancing property is reestablished.

The fifth and last case of Fig. 3 also requires a double rotation (see Fig. 6),
but this case is slightly different from the case in Fig. 5. Indeed, only three of
the five combinations for `(B) and `(C) are possible here, since `(B) = λ − 1
and `(C) = λ (or `(B) = λ and `(C) = λ − 1) together with `(D) = λ − 1 would
imply `(R) = λ + 1, which is against the hypotheses.

We are now ready to present the insertion algorithm of a new key x into a
given LBST T , which follows the traditional approach of balanced trees:

• If T is empty, return a BST with x as only key.
• Otherwise, let L and R be the left and right subtrees of T , respectively.

• If x is smaller than the root of T , recursively insert x into L;
if afterwards `(L) = `(R) + 2, perform a local update.

• If x is larger than the root of T , recursively insert x into R;
if afterwards `(R) = `(L) + 2, perform a local update.

The local updates mentioned above, meant to reestablish the balancing property
of LBSTs, are those included in Figs. 4, 5 and 6. Note that, in fact, only the
second and third cases of Fig. 3 are possible here, because |R| must be exactly
2λ−1 after the recursive insertion.

We now consider how to delete a key x from a given LBST T . The deletion
algorithm also uses the local updates included in Figs. 4, 5 and 6:

474 S. Roura

L

T

R

D

A

CB

L B C D

T R

A

l

l-1

l-3
l-1

l-3

l-1

l-2

l-2

l-2

l-2
l-2

l-2
l-2

l-2

l-2/l-1
l-1
l-1

l-1

l-3

l-1
l-1

l-1

l-1
l-1

l-2/l-1

l-1/l
l-1/l

l-2 l-2

l-2
l-2

l-3
l-2
l-2

l-2

l-2

Fig. 5. Third case of Fig. 3; a double rotation suffices

L

T

R

D

A

CB

L B C D

T R

A

l
l

l-1/l

l-1

l-1

l-1
l-1

l-1

l-1/l

l-1/l
l-1

l-2
l-2

l-2

l

l

l-1

l-1

l-1

l-1
l-1

l-2

l-2
l-2

Fig. 6. Fifth case of Fig. 3; a double rotation suffices

A New Method for Balancing Binary Search Trees 475

• If T is empty, x is not in T ; hence no updates are needed.
• If T has x as unique key, return the empty tree.
• Otherwise, let L and R be the left and right subtrees of T , respectively.

• If x is smaller than the root of T , recursively delete x from L;
if afterwards `(R) = `(L) + 2, perform a local update.

• If x is larger than the root of T , recursively delete x from R;
if afterwards `(L) = `(R) + 2, perform a local update.

• If x is equal to the root of T , remove it.

The removal of the root of T can be done in several ways. For instance, we
can replace the root of T by the minimum of the keys in R when |L| ≤ |R|, or
by the maximum of the keys in L when |L| > |R|. The algorithm to extract the
minimum of the keys from a non-empty LBST T is quite simple:

• If the left subtree of T is empty, the minimum key is the root of T ,
and the right subtree of T is the remaining tree.

• Otherwise, recursively extract the minimum from the left subtree of T ;
afterwards perform a local update if necessary.

Once again, the local updates required here are identical to those of the insertion
algorithm and deletion algorithm. The algorithm to extract the maximum of the
keys of a non-empty LBST is symmetrical.

4 Implementing LBSTs

The C code presented in this paper implements the insertion algorithm for LB-
STs. This code has been written to emphasise the simplicity of the algorithms,
so faster programmes could be obtained at the price of obscuring the code. Due
to space limitations the deletion algorithm has been omited.

As shown in Fig. 7, an LBST is identified with a pointer to its root node.
Every node contains a key, two pointers to its children and a counter of type size
with the number of keys in the subtree rooted at the node. We assume that keys
and counters are long integers, and that empty trees are equal to null, which is
a pointer to a node with no key and size 0. The call singleton(x) returns an
LBST with x as only key.

Figure 7 also includes some fundamental functions. Given two sizes a and b,
the call smaller ell(a, b) tells us whether `(a) < `(b) or not. Let λ = `(b). If
a ≥ b, we trivially have `(a) ≥ λ. Otherwise, we perform a logical “and” of a and
b, shift the result one bit to the left, and compare the final result (let us call it
α) against b. Assume that λ ≥ 1. If `(a) = λ, we have `(α) = λ + 1; hence α > b
and the function returns FALSE. If `(a) < λ, then α is at most 2(b− 2λ−1). This
happens when `(a) = 2λ−1 −1, i.e., when the digital representation of a includes
as many bits equal to one as possible. Since b < 2λ, we have α ≤ 2b − 2λ < b,
and the function returns TRUE, es expected. The function always returns FALSE
for the special case λ = 0.

The call rot left(t) returns the result of rotating t to its left, updating
conveniently the fields b->s and t->s. The call inc left(t) returns the result

476 S. Roura

of balancing t by means of the rotations in Figs. 4, 5 and 6, assuming that
`(t->r) = `(t->l) + 2. Notice that one call to the function smaller ell()
suffices to discriminate the first, second and fourth cases from the third and fifth
cases of Fig. 3. The functions rot right() and inc right() are easily obtained
from the functions rot left() and inc left().

Given two sizes A and B such that `(A) ≤ `(B) + 1, we use the macro
balanced(A, B) to know whether `(B) ≤ `(A) + 1 or not. Note that the log-
ical instructions in this macro and in the function smaller ell() are usually
fast in most computers.

typedef long key, size;
typedef struct node *lbst;
typedef struct { key k; lbst l, r; size s; } node;

int smaller_ell(size a, size b)
{ if (a >= b) return FALSE;

return ((a&b)<<1) < b;
}

lbst rot_left(lbst t)
{ lbst b = t->r; t->r = b->l; b->l = t;

b->s = t->s; t->s = 1 + t->l->s + t->r->s;
return b;

}

lbst inc_left(lbst t)
{ if (smaller_ell(t->r->r->s,t->r->l->s)) t->r = rot_right(t->r);

return rot_left(t);
}

#define balanced(A, B) !(smaller_ell(A, (B)>>1))

lbst Insert(key x, lbst t)
{ if (t == null) return singleton(x);

t->s++;
if (x < t->k)

{ t->l = Insert(x, t->l);
if (!balanced(t->r->s, t->l->s)) t = inc_right(t);

}
else
{ t->r = Insert(x, t->r);

if (!balanced(t->l->s, t->r->s)) t = inc_left(t);
}

return t;
}

Fig. 7. Insertion algorithm in C

A New Method for Balancing Binary Search Trees 477

The left side of Table 1 shows the empirical average search cost and height
of an LBST produced after n random insertions into an initially empty tree, for
several values of n. Table 1 also includes the total number of single and double
rotations that take place during the construction of the LBST. The first four
rows are averaged over 100 executions; the last four rows are averaged over 10
executions. The right side of Table 1 includes the same measures, this time for
LBSTs built in increasing order. We define the average search cost as the internal
path length divided by the number of keys.

Table 1. Empirical average search cost, height, and number of single and double
rotations of LBSTs built under random and sorted insertions

Random order Increasing order
keys A.S.C. Height # S.R. # D.R. A.S.C. H. # S.R. # D.R.
15625 13.254 17.60 3415.78 3413.68 12.952 15 15611 0
31250 14.276 18.97 6829.06 6822.12 13.952 16 31235 0
62500 15.290 20.15 13636.65 13660.82 14.952 17 62484 0

125000 16.316 21.45 27336.78 27282.39 15.952 18 124983 0
250000 17.340 22.8 54678.0 54634.3 16.952 19 249982 0
500000 18.366 23.9 109496.4 109073.1 17.951 20 499981 0

1000000 19.376 25.3 218454.2 218615.9 18.951 21 999980 0
2000000 20.379 26.3 436917.6 437033.4 19.951 22 1999979 0

It is not difficult to prove that any LBST obtained after inserting the keys
in increasing order is (almost) perfectly balanced (and hence the results for
sorted insertions given in Table 1). An exact analysis of random LBSTs is much
harder. However, the empirical results provided in Table 1 indicate that the
average search cost is ∼ β · log2 n for some constant β very close to 1, which can
be regarded as optimal for practical purposes. A similar result holds for other
variants of balanced BSTs.

A single insertion into an LBST T may require up to Θ(log |T |) rotations.
However, less than n rotations are enough to build in increasing order an LBST
with n keys, and, from Table 1, the total number of rotations under random
insertions also seems to be Θ(n). The next theorem states that this is not a
coincidence.

Theorem 4. The total number of rotations required to build an LBST T from
an empty tree is O(|T |).

(The theorem can be proved by means of the potential method; the author’s
proof is too long to be included in this paper. Note that the same property is
true for weighted BSTs [3].)

Tables 2 and 3 include some empirical results about the time efficiency of our
algorithms. The tests consisted in the construction of BSTs with n keys, for five
different balancing strategies and several values of n. Two limiting situations
were considered, namely when keys are inserted at random (Table 2), and when

478 S. Roura

keys are inserted in increasing order (Table 3). The times, expressed in seconds,
were obtained with a PC2, and averaged over 1000 executions for the first four
rows, and over 100 executions for the last four rows.

Table 2. Empirical times (in seconds) to build LBSTs, proper weighted BSTs, relaxed
weighted BSTs, AVL trees and red-black tres in random order

keys LBSTs WBSTs 3WBSTs AVLs RBTs
15625 0.01424 0.01711 0.01437 0.01791 0.02811
31250 0.04909 0.05457 0.04933 0.05543 0.07658
62500 0.14171 0.15370 0.14291 0.15323 0.19947

125000 0.36025 - 0.36261 0.40145 0.48025
250000 0.8667 - 0.8694 0.9547 1.1331
500000 2.0340 - 2.0344 2.2339 2.5683

1000000 4.6638 - 4.6783 5.1646 5.7938
2000000 10.6002 - 10.6326 11.6718 13.0526

The code used for LBSTs was the one provided in this paper, with the
function smaller ell() replaced by a macro for efficiency. The code used for
weighted BSTs was the same except for the balancing condition, which was
“2y2 < (x + y)2”, where x and y are respectively the number of leaves of the
“small” subtree and of the “large” subtree (this condition was only checked after
an insertion into the “large” subtree). The computation of 2y2 and (x+y)2 caused
an overflow for large values of n; hence the empty fields in Tables 2 and 3. A re-
laxed variant of weighted BSTs was also implemented, with “y < 3x” as balanc-
ing condition (we call these trees 3WBSTs). The property for 3WBSTs is cheaper
to check than the one for proper weighted BSTS, but it can degrade somehow the
tree, since the worst-case height becomes ∼ ln 2/ ln(4/3) · log2 n ' 2.40942 log2 n.
The code for AVL trees and the code for red-black trees were taken from [10,
page 153] and from [8, page 554] respectively. Both codes were slightly modified,
to make them comparable with the code of the rest of balancing strategies.

Under random insertions, LBSTs and 3WBSTs performed similarly, and
faster than WBSTs. Since the trees obtained are very well balanced in all the
cases, the crucial factor was the high cost of evaluating the balancing property
of WBSTs. For sorted insertions, both WBSTs and 3WBSTs were about 30 per-
cent slower than LBSTs; note that 3WBSTs built in increasing order are not
perfectly balanced. In general, red-black trees achieved the worst times, while
AVL trees turned out to be about 10 percent slower than LBSTs. The imple-
mentation of AVL trees was the only one without a counter field with the sizes of
the subtrees. If rank operations were needed, this extra field should be updated
conveniently during the insertions, which would increase the insertion time of
AVL trees. Note that the time of sorted insertions was much smaller than the
time of random insertions. This was probably due to the high memory locality
of the former, which induced an efficient use of the cache memory.
2 Pentium(r) II Processor, 128 MB of RAM, DJGPP C compiler.

A New Method for Balancing Binary Search Trees 479

Table 3. Empirical times (in seconds) to build LBSTs, proper weighted BSTs, relaxed
weighted BSTs, AVL trees and red-black tres in increasing order

keys LBSTs WBSTs 3WBSTs AVLs RBTs
15625 0.01125 0.01467 0.01474 0.01253 0.03040
31250 0.02651 0.03447 0.03431 0.03018 0.06751
62500 0.05939 0.07635 0.07672 0.06719 0.14485

125000 0.12968 0.16485 0.16570 0.14448 0.31201
250000 0.2746 - 0.3541 0.3072 0.6568
500000 0.5844 - 0.7600 0.6559 1.3985

1000000 1.2266 - 1.6241 1.3908 2.9786
2000000 2.5781 - 3.4708 2.9299 6.3003

5 Final Remarks

Other operations for BSTs, like joins, splits, unions, intersections, set subtrac-
tions, and so on, can be easily and efficiently implemented using the ideas in this
paper. Moreover, since a counter field is kept at each node, rank operations are
efficiently performed without any further modification of our data structure.

There are several variants of LBSTs that may be considered. First, it is
possible to use the number of leaves instead of the number of keys as balancing
information. The algorithms obtained perform similarly to the ones presented in
this paper. On the other hand, we could relax the condition in Definition 2 to
be −k ≤ `(L) − `(R) ≤ k for some constant k ≥ 1; alternatively, we could define
`(n) = 1 + blogb nc for some base b 6= 2, or combine several of these possibilities.
In general, LBSTs with large k (or with large b) perform less rotations than
plain LBSTs, since its balancing condition is less astringent. On the other hand,
its worst-case height increases as k (or b) increases.

Finally, it must be said that the experimental results presented in this paper
are only an indication that LBSTs can be a practical alternative to traditional
balancing strategies. Nevertheless, there are many factors that should be consid-
ered in our election: time (and space) efficiency, algorithm and code complexity,
variety of supported operations (rank operations, set operations, etc.), ease of
obtaining non-recursive versions to increase efficiency, average and worst-case
cost (measured as number of visited nodes, rotations, etc.), and so on.

Acknowledgments. The comments of Josep Dı́az, Rolf Fagerberg and Conrado
Mart́ınez improved the presentation of this work.

References

[1] G.M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization
of information. Dokladi Akademia Nauk SSSR, 146(2):263–266, 1962. English
translation in Soviet Math. Doklay 3, 1259-1263, 1962.

[2] A. Andersson. General balanced trees. Journal of Algorithms, 30:1–18, 1999.

480 S. Roura

[3] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in
weight-balanced trees. TCS: Theoretical Computer Science, 11:303–320, 1980.

[4] L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proc. of the 19th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 8–21, October 1978.

[5] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, Reading, MA, 2nd edition, 1998.

[6] C. Mart́ınez and S. Roura. Randomized binary search trees. Journal of the ACM,
45(2):288–323, March 1998.

[7] J. Nievergelt and E. Reingold. Binary search trees of bounded balance. SIAM
Journal on Computing, 2(1):33–43, 1973.

[8] R. Sedgewick. Algorithms in C. Addison-Wesley, 3rd edition, 1998.
[9] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32(3):652–686, July 1985.
[10] M.A. Weiss. Data Structures & Algorithm Analysis in C++. Addison-Wesley,

2nd edition, 1999.

Permutation Editing and Matching via
Embeddings

Graham Cormode1, S. Muthukrishnan2, and Süleyman Cenk S. ahinalp3

1 University of Warwick, Coventry, UK; grahamc@dcs.warwick.ac.uk
2 AT&T Research, Florham Park, NJ, USA; muthu@research.att.com

3 EECS, Case Western Reserve University, Cleveland, OH; cenk@cwru.edu

Abstract. If the genetic maps of two species are modelled as permuta-
tions of (homologous) genes, the number of chromosomal rearrangements
in the form of deletions, block moves, inversions etc. to transform one
such permutation to another can be used as a measure of their evo-
lutionary distance. Motivated by such scenarios, we study problems of
computing distances between permutations as well as matching permuta-
tions in sequences, and finding most similar permutation from a collection
(“nearest neighbor”).
We adopt a general approach: embed permutation distances of relevance
into well-known vector spaces in an approximately distance-preserving
manner, and solve the resulting problems on the well-known spaces. Our
results are as follows:
– We present the first known approximately distance preserving em-

beddings of these permutation distances into well-known spaces.
– Using these embeddings, we obtain several results, including the first

known efficient solution for approximately solving nearest neighbor
problems with permutations and the first known algorithms for find-
ing permutation distances in the “data stream” model.

– We consider a novel class of problems called permutation match-
ing problems which are similar to string matching problems, except
that the pattern is a permutation (rather than a string) and present
linear or near-linear time algorithms for approximately solving per-
mutation matching problems; in contrast, the corresponding string
problems take significantly longer.

1 Introduction

As the first phase of the Human Genome Project approaches completion, the at-
tention is shifting from raw sequence data to genetic maps. Comparative studies
of gene loci among closely related species provide clues towards understanding
the complex phylogenetic relationships between species and their evolutionary
order. Genetic maps of two species can be thought of as permutations of ho-
mologous genes and the number of chromosomal rearrangements in the form of
deletions, copies, inversions, transpositions to transform one such permutation
to another can be used as a measure of their evolutionary distance. Computa-
tional methods for measuring genetic distance between species is an active area

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 481–492, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

482 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

of research in computational genomics, especially in the context of comparative
mapping [13], eg., using reversal distance [1,4,11], transposition distance [2,8] or
other measures. In a more general setting it is of interest to not only compute
the distances between two permutations but also to find the closest gene permu-
tation to a given one in a database or to approximately find a given permutation
of genes in a larger sequence, etc. Given the representation as permutations,
these can all be abstracted as permutation editing and matching problems.1

Permutations are ordered sequences over some alphabet with no repetitions
allowed.2 Thus, any permutation is a string, although strings are not generally
permutations since they are allowed to repeat symbols. Suitable edit operations
on permutations include reversals; transpositions; alphabet edits such as inserts
and deletes; and symbol moves (formal definition of these operations follows).
We study problems of computing pairwise edit distances, similarity searching,
matching and so on, motivated by Computational Biology and other scenarios.
We adopt a general approach to solving all such problems on permutations: de-
velop an embedding of permutations into vector spaces such that the distance
between the resulting vectors approximates the distance between any two per-
mutations. Thus permutation editing and matching problems reduce to natural
problems on vector spaces.

Even though we have motivated permutation editing, matching and similarity
searching problems from Computational Biology applications, there are other
reasons for their study. Permutations form an interesting class of combinatorial
objects by themselves, and therefore it is quite natural to study the complexity of
computing edit distances between permutations, and to do similarity searching.
In addition, they arise in many applications. Since permutations are special
cases of strings, permutation editing and matching problems give insight into the
complexity of string editing and matching problems many of which are classical
and still open. This will be clarified later using our results. In what follows, we
will first describe the edit distance problems with permutations before describing
our results.

1.1 Notation

A permutation is a sequence of symbols such that within a permutation each
symbol is unique. We shall often represent these symbols as integers drawn from
some range, so 1 3 2 4 is a valid permutation, but 1 2 3 2 is not. Signed permu-
tations are permutations where each symbol can take two forms: positive and
negative, eg 1+ 3+ 2− 4+. Operations can also change the signs of symbols, and
two signed permutations are considered identical only if every symbol and every
sign agree. In what follows, P, Q will represent permutations, and i, j, k . . . will
1 More complex notions of genetic distance which take into account that (1) the

genome is composed of multiple chromosomes [6,14], or (2) exact order of the genes
within a genome is not necessarily known [7] have recently been proposed.

2 Sometimes it matters in which orientation a gene occurs, and so use is made of signed
permutations

Permutation Editing and Matching via Embeddings 483

be integers. The i’th symbol of a permutation P will be denoted as P [i], and the
inverse of the permutation P−1 is defined so that if P [i] = j then P−1[j] = i.
We can also compose one permutation with another, so (P ◦ Q)[i] = P [Q[i]].
The “identity permutation” is the permutation of for which P [i] = i for all i.
For uniformity, we shall extend all permutations P by adding P [0] = 0 and
P [n + 1] = n + 1, where n is the length of P . This allows the first and last
symbols of P to be treated identically to the other symbols. All logarithms will
be taken to base 2, and rounded up, so log n should be interpreted as dlog2 ne.

1.2 Permutation Editing and Matching Problems

First we focus on defining distances between permutations. Consider any two
permutations P and Q over some alphabet set. The following distances are of
interest:
Reversal Distance: Denoted r(P, Q), reversal distance is defined as the
minimum number of reversals of contiguous subsequences necessary to trans-
form permutation P into Q. So if P is a permutation P [1] . . . P [n], then a
Reversal operation with parameters i, j (i < j) results in the permutation
P [1] . . . P [i − 1], P [j], P [j − 1] . . . P [i + 1], P [i], P [j + 1] . . . P [n]. If P is a signed
permutation then additionally the sign of each symbol P [j] . . . P [i] is switched
(from plus to minus and vice-versa). This distance has been well-studied, and is
shown to be NP-hard to find exactly [3]. The best approximation algorithm for
this distance is a 3/2 factor algorithm due to Christie [4].
Transposition Distance: Denoted t(P, Q), transposition distance is defined as
the minimum number of moves of contiguous subsequences to arbitrary new lo-
cations necessary to transform permutation P into Q. Bafna and Pevzner [2] give
a 3/2 approximation algorithm for transposition distance. Given P [1] . . . P [n], a
transposition with parameters i, j, k (i < j < k) gives
P [1] . . . P [i − 1], P [j], P [j + 1] . . . P [k], P [i], P [i + 1] . . . P [j − 1], P [k + 1] . . . P [n].
Permutation Edit Distance: The permutation edit distance between two per-
mutations, d(P, Q) is the minimum number of moves required to transform P
into Q. A move can take a single symbol and place it at an arbitrary new position
in the permutation. Hence a move with parameters i, j (i < j) turns P [1] . . . P [n]
into P [1] . . . P [i−1], P [i+ 1] . . . P [j], P [i], P [j + 1] . . . P [n]. This distance is anal-
ogous to the Levenshtein edit distance on strings, since in both cases an optimal
set of edit operations will isolate a longest common subsequence and leave this
unaltered, while performing edit operations on every other symbol.
Symbol Indels: Each of the above distances can be augmented by additionally
allowing insertions and deletions of a single symbol at a time. This takes care of
the fact that the alphabet set in two permutations need not be identical.

It will be of interest to (1) combine all operations (transposition, reversal,
symbol moves) and define the cumulative distance between any two permutations
involving minimum number of operations, and (2) generalize the definitions so
that at most one of P or Q is a string (as opposed to a permutation). If both P
and Q are strings, we are in the familiar territory of string matching.

484 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

1.3 Our Results

Our main results are threefold. We give them in outline; the precise bounds are
given in later sections.

In Section 2 we present embeddings of permutation distances into well-
understood spaces such as Hamming or Set Intersection. The embeddings pre-
serve the original distances within a small constant or logarithmic factor, and
are small polynomial in size. These are the first such approximately distance-
preserving embeddings in the literature for permutation distances. The embed-
dings use a technique we develop in this paper of capturing the relative lay-
out of pairs of symbols in the permutations by two dimensional matrices. Our
embeddings capture the relevant pairs that help approximate the permutation
distances accurately and the resulting matrices are often sparse. We believe that
this approach to embedding distances will be of independent interest.

The embeddings above immediately give approximation algorithms for com-
puting the distance between two permutations in (near) linear time. In addition,
we use the embeddings above to solve several other algorithmic problems of
which we list the following two as important examples: (1) Computing permuta-
tion distances in a distributed or Communication Complexity setting wherein the
number of bits exchanged is the prime criterion for efficiency, and also in a “data
streaming” model wherein data is scanned in order as it streams by and only
small amount of space is allotted for storage. Streaming algorithms are known for
vector distance computations; nothing was known beforehand for permutations
— moreover, no streaming algorithms were known for any string distances. (2)
Providing efficient approximate nearest neighbor searches for permutation dis-
tances. We provide the first known approximate algorithms for these problems
that avoid the dimensionality bottleneck. These are all described in Section 3.

The problem of Approximate Permutation Matching is, given a long text
string and a pattern permutation, to find all occurrences of the pattern in the
text with at most a given threshold of distance. This is the generalization of the
standard k-mismatches problem with strings (find all text locations wherein the
pattern occurs with at most k mismatches) to other edit distances, and a restric-
tion since the pattern is required to be a permutation. In Section 4 we present
highly efficient, linear or near-linear time approximations for the permutation
matching problems. This is intriguing since approximately solving string match-
ing problems with corresponding distances seems to be harder, with best known
algorithms taking much longer. For example, approximating string matching
with edits takes time Ω(nm) for n-long text and m-long pattern where edits
are transpositions, character indels and substitutions, and at least Ω(n log3 m)
even if only substitutions are allowed [10]! In contrast, our algorithms take only
O(n + m) or O(n log m) time for permutations.

Our embeddings give other results such as efficient clustering algorithms for
permutations, and other similarity problems. We do not discuss them further
here since they follow in a straightforward way by combining our embeddings
with results known for the target spaces such as Hamming, L1, and Set Inter-
section. This is a welcome side-effect of our use of embeddings.

Permutation Editing and Matching via Embeddings 485

2 Embeddings of Permutation Distances

2.1 Reversal Distance

For signed permutations, we replace every positive element i+ with the pair
i′ i′′ and every i− with i′′ i′. The reversal distance of two unsigned versions is
the same as the reversal distance of the original permutations. We define a two
dimensional matrix, R(P), as a binary matrix of size (n + 2) × (n + 2). For all
0 ≤ j < i ≤ n + 1, set R(P)[i, j] to 1 if i > j and i is adjacent to j in P , that
is, if either P−1[i] = 1 + P−1[j] or P−1[j] = 1 + P−1[i]. Otherwise, R[i, j] = 0.
We set R[i, i] = 0 for all i, and the matrix is only populated above this main
diagonal. Recall that the reversal distance between two permutations is denoted
as r(P, Q). The Hamming distance between two bit vectors X and Y is denoted
H(X, Y). The Hamming distance between two matrices is the Hamming distance
between two vectors obtained by linearizing the two matrices in any manner.

Theorem 1. r(P, Q) ≤ 1
2H(R(P), R(Q)) ≤ 2r(P, Q)

Proof. We extend the notion of Reversal Breakpoints given in Section 2 of [11]
which is defined on a single permutation. Define a Reversal Breakpoint of P
relative to Q as a location, i, where the symbol following P [i] in P is not adjacent
to P [i] where it occurs in Q. Formally, this is when |Q−1[P [i]]−Q−1[P [i+1]]| 6= 1.
We denote the total number of such breakpoints as φ(P, Q). Clearly, if P =
Q, then φ(P, Q) = 0, and this is the only way in which the count is zero. In
transforming P into Q using reversals, our goal is to reduce φ to zero. A reversal
affects two locations, so we can reduce φ by at most two per move, which gives
a lower bound. It is also the case that we can always convert P into Q using
at most φ(P, Q) reversals. This follows from considering relabelling Q as the
identity permutation, and applying this same relabelling to P generating Q−1◦P .
The reversal breakpoints of P relative to Q then become precisely the reversal
breakpoints of Q−1 ◦ P relative to the identity permutation, and consequently,
the permutation can be edited using at most this number of reversals, following
from Theorem 1 in [11]. Hence r(P, Q) ≤ φ(P, Q) ≤ 2r(P, Q).

It remains to show that H(R(P), R(Q)) = 2φ(P, Q). Suppose that
R(P)[i, j] = 1 and R(Q)[i, j] = 0. This means that i and j are adjacent in
P but not in Q. If we sum the number of distinct pairs i, j which are adjacent
in P but not in Q, then this finds φ(P, Q). This is because every breakpoint will
generate such a pair, and such pairs can only arise from breakpoints. An iden-
tical argument follows when R(P)[i, j] = 0 and R(Q)[i, j] = 1, yielding φ(Q, P).
Since φ(Q, P) = φ(P, Q), it follows that H(R(P), R(Q)) counts each breakpoint
exactly two times.

2.2 Transposition Distance

We define T (P), a binary matrix for a permutation P such that T (P)[i, j] = 1
if j immediately follows i in P , ie if P−1[i] + 1 = P−1[j].

Theorem 2. t(P, Q) ≤ 1
2H(T (P), T (Q)) ≤ 3t(P, Q)

486 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

Proof. Define a Transposition Breakpoint in a permutation P relative to another
permutation Q as a location, i, such that P [i+1] does not immediately follow P [i]
when it occurs Q, 3 that is Q−1[P [i]]+1 6= Q−1[P [i+1]]. Let the total number of
such transposition breakpoints between P and Q be denoted as tb(P, Q). Observe
that to convert P to Q we must remove all breakpoints, since tb(Q, Q) = 0.
A single transposition affects three locations and so could ‘fix’ at most three
breakpoints — this gives the lower bound. Also, we can always fix at least one
breakpoint per transposition using the trivial greedy algorithm, which gives the
upper bound. Hence t(P, Q) ≤ tb(P, Q) ≤ 3t(P, Q).

We now need to show that H(T (P), T (Q)) = 2tb(P, Q): clearly, tb(P, Q) =
tb(Q, P). T (P)[i, j] = 1 and T (Q)[i, j] = 0 if and only if there is a transposition
breakpoint in Q at the location of i, so summing these contributions generates
tb(P, Q). A symmetrical argument holds when T (P)[i, j] = 0 and T (Q)[i, j] = 1,
and these two cases summed generate exactly H(T (P), T (Q)) = 2tb(P, Q).

2.3 Permutation Edit Distance

We show how to embed Permutation Edit Distance into Set Intersection Size
up to a factor of log n. We shall define A(P) as an n × n binary matrix derived
from a permutation of length n, P . Ak(P)[i, j] is set to one if symbol i occurs a
distance of exactly 2k before j in P . Otherwise, Ak(P)[i, j] = 0. A(P) is formed
by taking the union of the matrices A0 . . . Alog n−1. That is, A(P)[i, j] = 1 ⇐⇒
∃k. (P−1[i]+2k = P−1[j]). Note that A(P) is a binary matrix, and n log n+Θ(n)
entries are 1.

Also, let B(Q) be an n × n binary matrix defined on a permutation Q such
that B(Q)[i, j] is zero if i occurs before j in Q. Otherwise B(Q)[i, j] = 1. Thus,
B(Q)[i, j] = 0 ⇐⇒ (Q−1[i] < Q−1[j]) In this matrix, n2/2+Θ(n) entries are 1.
Finally, define D(P, Q) as the size of the intersection between A(P) and B(Q).
Put another way, this intersection can be calculated using multiplication of the
elements of the matrices, pairwise: D(P, Q) =

∑
i,j(A(P)[i, j] × B(Q)[i, j]).

Theorem 3. d(P, Q) ≤ D(P, Q) ≤ log n · d(P, Q).

Proof. i) D(P, Q) ≤ log n · d(P, Q)
Consider the pairs (i, j) such that A(P)[i, j] = B(Q)[i, j] = 1. The number of
such pairs is exactly D(P, Q). Each of these pairs has i occurring before j in P ,
but the other way round in Q, and so one of either i or j must be moved to
turn P into Q. So in effect, these pairs represent a “to-do” list of changes that
must be made. By construction of A, any symbol i appears at most log n times
amongst these pairs. Hence whenever a move is made, at most log n pairs can
be removed from this to-do list. It therefore follows that in each move, D can
change by at most log n. If at every step we change D by at most log n, then
this bounds the minimum number of operations possible to transform P into Q
as D(P, Q)/ log n ≤ d(P, Q)
3 As usual, we extend all permutations so that the first symbol is 0 and their last is
n+ 1.

Permutation Editing and Matching via Embeddings 487

ii) d(P, Q) ≤ D(P, Q)
We shall show the bound by concentrating on the fact that an optimal edit se-
quence preserves a Longest Common Subsequence of the two sequences. Note
that an optimal edit sequence will have length n − LCS(P, Q): every symbol
that is not moved must form part of a common subsequence of P and Q and so
an optimal edit scheme will ensure that this common subsequence is as long as
possible. Consider the relabelling of Q so that for all i, Q[i] is relabelled with i.
We analyze the effect of applying this relabelling to P and examine its longest
increasing subsequence. Call this relabelled sequence P ′. Clearly, the longest
common subsequence of P and Q is not altered, since we have just relabelled
distinct symbols. Because Q is replaced by a strictly increasing sequence, it fol-
lows that each Longest Common Subsequence of P and Q corresponds exactly to
one Longest Increasing Subsequence of P ′, whose length is denoted by LIS(P ′).
Qualitatively, what D told us was that we count 1 if symbol is 2k to the right of
the i’th location in P but is anywhere to the left in Q. When we relabel accord-
ing to Q, this translates so we count 1 if symbol i is greater than an symbol 2k

to its right.
We shall split P ′ into two subsequences, one which consists only of the sym-

bols at odd locations in P ′, and the other of the symbols which occur at even
locations. Symbols of P ′ will now be referred to as ‘odd symbols’ or ‘even sym-
bols’: this refers only to their location, not whether the value of an symbol is
odd or even. Suppose sodd is the length of a longest increasing subsequence of
symbols at odd locations in P ′, and seven is similarly defined for the even sym-
bols. Define b(P ′) as the number of locations (‘sequence breakpoints’) where
P ′[i] > P ′[i + 1]

Lemma 1. LIS(P ′) ≥ sodd + seven − b(P ′).

Proof. Let Seven represent an increasing sequence of even symbols whose length
is seven, and define Sodd similarly. We shall see how we can build a longer increas-
ing subsequence starting from each of the subsequences of even and odd symbols.
Consider an symbol of Seven, P ′[i] and the subsequent symbol of Seven, P ′[j].
There is at least one odd symbol separating these two symbols when they occur
in P ′. Now, either all odd symbols that occur at locations between i and j have
values between P ′[i] and P ′[j], in which case we could extend the increasing
sequence Seven by including these symbols; or else they are all less than P ′[i] or
greater than P ′[j]. In either case, then there is a contribution of at least one to
b(P ′) from these intervening symbols. This allows us to conclude that from the
increasing sequence Seven, then we can form an increasing sequence of length
at least 2seven − b(P ′), as there are seven − 1 consecutive pairs of symbols from
Seven, and in addition we can also consider the sequence before the first sym-
bol. Similarly, from Sodd, we can find an increasing sequence of length at least
2sodd−1−b(P ′). Further, depending on whether |P ′| is odd or even, we can always
increase one of these bounds by 1, by considering the effect of the last member of
Sodd and the subsequent even symbols if |P ′| is even, or the effect with the last
of Seven and subsequent odd symbols if |P ′| is odd. We know that each of these
generated increasing sequences of P ′ is of length at most LIS(P ′) by definition
of LIS(P ′). Summing these, we find that 2sodd + 2seven − 2b(P ′) ≤ 2LIS(P ′).

488 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

If we consider what b(P ′) represents, we compare every P ′[i] to P ′[i + 1]
and count one for every disordered pair. This is telling us that the considered
pair of symbols occur in P in the opposite order to which they occur in Q, by
construction of P ′. So b(P ′) is exactly equivalent to the contribution to D(P, Q)
from A0 ∩B. If we now split and consider P ′

odd (and P ′
even), the subsequences of

P ′ formed by taking all the symbols at odd (even) locations, we note that these
have exactly the same structure, and have only the self-contained comparisons
of A1 ∩ B, A2 ∩ B to Alog n−1 ∩ B. We can carry on splitting each sequence
recursively into odd and even sequences, until we can split no further. At the
last level, all that remains are |P ′| = |P | single symbols, which each constitute a
trivial increasing subsequence of length one. Telescoping the inequality, we find
that LIS(P ′) ≥ |P |−b(P ′)−b(P ′

even)−b(P ′
odd)−b(P ′

oddodd
)−b(P ′

oddeven
) . . . If we

sum all these b’s, we get exactly D(P, Q). Hence we conclude that LCS(P, Q) =
LIS(P ′) ≥ |P | − D(P, Q). Rearranging and substituting, we find D(P, Q) ≥
n − LCS(P, Q) = d(P, Q), as required.

2.4 Combining All Operations

We consider the compound distance allowing the combination of reversals, trans-
positions and permutation editing (moving a single symbol). Denote this distance
as τ(P, Q). We make use of the transformation R from Section 2.1, and omit the
simple proof.

Theorem 4. τ(P, Q) ≤ 1
2H(R(P), R(Q)) ≤ 3τ(P, Q).

These embedding techniques can also be adapted for a large range of permu-
tation distances. Embeddings can be obtained for variations where inserts and
deletes are permitted for any of the distances already described; when one of the
sequences is allowed to be a string rather than a permutation; and in the case of
signed permutations. Exact details of these embeddings are omitted for brevity.

3 Implications of the Embeddings

We can immediately find algorithmic applications of our embeddings. On the
whole, these rely on known results for the Hamming space.

Approximating Pairwise Distances. The embeddings allow distance approx-
imations to be made efficiently in a communication setting. We have the following
scenario: there are two communicants, A and B, who each hold a permutation
P and Q respectively, and they wish to communicate in such a way to calculate
the approximate distance between their permutations.

Theorem 5. There is a single round communication protocol to allow reversal
(transposition) distance approximation up to a factor of 2 + ε (respectively 3 + ε)
with a message of size O(log n log(1/δ)/ε2). The protocol succeeds with probability
1 − δ.

Permutation Editing and Matching via Embeddings 489

This follows from known communication results on Hamming distance such as
Corollary B of [5]. Now suppose that we have a number of permutations, and we
wish to be able to rapidly find the distance between any pair of them. Traditional
methods would suggest that for each pair, we should take one and relabel it as
the identity permutation, and then solve the sorting by reversals or sorting by
transpositions problem for the correspondingly relabelled permutation. We claim
that, given a near linear amount of preprocessing, this problem can be solved
exponentially faster.

Corollary 1. With a linear amount of preprocessing, the Reversal distance (re-
spectively, Transposition distance) between any pair of permutations of length n
can be approximated in time O(log n log(1/δ)/ε2) up to a factor of 2 + ε (resp.
3 + ε).

This follows from the above statement, since whenever we have a one round
communication protocol, we can precompute and store the message that would
be sent for each permutation. Pairwise approximation can then be carried out
by comparing the two corresponding precomputed messages, which requires time
linear in the size of the message.

Approximate Nearest Neighbors. The problem is to preprocess a collection
of permutations so that given a new query permutation, the closest permutation
from the collection can be found. This problem is analogous to vector nearest
neighbors under Hamming metric [9,12]. The crux here is to avoid the dimen-
sionality curse: that is, design a polynomial space data structure that answers
queries in time polynomial in the query and sublinear in the collection size.

Theorem 6. We can find approximate nearest neighbors under Reversal dis-
tance (respectively Transposition distance and compound distances thereof) up
to a factor of 2 + ε (respectively 3 + ε) with query time O(` · n1/(1+ε)), where n
is the number of sequences in the database, and ` the size of the universe from
which sequence symbols are drawn.

Proof. This follows immediately from the results for Approximate Nearest
Neighbors in [9] and [12]. Some care is needed, since for efficiency we need to en-
sure that the sampling at the root of the Locality-Sensitive Hash functions used
therein does not attempt to sample directly from the quadratic (O(`2)) space of
the matrices of the embeddings. Instead, we consider in turn each adjacent pair
in a permutation, and use hash functions to determine whether this pair would
have been picked by the sampling scheme.

Distance Estimation in the Streaming Model. An additional feature of the
embeddings is that they lead themselves to solving problems in the streaming
model.

Theorem 7. If the sequences arrive as arbitrarily interleaved streams, approx-
imations for the Transposition distance or Reversal distance can be computed
using storage of size O(log ` log(1/δ)/ε2) such that the Reversal distance (respec-
tively Transposition distance) can be approximated to a factor of 2 + ε (resp.
3 + ε) with probability 1 − δ.

490 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

Proof. Since each non-zero entry in the transformation matrices comes from
information about adjacent pairs in the permutation, we can parse the permu-
tation as a stream of tuples, so . . . i, j, k . . . is viewed as . . . (i, j), (j, k) The
streaming algorithm of [5] can then be used on the induced bitstring (only non-
zero bits need to be handled). Although the matrix space is O(`2), the space
needed will still be O(log `) in size, and can be computed with a linear pass over
each permutation.

4 Approximate Permutation Matching

The counting version of Approximate Permutation Matching is stated as follows:
Given a text string T of length n, and a pattern permutation P of length m, find
the approximate cost of aligning the pattern against each location in the text.
That is, for each i find the appropriate distance d[i] between T [i : i+m−1] and
P [1 : m]. Naively using the transformations of our distances would be expensive;
we take advantage of the fact that because the embeddings are based on pairwise
comparisons, the approximate cost can be calculated incrementally with only a
small amount of work.

Theorem 8. i) Approximate permutation matching for reversal distance can be
solved in time O(n + m); each d[i] is approximated to a factor of 2.

ii) Approximate permutation matching for transposition distance can be
solved in time O(n + m); each d[i] is approximated to a factor of 3.

Proof. We must allow insertions and deletions to our sequences since in this
scenario we cannot insist that we will always find exact permutations at each
alignment location. We shall make use of extended embeddings which allow these
approximations to be made. It is important to note that although these embed-
dings are described in terms of quadratic sized matrices, we do not construct
these matrices, but instead concentrate only on the linear number of non-zero
entries in these figurative matrices. We shall prove both claims together, since
we take advantage of common properties of the embeddings.

Suppose we know the cost of aligning T [i . . . i + m − 1] against P , and we
now want to find the cost for T [i + 1 . . . i + m]. This is equivalent to adding a
character to the end of T [i . . . i + m − 1] and removing one from the front. So
only two adjacencies are affected — at the start and end of the subsequence.
This affects only a constant number of symbols in our matrices. Consequently,
we need only perform a constant amount of work to update our count of the
number of transposition or reversal breakpoints, provided we have precomputed
the inverse of the pattern P in time O(m). To begin the process, we imagine
aligning P with a location to the left of T so that there is no overlap of pattern
and text. Initially, the distance between P and T [−m . . . 0] is defined as m.
From this position, we can advance the pattern by one location at a time and
do a constant amount of work to update the count. The total time required is
O(n + m).

Permutation Editing and Matching via Embeddings 491

Theorem 9. Approximate Permutation Matching can be solved for Permuta-
tion Edit Distance in time O(n log m).

Proof. We make use of the transformation for permutation edit distance, and
so our result will be accurate up to a factor of log m. We can use the trick of
relabelling P as 1 2 . . . m, and relabelling T accordingly as we go along. Suppose
we have found the cost of matching T [i . . . i + m− 1] against P . We can advance
this match by one location to the right by comparing T [i + m] with the log m
locations T [i + m − 1], T [i + m − 2], T [i + m − 4] Each pair of the form
T [i + m − 2k] > T [i + m] that we find adds one to our total. At the same time,
we maintain a record of the L1 difference between the number of symbols in P
missing from T [i . . . i+m−1] (since each of these must participate in an insertion
operation to transform T [i . . . i+m−1] into P). This can be updated in constant
time using O(P) space. We can step the left end of a match by one symbol in
constant time if we also keep a record for each T [i] how many comparisons it
caused to fail from symbols to the right — we reduce the count by this much
to find the cost of T [i + 1 . . . i + m] from T [i . . . i + m]. In total we do O(log m)
work per step, giving a total running time of O(n log m).

5 Discussion

We present the first known results embedding various permutation distances
into Hamming and Set Intersection spaces in an approximately distance pre-
serving manner. These embeddings are approximate, since finding the distances
exactly is provably hard. From these embeddings, a wide variety of problems
can be solved, the full extent of which is beyond the scope of this paper. In
particular, we have described how the embeddings enable the solution of tra-
ditional problems such as pair-wise distance estimation and nearest neighbors;
and novel problems, such as approximate permutation matching and measure-
ments in the streaming model. These results are of interest in Computational
Biology as well as for foundational reasons since analogous problems are open
for strings. In solving approximate permutation matching problems, we obtained
linear or near-linear time approximation algorithms while their string counter-
parts take significantly longer. We hope that our study of permutation distances
gives insights that may help solve the corresponding open problems on string
distances. A candidate problem to think about seems to be approximating the
longest common subsequence, a dual of our permutation edit distances.

Acknowledgements. The first author wishes to thank Mike Paterson for some
fruitful discussions about this work; in particular, for suggesting the form of
Lemma 1 that enabled the proof of Theorem 3. We also thank the anonymous
reviewers for their comments.

References

1. V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. In
Proceedings of the 34th Annual Symposium on Foundations of Comptuer Science,
pages 148–157, Palo Alto, CA, 1993. IEEE Computer Society Press.

492 G. Cormode, S. Muthukrishnan, and S.C. S. ahinalp

2. Vineet Bafna and Pavel A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, May 1998.

3. A. Caprara. Sorting by reversals is difficult. In Proceedings of the First Interna-
tional Conference on Computational Molecular Biology, pages 75–83, 1997.

4. David A. Christie. A 3/2-approximation algorithm for sorting by reversals. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 244–252, San Francisco, California, 25–27 January 1998.

5. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-
difference algorithm for massive data streams. In IEEE Symposium on Foundations
of Computer Science (FOCS), pages 501–511, 1999.

6. Vincent Ferretti, Joseph H. Nadeau, and David Sankoff. Original synteny. In
Combinatorial Pattern Matching, 7th Annual Symposium, volume 1075 of Lecture
Notes in Computer Science, pages 159–167. Springer, 1996.

7. Leslie Ann Goldberg, Paul W. Goldberg, Mike Paterson, Pavel Pevzner,
Süleyman Cenk S. ahinalp, and Elizabeth Sweedyk. The complexity of gene place-
ment. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 386–395, N.Y., January 17–19 1999. ACM-SIAM.

8. Qian-Ping Gu, Shietung Peng, and Hal Sudborough. A 2-approximation algorithm
for genome rearrangements by reversals and transpositions. Theoretical Computer
Science, 210(2):327–339, 17 January 1999.

9. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing (STOC-98), pages 604–613, 1998.

10. Howard Karloff. Fast algorithms for approximately counting mismatches. Infor-
mation Processing Letters, 48(2):53–60, November 1993.

11. J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13(1/2):180–
210, January 1995.

12. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC-98), pages 614–623, 1998.

13. J. H. Nadeau and B. A. Taylor. Lengths of chromosome segments conserved since
divergence of man and mouse. Proc. Nat’l Acad. Sci. USA, 81:814–818, 1984.

14. D. Sankoff and J. Nadeau. Conserved synteny as a measure of genomic distance.
DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 71, 1996.

Testing Hypergraph Coloring?

Artur Czumaj1 and Christian Sohler2

1 Department of Computer and Information Science, New Jersey Institute of
Technology, University Heights, Newark, NJ 07102-1982, USA. czumaj@cis.njit.edu

2 Heinz Nixdorf Institute and Department of Mathematics & Computer Science,
University of Paderborn, D-33095 Paderborn, Germany. csohler@uni-paderborn.de

Abstract. In this paper we initiate the study of testing properties of
hypergraphs. The goal of property testing is to distinguish between the
case whether a given object has a certain property or is “far away” from
the property. We prove that the fundamental problem of `-colorability
of k-uniform hypergraphs can be tested in time independent of the size
of the hypergraph. We present a testing algorithm that examines only
(k `/ε)O(k) entries of the adjacency matrix of the input hypergraph,
where ε is a distance parameter independent of the size of the hyper-
graph. Notice that this algorithm tests only a constant number of entries
in the adjacency matrix provided that `, k, and ε are constant.

1 Introduction

A classical problem in computer science is to verify if a given object possesses
a certain property. For example, we want to determine if a boolean formula is
satisfiable, or if a graph is connected. In its very classical formulation, the goal
is to give an exact solution to the problem, that is, to provide an algorithm that
always returns a correct answer. In many situation, however, this formulation is
too restrictive, for example, because there is no fast (or just fast enough) algo-
rithm that gives the exact solution. Recently, many researchers started studying
a relaxation of the “exact decision task” and considered various forms of approx-
imation algorithms for decision problems. In property testing (see, e.g., [1,11,13,
17,16,18,19,26,29]), one considers the following class of problems:

Let C be a class of objects, O be an unknown object from C, and Q be
a fixed property of objects from C. The goal is to determine (possibly
probabilistically) if O has property Q or if it is far from any object in C
which has property Q, where distance between two objects is measured with
respect to some distribution D on C.

The motivation behind this notion of property testing is that while relaxing
the exact decision task we expect the testing algorithm to be significantly more
efficient than any exact decision algorithm, and in many cases, we achieve this
goal by exploring only a small part of the input.

A notion of property testing was first explicitly formulated in [31] and then
extended and further developed in many follow-up works (see, e.g., [1,6,7,13,
? Research supported in part by an SBR grant No. 421090 and DFG grant Me872/7-1.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 493–505, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

494 A. Czumaj and C. Sohler

14,18,19,30]). Property testing arises naturally in the context of program veri-
fication, learning theory, and, in a more theoretical setting, in probabilistically
checkable proofs. For example, in the context of program checking, one may first
choose to test whether the program’s output satisfies certain properties before
checking that it is as desired. This approach is a very common practice in soft-
ware development, where it is (typically) infeasible to require to formally test
that a program is correct, but by verifying whether the output satisfies cer-
tain properties one can gain a reasonable confidence about the quality of the
program’s output.

The study of property testing for combinatorial objects, and mainly for la-
beled graphs, was initiated by Goldreich et al. [18]. They investigated several
interesting graph properties and showed, for example, that testing `-colorability
of graphs is testable in time independent of the input size.

We refer the reader to the excellent survey by Ron [29], where a very thorough
exposition of this field is presented and applications of this model are discussed.

1.1 Our Contribution

In this paper we extend the notion of property testing to hypergraphs, and study
the problem of testing colorability properties of hypergraphs.
Hypergraphs. Recall that a hypergraph is a pair H = (V, E) such that E is a
subset of the power set of V . The set V is the set of vertices and E is the set
of edges. We consider only finite hypergraphs (i.e., V is finite) and such that
V ∩ E = ∅. If E contains only sets of size k then H is said to be k-uniform. A
hypergraph is a well-known generalization of a graph; a 2-uniform hypergraph
is a standard undirected graph.

An `-coloring of a hypergraph H = (V, E) is a mapping χ : V → {1, . . . , `}.
An `-coloring χ of a hypergraph H = (V, E) is called proper if H contains no
monochromatic edge (that is, for every e ∈ E, there exist x, y ∈ e such that
χ(x) 6= χ(y)). A hypergraph H is `-colorable, if there exists a proper `-coloring
of H.

In the case when we will discuss the 2-coloring problem, we shall frequently
consider χ to be a function that assigns to every vertex either color red or blue.
Testing colorability property of hypergraphs. In this paper we study the problem
of testing the property that a given hypergraph is `-colorable. We assume the
hypergraph H = (V, E) with n vertices is k-uniform and it is represented by its
adjacency matrix A of size nk, that is, the entry A[vi1 , vi2 , . . . , vik

] is equal to 1
if and only if {vi1 , vi2 , . . . , vik

} ∈ E; it is 0 otherwise.
In general case, we are using the following definition:

Definition 1.1. Let P be any property of hypergraphs. Let ε be any real 0 ≤
ε ≤ 1. A k-uniform hypergraph H = (V, E) is ε-far from property P if it has
Hamming distance at least ε nk from any hypergraph having property P, that is,
in order to construct from H a hypergraph having property P one has to delete
or insert at least ε nk edges of H.

Using this notion of distance, we can formally define testing algorithms:

Testing Hypergraph Coloring 495

Definition 1.2. Let P be any property of hypergraphs. Let ε be any real 0 ≤ ε ≤
1. An ε-tester for property P of k-uniform hypergraphs is an algorithm that

– accepts every hypergraph having property P, and
– rejects with probability at least 2/3 any hypergraph that is ε-far from property

P.

Observe that the behavior of an ε-tester may be arbitrary for hypergraphs that
neither have property P nor are ε-far from property P.

Specifically, given query access to an adjacency matrix A representing H, and
a distance parameter ε, we study the problem of determining with reasonably
high probability whether H is `-colorable, or whether more than an ε-fraction of
entries of A should be modified so that the hypergraph defined by the modified
adjacency matrix becomes `-colorable. In the later case, we say H is ε-far from
being `-colorable.

There are two measures of the complexity of testing algorithms: the query
complexity and the running time complexity of an ε-tester. The query complexity
of a tester (in our context of hypergraphs) is measured only by the number of
queries to the entries of the adjacency matrix of the input hypergraph, while
the running time complexity counts also the time needed by the algorithm to
perform other tasks (e.g., to verify if a given sub-hypergraphs is `-colorable).

To exemplify the notion of ε-testers, let us compare the notion of standard
approximation of 2-colorability with the notion of testing 2-colorability in 3-
uniform hypergraphs (this is a slight modification of an example used in [7]):

A hypergraph H might be nearly 2-colorable in the sense that there is a 2-colorable
hypergraph H� at small Hamming distance to H, but far from 2-colorable in the
sense that many colors are required to properly color H. Similarly, a hypergraph
H might be nearly 2-colorable in the sense that it is 3-colorable, but far from 2-
colorable in the sense that no hypergraphs having small Hamming distance to H
are 2-colorable. Therefore, both these notions are natural and the preferred choice
depends on the application at hand.

Results. Our main theorem is an ε-tester for `-colorability of k-uniform hyper-
graphs that has query complexity that is independent of the input hypergraph
size.

Our ε-tester follows the standard approach in this area: it first samples at
random a subset of vertices of the hypergraph H, and then checks whether the
sub-hypergraph of H induced by the vertices chosen is colorable:'

&

$

%

Tester(s, `)

Pick a subset S ⊆ V of size s uniformly at ran-
dom.

Let HS be the hypergraph induced by S in H.
If HS is `-colorable then accept H;

else reject H.

We can prove the following result.

496 A. Czumaj and C. Sohler

Theorem 1.1. Tester(s, `) with s = Õ((k `/ε)2) is an ε-tester for `-coloring k-
uniform hypergraphs.1

This immediately implies the following.

Theorem 1.2. There is an ε-tester for `-colorability of k-uniform hypergraphs
that has query complexity Õ((k `/ε)2 k) and the running time of exp(Õ(k `/ε)2).

1.2 Context and Related Work

Hypergraph coloring. Hypergraph coloring is a well studied problem in the liter-
ature in discrete mathematics, combinatorics, and computer science. In contrast
to graphs, where one can decide in linear time if a graph is 2-colorable (or equiv-
alently, bipartite), testing if a given hypergraph is 2-colorable is NP-hard even
for 3-uniform hypergraphs [23]. In [22], it is shown that unless NP ⊆ ZPP, for
any fixed k ≥ 3, it is impossible to approximate in polynomial time the chro-
matic number of k-uniform hypergraphs within a factor n1−ε for any constant
ε > 0. Very recently, Guruswami et al. [20] proved that for any constant c, it
is NP-hard to color a 2-colorable 4-uniform hypergraph using c colors. In [20]
even a stronger inapproximability result is shown, that there exists a constant
c0 such that, unless NP ⊆ DTIME(nO(log log n)), there is no polynomial time
algorithm that colors a 2-colorable 4-uniform hypergraph using c0 log log log n
colors.

The property of hypergraph 2-colorability (called also “Property B” by
Erdős) has been extensively studied in the combinatorics literature (see, e.g.,
[5,10,12,27]). In particular, the study of this problem led to the discovery of
the celebrated Lovász Local Lemma [12]. In computer science the problems of
coloring hypergraphs have been studied mostly due to its connection to impor-
tant graph coloring and satisfiability problems (cf., e.g., [9,24]). Extending the
approximation results for graph coloring, several authors have provided approxi-
mation algorithms for coloring 2-colorable hypergraphs [2,8,21,22]. For example,
the very recent polynomial-time approximation algorithm from [21] colors any
3-uniform 2-colorable hypergraphs using Õ(n1/5) colors.

Testing colorability. We are not aware of any prior testing algorithms for col-
orability of hypergraphs. However, very recently we have heard that, indepen-
dently to our work, Alon and Shapira (personal communication, 2001) developed
a testing algorithm for some general version of satisfiability that includes also
testing `-colorability of uniform hypergraphs.

Goldreich et al. [18] were the first who studied the problem of testing `-
colorability in graphs (although implicitly this problem could be traced to [28]).
In the most basic case of graph 2-coloring (that is, testing bipartitness), they
designed an algorithm with Õ(1/ε3) query complexity (and running time). Their
analysis was later improved by Alon and Krivelevich [3], who showed that the

1 Õ is a standard asymptotic notation that “hides” polylogarithmic factors.

Testing Hypergraph Coloring 497

complexity of this algorithm is Õ(1/ε2). For the more general case of testing `-
colorability for arbitrary ` ≥ 2, Goldreich et al. [18] presented an algorithm with
the query complexity of Õ(`4/ε6) and the running-time complexity of 2Õ(`2/ε3).
Again, Alon and Krivelevich [3] improved the analysis of the algorithm and ob-
tained a bound of Õ(`2/ε4) on the query complexity and 2Õ(`/ε2) on the running
time. Alon et al. [1] presented another “constant-time” (i.e., independent of the
size of the input graph) property testing algorithm; their algorithm uses the Sze-
merédi Regularity Lemma, and therefore the bounds for the query complexity
and the running time, though independent of the size of the graph, have huge de-
pendency of ` and ε. Fischer [15] extended the methods from [1] and investigated
more general graph colorability properties.

1.3 Organization of the Paper

Because of space limitations, we concentrate our analysis mostly on testing 2-
colorability of 3-uniform hypergraphs and only briefly discuss extensions to the
general case. In the main part of the paper, in Section 2, we present a detailed
analysis of Tester(s, 2) and prove Theorems 1.1 and 1.2 for 2-colorability of 3-
uniform hypergraphs. Then, in Section 3, we briefly discuss extensions of this
result to `-colorability of k-uniform hypergraphs.

2 Testing 2-Colorability of 3-Uniform Hypergraphs

In this section we only consider 2-coloring of 3-uniform hypergraphs. Let H =
(V, E) be a 3-uniform hypergraph. This section is devoted to the proof the fol-
lowing result.

Theorem 2.1. Tester(s, 2) with s = O((1/ε)2) is an ε-tester for 2-coloring 3-
uniform hypergraphs.

Theorem 2.1 immediately implies the following.

Theorem 2.2. There is an ε-tester for 2-coloring 3-uniform hypergraphs with
query complexity of Θ(1/ε6) and the running time of exp(O(1/ε2)). ut

We choose s = 4 ·103 · (1/ε)2, though we did not try to optimize the constant
and it is easy to improve over our constant 4 · 103 significantly, perhaps even to
a one digit number.

In order to prove Theorem 2.1 we must show the following properties of
Tester(s, 2):

1. if H is 2-colorable, then the algorithm accepts H (that is, HS is 2-colorable);
2. if H is ε-far from 2-colorable, then the algorithm rejects H (that is, HS is

not 2-colorable) with probability at least 2/3.

Since if a hypergraph is 2-colorable, so is any its sub-hypergraph (and in par-
ticular, HS), property (1) trivially holds. Therefore we must only prove that
property (2) holds as well. From now on, we shall assume H is ε-far from having
2-coloring.

498 A. Czumaj and C. Sohler

2.1 Coloring Game with the Adversary

For the purpose of the analysis, we partition our sample set S into 100/ε sets
Ui, 1 ≤ i ≤ 100/ε, of size 40/ε each.

We analyze the following game on H:
We play 100/ε rounds starting with an initially empty set Vcolored of colored

vertices. In the course of the game we are adding new vertices to Vcolored and the
adversary chooses a color for each of these vertices. The coloring procedure of the
adversary may be arbitrary, but the partial coloring of H on the sub-hypergraph
induced by Vcolored must be always proper. If the adversary is unable to properly
color the vertex chosen, then we win. If the adversary properly colors the vertices
during all 100/ε rounds, he wins.

Formally, round i of the game looks as follows:

– We choose a vertex v from set Ui and add it to Vcolored.
– The adversary colors v either red or blue. He is not allowed to create

monochromatic edges.

The following claim that plays the key role in our analysis explains the idea
behind introducing the game.

Claim. If for any 3-uniform hypergraph H that is ε-far from 2-colorable we win
independently of the strategy of the adversary with probability at least 2/3, then
the hypergraph HS computed by Tester(s, 2) is not 2-colorable with probability
at least 2/3. Therefore, in particular, Tester(s, 2) is an ε-tester for 2-coloring 3-
uniform hypergraphs.

Proof. The proof is by contradiction. Let us assume that HS has a proper col-
oring χHS with probability greater than 1/3 (over the choice of S). Then, the
adversary may color each vertex v ∈ S according to χHS (v). Since the adversary
wins if χHS

is proper, he wins with probability greater than 1/3, which is a
contradiction.

By our discussion above, this implies that Tester(s, 2) is an ε-tester for 2-
coloring 3-uniform hypergraphs. ut

Therefore, our plan is to show that if H is ε-far from 2-colorable, then we win
the game with probability at least 2/3 independently of the strategy of the
adversary. In order to prove this result, we first concentrate ourself on estimating
the probability that we win against a single fixed strategy of the adversary, and
then generalize this estimation to winning against all strategies of the adversary.

2.2 Our Strategy

Informally, our strategy in round i is to choose an especially selected vertex v
from Ui that either cannot be properly colored or that adds many new “con-
straints” to the colors of the vertices of the hypergraph no matter what color
the adversary chooses to color v.

Testing Hypergraph Coloring 499

During the game, some of the vertices are already colored. This coloring
defines constraints for the colors of the remaining, yet uncolored vertices. We
model these constraints by five sets Vcolored, Vconflict, Vred, Vblue, Vfree that
form a partition of the vertex set V , and by two graphs Gred = (V, Ered) and
Gblue = (V, Eblue).

Vcolored: contains all vertices that have been already colored by the adversary.
Vconflict: contains all yet uncolored vertices that are incident to both an edge

with two blue vertices (in Vcolored) and another edge with two red vertices
(in Vcolored); notice that these vertices cannot be properly colored by the
adversary.

Vred: contains all yet uncolored vertices that are not in Vconflict and can be
properly colored only in red (that is, these are vertices incident to an edge
with two blue vertices in Vcolored).

Vblue: contains all yet uncolored vertices that are not in Vconflict can be properly
colored only in blue (that is, these are vertices incident to an edge with two
red vertices in Vcolored).

Vfree: contains all remaining vertices (that is, yet uncolored vertices that can
be properly colored both red and blue).

Gred: contains an edge between two vertices v and w in V , if and only if there
is an edge e = {v, w, u} with a red colored vertex u ∈ Vcolored (thus, an edge
in Gred means that coloring both its endpoints red creates a monochromatic
edge).

Gblue: contains an edge between two vertices v and w in V , if and only if there is
an edge e = {v, w, u} with a blue colored vertex u ∈ Vcolored (thus, an edge in
Gblue means that coloring both its endpoints blue creates a monochromatic
edge).

Now, in order to formalize our strategy we define heavy vertices.

Definition 2.1. Let H = (V, E) be a 3-uniform hypergraph. Let Vcolored be a
subset of V that is properly 2-colored by χ : Vcolored → {red, blue}. A vertex
v ∈ V − Vcolored is called heavy for (Vcolored, χ) if at least one of the following
two conditions is satisfied after extending χ by any proper coloring of v:

– there are at least ε n2/10 new edges between vertices either in Gred or in
Gblue, or

– there are at least ε n/10 new vertices in one of the sets Vred , Vblue , or
Vconflict.

Now, we state our main lemma about heavy vertices:

Lemma 2.1. Let H = (V, E) be a 3-uniform hypergraph and let Vcolored be
an arbitrary subset of its vertices that is properly 2-colored by χ : Vcolored →
{red, blue}. Then, one of the following conditions hold:

– H is not ε-far from 2-colorable,
– there are at least ε n/10 heavy vertices for (Vcolored, χ),
– |Vconflict| ≥ ε n/10.

500 A. Czumaj and C. Sohler

Proof. The proof is by contradiction. Suppose none of the three conditions above
holds. Then, H is ε-far from 2-colorable. Using the negation of the other two
conditions we will construct a 2-coloring of H that violates less than ε n3 edges.
This implies that H is not ε-far from 2-colorable, which is a contradiction.

The algorithm below constructs a 2-colorable hypergraph H′ by deleting less
than ε n3 edges from H.

At the beginning of the algorithm we fix the sets Vred, Vblue, Vfree, and
Vconflict as well as the graphs Gred and Gblue. Then the algorithm colors the
vertices one after the other. Each time a vertex is colored its coloring may in-
troduce new constraints, that is, new vertices in the sets Vred, Vblue, or Vconflict

or new edges in the graphs Gred or Gblue. For each such new constraint there is
a set of edges that is responsible for the new constraint. These edges are called
the witnesses of the new constraint. E.g., if vertex v is colored red, then the
edge {v, u, w} is a witness for the edge (constraint) (u, w) in Gred. The algo-
rithm deletes all witnesses for new constraints. Thus, it maintains the following
invariant at the beginning of each for each loop:

The constraints for the colors of uncolored vertices are given by (a subset
of) the constraints represented by the sets Vred, Vblue, Vfree, Vconflict, and
the graph Gred and Gblue. E.g., if a vertex is in the set Vred it can be colored
red without creating monochromatic edges in the current hypergraph at
any time in the algorithm.

Below it is proven that we can maintain this invariant by removing less than εn3

edges.'

&

$

%

ConstructColoring(H)

for each v ∈ V that is either heavy or is in Vconflict do
χ(v) = red
remove all edges incident to v

for each v ∈ Vred that is not heavy do
χ(v) = red
remove all edges that cause new constraints

for each v ∈ Vblue that is not heavy do
χ(v) = blue
remove all edges that cause new constraints

for each v ∈ Vfree that is not heavy do
if coloring v red causes fewer new constraints than coloring v blue then

χ(v) = red
else

χ(v) = blue
remove all edges that cause new constraints

In what follows we prove that the so obtained hypergraph H′ is properly 2-
colored by χ and that it is obtained from H by deleting less than ε n3 edges. It
is easy to see that the algorithm maintains the invariant that the constraints for
the colors of the remaining vertices do not change. Indeed, if coloring a certain
vertex creates new constraints, then all edges that cause these constraints are

Testing Hypergraph Coloring 501

deleted from the hypergraph. Thus at any time, coloring a vertex in Vred (Vblue)
red (blue) does not create any monochromatic edges in the current hypergraph.
Coloring heavy and conflict vertices obviously is correct because all incident
edges are deleted. And finally, coloring a vertex in Vfree either red or blue again
does not create any monochromatic edges because of the invariant. Therefore,
the obtained hypergraph H′ is properly 2-colored by χ.

It remains to show that the number of deleted edges is less than ε n3.
We remove at most n2 edges incident to any heavy vertex or a vertex in

Vconflict. Since we know that there are less than ε n/10 heavy vertices as well
as less than ε n/10 vertices in Vconflict, the loop over these two sets of vertices
(that removes all incident edges) will delete less than 2 ε n3/10 edges.

All remaining vertices are not heavy. Thus, coloring any such a vertex will
create less than ε n/10 new constraints in Vred, Vblue, and Vconflict and less than
ε n2/10 new constraints in Gred and Gblue (cf. Definition 2.1). Each of the new
constraints in Vred, Vblue, and Vconflict can cause at most n edges to become new
constraints. Since there are at most n vertices in Vred ∪ Vblue ∪ Vfree, the last
three loops delete at most 5 ε n3/10 edges from H.

Thus, overall, the hypergraph H′ is obtained from H by deleting less than
7 ε n3/10 edges. This yields a contradiction, because on one hand we have as-
sumed that H is ε-far from 2-colorable, but on the other hand we have just shown
that there is a 2-colorable hypergraph H′ that is obtained from H by deletion of
less than ε n3 edges. ut

2.3 Proof of Theorem 2.1

Now we are ready to formulate our strategy in details and to complete the proof
of Theorem 2.1. We consider only the case that H is ε-far from 2-colorable. We
want to show that for any strategy of the adversary, we win with probability at
least 2/3. Then, Claim 2.1 would imply the proof of Theorem 2.1.

Observe that there are at most 2100/ε strategies of the adversary, each one
corresponding to a binary string of length 100/ε such that if the ith bit is 1 (or 0,
respectively), then the adversary colors vertex v ∈ Ui red (or blue, respectively).
Let us fix any strategy of the adversary Υ . Then, in round i we may assume we
know the current status of the game (the coloring of the vertices in P chosen
prior to round i). We further may assume that the set Ui is chosen at random.
Then we choose the next vertex v ∈ Ui to be colored by the adversary as follows:
If there is a vertex in Ui that belongs also to Vconflict then we choose one such a
vertex and win the game. If there is no vertex in Ui ∩Vconflict, then we choose a
heavy vertex if one exists in Ui. If there is no heavy vertex in Ui, then we choose
an arbitrary vertex from Ui.

Now, let us observe that since Ui is a randomly chosen set of vertices of size
40/ε, from Lemma 2.1 we may conclude that in round i

Pr
[
v is neither heavy nor belongs to Vconflict | Υ

] ≤ (1 − ε/10)40/ε ≤ e−4 .
(1)

502 A. Czumaj and C. Sohler

Now, let us recall that the coloring by the adversary of any heavy vertex either
inserts at least ε n2/10 new edges to one of Gred or Gblue, or inserts at least
ε n/10 new vertices to one of the sets Vred, Vblue, or Vconflict. Furthermore, if a
vertex v is chosen that is neither heavy nor belongs to Vconflict, then the number
of constraints does not decreases. Therefore, since each of the sets Vred, Vblue,
or Vconflict may have at most n vertices, and each of the graphs Gred or Gblue

may have at most n2 edges, we can conclude that a heavy vertex may be chosen
at most 50/ε times.

For a given strategy of the adversary Υ and for a given round i, 1 ≤ i ≤ 100/ε,
let X Υ

i be the indicator random variable of the event that for the strategy of the
adversary Υ (1) we have neither won in round j < i, (2) nor the vertex v chosen
in round i either is heavy or belongs to Vconflict. Let X Υ =

∑100/ε
i=1 X Υ

i . Observe
that by our arguments above, if X Υ < 50/ε, then we win! Therefore, our goal
now is to estimate the probability that X Υ ≥ 50/ε.

By (1), for every Υ and every i, we have Pr[X Υ
i = 1 | Υ] ≤ e−4. Therefore,

we can conclude that for every Υ and every t ∈ R it holds that2 Pr[X Υ ≥ t] ≤
Pr[B(100/ε, e−4) ≥ t], where B(N, p) is a binomially distributed random variable
with parameters N and p, that is, Pr[B(N, p) = k] =

(
N
k

)
pk(1 − p)N−k for every

0 ≤ k ≤ N . Given this majorization result, we can use basic calculations to
estimate the probability that X Υ ≥ 50/ε. Let N = 100/ε and p = e−4.

Pr[X Υ ≥ 50/ε] ≤ Pr[B(N, p) ≥ N/2] =
N∑

k=N/2

(
N

k

)

· pk · (1 − p)N−k

≤
N∑

k=N/2

(
e N

k

)k

· pk =
N∑

k=N/2

(
e N p

k

)k

≤
N∑

k=N/2

(2 e p)k

≤
∑

k≤N/2

(2 e p)k =
(2 e p)N/2

1 − 2 e p
=

(2/e3)50/ε

1 − 2/e3 ≤ 1
3

· 2−100/ε .

Thus, we have shown that for a given strategy Υ the adversary wins with prob-
ability upper bounded by (1/3) · 2−100/ε. Now, we can incorporate the union
bound to obtain an upper bound for the probability that there is a strategy Υ
for which the adversary wins:

Pr
[∃Υ X Υ ≥ 50/ε

] ≤
∑

Υ

Pr[X Υ ≥ 50/ε] ≤ 2100/ε · ((1/3) · 2−100/ε) ≤ 1/3 .

Hence, we have proven that we win for all strategies with probability greater
than or equal to 2/3. By Claim 2.1, this implies the proof of Theorem 2.1. ut

3 Testing `-Colorability of k-Uniform Hypergraphs

In this section we briefly describe how to generalize the result from Section 2
to `-colorability of k-uniform hypergraphs and prove Theorem 1.1. Our analysis
2 This is a standard fact on majorization in probability theory, see, e.g., [4, Lemma 3.1].

Testing Hypergraph Coloring 503

follows roughly the same approach as the proof of Theorem 2.1 and we will
frequently refer to that proof for some details.

Let us fix s = 1600 k2 `2 ln `/ε2 and consider Tester(s, `). Since it is easy to
see that any `-colorable hypergraph is accepted by the tester, it is sufficient to
prove that any hypergraph that is ε-far from `-colorable is rejected by Tester(s, `)
with probability at least 2/3.

Our goal is to show that we win the game against the adversary who is now
allowed to use ` colors instead of 2 as in Section 2. We partition the sample set
S into 20 k2 `2/ε sets Ui, 1 ≤ i ≤ 20 k2 `2/ε of size 80 ln `/ε each.

We obtain the general result by adjusting our constraint modeling from Sec-
tion 2 to `-coloring of k-uniform hypergraphs. We model the constraints by a
set of ` j-uniform hypergraphs Hi,j for each 1 ≤ i ≤ ` and 1 ≤ j ≤ k − 1. The
Hi,2 are graphs and the Hi,1 are sets. Again, we also have the sets Vcolored, and
Vconflict.

Hi,j contains an edge between vertices v1, . . . , vj , if and only if there is an
edge {v1, . . . , vj , vj+1, . . . , vk} in H such that vj+1, . . . , vk are colored with color
i. Thus an edge {v1, . . . , vj} in the hypergraph Hi,j means that coloring vertices
v1, . . . , vj with color i will create a monochromatic edge. Also, note that the
meaning of the sets Hi,1 is different from the meaning of Vred and Vblue in
Section 2 in the sense that Hi,1 contains all vertices that may not be colored
with color i.

Definition 3.1. Let H = (V, E) be a k-uniform hypergraph. Let Vcolored be a
subset of V that is properly l-colored by χ : Vcolored → {1, . . . , `}. A vertex
v ∈ V − Vcolored is called heavy for (Vcolored, χ) if at least one of the following
two conditions is satisfied after extending χ by any proper coloring of v:

– there are at least ε nj/(10 k `) new edges between vertices in Hi,j for some
i, j

– there are at least ε n/10 new vertices in the set Vconflict.

Using similar arguments (though technically more involved) as those used in
Section 2, we can prove the following main technical result.

Lemma 3.1. Let H = (V, E) be a k-uniform hypergraph and let Vcolored be a
subset of its vertices that is properly `-colored by χ : Vcolored → {1, . . . , `}. Then,
one of the following conditions hold:

– there are at least ε n/10 heavy vertices for (Vcolored, χ),
– |Vconflict| ≥ ε n/10,
– H is not ε-far from `-colorable. ut

Once we have Lemma 3.1, we can proceed similarly as in Subsection 2.3 to
prove that we win the game with probability greater than or equal to 2/3 no
matter which strategy is chosen by the adversary.

This implies the proof of Theorem 1.1. ut

504 A. Czumaj and C. Sohler

References

1. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs. In Proc. 40th FOCS, pages 656–666, 1999.

2. N. Alon, P. Kelsen, S. Mahajan, and H. Ramesh. Coloring 2-colorable hypergraphs
with a sublinear number of colors. Nordic Journal of Computing, 3:425–439, 1996.

3. N. Alon and M. Krivelevich. To appear in SIAM Journal on Discrete Mathematics.
4. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM

Journal on Computing, 29(1):180–200, September 1999.
5. J. Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures

and Algorithms, 2(4):343–365, 1991.
6. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications

to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
December 1993.

7. M. A. Bender and D. Ron. Testing acyclity of directed graphs in sublinear time.
In Proc. 27th ICALP, pages 809–820, 2000.

8. H. Chen and A. Frieze. Coloring bipartite hypergraphs. In Proc. 5th IPCO, pages
345–358, 1996.

9. A. Czumaj and C. Scheideler. An algorithmic approach to the general Lovász Local
Lemma with applications to scheduling and satisfiability problems. In Proc. 32nd
STOC, pages 38–47, 2000.

10. A. Czumaj and C. Scheideler. Coloring non-uniform hypergraphs: A new algorith-
mic approach to the general Lovász Local Lemma. In Proc. 11th SODA, pages
30–39, 2000.

11. A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry.
In Proc. 8th ESA, pages 155–166, 2000.

12. P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and
some related questions. In A. Hajnal, R. Rado, and V. T. Sós, editors, Infinite
and Finite Sets (to Paul Erdős on his 60th birthday), volume II, pages 609–627.
North-Holland, Amsterdam, 1975.

13. F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-
checkers. Journal of Computer and System Sciences, 60:717–751, 2000.

14. F. Ergün, S. Ravi Kumar, and R. Rubinfeld. Approximate checking of polynomials
and functional equations. In Proc. 37th FOCS, pages 592–601, 1996.

15. E. Fischer. Testing graphs for colorability properties. In Proc. 12th SODA, pages
873–882, 2001.

16. E. Fischer and I. Newman. Testing of matrix properties. To appear in Proc. 33rd
STOC, 2001.

17. A. Frieze and R. Kannan. Quick approximation to matrices and applications.
Combinatorica, 19:175–220, 1999.

18. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, July 1998.

19. O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree
graphs. Combinatorica, 19(3):335–373, 1999.

20. V. Guruswami, J. H̊astad, and M. Sudan. Hardness of approximate hypergraph
coloring. In Proc. 41st FOCS, pages 149–158, 2000.

21. M. Krivelevich, R. Nathaniel, and B. Sudakov. Approximating coloring and max-
imum independent sets in 3-uniform hypergraphs. In Proc. 12th SODA, pages
327–328, 2001.

Testing Hypergraph Coloring 505

22. M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. In
Proc. 6th ESA, pages 477–489, 1998.

23. L. Lovász. Coverings and colorings of hypergraphs. In Proc. 4th Southeastern
Conference on Combinatorics, Graph Theory, and Computing, pages 3–12. 1973.

24. C-J. Lu. Deterministic hypergraph coloring and its applications. In Proc. 2nd
RANDOM, pages 35–46, 1998.

25. I. Newman. Testing of function that have small width branching programs. In
Proc. 41st FOCS, pages 251–258, 2000.

26. M. Parnas and D. Ron. Testing metric properties. To appear in Proc. 33rd STOC,
2001.

27. J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for hyper-
graph two-coloring. In Proc. 39th FOCS, pages 684–693, 1998.

28. V. Rödl and R. A. Duke. On graphs with small subgraphs of large chromatic
number. Graphs and Combinatorics, 1:91–96, 1985.

29. D. Ron. Property testing. To appear in P. M. Pardalos, S. Rajasekaran, J. Reif, and
J. D. P. Rolim, editors, Handobook of Randomized Algorithms. Kluwer Academic
Publishers, 2001.

30. R. Rubinfeld. Robust functional equations and their applications to program test-
ing. In Proc. 35th FOCS, pages 288–299, 1994.

31. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with appli-
cations to program testing. SIAM Journal on Computing, 25(2):252–271, April
1996.

Total Colorings of Degenerated Graphs

Shuji Isobe, Xiao Zhou, and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 05, Sendai, 980-8579, Japan.

{iso@nishizeki.,zhou@,nishi@}ecei.tohoku.ac.jp

Abstract. A total coloring of a graph G is a coloring of all elements of
G, i.e. vertices and edges, in such a way that no two adjacent or incident
elements receive the same color. A graph G is s-degenerated for a positive
integer s if G can be reduced to a trivial graph by successive removal
of vertices with degree ≤ s. We prove that an s-degenerated graph G
has a total coloring with ∆ + 1 colors if the maximum degree ∆ of G is
sufficiently large, say ∆ ≥ 4s + 3. Our proof yields an efficient algorithm
to find such a total coloring. We also give a linear-time algorithm to find
a total coloring of a graph G with the minimum number of colors if G is
a partial k-tree, i.e. the tree-width of G is bounded by a fixed integer k.

1 Introduction

We deal with a total coloring of a simple graph G, which has no multiple edges
or selfloops. A total coloring is a mixture of ordinary vertex-coloring and edge-
coloring. That is, a total coloring of G is an assignment of colors to its vertices
and edges so that no two adjacent vertices have the same color, no two adjacent
edges have the same color, and no edge has the same color as one of its ends
[14]. The minimum number of colors required for a total coloring of a graph G
is called the total chromatic number of G, and denoted by χt(G). Figure 1(a)
illustrates a total coloring of a graph G using χt(G) = 4 colors. Let ∆(G) be
the maximum degree of G, then clearly ∆(G) + 1 ≤ χt(G), and hence ∆(G) + 1
is a lower bound on χt(G). On the other hand, it is conjectured that an upper
bound χt(G) ≤ ∆(G) + 2 holds for any simple graph G. However, this “total
coloring conjecture” has not been verified [8,14]. The total coloring problem is
to find a total coloring of a given graph G with the minimum number χt(G) of
colors. Since the problem is NP-hard [11], it is very unlikely that there exists an
efficient algorithm to solve the problem for general graphs. However, there would
exist an efficient algorithm for a restricted class of graphs such as “s-degenerated
graphs” and “partial k-trees” defined below.

A graph is said to be s-degenerated for an integer s ≥ 1 if it can be reduced
to a trivial graph by successive removal of vertices with degree ≤ s. For example,
the graph in Fig. 1(a) is 2-degenerated, and every planar graph is 5-degenerated.
An s-degenerated graph has a favorable property on the vertex-coloring: let
χ(G) be the chromatic number of a graph G, that is, the minimum number of
colors required for a vertex-coloring of G, then clearly χ(G) ≤ s + 1 for any

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 506–517, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Total Colorings of Degenerated Graphs 507

c3

c1

c1

c1

c1

c2

c2

c3

c2

c3

c4

c2

c4

c3

c4

c4

(a)

c3

c1

c1

c1

c1

c2 c2

c2

c3
c2

c3

c3

(b)

Fig. 1. (a) A total coloring of a graph G with χt(G) = 4 colors c1, c2, c3 and c4, and
(b) a semi-total coloring of G for U = V and F ⊆ E with χ(G; U, F) = 3 colors c1, c2

and c3.

s-degenerated graph G [6,8,12]. Let χ′(G) be the chromatic index of G, that is,
the minimum number of colors required for an edge-coloring of G. Then clearly
∆(G) ≤ χ′(G), and hence ∆(G) is a lower bound on χ′(G). An s-degenerated
graph has a favorable property also on an edge-coloring: χ′(G) = ∆(G) if G is
an s-degenerated graph and ∆(G) ≥ 2s [13]. Thus there is a simple sufficient
condition on ∆(G), i.e. ∆(G) ≥ 2s, for the chromatic index χ′(G) of an s-
degenerated graph G to be equal to the trivial lower bound ∆(G). However,
it has not been known whether there is a simple sufficient condition on ∆(G)
for the total chromatic number χt(G) to be equal to the trivial lower bound
∆(G) + 1.

A graph with bounded tree-width k is called a partial k-tree; the formal
definition of partial k-trees will be given in Section 2. Any partial k-tree is k-
degenerated, but the converse is not always true. Many combinatorial problems
can be efficiently solved for partial k-trees with bounded k [1,2,4]. In particular,
both the vertex-coloring problem and the edge-coloring problem can be solved
in linear time for partial k-trees [2,15]. However, no efficient algorithm has been
known for the total coloring problem on partial k-trees. Although the total col-
oring problem can be solved in polynomial time for partial k-trees by a dynamic
programming algorithm, the time complexity O(n1+24(k+1)

) is very high [7].
In this paper, we first present a sufficient condition on ∆(G) for the total

chromatic number χt(G) of an s-degenerated graph G to be equal to the trivial
lower bound ∆(G) + 1: we prove our main theorem that χt(G) = ∆(G) + 1 if
∆(G) ≥ 4s + 3. The condition ∆(G) ≥ 4s + 3 for the total chromatic number
is simple and interesting, compared to Vizing’s condition ∆(G) ≥ 2s for the
chromatic index. Our proof immediately yields an efficient algorithm to find a
total coloring of G with χt(G) = ∆(G) + 1 colors in time O(sn2) if ∆(G) ≥
4s + 3, where n is the number of vertices in G. The complexity can be improved
to O(n log n) in particular if ∆(G) ≥ 6s + 1 and s = O(1). Hence the total
coloring problem can be solved in time O(n log n) for a fairly large class of
graphs including all planar graphs with sufficiently large maximum degree. We

508 S. Isobe, X. Zhou, and T. Nishizeki

then show that one can find a total coloring of a given partial k-tree G with
χt(G) colors in linear time and hence the total coloring problem can be solved
in linear time for partial k-trees of bounded k.

2 Preliminaries

We denote by G = (V, E) a simple undirected graph with a vertex set V and an
edge set E. Let n = |V | throughout the paper. We denote by d(v, G) the degree
of a vertex v in G, and by ∆(G) the maximum degree of G. For a set F ⊆ E, we
denote by GF = (V, F) the spanning subgraph of G induced by the edge set F .
A spanning subgraph of G is called a forest of G if each connected component is
a tree. A forest of G is called a linear forest of G if each connected component
is a single isolated vertex or a path. For example, GF = (V, F) is a linear forest
of the graph G in Fig. 1(b) if F consists of the five edges drawn by solid lines.

One of the key ideas in the proof of our main theorem is to introduce a
“semi-total coloring,” which generalizes vertex-, edge- and total colorings. Let
C be a set of colors, let U be a subset of V , and let F be a subset of E. Then a
semi-total coloring of a graph G for U and F is a mapping f : U ∪ F → C such
that

(i) f(v) 6= f(w) if v, w ∈ U and (v, w) ∈ E;
(ii) f(e) 6= f(e′) if e, e′ ∈ F and e and e′ share a common end; and
(iii) f(v) 6= f(e) if v ∈ U , e ∈ F and e is incident to v.

The semi-total coloring is sometimes called a partial total coloring [14]. The
vertices in U = V − U and the edges in F = E − F are not colored by f . Figure
1(b) depicts a semi-total coloring of the graph G in Fig. 1(a) for U = V and F ,
where C = {c1, c2, c3} and all edges in F are drawn by solid lines.

The minimum number of colors required for a semi-total coloring of G for U
and F is called the semi-total chromatic number of G for U and F , and is denoted
by χ(G; U, F). Then obviously ∆(GF) + 1 ≤ χ(G; V, F), where GF = (V, F) is
a spanning subgraph of G. Clearly, a total coloring of G is a semi-total coloring
of G for U = V and F = E; a vertex-coloring of G is a semi-total coloring of G
for U = V and F = ∅; and an edge-coloring of G is a semi-total coloring of G
for U = ∅ and F = E.

Another idea is a “superimposing” of colorings. Suppose that g is a semi-total
coloring of a graph G = (V, E) for U = V and F ⊆ E, h is an edge-coloring of
GF = (V, E − F), and g and h use no common color. Then, superimposing g on
h, one can obtain a total coloring f of G, and hence

χt(G) ≤ χ(G; V, F) + χ′(GF). (1)

Unfortunately, the total coloring f constructed from g and h may use more
than χt(G) colors even if g uses the minimum number χ(G; V, F) of colors and
h uses the minimum number χ′(GF) of colors, because the equality in Eq. (1)
does not always hold. For example, for the graph G in Fig. 1(b), χt(G) = 4,
χ(G; V, F) = 3, χ′(GF) = 2, and hence χt(G) < χ(G; V, F) + χ′(GF). However,

Total Colorings of Degenerated Graphs 509

we will show in Section 3 as the main theorem that if G is an s-degenerated
graph and ∆(G) ≥ 4s + 3 then there is a subset F ⊂ E such that the equality
in Eq. (1) holds and χ(G; V, F) + χ′(GF) = ∆(G) + 1, that is,

χt(G) = χ(G; V, F) + χ′(GF) = ∆(G) + 1. (2)

We will show in Section 4 that one can efficiently find a semi-total coloring g
of G for V and F with χ(G; V, F) colors and an edge-coloring h of GF with
χ′(GF) colors, and hence one can efficiently find a total coloring f of G with
χt(G) colors simply by superimposing g and h.

We now recursively define a k-tree: a graph G = (V, E) is a k-tree if it is a
complete graph of k vertices or it has a vertex v ∈ V of degree k whose neighbors
induce a clique of size k and the graph G−{v} obtained from G by deleting the
vertex v and all edges incident to v is again a k-tree. We then define a partial
k-tree: a graph is a partial k-tree if it is a subgraph of a k-tree [1,2,15]. The graph
in Fig. 1(a) is indeed a partial 3-tree. In this paper we assume that k = O(1).

For an integer s ≥ 1, a graph G is defined to be s-degenerated (or s-inductive)
if G can be reduced to a trivial graph by the successive removal of vertices having
degree at most s [6,8,16]. We do not assume that s = O(1). By the definition of an
s-degenerated graph G = (V, E), there exists a numbering ϕ : V → {1, 2, · · · , n}
such that any vertex v ∈ V has at most s neighbors numbered by ϕ with integers
larger than ϕ(v), that is,

|{x ∈ V : (v, x) ∈ E, ϕ(v) < ϕ(x)}| ≤ s.

Such a numbering ϕ is called an s-numbering of G. An s-numbering of any
s-degenerated graph G can be found in linear time [9].

For a vertex v in a graph G = (V, E) and a numbering ϕ : V → {1, 2, · · · , n},
we write

Efw
ϕ (v, G) = {(v, x) ∈ E : ϕ(v) < ϕ(x)};

Ebw
ϕ (v, G) = {(v, x) ∈ E : ϕ(v) > ϕ(x)};

dfw
ϕ (v, G) = |Efw

ϕ (v, G)|; and

dbw
ϕ (v, G) = |Ebw

ϕ (v, G)|.

The edges in Efw
ϕ (v, G) are called the forward edges of v, and those in Ebw

ϕ (v, G)
the backward edges of v. Clearly d(v, G) = dfw

ϕ (v, G) + dbw
ϕ (v, G). A graph G

is s-degenerated if and only if there is a numbering ϕ such that dfw
ϕ (v, G) ≤ s

for any vertex v ∈ V . An s-degenerated graph has the following two favorable
properties on colorings, which have been mentioned in Introduction.

Lemma 1. For any s-degenerated graph G, the following (a) and (b) hold:

(a) χ(G) ≤ s + 1 [6,8,9,12]; and
(b) if ∆(G) ≥ 2s, then χ′(G) = ∆(G) [13,16].

510 S. Isobe, X. Zhou, and T. Nishizeki

3 Main Theorem

In this section we prove the following main theorem.

Theorem 1. If G is an s-degenerated graph and ∆(G) ≥ 4s + 3, then χt(G) =
∆(G) + 1.

A result by Borodin et al. on a “total list coloring” [3, Theorem 7] implies that
χt(G) = ∆(G) + 1 if G is an s-degenerated graph and ∆(G) ≥ 2s2. Theorem 1
is better than these results.

We show in the remainder of this section that there is a subset F ⊂ E
satisfying Eq. (2). F will be found as a union of s + 1 edge-disjoint linear forests
of G.

We first show in the following lemma that G can be decomposed to s + 1
edge-disjoint forests.

Lemma 2. If G = (V, E) is an s-degenerated graph, then there exists a partition
{F1, F2, · · · , Fs+1} of E such that, for any index j ∈ {1, 2, · · · , s + 1},

(a) GFj is a forest; and
(b) d(v, GFj) ≥ 3 if d(v, G) ≥ 4s + 3.

Proof. Let G = (V, E) be an s-degenerated graph, and let ϕ : V → {1, 2, · · · , n}
be an s-numbering of G.

We first find F1, F2, · · · , Fs+1. Construct a new graph G̃ = (Ṽ , Ẽ) from G as
follows: for any vertex v ∈ V ,

– let t =
⌈
dbw
ϕ (v, G)/(s + 1)

⌉
, and replace v with its t + 1 copies vfw, v1

bw, v2
bw,

· · · , vtbw;
– attach all forward edges in Efw

ϕ (v, G) to the copy vfw; and
– let {E1

bw, E2
bw, · · · , Et

bw} be any partition of the set Ebw
ϕ (v, G) of backward

edges such that

|Ei
bw|

{
= s + 1 if 1 ≤ i ≤ t − 1;
≤ s + 1 if i = t, (3)

and attach all edges in Ei
bw to the copy vibw for each i = 1, 2, · · · , t.

Clearly, G̃ is bipartite. Since ϕ is an s-numbering of G, d(vfw, G̃)=dfw
ϕ (v, G)≤

s for any vertex v ∈ V . By Eq. (3) d(vibw, G̃) ≤ s + 1 for any vertex v ∈ V and
any index i ∈ {1, 2, · · · , t}. Thus we have ∆(G̃) ≤ s + 1.

Since G̃ is bipartite and ∆(G̃) ≤ s+1, König’s theorem implies that χ′(G̃) =
∆(G̃) ≤ s + 1 [6,8], and hence G̃ has an edge-coloring f : Ẽ → C for a set
C = {c1, c2, · · · , cs+1} of s + 1 colors. For each color cj ∈ C, let F̃j be the color
class of cj , that is, F̃j = {e ∈ Ẽ : f(e) = cj}, and let Fj be the set of edges in
E corresponding to F̃j . Since f is an edge-coloring of G̃, {F̃1, F̃2, · · · , F̃s+1} is a
partition of Ẽ, and hence {F1, F2, · · · , Fs+1} is a partition of E. Thus we have
found F1, F2, · · · , Fs+1.

Total Colorings of Degenerated Graphs 511

We then prove that Fj found as above satisfies (a) and (b) for any index
j ∈ {1, 2, · · · , s + 1}.

(a) It suffices to prove that the s-numbering ϕ of G is indeed a 1-numbering
of GFj

, that is, dfw
ϕ (v, GFj

) ≤ 1 for any vertex v ∈ V . By the construction of G̃,
all forward edges of v in G are attached to the copy vfw in G̃. At most one of
them is colored with cj by f since f is an edge-coloring of G̃. Thus F̃j contains
at most one edge incident to vfw, and hence we have dfw

ϕ (v, GFj
) ≤ 1.

(b) Let v be any vertex in V with d(v, G) ≥ 4s + 3.
We first claim that d(vibw, G̃) = s+1 for each i ∈ {1, 2, 3}. By the construction

of G̃, d(vibw, G̃) = s + 1 if i ≤ ⌊
dbw
ϕ (v, G)/(s + 1)

⌋
. It therefore suffices to prove

that
⌊
dbw
ϕ (v, G)/(s + 1)

⌋ ≥ 3. Clearly, dfw
ϕ (v, G) ≤ s and d(v, G) = dfw

ϕ (v, G) +
dbw
ϕ (v, G). Hence we have

⌊
dbw
ϕ (v, G)
s + 1

⌋

=

⌊
d(v, G) − dfw

ϕ (v, G)
s + 1

⌋

≥
⌊

4s + 3 − s

s + 1

⌋

= 3. (4)

Thus we have proved the claim.
We then prove that d(v, GFj) ≥ 3. The edge-coloring f of G̃ uses exactly

s + 1 colors in C, and d(vibw, G̃) = s + 1 for each i ∈ {1, 2, 3}. Therefore exactly
one of the edges incident to vibw in G̃ is colored with cj ∈ C by f . We thus have
d(v, GFj

) ≥ 3. 2

One can construct a linear forest from a forest as in the following lemma.

Lemma 3. Let T = (V, F) be a forest, let S = {v ∈ V : d(v, T) ≥ 3}, and let
U be any subset of S. Then T has a linear forest TL = (V, L), L ⊆ F , such that
every vertex in U is an end of a path in TL, and every vertex in S − U is an
interior vertex of a path in TL, that is,

d(v, TL) =
{

1 if v ∈ U ; and
2 if v ∈ S − U.

(5)

Furthermore L can be found in linear time.

Sketchy Proof. Regard each tree in forest T as a rooted tree. Then one can
easily find a linear forest of the tree by the breadth-first search. 2

By Lemmas 2 and 3 one can find s + 1 linear forests GL1 , GL2 , · · · , GLs+1 of
G as in the following lemma.

Lemma 4. If G = (V, E) is an s-degenerated graph and ∆(G) ≥ 4s + 3, then
for any partition {U1, U2, · · · , Us+1} of V there exist mutually disjoint subsets
L1, L2, · · · , Ls+1 of E such that

(a) for each j ∈ {1, 2, · · · , s + 1}, GLj
is a linear forest, and

d(v, GLj
) ≤

{
1 if v ∈ Uj ;
2 if v ∈ V − Uj ;

(6)

512 S. Isobe, X. Zhou, and T. Nishizeki

(b) ∆(GF) = 2s + 1, where F = L1 ∪ L2 ∪ · · · ∪ Ls+1; and
(c) ∆(GF) + ∆(GF) = ∆(G), where F = E − F .

Proof. Let G = (V, E) be an s-degenerated graph, and let ∆(G) ≥ 4s + 3. We
find L1, L2, · · · , Ls+1 as follows.

We first construct a new graph G∗ = (V ∗, E∗) from G as follows: for each
vertex v ∈ V with d(v, G) < 4s + 3, add (4s + 3) − d(v, G) dummy vertices and
join each of them with v by a dummy edge. Clearly

d(v, G∗) =

d(v, G) if v ∈ V and d(v, G) ≥ 4s + 3;
4s + 3 if v ∈ V and d(v, G) < 4s + 3; and
1 if v ∈ V ∗ − V ,

(7)

and hence
V = {v ∈ V ∗ : d(v, G∗) ≥ 4s + 3}. (8)

Since ∆(G) ≥ 4s + 3,
∆(G∗) = ∆(G). (9)

We then find s + 1 forests of G∗. Since G is s-degenerated, G∗ is also s-
degenerated. Therefore, applying Lemma 2 to G∗, one can know that there exists
a partition {F1, F2, · · · , Fs+1} of E∗ such that, for any index j ∈ {1, 2, · · · , s+1},

(i) G∗
Fj

is a forest; and
(ii) d(v, G∗

Fj
) ≥ 3 if d(v, G∗) ≥ 4s + 3.

By (ii) and Eqs. (7) and (8) we have V = {v ∈ V ∗ : d(v, G∗
Fj

) ≥ 3}.
We then find s+1 linear forests of G∗. Let {U1, U2, · · · , Us+1} be any partition

of V . For each j ∈ {1, 2, · · · , s + 1}, apply Lemma 3 to T = G∗
Fj

, S = V = {v ∈
V ∗ : d(v, G∗

Fj
) ≥ 3} and U = Uj ⊆ V , then one can know that the forest G∗

Fj

has a linear forest G∗
L∗

j
= (V ∗, L∗

j) such that

d(v, G∗
L∗

j
) =

{
1 if v ∈ Uj ; and
2 if v ∈ V − Uj .

(10)

Since L∗
j ⊆ Fj , 1 ≤ j ≤ s + 1, and F1, F2, · · · , Fs+1 are mutually disjoint with

each other, L∗
1, L

∗
2, · · · , L∗

s+1 are also mutually disjoint with each other.
We then find L1, L2, · · · , Ls+1 from L∗

1, L
∗
2, · · · , L∗

s+1; for each j ∈{1, 2, · · · , s+
1}, let Lj be the set of all non-dummy edges in L∗

j , that is, Lj = L∗
j ∩ E. Then

Lj ⊆ L∗
j . Furthermore, one can easily observe that

d(v, GLj)

{≤ d(v, G∗
L∗

j
) if v ∈ V ;

= d(v, G∗
L∗

j
) if v ∈ V and d(v, G) ≥ 4s + 3. (11)

Since L∗
1, L

∗
2, · · · , L∗

s+1 are mutually disjoint with each other, L1, L2, · · · , Ls+1
are also mutually disjoint with each other. Thus we have found L1, L2, · · · , Ls+1.

We shall prove that L1, L2, · · · , Ls+1 and F = L1 ∪ L2 ∪ · · · ∪ Ls+1 satisfy
(a)–(c).

Total Colorings of Degenerated Graphs 513

(a) Since Lj ⊆ L∗
j and G∗

L∗
j

is a linear forest of G∗, GLj
is a linear forest

of G. Let v be any vertex in V . If v ∈ Uj , then by Eqs. (10) and (11) we have
d(v, GLj

) ≤ d(v, G∗
L∗

j
) = 1. Similarly, if v ∈ V − Uj , then we have d(v, GLj

) ≤
d(v, G∗

L∗
j
) = 2.

(b) We first prove that ∆(GF) ≤ 2s + 1. Let F ∗ = L∗
1 ∪ L∗

2 ∪ · · · ∪ L∗
s+1. Let

v be any vertex in V , and let j be the index such that v ∈ Uj . Then by Eq. (10)
we have

d(v, G∗
F∗) = 2s + 1. (12)

Since F ⊆ F ∗, we have d(v, GF) ≤ d(v, G∗
F∗) = 2s + 1. Thus we have ∆(GF) ≤

2s + 1.
We then prove that ∆(GF) ≥ 2s + 1. Since ∆(G) ≥ 4s + 3, G has a vertex v

with d(v, G) ≥ 4s + 3. Since F = L1 ∪ L2 ∪ · · · ∪ Ls+1, we have

d(v, GF) =
s+1∑

i=1

d(v, GLi
). (13)

By Eqs. (11), (12) and (13) we have d(v, GF) = d(v, G∗
F∗) = 2s + 1. We thus

have 2s + 1 ≤ ∆(GF).
(c) Clearly, ∆(GF) + ∆(GF) ≥ ∆(G) for any set F ⊆ E. We shall therefore

prove that ∆(GF) + ∆(GF) ≤ ∆(G), that is, ∆(GF) ≤ ∆(G) − ∆(GF). Since
E ⊆ E∗ and F = F ∗ ∩ E,

E − F ⊆ E∗ − F ∗. (14)

For any vertex v ∈ V , by (b) above and Eqs. (9), (12) and (14) we have

d(v, GF) = d(v, GE−F)
≤ d(v, G∗

E∗−F∗)
= d(v, G∗) − d(v, G∗

F∗)
≤ ∆(G∗) − (2s + 1)
= ∆(G) − ∆(GF).

Thus we have ∆(GF) ≤ ∆(G) − ∆(GF). 2

By Lemma 1(a) any s-degenerated graph G has a vertex-coloring with s + 1
colors. Choose the set of color classes as the partition {U1, U2, · · · , Us+1} in
Lemma 4. Then there is a subset F ⊂ E satisfying Eq. (2), as shown in the
following theorem.

Theorem 2. If G = (V, E) is an s-degenerated graph and ∆(G) ≥ 4s + 3, then
there exists a subset F of E such that

(a) χ(G; V, F) = ∆(GF) + 1;
(b) χ′(GF) = ∆(GF), where F = E − F ;
(c) ∆(GF) + ∆(GF) = ∆(G); and
(d) χt(G) = χ(G; V, F) + χ′(GF) = ∆(G) + 1.

514 S. Isobe, X. Zhou, and T. Nishizeki

Proof. Let G = (V, E) be an s-degenerated graph, and let ∆(G) ≥ 4s+ 3. Since
G is s-degenerated, by Lemma 1(a) χ(G) ≤ s + 1 and hence G has a vertex-
coloring f : V → C for a set C = {c1, c2, · · · , cs+1} of s + 1 colors. For each
color cj ∈ C, let Uj be the color class of cj , that is, Uj = {v ∈ V : f(v) = cj}.
Then {U1, U2, · · · , Us+1} is a partition of V and each of U1, U2, · · · , Us+1 is an
independent set of G. By Lemma 4 for the partition {U1, U2, · · · , Us+1} there
exist mutually disjoint subsets L1, L2, · · · , Ls+1 of E satisfying the conditions
(a)–(c) in Lemma 4. Since the condition (c) in Theorem 2 is the same as (c) in
Lemma 4, we shall show that F = L1 ∪ L2 ∪ · · · ∪ Ls+1 satisfies the conditions
(a), (b) and (d) in Theorem 2.

(a) Clearly, χ(G; V, F) ≥ ∆(GF) + 1 for any set F ⊆ E. Therefore it suffices
to prove that χ(G; V, F) ≤ ∆(GF) + 1.

For each j ∈ {1, 2, · · · , s + 1}, we first construct a semi-total coloring gj
of G for Uj and Lj with two colors, as follows. Since GLj

is a linear forest by
Lemma 4(a), we have χ′(GLj

) = ∆(GLj
) ≤ 2 and hence GLj

has an edge-coloring
fj : Lj → Cj for a set Cj of two colors. Since |Cj | = 2 and d(v, GLj

) ≤ 1 for each
vertex v ∈ Uj by Eq. (6), there is a color cv ∈ Cj such that the edge-coloring
fj does not assign cv to any edge incindet to v. We then extend the mapping
fj : Lj → Cj to a mapping gj : Uj ∪ Lj → Cj , as follows:

gj(x) =
{

fj(x) for each edge x ∈ Lj ; and
cx for each vertex x ∈ Uj .

(15)

Then gj is a semi-total coloring of G for Uj and Lj , that is, gj satisfies the three
conditions (i), (ii) and (iii) on a semi-total coloring mentioned in Section 2, as
follows. Since Uj is an independent set of G, clearly gj satisfies the condition
(i) for U = Uj and F = Lj . Since fj is an edge-coloring of GLj , gj satisfies the
condition (ii). By Eq. (15) gj satisfies the condition (iii).

From g1, g2, · · · , gs+1 above we then construct a semi-total coloring g of G
for V and F with ∆(GF) + 1 colors, as follows. One may assume that any
two of the semi-total colorings g1, g2, · · · , gs+1 use no common color, that is,
Cp ∩ Cq = ∅ for any p and q, 1 ≤ p < q ≤ s + 1. Superimpose g1, g2, · · · , gs+1,
and let g : V ∪F → C1 ∪C2 ∪ · · · ∪Cs+1 be the resulting coloring. Then one can
easily observe that g is a semi-total coloring of G for V and F . The semi-total
coloring g uses

∑s+1
i=1 |Ci| = 2(s+1) colors, and ∆(GF) = 2s+1 by Lemma 4(b).

Therefore we have χ(G; V, F) ≤ 2(s + 1) = ∆(GF) + 1.
(b) Since G is s-degenerated, the subgraph GF of G is also s-degenerated.

Since ∆(G) ≥ 4s+3, by the conditions (b) and (c) in Lemma 4 we have ∆(GF) =
∆(G) − ∆(GF) ≥ (4s + 3) − (2s + 1) = 2s + 2 > 2s. Therefore, by Lemma 1(b)
we have χ′(GF) = ∆(GF).

(d) By (a), (b) and (c) we have χ(G; V, F)+χ′(GF) = ∆(GF)+1+∆(GF) =
∆(G) + 1. Thus we shall prove that χt(G) = χ(G; V, F) + χ′(GF).

By Eq. (1) χt(G) ≤ χ(G; V, F) + χ′(GF). Clearly χt(G) ≥ ∆(G) + 1 =
χ(G; V, F) +χ′(GF). Thus we have χt(G) = χ(G; V, F) +χ′(GF) = ∆(G) + 1. 2

Theorem 2(d) implies Theorem 1.

Total Colorings of Degenerated Graphs 515

4 Algorithms

From the proofs of Lemmas 2–4 and Theorem 2, one can know that the following
algorithm correctly finds a total coloring of an s-degenerated graph G = (V, E)
with ∆(G) + 1 colors if ∆(G) ≥ 4s + 3.

[Total-Coloring Algorithm]

Step 1. Find a vertex-coloring of a given s-degenerated graph G with s + 1
colors, and let {U1, U2, · · · , Us+1} be the set of color classes.

Step 2. Construct a graph G∗ = (V ∗, E∗) from G by adding dummy vertices
and edges, as in the proof of Lemma 4.

Step 3. Construct a bipartite graph G̃∗ = (Ṽ ∗, Ẽ∗) from G∗ by splitting each
vertex in G∗, as in the proof of Lemma 2. Note that ∆(G̃∗) ≤ s + 1.

Step 4. Find an edge-coloring of the bipartite graph G̃∗ with s + 1 colors, and
let {F̃ ∗

1 , F̃ ∗
2 , · · · , F̃ ∗

s+1} be the set of color classes. Let {F1, F2, · · · , Fs+1} be
the partition of E∗ corresponding to {F̃ ∗

1 , F̃ ∗
2 , · · · , F̃ ∗

s+1}, where G∗
Fj

, 1 ≤
j ≤ s + 1, is a forest of G∗.

Step 5. From each forest G∗
Fj

of G∗, 1 ≤ j ≤ s + 1, find a linear forest G∗
L∗

j
of

G∗ such that

d(v, G∗
L∗

j
) =

{
1 if v ∈ Uj ;
2 if v ∈ V − Uj ,

as in the proof of Lemma 3, where Uj is a color class found in Step 1.
Step 6. From each linear forest G∗

L∗
j

of G∗, obtain a linear forest GLj of G such
that

d(v, GLj
) ≤

{
1 if v ∈ Uj ;
2 if v ∈ V − Uj ,

by deleting all dummy vertices and edges as in the proof of Lemma 4.
Step 7. For each j, find an edge-coloring fj of the linear forest GLj

with two
colors, and extend fj to a semi-total coloring gj of G for Uj and Lj as in the
proof of Theorem 2.

Step 8. Superimposing g1, g2, · · · , gs+1, obtain a semi-total coloring g of G for
V and F = L1 ∪ L2 ∪ · · · ∪ Ls+1 with ∆(GF) + 1 colors, as in the proof of
Theorem 2.

Step 9. Find an edge-coloring h of GF with ∆(GF) colors.
Step 10. Superimposing g and h, obtain a total coloring of G with ∆(G) + 1

colors.

We then show that all steps can be done in time O(sn2), using an algo-
rithm for edge-coloring bipartite graphs [5] and an algorithm for edge-coloring
s-degenerated graphs [15,16].

One can easily find the vertex-coloring of G in time O(sn) by a simple greedy
algorithm based on an s-numbering of G [6,8,9,12]. Note that G has at most sn
edges. Thus Step 1 can be done in time O(sn).

516 S. Isobe, X. Zhou, and T. Nishizeki

By the construction of the graph G∗, we have |V ∗−V | = |E∗−E| ≤ (4s+3)n
and hence

|V ∗| ≤ n + (4s + 3)n = 4(s + 1)n, and
|E∗| ≤ sn + (4s + 3)n = (5s + 3)n.

Thus one can construct the graph G∗ in time O(sn), and hence Step 2 can be
done in time O(sn).

Clearly
|Ẽ∗| = |E∗| ≤ (5s + 3)n, and
|Ṽ ∗| ≤ 2|Ẽ∗| ≤ 2(5s + 3)n.

Therefore one can construct G̃∗ from G∗ in time O(sn). Thus Step 3 can be done
in time O(sn).

Since G̃∗ is bipartite and ∆(G̃∗) ≤ s + 1, one can find the edge-coloring of
G̃∗ in time O(|Ẽ∗| log ∆(G̃∗) = O(sn log s) [5]. Note that s ≤ n. Thus Step 4
can be done in time O(sn log n).

By Lemma 2, for each forest G∗
Fj

, 1 ≤ j ≤ s + 1, one can find the lin-
ear forest G∗

L∗
j

in time O(|V ∗|) = O(sn). Therefore the s + 1 linear forests

G∗
L∗1

, G∗
L∗2

, · · · , G∗
L∗

s+1
can be found in time O((s + 1)sn) = O(s2n). Thus Step 5

can be done in time O(s2n).
From each linear forest G∗

L∗
j
, 1 ≤ j ≤ s + 1, one can obtain the linear forest

GLj in time O(|L∗
j |) = O(sn) simply by deleting dummy vertices and edges.

Therefore one can obtain the s + 1 linear forests GL1 , GL2 , · · · , GLs+1 in time
O((s + 1)sn) = O(s2n). Thus Step 6 can be done in time O(s2n).

For each j, 1 ≤ j ≤ s+1, one can easily find an edge-coloring fj of the linear
forest GLj

with two colors in time O(|Lj |) = O(n), and can extend fj to the
semi-total coloring gj in time O(n). Therefore Step 7 can be done in time O(sn).

Superimposing g1, g2, · · · , gs+1, one can obtain the semi-total coloring g of G
for V and F in time O(sn). Thus Step 8 can be done in time O(sn).

Since GF is s-degenerated, one can find the edge-coloring h of GF in time
O(sn2) [10, 15 p.604, 16 p.8]. Therefore Step 9 can be done in time O(sn2).

Superimposing g and h, one can obtain a total coloring of G with
χt(G) = ∆(G) + 1 colors in time O(sn). Thus Step 10 can be done in time
O(sn).

Thus all Steps 1–10 above can be done in time O(sn2), and hence we have
the following theorem.

Theorem 3. A total coloring of an s-degenerated graph G using χt(G)=∆(G)+
1 colors can be found in time O(sn2) if ∆(G) ≥ 4s + 3.

The complexity O(sn2) can be improved as in the following two theorems.

Theorem 4. A total coloring of an s-degenerated graph G using χt(G)=∆(G)+
1 colors can be found in time O(n log n) if ∆(G) ≥ 6s + 1 and s = O(1).

Total Colorings of Degenerated Graphs 517

Sketchy Proof. Use an O(n log n) algorithm in [16] to find an edge-coloring of
GF . 2

Theorem 5. The total coloring problem can be solved in linear time for partial
k-trees G with bounded k.

Sketchy Proof. For the case where ∆(G) < 4k + 3, use the algorithm in [7]
to find a total coloring of G in time O(nχ24(k+1)

t) = O(n). For the case where
∆(G) ≥ 4k + 3, use our algorithm to find a total coloring of G, but use a linear-
time algorithm in [15] to find an edge-coloring of GF in Step 9. 2

References

1. S. Arnborg and J. Lagergren, Easy problems for tree-decomposable graphs, J.
Algorithms, 12(2), pp. 308–340, 1991.

2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, 11(4), pp. 631–643, 1990.

3. O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colour-
ings of multigraphs, J. Combinatorial Theory, Series B, 71, pp. 184–204, 1997.

4. R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively con-
structed graph families, Algorithmica, 7, pp. 555–581, 1992.

5. R. Cole, K. Ost and S. Schirra, Edge-coloring bipartite multigraphs in O(E log D)
time, Combinatorica, 21, pp. 5–12, 2001.

6. R. Diestel, Graph Theory, Springer, New York, 1997.
7. S. Isobe, X. Zhou and T. Nishizeki, A polynomial-time algorithm for finding total

colorings of partial k-trees, Int. J. Found. Comput. Sci., 10(2), pp. 171–194, 1999.
8. T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, New

York, 1995.
9. D. Matula and L. Beck, Smallest-last ordering and clustering and graph coloring

algorithms, J. Assoc. Comput. Mach., 30, pp. 417–427, 1983.
10. T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland,

Amsterdam, 1988.
11. A. Sánchez-Arroyo. Determining the total colouring number is NP-hard, Discrete

Math., 78, pp. 315–319, 1989.
12. G. Szekeres and H. Wilf, An inequality for the chromatic number of a graph, J.

Combinatorial Theory, 4, pp. 1–3, 1968.
13. V. G. Vizing, Critical graphs with given chromatic class (in Russian), Metody

Discret Analiz., 5, pp. 9–17, 1965.
14. H. P. Yap, Total Colourings of Graphs, Lect. Notes in Math., 1623, Springer, Berlin,

1996.
15. X. Zhou, S. Nakano and T. Nishizeki, Edge-coloring partial k-trees, J. Algorithms,

21, pp. 598–617, 1996.
16. X. Zhou and T. Nishizeki, Edge-coloring and f -coloring for various classes of

graphs, J. Graph Algorithms and Applications,
http://www.cs.brown.edu/publications/jgaa/, 3(1), pp. 1–18, 1999.

Decidable Properties of Graphs of All-Optical
Networks

Luciano Margara1 and Janos Simon2

1 Computer Science Department, University of Bologna.
margara@cs.unibo.it

2 Computer Science Department, University of Chicago.
simon@cs.uchicago.edu

Abstract. We examine several decidability questions suggested by ques-
tions about all-optical networks, related to the gap between maximal load
and number of colors (wavelengths) needed for a legal routing on a fixed
graph. We prove the multiple fiber conjecture: for every fixed graph G
there is a number LG such that in the communication network with LG

parallel fibers for each edge of G, there is no gap (for any load). We
prove that for a fixed graph G the existence of a gap is computable, and
give an algorithm to compute it. We develop a decomposition theory for
paths, defining the notion of prime sets of paths that are finite building
blocks for all loads on a fixed graph. Properties of such decompositions
yield our theorems.

1 Introduction

The problem: standard model. Variants of the wavelength assignment prob-
lem for all-optical networks have been extensively studied both because of possi-
ble applications, and because of the intrinsic interest of the combinatorial opti-
mization problems suggested by the model [2,3,4,5,7,9,10,11,12,15,16,17,19,23].
We first present the main results informally: a more precise formulation, and
justification for the model will follow.

Consider a fixed (possibly directed) multigraph G (the interconnection graph)
and a collection I of paths (associated to point-to-point communication re-
quests), find a (minimum cardinality) coloring of the paths so that any two
paths sharing an edge have different colors. In this paper we do not consider
the problem of how to associate paths to communication requests specified by
pairs of source/destination nodes. We will assume that the routing scheme is
given as part of the input, or that it is uniquely determined by the topology of
the network we are considering (as in the case of optical trees). The problem of
assigning colors (wavelengths) to a given set of communication paths, so that
paths sharing an edge get different colors is the wavelength assignment problem.

The problem of finding an optimal color assignment is NP-hard even if we
restrict our attention to very simple 1-fiber network families such as rings or
trees [4,5,6]. In some cases, there exist polynomial time greedy algorithms (see for
example [21,9]) which provide approximately optimal solutions for this problem.

A natural lower bound to the number of colors necessary is the maximum load
L(I), the maximum number of paths through an edge. The maximum load bound

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 518–529, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Decidable Properties of Graphs of All-Optical Networks 519

is not tight (consider the clockwise oriented triangle and the instance consisting
of the requests {[1,3], [2,1], [3,2]}. The maximum load per edge is 2, and 3 colors
are necessary). We call the (worst) ratio of the number of colors to L(I) the gap
of the graph (this is a characteristic of the graph). Precise definitions are given
at the end of the section.

It would be very useful if we knew that for a given graph number of colors
equal to the maximum load was achievable, or if we had a precise estimate of
how bad this bound was. If an approximation algorithm achieved a number of
colors close to (gap)×(L(I)), we could accept the output as reasonably close to
the hard to compute true optimum.
Multiple fiber model. The multiple fiber model has been introduced indepen-
dently in [15] and in [12]. In this new model each edge of the interconnection
graph consists of k parallel fibers and the same wavelength can be used by at
most k distinct paths traveling through the same edge.

Evidence that in the multiple fiber model the gap between number of wave-
lengths and load (now the load is the load in the 1-fiber model divided by k) can
be significantly reduced (at least for some specific network topologies) is given
in [15] and in [12]. For example, in the clockwise oriented triangle mentioned
above, 2 fibers suffice to eliminate the gap.

In [15] we have stated the following Multiple Fiber Conjecture: For any
fixed graph G, there is a k (independent of the requests), so that if we consider
the graph with k parallel edges at each edge of G, there is no asymptotic gap.

Clearly, for any fixed instance, by using k=maximum load we can eliminate
the gap. The conjecture is that for every fixed graph, we can eliminate the gap
for all possible instances.

While trying to settle the conjecture we observed that it was not clear that
other, apparently natural questions about the gap were even decidable. For ex-
ample, given a graph G, is there a request that will produce a (pointwise) gap?

While for any given instance it is clearly decidable whether the minimal
number of colors equals the maximum load, it is not clear that it is decidable
whether there is an instance that produces a gap. A path may appear an arbitrary
number of times in an instance, and there is no obvious argument why there
should be a computable bound N on the multiplicities of paths, such that a gap,
if it exists, will be present for instances with all the requests less than N .

The existence of an (asymptotic) gap (see precise definition at the end of
section) is even more problematic, since it depends on the existence of an infinite
sequence of instances, and an argument that the sequence of pointwise gaps
converges to a value g > 1.

The main results of this paper are:
Decidability of Gap Existence. Both pointwise and asymptotic gaps have
clean combinatorial characterizations (Theorem 4).
Gap Computation. The asymptotic gap is computable (Theorem 7).
Multiple Fiber Conjecture. is now the Multiple fiber Theorem (Theorem 14).
In the process of proving these theorems, we develop a decomposition theory for
sets of paths on a fixed graph into prime configurations, that, we believe is of

520 L. Margara and J. Simon

independent interest. Prime configurations provide clean proofs of the kind of
compactness results we need to prove, and, we hope that they will be useful to
tackle other problems in the area.

We present more precise definitions below. A (single-fiber) all-optical network
is a graph G = (V, E). The vertices V = {1, . . . , n} are the nodes of the network
and E ⊆ {(i, j) | 1 ≤ i, j ≤ n} is the set of node-to-node connections available
in the network. A k-fiber network is a multigraph, where, for each pair u, v of
vertices, either there is no edge (u, v) or there are exactly k parallel (u, v) edges.
From now on we will use “wavelengths” and “colors” interchangeably. A legal
wavelength assignment of cardinality m for a set I of paths on a graph is a map
W from I to [1, . . . , m] (the colors), such that if two elements p, q ∈ I share
an edge then W (p) 6= W (q), i.e., they are given distinct colors. This defines
two variant models, depending on the interpretation of “. . . sharing an edge. . . ”:
in the directed model both (directed) paths contain the same directed edge,
while in the undirected model both (undirected) paths share an edge. In both
models we can consider graphs with multiple edges: we assume that we have a
fixed number k of parallel edges between any pair of connected vertices. The
wavelength assignment problem can be formulated as follows:

Given a graph G and a set of paths I on G, find a legal coloring assignment W
for I such that the cardinality of W is the minimum among all possible legal
coloring assignments W for I.

We will denote this quantity by W (G, I). We will omit the variable G if it is
clear from the context. The technology we are modeling is optical fiber connec-
tions, with reserved circuits between points. This is a possible implementation of
high bandwidth long-term services like on-demand video, remote medical imag-
ing, distributed supercomputing, etc. The vertices of the multigraph correspond
to nodes of the communication network, the edges to optical fibers. For k > 1
we assume that there are k fibers between any pair of connected nodes (and
each node has an optical switch that connects any incoming fiber to any outgo-
ing fiber). Colors correspond to different wavelengths that can be transmitted
simultaneously by a fiber.

The single-fiber model has been exhaustively studied (see [2] for a survey:
the bibliography has a number of more recent papers): for the k-fiber variant,
see [15] [12].

Number of colors and network congestion. The maximum load L(I), de-
fined as follows. The load of an edge, L(e) is the number of paths that contain
e, and L(I) is the maximum, over all edges e of L(e). (In the directed model we
consider both the path and the edge as directed).

A legal k-wavelength assignment W of cardinality m for a set of paths I is a
map from I to [1, . . . , m] such that if k + 1 elements p1, . . . , pk+1 ∈ I share an
edge then there exist 1 ≤ i, j ≤ k + 1 such that W (pi) 6= W (pj) (k is the number
of parallel fibers: in a legal assignment no two connections sharing a fiber have
the same color).

Decidable Properties of Graphs of All-Optical Networks 521

Let I be a set of paths on a graph G = (V, E). We define the conflict graph
Gc = (Vc, Ec) for I, and G as having vertices Vc = I and edges Ec = {(pi, pj) |
pi and pj share an edge of G}.

We denote by W (I, G, k) the cardinality of the best possible legal k-coloring
assignment for I. It is easy to verify that W (I, G, 1) is equal to the chromatic
number of Gc.

Let L(I, G, α), the load of α be the maximum number of paths of I sharing
the edge α. Let L(I, G) be the maximum of L(I, G, α) over all the edges α of G.
It is easy to verify that W (I, G, k) ≥ d 1

kL(I, G)e.
In the 1-fiber case (k=1) L(I, G) is called the congestion of the network.

Similarly, we will call the quantity d 1
kL(I, G)e the k-congestion (or, when k is

clear from the context) simply, congestion.
We say that a set of paths I has a point-wise k-gap g on G if W (I, G, k) >

d 1
kL(I, G)e, i.e. the number of colors needed is greater than the congestion.

Fix a graph G. Let S = {Ii}i∈N be an increasing sequence (in the ”multiset
inclusion” ordering) of multisets of paths on G. We say that S produces an
asymptotic k-gap g on G if and only if

for every i ≥ 1 :
W (Ii, G, k)
d 1
k L(Ii, G)e ≥ g.

We denote by Gap(S, G, k) the maximum k-gap that S produces on G. We define
the k-gap of G, denoted by Gap(G, k), as the supremum of Gap(S, G, k) taken
over all possible sequences S. Again, we will omit k when its value is clear from
the context. We define N(G) as the minimum k such that Gap(G, k) = 1, if such
a k exists. Sometimes, we will say that there is no gap or that there is a gap if g
is 1 or greater than 1, respectively. In the sequel, for shortness, we will use ’set’
also to denote ’multiset’.

2 Prime Sets of Paths

We characterize potential minimal instances that have gaps, and then show
that the maximum load of these instances can be bounded. We shall use the
terminology “set of paths” and “instance” interchangeably. For simplicity, in this
conference version of the paper we specialize the development of this section to
single fiber networks.

Definition 1 (Prime set of paths). A set S of paths is prime if it cannot be
partitioned into two nonempty sets P and Q with L(S) = L(P) + L(Q).

As an example, consider again the clockwise oriented triangle and the in-
stance consisting of the requests { [1,3], [2,1], [3,2]}. It is a prime set of paths.
Otherwise, without loss of generality, one of the nonempty subsets of paths con-
tains a single path, say [1,3]. It has load 1, while the other subset has load 2,
which is the same as the load of the instance. In the next theorem we show
that testing primality is an NP-complete problem even if we restrict to simple
networks, e.g., 2 dimensional meshes and to set of paths of load 3 (while path
set primality testing is in P for instances of load 2).

522 L. Margara and J. Simon

Theorem 2. Testing primality of sets of paths of load at most 2 for a general
1-fiber network is in P while testing primality of sets of paths of load 3 for 2
dimensional 1-fiber grid is NP -complete.

The proof will be presented in the full journal version.

Definition 3 (Complete set of paths). A set S of paths is complete if for
every edge e ∈ E we have L(e) = L(S).

Every prime configuration can be extended to a complete prime configura-
tion, as follows. For each edge e = (i, j) such that L(e) = k < L(P) add to
P the path [i, j] (of unit length) with multiplicity L(P) − k. This will not de-
stroy the primality of the set: for every partition U, V of P we do not have
L(U) +L(V) = L(P). In fact we must have L(U) +L(V) > L(P), since the con-
struction adds unit paths that do not increase L(P), and adding paths cannot
decrease L(U) or L(V). Hence the inequality holds for S.

Observe that the minimal instance I that produces a gap (minimal in the
sense that it has the smallest possible load L(I)) must be prime.

Our strategy will be to decompose any load into a collection of prime paths
(with multiplicities). While the decomposition is not, in general, unique, it is a
useful tool. In particular, we have the following theorem:

Theorem 4. For any graph G the number of prime configurations is finite.

Proof. This is an immediate consequence of the fact that there is a bound on
the maximum load of a prime set of paths. This fact is stated formally below as
Theorem 5: its proof is the main result of this section.

Theorem 5. There exists a bound LG (which depends on the size of G) such
that the load of every prime set of paths on G is at most LG.

Proof. From now on we work with the complete set S of paths. It can be repre-
sented by m nonnegative integers n1, . . . , nm, where m is the number of distinct
paths on G, and ni is the number of occurrences of the i-th path pi in S.

Assume by contradiction, that there is no bound on the maximum load of a
prime set of paths. Then there exists an infinite sequence {Si}i∈N of prime sets
of paths with increasing load. Using the claim above, we may assume that each
Si is complete and prime.

Consider the representation of Si. For each coordinate j, j = 1, . . . , m con-
sider the infinite sequence

N j = nj1, n
j
2, . . . , n

j
k,

For each j there are two possibilities: either N j is bounded or not. At least
one of the sequences must be unbounded, since the load is. Let M be a bound on
the values of the bounded sequences, and assume that t of the m sequences are
bounded. By taking subsequences, we can assume that each of the unbounded
sequences is monotone increasing.

Decidable Properties of Graphs of All-Optical Networks 523

Now consider the (M + 1)t possible fixed values for the t bounded sequences.
For each such t−tuple, consider the subsequence corresponding to that fixed
value. At least one of them is infinite, with monotonically increasing sequences
in the unbounded coordinates. Let Sq and Sp, p > q be two elements of this
sequence. We have L(Sp) = L(Sp − Sq) + L(Sq) contradicting the hypothesis.

Note that the argument above is nonconstructive (but, it already suffices
to prove the Multiple Fiber Conjecture–see Section 4). In the next theorem we
show that it is possible to compute the constant LG of Theorem 2.

Theorem 6. Let P be a prime set of paths. Then either P is the prime set
of paths with maximum load or there exists a prime set Q of paths such that
L(Q) ≤ |E|L(P).

Proof. Let t be any path of a prime set T . Since T is prime, we have that
L(T \ {t}) = L(T). We remove from T as many paths as we can maintaining
primality. At the end of this pruning procedure we get a new prime configuration
T ′ with the additional property that removing any path from T ′ yields a non-
prime configuration. Moreover, L(T ′) = L(T). We call such a set of paths critical.

The basic idea of this proof is that removing a path q from a critical set of
paths we obtain a nonprime set of paths that is partitionable into no more than
length(q) (number of edges in q) prime factors. The claim yields the theorem,
since length(q) ≤ |E|. We prove the claim.

Assume there is a prime Q with L(Q) > L(P), and choose Q to have mim-
imum load (among prime configurations with load greater than L(P)). With-
out loss of generality assume Q to be critical. Assume by contradiction that
L(Q) > |E|L(P). Let q be any path of Q. Let Q′ = Q \ {q}. Since Q is critical
Q′ is not prime and therefore it can be partitioned into α prime sets Fi. Since
by hypothesis L(Fi) ≤ L(P) we have that α ≥ |E| + 1. Taking advantage of
the fact that L(Q) = L(Q′), one can prove that it is always possible to select a
subset A of at most length(q) factors Fi that satisfies the following property

L

(
⋃

Fi∈A
Fi ∪ {q}

)

+ L

⋃

Fi 6∈A
Fi

 = L(Q).

Since length(q) < |E| + 1,
⋃
Fi 6∈A Fi is not empty, and therefore Q is not prime

which is a contradiction.

In the next section, we consider fixed multigraphs. As we argued previously,
it is not clear whether a gap exists (it might be the case that gaps appear only
for requests that have paths with high multiplicity, and it is unclear, a priori,
that there must be a bound on the multiplicities). Moreover, it is conceivable
that a given load produces a gap (a “pointwise gap”), but there is no asymptotic
gap. Finally, while there must exist a proof that a pointwise gap occurs (exhibit
the load), there is no straightforward argument that we know of, that an asymp-
totic gap must be provable. We will show that, in fact, all these problems have
finiteness properties that ensure that the gap is computable.

524 L. Margara and J. Simon

3 The Gap Is Computable

Again, our approach is to obtain a minimal set of ’canonical’ gap-producing
instances, claim that they are in some sense responsible for the maximal gap, and
compute the gap as the result of repetitions of a ’bad’ instance. Not surprisingly,
the canonical instances will be prime configurations.

Theorem 7. If G with k fibers produces an asymptotic gap g then there is a
sequence of instances consisting of multiple copies of the same prime set of paths
that produces the asymptotic gap g.

Proof. We give a brief outline of the proof strategy. Every set S of paths can
partitioned into a collection of prime sets (the same prime set may appear mul-
tiple times). Again, first make a set of paths complete by adding length 1 paths
if necessary: this will change neither the load nor the number of wavelengths.
The resulting set is either prime (and we are done), or it can be decomposed
into two sets A and B with L(S) = L(A) + L(B). Both A and B are complete,
with strictly smaller loads, and we proceed inductively.

Prime sets that do not produce a pointwise gap do not influence the asymp-
totic gap, and can be dropped from the decomposition. It is not hard to see that
the gap produced by the entire sequence cannot be bigger than the maximum
gap produced by taking multiple copies of one of the prime sets obtained from
the initial partition.

While the theorem above provides a characterization of a canonical set of
paths that will produce maximal asymptotic gap, the result does not allow us to
compute the gap: we only know that the canonical set consists of certain multi-
ples of a single prime set. We need to determine this multiplicity (again, there
seems to be no obvious argument that would yield a bound on the multiplicity).

For the moment we prove that the gap produced by some such canonical sets
is computable.

Theorem 8. The gap produced by multiple copies of a given set of paths is
computable

Proof. Let P = (n1, . . . , nm) be a prime set of paths. We say that a set P of
paths is full if adding an extra path to P increases its load. For each full set Pi
of paths with L(Pi) = k (assume we have n sets of this type) we define a real
variable Xi. Let cij be the number of copies of path pj belonging to Pi and ni be
the number of copies of path pi belonging to P . Let X∗

i be the optimal solution
to the linear programming problem:

Minimize

n∑

i=1

Xi

subject to

c11X1 + · · · + cn1Xn ≥ n1

...
...

c1mX1 + · · · + cnmXn ≥ nm

Decidable Properties of Graphs of All-Optical Networks 525

If all X∗
i s were integers clearly we would have found the optimal solution to

the wavelength assignment problem associated to P and to multiple copies of

P as well. Moreover, the gap produced by P would be
∑n

i=1
Xi

L(P) . We call this
quantity fractional gap. Actually, X∗

i s are rational numbers. As a consequence,
we have that there exists a natural number c such that the optimal solution
associated to c copies of P consists of integer values. The same can be said if we
consider ic copies i ∈ N of P instead of a single copy.

These results extend to the multifiber case.

Theorem 9. Given a network G with k fibers per link it is possible to compute
Gap(G, k).

Proof. Gap(G, k) is equal to the maximum fractional gap given by a prime set
of paths.

3.1 Gap in 1-Fiber Networks

In this section we prove explicit implications among the existence of pointwise
gaps, prime sets, and asymptotic gaps in the case of 1-fiber networks, delaying
the general multifiber proofs to a complete version.

Lemma 10. Let G be any 1-fiber network. There exists a prime set P of paths
on G with load L(P) greater than 1 if and only if there exists a set Q of paths
on G producing a pointwise gap.

Proof. Let P be a prime set of paths of load L(P). Since P is prime, it cannot
be partitioned into L(P) monochromatic sets of paths, and therefore P has a
pointwise gap. Conversely, if Q has a pointwise gap and is not prime, it can be
partitioned into α prime sets. At least one of them must produce a pointwise
gap (or Q would not have a gap) and then it must have load greater than 1.

Lemma 11. Let Q be any set of paths on a graph G that produces a gap, and let
mQ be the union of m ≥ 1 copies of Q. If Q is prime then mQ has a pointwise
gap.

Proof. As usual, we assume without loss of generality that Q is complete. Assume
by contradiction that mQ has no pointwise gap. Then it is possible to split mQ
into L(mQ) prime and complete sets Fi of monochromatic paths with load 1.
Since L(Fi) = 1, we conclude that Fi ⊂ Q and therefore Q is not prime. This
completes the proof.

Note that
– the pointwise gap of mQ might approach 1–no (asymptotic) gap–for increasing
values of m, and
– the proof of Lemma 11 cannot be trivially extended to the case k-fiber networks
with k > 1 since we cannot say that “...we conclude that Fi ⊂ Q ...”. In fact,
when k is greater than 1 it is possible to find a k-fiber network G and a prime
set P of paths on G such that multiple copies of P do not produce a pointwise
(and then an asymptotic) gap (details in the full paper).

526 L. Margara and J. Simon

Lemma 12. P has fractional gap g (possibly g = 1) then there exists an integer
m ≥ 1 such that for every i ≥ 1 imP has pointwise gap g.

Proof. Omitted in this version.

Theorem 13. Let G be any 1-fiber network. The three following statements are
equivalent.
1- G has an asymptotic gap,
2- there exists a prime set P of paths on G with load greater than 1,
3- there exists a set Q of paths on G that produces a pointwise gap.

Proof. Statements 2 and 3 are equivalent by Lemma 10.
It is easy to see that if there are no prime configurations with load greater

than 1 then it is always possible to find a coloring for every set of paths with
cardinality equal to its load (it is sufficient to assign to each prime configuration
a distinct color).

We now give a brief outline of the proof that if P prime has a load greater
than 1 then there is an asymptotic gap. Assume that there is no asymptotic gap.
Then P has no fractional gap (otherwise multiple copies of P would produce an
asymptotic gap). Using Lemma 12 we have that there exists m ≥ 1 such that
mP has no pointwise gap. Using Lemma 11 we conclude that P cannot be prime.

4 Multiple Fiber Conjecture

The multiple fiber conjecture holds.
Recall that the conjecture is that for every fixed graph G the gap can be

eliminated by a fixed number N(G) of multiple edges. Our proof is a direct
consequence of the fact that the set of prime configurations of a fixed graph is
finite, and the maximum load of a prime configuration is bounded.

Theorem 14. Let LG be the bound on the load in the statement of theorem 2.
There is no gap in the graph G with α = LG!

bLG/2c! parallel fibers for each edge.

Proof. It suffices to ensure that there are no gaps for prime instances. It is not
hard to prove that if there is no gap for an instance I in a network with m fibers,
there is no gap in any network of im fibers, for i = 1, 2, · · ·. Consider a prime set
of paths. It has load k for some 1 ≤ k ≤ LG. Clearly, there is no gap if we have a
number of fibers that is a multiple of k, therefore if α is is an integer such that it
is a multiple of every number between 1 and LG and we consider the graph with
α fibers per edge, there is no gap for any prime set of paths. Therefore there is
no gap.

5 A Case Study: The Ring

An n-ring is a graph G = (V, E) with
V = {x0, . . . , xn−1} and E = {(xi, xi+1), i = 0, . . . , n − 2} ∪ {(xn−1, x0)}.

Decidable Properties of Graphs of All-Optical Networks 527

While in general graphs prime configurations are computationally in-
tractable, many aspects of our decomposition theory are feasible on rings. We
present these results as concrete illustration of our techniques, as a simple appli-
cation, and as a means to get a better intuition. We believe that prime configura-
tions may be useful for general graphs, possibly as a tool to obtain approximation
algorithms for the wavelength assignment problem, and to get approximate lower
bounds.
For ring networks there is no difference between the directed and the undirected
model for the wavelength assignment problem. Every set of paths in the directed
model can be partitioned into two disjoint sets of paths, C, paths routed in the
clockwise direction and CC, routed in the opposite direction. Since there are
no conflicts among paths belonging to C and CC (they use different directions
on every edge), the original problem is equivalent to the two undirected wave-
length assignment problems given by the set of requests in C and CC. For this
reason, we will consider only the problem of assigning wavelengths to a set I of
undirected paths on a ring.

Even if in the undirected model paths have no starting and ending nodes,
in what follows we assign to each path a start node and an end node according
to the clockwise orientation. So, for example, a path with endnodes x5 and x2
that goes through nodes x4 and x3 will be denoted by the pair (x2, x5). Using
this notion of start/end nodes it makes sense to say that two paths start at the
same node or end at the same node.

Theorem 15. Let P be a complete set of paths on any n-ring. If two paths of
P start at the same node then P is not prime.

Proof. Let p be any path of P . Let xj be the start node of p. Since P is complete
there exists a path q ∈ P such that the end node of p is equal to the start node
of q. We call such a node the successor of p. Assume that there is another path
p′ starting at xj . Since P is complete we can list all the paths of P in such a
way that the ith element of the list is the successor of the (i − 1)th element.
Assume that p′ has index m in the list. Then the first m − 1 elements of the
list form a complete set Q of paths. Moreover, since p′ is not included in Q we
conclude that P can be decomposed into two complete nonempty sets namely,
Q and P \ Q, contradicting the hypothesis.

The following corollary follows directly from Theorem 15.

Corollary 16. The maximum load of a prime configuration on an n-ring is at
most n − 1.

Moreover, we can prove the following result.

Corollary 17. Every prime set of paths with load greater than k on a k-fiber
ring produces an asymptotic gap.

Proof. The proof of this corollary is along the lines of the proof of Theorem 13.
Theorem 13 cannot be extended to general k-fiber networks since in general it is
not true that prime sets of paths contain at most one copy of each path. However,
for ring networks Theorem 15 ensures that prime sets satisfy this property, so
the proof of Theorem 15 works also for k-fiber rings for any k.

528 L. Margara and J. Simon

The following lemma is used to compute the number of fibers that are nec-
essary to have no asymptotic gaps on n-ring.

Lemma 18. Let G be an n-ring. For every m = 1, . . . , n−1 there exists a prime
set of paths of load m.

Proof. Consider the set P of all the paths of length n−1. All these paths start at
distinct nodes, so P is prime (Theorem 15). It is easy to verify that L(P) = n−1.
In order to get a set of paths of load m < n − 1 it is sufficient not to consider
n − 1 − m nodes and repeat the construction above for load n − 1.

Lemma 19. Let G be a k-fiber n-ring. Let P be a prime set with load m < k
and iP be the set of paths consisting of i copies of P . Assume that k is not a
multiple of m. Then every subset X of iP with load k is not complete.

Proof. As usual we assume that P is complete. Assume by contradiction that
there exists a complete set X ⊂ iP of load k. X can be partitioned into h ≥ 1
prime and complete sets P ′

i . Since each P ′
i is prime, it does not contain paths

with multiplicity greater than 1 (Theorem 15) and so P ′
i ⊆ P . Moreover, being

complete, P ′
i cannot be a proper subset of P (otherwise P would not be prime.)

We conclude that P ′
i = P for every i = 1, . . . h and therefore X = hP which

implies that k = hm, a contradiction.

Using these characterizations, we obtain a bound on the number of fibers,
N(G) that ensures that there is no gap on a ring G.

Theorem 20. Let G be a k-fibers n-ring. Then N(G) = (n−1)!
b(n−1)/2c! .

Proof. Combining Theorem 14 and point 3 of Corollary 16 we have that N(G) ≤
(n−1)!

b(n−1)/2c! . Assume now that k is strictly smaller than (n−1)!
b(n−1)/2c! . Then there

exists an integer m ≤ n − 1 such that:
- k is not a multiple of m,
- there exists a prime set P of paths with load m on G (Lemma 18).
Assume by contradiction that using k fibers we have no asymptotic gap on
G. Then there is no fractional gap for P . As a consequence we have that for
infinitely many i, iP has no pointwise gap. Thus, we can partition iP (for a
suitable i) into a suitable number of complete sets of paths each of them with
load k, contradicting Lemma 19.

References

1. R. P. Anstee. An algorithmic proof of Tutte’s f-factor theorem. Journal of Algo-
rithms, 6:112–131, 1985.

2. B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro.
Graph problems arising from wavelength-routing in all-optical networks. Proc. of
Workshop on Optics in Computer Science WOCS’97.

3. N. K. Cheung, N. K., and G. Winzer. Special issue on dense WDM networks.
Journal on Selected Areas in Communications, 8, 1990.

Decidable Properties of Graphs of All-Optical Networks 529

4. T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks.
In Proc. of Parallel Systems and Algorithms (PASA), pages 13–32, 1996.

5. T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proc.
of HICSS, 1997.

6. M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a
tree. Journal of Combinatorial Theory, Series B, 38:8–22, 1985.

7. P. E. Green. Fiber–optic communication networks. Prentice–Hall, 1993.
8. I. Holyer. The NP–completeness of edge coloring. SIAM Journal of Computing,

10(4):718–720, 1981.
9. C. Kaklamanis, G. Persiano, T. Erlebach,and K. Jansen. Constrained bipartite

edge coloring with applications to wavelength routing. Proc. of ICALP’97, Lecture
notes in Computer Science vol. 1256:493–504, 1997.

10. R. Klasing. Methods and problems of wavelength-routing in all-optical networks.
In Proc. of the MFCS’98 Workshop on Communication, 1998.

11. J. Kleinberg and A. Kumar. Wavelength conversion in optical networks In Proc.
10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

12. G. Li and R. Simha On the wavelength assignment problem in multifiber WDM
star and ring networks In Proc. IEEE INFOCOM, 2000.

13. L. Lovász. On chromatic number of finite set-systems. Acta Math. Acad. Sci.
Hungar, 19:59–67, 1968.

14. A. D. McAulay. Optical computer architectures. John Wiley, 1991.
15. L. Margara and J. Simon Wavelength assignment problem on all-optical networks

with k fibers per link Proc. of ICALP2000, Lecture notes in Computer Science
vol. 1853:768–779, 2000.

16. M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth—
wavelength routing on directed fiber trees, rings, and trees of rings. In Proc. of
36th IEEE-FOCS, pp. 548–557, 1995.

17. R. K. Pankaj and R. G. Gallager. Wavelength requirements of all-optical networks.
IEEE/ACM Trans. on Networking, 3:269–280, 1995.

18. J. Petersen. Die Theorie der Regulären Graphen. Acta Math. 15, 193–220, 1891.
19. R. Ramaswami. Multiwavelength lightwave networks for computer communica-

tion. IEEE Communications Magazine, 31(2):78–88, Feb. 1993.
20. R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics,

55(2):221–232, 1985.
21. A. Tucker. Coloring a family of circular arcs. SIAM Journal of Applied Mathe-

matics, 29(3):493–502, 1975.
22. R. J. Vetter and D. H. C. Du. Distributed computing with high-speed optical

networks. IEEE Computer, 26(2):8–18, Feb. 1993.
23. G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proc. of

the 9th Annual ACM-SIAM Symposium on on Discrete Algorithms (SODA), pp.
333–341, 1998.

Majority Consensus and the Local Majority Rule

Nabil H. Mustafa1 and Aleksandar Pekeč2

1 Department of Computer Science,
Duke University.

nabil@cs.duke.edu
2 The Fuqua School of Business,

Duke University.
pekec@duke.edu

Abstract. We study a rather generic communication/coordination/
computation problem: in a finite network of agents, each initially having
one of the two possible states, can the majority initial state be computed
and agreed upon by means of local computation only? We describe the
architecture of networks that are always capable of reaching the consen-
sus on the majority initial state of its agents. In particular, we show that,
for any truly local network of agents, there are instances in which the net-
work is not capable of reaching such consensus. Thus, every truly local
computation approach that requires reaching consensus is not failure-
free.

1 Introduction

Attempting to solve a complex problem by a simultaneous coordinated activity of
local agents is an idea that arises naturally in a variety of contexts. For example,
this idea is fundamental in frameworks as diverse as distributed computing and
neural networks. While methods of local computation and decision-making are
often effective in dealing with complex tasks, the successful implementation of
such methods often raises a new breed of problems related to coordination and
communication of local agents.

We study a discrete time, memoryless, synchronous dynamic process and
call it local majority process on (a finite network) G. Informally, the vertices
of a graph G = (V, E) represent the agents and the edges of G represent all
(bidirectional) communication links between pairs of agents. Initially, at time
t = 0, each agent is in one of the two possible states, e.g., colored red or blue
(voted Yes or No, having value 0 or 1, . . .). Then the local majority rule is
applied synchronously and iteratively: an agent has different colors at time t
and t + 1 if and only if the agent’s color at time t is not a majority color in the
agent’s neighborhood in G at time t. A precise formulation of the model will be
given in the next section.

The local majority process (and some of its natural extensions) has been
studied in frameworks as diverse as social influence [PS83,PT86a,PT86b] and

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 530–542, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Majority Consensus and the Local Majority Rule 531

neural networks [GO81,GO80,Gol86,GM90]. Recently, the local majority pro-
cess has reappeared (under the name polling process) in several papers moti-
vated by certain distributed computing problems [Pel98,Ber99,FLLS98,FLL+99,
Has98,HP99,HP00,LPS99,NIY99,NIY00].

A natural question to ask is when does the local majority process ensure that
all agents reach a consensus on the initial majority state? We will say that G is
a majority consensus computer (m.c.c.) if, for any set of initial states (there are
2|V | such sets), the local majority process simultaneously brings all agents into
the state that was the initial majority state. Note that, according to the local
majority process, once all agents are in the same state, no agent will change its
state ever after. All of the recent papers dealing with the local majority process
and its modifications [Pel98,Ber99,FLLS98,FLL+99,Has98,HP99,HP00,LPS99,
NIY99,NIY00] investigated how badly could the local majority process (and its
variations) miscalculate the initial majority (on a specific class of graphs)1 In
contrast to these results, we are interested in G which are immune to miscalcu-
lations in the local majority process, i.e., the focus of this paper are majority
consensus computers and investigation of their structure.

Since being a majority consensus computer is seemingly a very strong prop-
erty, one would expect that a sort of an impossibility theorem holds. As will be
shown, the situation is not that simple and the full characterization of m.c.c.’s
remains an open problem. However, our results demonstrate in several ways that
the non-locality is inherent property of every m.c.c.. Thus, reaching consensus on
the majority is a truly non-local task in the sense that a most natural local com-
putation procedure is failure-free only if computing local majority is essentially
as complex as computing global majority.

2 Majority Consensus Computers

A standard graph theoretic notation is used throughout the paper. G = (V, E)
denotes an undirected, simple, finite graph G with the vertex set V , |V | = n, and
the edge set E (i.e. E ⊆ {S ⊆ V : |S| = 2}). The neighborhood of vertex v in set
S ⊆ V is the set of all neighbors of v that are in S, NS(v) := {s ∈ S : {v, s} ∈ E},
and the degree of v in S is degS(v) = |NS(v)| (if S = V , the subscript is omitted).
Min and max degree in G are denoted by ∆(G) = max{deg(v) : v ∈ V } and
δ(G) = min{deg(v) : v ∈ V }. Some non-standard terminology: a vertex v is a
master if deg(v) = n − 1 (i.e., v is adjacent to every other vertex). We also say
that v is a k-master if deg(v) = n − 1 − k (i.e., v is adjacent to all but k other
vertices). Note that 0-master and master are equivalent notions, and we will use
them interchangeably throughout the rest of the text.

In our model all agents and communication links in the system are rep-
resented by a graph G in a natural way. That is, the vertices of G are in a
1 For example, Berger [Ber99] has shown that for every n there exists a G on at least n

vertices and the set of states such that only 18 vertices are in one state and the rest
are in the other, yet the local majority process forces all vertices to simultaneously
end up in the initial minority state.

532 N.H. Mustafa and A. Pekeč

one-to-one correspondence with the agents and the edges of G correspond to
adjacency relations among the agents.

A coloring of the graph G, ct : V → {0, 1} defines an assignment of binary
values (colors) to the vertices of G at time t. We use the notation ctv := ct(v)
to denote the color of a vertex v at time t. The notation sum(ct) :=

∑
v∈V ctv

will also be useful. A color which is assigned to more than |V |/2 vertices at a
time t is called the majority color of the coloring ct and denoted by maj(ct).
Thus, maj(ct) = 1 if and only if sum(ct) > n/2 and maj(ct) = 0 if and only
if sum(ct) < n/2. Note that maj(ct) is not defined if |V | is even and ct defines
an equipartition of V , i.e., if sum(ct) = n/2. A coloring ct is a consensus if it is
constant, i.e. if all the vertices of G have the same binary values (colors). Thus,
ct is a consensus if and only if ctv = maj(ct) for all v ∈ V . We will sometimes
abuse the notation and write ct = 0 or ct = 1 for consensus in color 0 and 1,
respectively. Another abuse of notation is (1−ct) denoting the coloring obtained
from ct by changing the color of every vertex, i.e., for every v ∈ V and coloring
ct, (1 − ct)(v) = 1 − ct(v).

The main object of our study is the local majority process LMP (G, c0), a
discrete time process on G that is based on the iterative application of the local
majority rule. The process is completely defined by G and the initial coloring
c0. For every t = 0, 1, 2, . . . , the coloring ct+1 is derived by applying the local
majority rule on N(v) for each vertex in G:

ct+1
v =

{
ctv if |{w ∈ N(v) : ctw = ctv}| ≥ |N(v)|/2

1 − ctv if |{w ∈ N(v) : ctw 6= ctv}| > |N(v)|/2 (1)

The local majority rule simply states that, at the next discrete time step, the
color assigned to a vertex v will be the color of the majority of its neighbors.
Note that an even degree vertex will retain its color whenever exactly half (or
more) of its neighbors have the same color. The above rule also implies that the
local majority rule is executed simultaneously for all the vertices. We say that
there is a majority switch at time (t + 1) if maj(ct) 6= maj(ct+1).

Note that if ct is a consensus, then ct+k = ct for all positive integers k.
If, for some positive integer t, ct is a consensus, then we say that G reaches
consensus for c0. If G reaches consensus ct for c0 and ct = maj(c0), then we
say that the LMP (G, c0) correctly computes the initial majority and that G
admits a majority consensus for the initial coloring c0. A graph G is a majority
consensus computer (or a m.c.c. in short) if, for every c0 (there are 2n such
colorings), LMP (G, c0) correctly computes the initial majority. In other words,
G is a m.c.c. if G admits majority consensus for all of the 2n possible initial
colorings. Note that for every graph with even number of vertices there exists a
c0 where maj(c0) is not defined. Thus, G can be a majority consensus computer
only if it has an odd number of vertices. Throughout the rest of the paper
we assume that n is odd.

Our first observation about majority consensus computers is the following
proposition.2

2 The proofs omitted throughout the paper can be found in [MP00].

Majority Consensus and the Local Majority Rule 533

Proposition 1. Let G be a m.c.c. and let c0 be an initial coloring of G. Then
there are no majority switches for LMP (G, c0), i.e., maj(ct) = maj(c0) for
t = 0, 1, 2,

Next note that there are only 2n possible colorings and ct+1 is a function of
G and ct, thus the sequence c0, c1, c2, . . . must become periodic, i.e., there exists
positive integers t0 and k such that ct+k = ct for every t ≥ t0. Obviously, the
period k and t0 are not larger than 2n. Somewhat surprisingly, the period can
be only one or two and there exists t0 smaller than |E|.
Theorem 1. Consider the sequence c0, c1, c2, . . . defined by the local majority
process on G with initial coloring c0, LMP (G, c0). Then there exists t0 < |E|
such that ct = ct+2 for every t ≥ t0.3

Many of our results will be based on the “period is at most two” property.
Next we show that a monotonicity property with respect to the structure of the
coloring holds in the local majority process.

Lemma 1. Let Vi(ct) = {v ∈ V : ctv = i}, i = 0, 1, where ct is a coloring
of G = (V, E). If there exists i ∈ {0, 1} and colorings ct and dt

′
such that

Vi(ct) ⊆ Vi(dt
′
) then Vi(ct+k) ⊆ Vi(dt

′+k) for k = 0, 1, 2,

According to the definition, in order to check whether G is a majority consen-
sus computer, one would have to check whether G admits majority consensus for
all 2n possible initial colorings c0. However, because of the monotonicity prop-
erty described in Lemma 1, it suffices to consider only colorings c0 such that
sum(c0) = (n + 1)/2. (There are

(
n

(n+1)/2

)
= O(2n/

√
n) such colorings).

Theorem 2. G is a majority consensus computer if and only if G admits ma-
jority consensus for any c0 such that sum(c0) = (n + 1)/2.

Remark. Unfortunately, it is not true that adding an edge to or deleting an
edge from a majority consensus computer G preserves the property “majority
consensus computer”. For example, consider (Kn)c⊂Kn\Pn−1⊂Kn\P(n+1)/2⊂Kn

where n is odd. It is not difficult to show that Kn and Kn \ Pn−1 are m.c.c.,
while (Kn)c and Kn \ P(n+1)/2 are not (see [MP00]).

We close this section by showing that masters in G compute majority in-
stantly, i.e., the color of a master at time t + 1 is maj(ct). (Larger the difference
between the majority and minority color of ct, smaller degree of v is needed to
ensure ct+1

v = maj(ct).)

Proposition 2. If v is a master in G, then ct+1
v = maj(ct). More generally, if

v is a k-master in G and |sum(ct) − n/2| ≥ (k + 1)/2, then ct+1
v = maj(ct).

3 This theorem is a straightforward consequence of a much more general result that
can be found in, e.g., [GM90] (various variations and extensions can be found in
this rather comprehensive collection of results related to dynamic behavior of neural
and automata networks); sufficient conditions for the property in the case of LMP
on infinite graphs were studied in [Mor94b,Mor94a,Mor95].

534 N.H. Mustafa and A. Pekeč

3 Structural Properties

Let’s start by presenting a class of graphs that are m.c.c. and a class of graphs
that are not m.c.c..

Proposition 3.
(a) A graph G with more than n/2 masters is a majority consensus computer.
(b) A graph G with exactly (n − 1)/2 masters is not a majority consensus com-
puter.

Next we give a characterization of majority consensus computers which indi-
cates a way towards a static representation in the form of existence of a particular
partition of the vertices of G.

Theorem 3. G is not a majority consensus computer if and only if at least one
of the following holds:
(a) There exists c0 such that maj(c0) 6= maj(c1)
(b) There exists a partition of V into four sets A0, A1, B0, B1 satisfying

1. |B0||B1| = 0 ⇒ |A0||A1| ≥ 1,
2. For every v ∈ Ai, i = 0, 1: degAi(v) − degA1−i(v) ≥ |degBi(v) − degB1−i(v)|
3. For every v ∈ Bi, i = 0, 1: degB1−i(v) − degBi(v) > |degAi(v) − degA1−i(v)|

Proof. Suppose G is not a majority consensus computer. If G admits a consensus
for every possible initial coloring c0, there must exist d0 for which G does not
admit a majority consensus, i.e., there exists d0 and t such that dt is a consensus
and maj(d0) 6= maj(dt). Obviously, in the sequence d0, d1, . . . , dt, there exists
t′ < t such that maj(dt

′
) 6= maj(dt

′+1). Thus, (a) holds for c0 := dt
′
.

Thus, we may assume that there exists c0 for which G does not admit a
consensus. By Theorem 1 there exists t such that ct = ct+2. For i = 0, 1 define
Ai := {v ∈ V : i = ctv = ct+1

v } and Bi := {v ∈ V : i = ctv 6= ct+1
v }. Note

that A0, A1, B0, B1 partition V and that 1. must hold since neither ct nor
ct+1 is a consensus. Since for every v ∈ Ai, ctv = ct+1

v , degAi(v) + degBi(v) ≥
degA1−i(v)+degB1−i(v). Similarly, for every v ∈ Ai, ct+1

v = ct+2
v implies (because

{w : ct+1
w = i} = Ai ∪ B1−i) degAi

(v) + degB1−i
(v) ≥ degA1−i

(v) + degBi
(v).

These two inequalities imply 2. In the same manner, it follows that for every
v ∈ Bi, ctv 6= ct+1

v implies degA1−i
(v) + degB1−i

(v) > degAi
(v) + degBi

(v) and
that ct+1

v 6= ct+2
v implies degAi

(v) + degB1−i
(v) > degA1−i

(v) + degBi
(v). Hence,

3. follows from these two inequalities.
The converse is straightforward to verify. (If (b) holds, set c0

v = i for v ∈
Ai ∪ Bi.) ut

The last theorem indicates that majority consensus computers are highly
connected graphs. For example, it follows in a straightforward manner that if a
graph is bipartite or disconnected, then it is not a majority consensus computer.
Furthermore, it can be shown that any majority consensus computer has triv-
ial min-cuts, and no unique max-cuts. The following theorem and its corollary
provide another confirmation of this claim.

Majority Consensus and the Local Majority Rule 535

Theorem 4. Let G be a majority consensus computer. Then for every v ∈ V

|
⋃

w∈N(v)

N(w)| ≥ n/2. (2)

Proof. First note that we can assume that G is connected and that n > 2.
Suppose (2) does not hold for some v ∈ V . Let u ∈ V be a vertex of the

minimum degree among all vertices v for which (2) is violated. Let c0 be such
that c0

v = 1 for every v ∈ ⋃
w∈N(u) N(w) and such that sum(c0) = (n + 1)/2.

Note that c0
u = 1 and that maj(c0) = 1. Let d0 be such that d0

v 6= c0
v if and only

if v = u (i.e., the only difference between c0 and d0 is in the color of u). Note
that sum(d0) = (n − 1)/2 and thus

maj(d0) = 0 6= 1 = maj(c0). (3)

Observe that for all v 6∈ N(v)∪{u}, w ∈ N(v) ⇒ c0
w = d0

w, and hence c1
v = d1

v.
Further observe that c1

u = d1
u = 1 because the color of all neighbors of u is 1 in

both c0 and d0 (and u has at least one neighbor since G is connected). Finally
observe that by the choice of u and the fact that G is connected and n > 2,
deg(v) ≥ 2 for all v ∈ N(u). Since the color of all neighbors of v other than u
is 1 in both c0 and d0, it follows that c1

v = d1
v for v ∈ N(u). Hence, c1 = d1

and thus, because of (3), either maj(c1) 6= maj(c0) or maj(d1) 6= maj(d0). In
either case, it follows from Proposition 1 that G is not a majority consensus
computer. ut

The theorem shows that majority consensus computers are nowhere truly
local since the second neighborhood of any vertex contains a majority of the
vertices of V . Hence, the local majority process always reaches a consensus on
the initial majority color only if the local majority rule is nowhere local. Hence,
the theorem can be viewed as a sort of an impossibility result.

Corollary 1. If G is a majority consensus computer then diam(G) ≤ 4, i.e.,
the length of the shortest path between any two vertices is at most 4.

Exhaustive computer aided search confirmed that diam(G) ≤ 2 for every
majority consensus computer on at most 13 vertices. We conjecture that a much
stronger statement is true (also confirmed to hold for n ≤ 13 by an exhaustive
search method).

Master Conjecture. Every majority consensus computer contains a master.

This is a rather strong conjecture because it implies that a necessary condi-
tion for reaching majority consensus is the existence of a vertex connected to all
the other vertices, thereby annihilating any notion of local computation.

The master conjecture also has interesting implications. For example, it can
be shown that any majority consensus computer with (n − i)/2 master vertices
has minimum degree at least (n − i). Thus the minimum degree of every vertex
is strongly related to the number of master vertices in the graph.

536 N.H. Mustafa and A. Pekeč

4 Master Conjecture for Highly Connected Graphs

In this section we show that the master conjecture holds for graphs G with
δ(G) ≥ n − 3. Note that, intuitively, such graphs should be considered as prime
candidates for a counterexample to the conjecture since all of the vertices in
these graphs are either masters or very close to being masters (i.e., 0-masters,
1-masters, or 2-masters).

A direct consequence of Proposition 2 is that the only colorings c0 for which
G might not admit a majority consensus are the tight ones, i.e., c0 such that
sum(c0) = (n + 1)/2. (The case sum(c0) = (n − 1)/2 is symmetric).

Proposition 4. If δ(G) ≥ n − 3, then G admits majority consensus for every
c0 such that sum(c0) ≥ (n + 3)/2.

If δ(G) ≥ n−3, then Gc has a very simple structure since ∆(Gc) = (n−1)−
δ(G) ≤ (n − 1) − (n − 3) = 2. In other words, a connected component of Gc is
a single vertex, a path, or a cycle. The decomposition of Gc into its connected
components H1 = (V1, E

c
1), H2 = (V2, E

c
2), ..., Hm = (Vm, Ec

m),4 will be used
throughout this section and we will often abuse the notation and identify V (H)
with H whenever such notation will be unambiguous (e.g., we will often say that
the connected components of Gc define a partition of V).

Another convenient property of G with δ(G) ≥ n − 3 is that every vertex in
G is either a master, a 1-master, or a 2-master. Thus, the following lemma gives
a complete boolean formula representation of local changes for colorings ct with
sum(ct) = (n + 1)/2.

Lemma 2. Let ct be such that sum(ct) = (n + 1)/2.
(a) If v is a master, then ct+1

v = 1.
(b) If v is a 1-master, then ct+1

v = 1 − ctvc
t
w where w is the unique vertex not

adjacent to v.
(c) If v is a 2-master, then ct+1

v = 1 − ctuc
t
w where u and w are the two vertices

not adjacent to v.

Proof. If v is a 2-master then V \ N(v) = {v, u, w}, so

|{u ∈ N(v) : ctu = 1}| =
n + 1

2
− ctv − ctu − ctw

First suppose ctv = 0. Then, ct+1
v = 0 if and only if |{u ∈ N(v) : ctu = 1}| ≤

|N(v)|/2 = (n − 3)/2 and this is true if and only if ctu = ctw = 1. Thus, (c) holds
if ctv = 0. Finally, suppose ctv = 1. Then, ct+1

v = 0 if and only if |{u ∈ N(v) : ctu =
1}| < |N(v)|/2 = (n − 3)/2 and, again, this is true if and only if ctu = ctw = 1.
Thus, (c) also holds if ctv = 1. The proof of (b) is similar, while(a) is obvious. ut

This lemma allows us to track action of the local majority process on G.
We define an auxiliary graph AG = (V, E(AG)). The edges of AG are defined
4 In other words, Vi, i = 1, . . .m are pairwise disjoint, V1 ∪ . . . ∪ Vm = V , and Ec

1 ∪
. . . ∪ Ec

m = Ec

Majority Consensus and the Local Majority Rule 537

using the formulas from (b) and (c) from the lemma: E(AG)={{v, w} :dG(v)=
n−2,{v, w} 6∈ E(G)} ∪ {{u, w} : ∃v, dG(v) = n−3;{v, u},{v, w} 6∈ E(G)}. Thus,
E(AG) is in one to one correspondence with the set of all vertices of G which
are not masters. Note that AG has a rather simple structure: all of its connected
components are cycles, each corresponding to a connected component of Gc as
follows (this is a direct consequence of the definition of AG):

If a connected component H ⊂ Gc is a path, say v1, v2, . . . , vl (i.e.,
{vi, vi+1} ∈ E(Gc), i = 1, . . . , l − 1), then V (H) defines a cycle CH that is
a connected component in AG: If l is even, the adjacent vertices in CH are
v1, v2, v4, . . ., vl−2, vl, vl−1, . . ., v5, v3, v1. If l is odd, the adjacent vertices in CH
are v1, v2, v4, . . . , vl−1, vl, vl−2, . . . , v5, v3, v1.

If a connected component H ⊂ Gc is an odd cycle (i.e. odd number of ver-
tices), say v1, v2, . . . , v2k+1, v1 (i.e., {vi, vi+1} ∈ E(Gc), i = 1, . . . , 2k + 1, and
{v2k+1, v1} ∈ E(Gc)), then V (H) defines a cycle CH that is a connected com-
ponent in AG: v1, v3, . . . , v2k+1, v2, v4, . . . , v2k, v1.

If a connected component H ⊂ Gc is an even cycle v1, v2, . . . , v2k, v1 (i.e.,
{vi, vi+1} ∈ E(Gc), i = 1, . . . , 2k, and {v2k, v1} ∈ E(Gc)), then V (H) defines
two disjoint cycles CH = C1H ∪ C2H that are connected components in AG:
v1, v3, . . . , v2k−1, v1 and v2, v4, . . . , v2k, v2.

Lemma 3. Let ct such that sum(ct) = (n + 1)/2. Let H be a connected compo-
nent of Gc on l vertices, l ≥ 2. Let S = {v ∈ H : ctv = 1}. Then

|{v ∈ H : ct+1
v = 1}| ≥ l − |S| (4)

Furthermore, the equality holds in (4) if and only if one of the following holds: (i)
|S| = 0,(ii) |S| = l,(iii)H is an even cycle and ctv 6=ctw whenever {v, w} ∈ E(Gc).

Proof. First note that, by Lemma 2 and by definition of AG,

|{v ∈ H : ct+1
v = 1}| =

∑

v∈H
ct+1
v =

∑

{u,w}∈CH⊂AG
(1 − ctuc

t
w) = |H| −

∑

{u,w}∈CH⊂AG
ctuc

t
w.

Thus, it remains to show that

|S| ≥
∑

{u,w}∈CH⊂AG
ctuc

t
w. (5)

Note that
∑

{u,w}∈CH⊂AG
ctuc

t
w = |{{u, w} ∈ EAG(CH) : u, w ∈ S}| = |E(CH [S])|

where CH [S] denotes the induced subgraph of CH , i.e., the maximal subgraph
of CH on the vertex set S ⊂ V (CH). If |S| = 0, |E(CH [S])| = 0, and (5)
holds with equality. Thus, (4) holds with equality. If |S| = l, then CH [S] = CH
and |E(CH [S])| = |E(CH)| = l since CH is a cycle or a union of two disjoint
cycles. Thus, if |S| = l, (4) also holds with equality. If H is an even cycle, then
CH = C1H ∪ C2H . Furthermore, S = V (C1H) or S = V (C2H) if and only if

538 N.H. Mustafa and A. Pekeč

vertices of H are colored alternately along the cycle H (i.e., as described in (iii)
in the statement of the lemma). In either case, |E(CH [S])| = |S| and (4) again
holds with equality. If neither (i) nor (ii) nor (iii) holds, then CH [S] contains an
acyclic component and any possible cyclic component of CH must be a cycle.5
Thus, |E(CH [S])| ≤ |S| − 1 and |{v ∈ H : ct+1

v = 1}| ≥ l − |S| + 1. ut
Several simple consequences of this lemma will be useful in the analysis that

follows. For example, if a connected component of Gc that is not an isolated
vertex is monochromatic for some ct, then every vertex in H will switch color.

Lemma 4. Let ct be a coloring of G, δ(G) ≥ n − 3, such that sum(ct) = (n +
1)/2. Let H = (VH , EH) be a connected component of Gc with |VH | ≥ 2. Suppose
that ctv = ctw for every v, w ∈ VH . Then ct+1

v = 1 − ctv for every v ∈ VH .

The next lemma presents an opposite scenario: if colors assigned by ct, sum(ct) =
(n + 1)/2, alternate along an even cycle that is a connected component of Gc,
then no vertex on that cycle will switch color.

Lemma 5. Let ct be a coloring of G, δ(G) ≥ n − 3, such that sum(ct) = (n +
1)/2. Let C2k ⊂ Gc be a connected component in Gc. Suppose the colors assigned
by Ct alternate along the cycle: if u is adjacent to v in C2k then ctu = 1 − ctv.
Then ct+1

v = ctv for every v ∈ C2k.

The preceding lemmas indicate a way to construct c0 yielding a complete switch,
i.e., c1 = 1 − c0. Obviously, all masters must be colored with a minority color
in order to switch. If all the other connected components of Gc are monochro-
matic (with some even cycles possibly being colored as described in the previous
lemma), and if the resulting coloring c0 is a tight majority coloring on G (i.e.,
sum(ct) = (n + 1)/2), then, as shown in the next lemma, c1 = 1 − c0 (except on
the even cycles where ct=1 = ct), and G is not a majority consensus computer.

Lemma 6. Let δ(G) ≥ n − 3. Let H1 = (V1, E
c
1), H2 = (V2, E

c
2), ..., Hm =

(Vm, Ec
m) be the connected components of Gc. Suppose there exist i and j, 1 ≤

i < j ≤ m, such that
(i) |Vk| = 1 ⇒ k ≤ i,
(ii) m ≥ k > j ⇒ Hk is an even cycle,
(iii) |V1| + |V2| + . . . + |Vi| + 1 = |Vi+1| + . . . + |Vj |.
Then G is not a majority consensus computer.

Proof. For v ∈ Vk, set c0
v = 0 if k ≤ i and set c0

v = 1 if i < k ≤ j. If j < m, then
the remaining vertices lie on even cycles in Gc. Color each Hk alternately, i.e.,
as described in the statement of Lemma 5. Note that, by (iii),

|{v ∈ V : c0
v = 0}| =

∑i
k=1 |Vk| + 1

2

∑m
k=j+1 |Vk|

= (
∑j
k=i+1 |Vk|) − 1 + 1

2

∑m
k=j+1 |Vk|

= |{v ∈ V : c0
v = 1}| − 1.

Thus, sum(c0) = (n + 1)/2 and maj(c0) = 1.
5 In fact the only possibility for a cyclic component is when H is an even cycle

Majority Consensus and the Local Majority Rule 539

If v is a master c1
v = maj(c0) = 1 = 1 − c0

t (the last equality holds because
{v} = Hk for some k and k ≤ i by (i)). If v is not a master, then v ∈ Hk for
some k ≤ m such that |Hk| ≥ 2. If k ≤ j, then c1

v = 1 − c0
v by Lemma 4. If k > j

then c1
v = c0

v by Lemma 5. Therefore, c1
v = 1 − c0

v if v ∈ V1 ∪ . . .∪Vj and c1
v = c0

v

if v ∈ Vj+1 ∪ . . . ∪ Vm. Thus,

|{v ∈ V : c1
v = 1}| =

∑i
k=1 |Vk| + 1

2

∑m
k=j+1 |Vk|

= (
∑j
k=i+1 |Vk|) − 1 + 1

2

∑m
k=j+1 |Vk|

= |{v ∈ V : c1
v = 0}| − 1.

So, maj(c1) = 0 6= maj(c0) and G is not a majority consensus computer by
Proposition 1. ut

For any k = 0, 1, . . . (n − 1)/2, it is straightforward to construct a G with k
masters satisfying conditions of Lemma 6. For example, if k = 0, take G such
that connected components of Gc are P(n−1)/2 and P(n+1)/2. If k > 0, G whose
connected components are its masters, Pk+1 and Cn−2k−1 is such example. Thus,
there exist G with δ(G) ≥ n−3 which are not m.c.c. and having exactly k masters
for every k < (n + 1)/2. (Recall that, by Proposition 3, every G with at least
(n + 1)/2 masters is a m.c.c.)

In order to prove that the Master Conjecture holds in the case δ(G) ≥ n− 3,
we need yet another lemma. In what follows we will say that v1, v2, . . . vk form
a path Pk if vi is adjacent to vi+1 in Pk for i = 1, . . . , (k − 1). Similarly, we will
say that v1, . . . vk form a cycle Ck if v1, . . . , vk form a path Pk ⊆ Ck and v1 is
adjacent to vk in Ck.

Lemma 7. Let ct be a coloring of G, δ(G) ≥ n − 3, such that sum(ct) = (n +
1)/2. Let v1, v2, . . . , vk form H ⊂ Gc, a connected component in Gc on k ≥ 3
vertices. Suppose that there exists a j < k/2 such that ctvi

= i mod 2 for i ≤
2j + 1. If 2j + 1 < k, also suppose that ctvi

= ctv2j+2
for i > 2j + 1.

Then ct+1
vi

= ctvi
for i ≤ 2j + 1 and ct+1

vi
= 1 − ctvi

for i > 2j + 1.

Proof. Since δ(G) ≥ n−3, H is a path or a cycle. Using (b) and (c) of Lemma 2,
observe that ct+1

vi
= ctvi

for i ≤ 2j + 1 (since each vi such that ctvi
= 0 has both

non-neighbors of color 1, while each vi such that ctvi
= 1 has at least one non-

neighbor of color 0) and that ct+1
vi

= 1−ctvi
for i > 2j+1 (if ctv2j+2

= . . . = ctvk
= 0,

then each such vi has a non-neighbor of color 0; if ctv2j+2
= . . . = ctvk

= 1, then
each such vi has all non-neighbors of color 1 because ctv1 = ctv2j+1

= 1). ut

Theorem 5. Let G such that δ(G) ≥ n − 3. If G is a majority consensus com-
puter, then G contains a master.

Proof. Suppose G does not contain a master. We’ll show that G is not a majority
consensus computer. Let H1 = (V1, E

c
1), H2 = (V2, E

c
2), ..., Hm = (Vm, Ec

m) be
the connected components of Gc. Since G does not contain a master, |Vl| ≥ 2,
l = 1, . . . m. Choose an index i such that

|V1| + . . . + |Vi| ≤ (n − 1)/2 < |V1| + . . . + |Vi| + |Vi+1|.

540 N.H. Mustafa and A. Pekeč

If |V1| + . . . + |Vi| = (n − 1)/2, then the conditions of Lemma 6 are satisfied
with i, and with j = m. Therefore, in this case, G is not a majority consensus
computer.

For the rest of the proof we may assume that |V1|+ . . .+ |Vi| < (n−1)/2. We
may also assume that |V1| + . . . + |Vi−1| + |Vi| + (|Vi+1|/2) > (n − 1)/2. (If not,
then (|Vi+1|/2) + |Vi+2| + |Vi+3| + . . . + (|Vm|) > (n − 1)/2 and we could map l
to m + 1 − l, i.e. Hl becomes Hm+1−l, l = 1, . . . , m.) Note that these imply that
|Vi| ≥ 3.

Let v1, v2, . . . , vk form Hi+1 and let

j = (n − 1)/2 − (|V1| + . . . + |Vi−1| + |Vi|) (6)

Note that j < k/2. Set

c0
v =

0 v ∈ V1 ∪ V2 ∪ . . . ∪ Vi
i mod 2 vi, i = 1, . . . , 2j + 1

1 vi, i = 2j + 2, . . . , k
1 v ∈ Vi+2 ∪ Vi+3 ∪ . . . ∪ Vm

Note that sum(c0) = (n+ 1)/2. By Lemma 4, c1
v = 1− cv for every v 6∈ Vi+1. By

Lemma 7, c1
vi

= 1 − c0
vi

for i = 2j + 2, . . . , k and c1
vi

= c0
vi

for i = 1, . . . 2j + 1.
Thus, only j vertices colored by 0 and only j + 1 vertices colored by 1 do not
switch color. Hence, sum(c1) = |V1|+. . .+|Vi|+(j+1) = (n−1)/2+1 = (n+1)/2
(the second equality follows from (6)).

Repeating the same argument for

c1
v =

1 v ∈ V1 ∪ V2 ∪ . . . ∪ Vi
i mod 2 vi, i = 1, . . . , 2j + 1

0 vi, i = 2j + 2, . . . , k
0 v ∈ Vi+2 ∪ Vi+3 ∪ . . . ∪ Vm

we conclude that c2 = c0. Thus, c0, c1, c2, . . . has period two. Therefore, G is
not a majority consensus computer. ut

5 Generalizations and Conclusions

The main result of this paper is that failure-free computation of majority con-
sensus by iterative applications of the local majority rule is possible only in the
networks that are nowhere truly local (Theorem 4). In other words, the idea of
solving a truly global task (reaching consensus on majority) by means of truly
local computation only (local majority rule) is doomed for failure. However, even
well connected networks of agents that are nowhere truly local might fail to reach
majority consensus when iteratively applying the local majority rule. We have
investigated the properties of majority consensus computers, i.e., the networks
in which iterative application of the local majority rule always yields consensus
in the initial majority state.

There are several generalizations and relaxations of the local majority process
that one might consider more realistic and applicable than the process we study.

Majority Consensus and the Local Majority Rule 541

Our results readily extend to many such generalizations and relaxations. For
example, an obvious generalization of the model would be to allow weights on
the edges and conduct the weighted local majority vote at each vertex at each
time step according to those weights. If such weights on E(G) are nonnegative
real numbers, it is easy to see that there exists a multi-graph M(G) on which our
original process LMP mimics this weighted generalization of LMP on G. Here
we only show one further result6 that emphasizes our point that understanding
LMP is fundamental to understanding any generalization of this process.

A simple generalization of the local majority process would allow vertex v to
have some resistivity towards color switch. Formally, for a nonnegative integer
kv, we define a kv-local majority rule for vertex v:

ct+1
v =

{
ctv if |{w ∈ Nv : ctw = ctv}| ≥ |N(v)|

2 + kv
1 − ctv if |{w ∈ Nv : ctw 6= ctv}| > |N(v)|

2 + kv
(7)

The value kv is called the resistivity value of vertex v and we call the graph
G = (V, E) together with the set of vertex resistivities {kv : v ∈ V } a varied-
resistivity graph. Similarly, the process defined by (7) is called the local majority
process with resistivities. Note that the local majority process with resistivities
where kv = 0, v ∈ V , is exactly the local majority process.

Theorem 6. Let G(V, E) be a varied-resistivity graph, with the vertex set
V = {v1, . . . , vn}, and the corresponding resistities R = {kv1 , . . . , kvn

}. The
local majority process with resistivities on the varied-resistivity graph G can be
simulated by the local majority process on some graph G′(V ′, E′).

Apart of generalizations of the model, there are several directions that might
be of potential interest. One such direction is to determine the complexity of the
decision problem:

MCC. Input is a finite graph G. Is G a majority consensus computer?
Clearly, MCC is in co-NP because of Theorem 3 and it is very likely that MCC
is co-NP complete. In [MP00], we solve this question by giving a complete char-
acterization for graphs with δ(G) ≥ (n − 3), and a polynomial time algorithm
that decides the problem.

We conjecture that every majority consensus computer G contains a master,
i.e., there exists v ∈ V (G) such that d(v) = |V (G)| − 1 (see Master Conjecture
in Section 3).We have proved that this conjecture holds for almost complete net-
works, i.e., networks that are in a way most natural candidates for a counterex-
ample to the conjecture (Theorem 5). However, the Master Conjecture remains
open.

References

[Ber99] E. Berger. Dynamic monopolies of constant size. Manuscript,
http://xxx.lanl.gov/abs/math/9911125, 1999.

6 See [MP00] for detailed discussion.

542 N.H. Mustafa and A. Pekeč

[FLL+99] F. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro. Monotone dy-
namos in tori. In Proc. 6th International Colloqium on Structural Informa-
tion and Communication Complexity, pages 152–165, 1999.

[FLLS98] P. Flocchini, E. Lodi, F. Luccio, and N. Santoro. Irreversible dynamos in
tori. In European Conference on Parallel Processing, pages 554–562, 1998.

[GM90] E. Goles and S. Martinez. Neural and Automata Networks. Kluwer, Norwell
MA, 1990.

[GO80] E. Goles and J. Olivos. Periodic behavior of generalized threshold functions.
Discrete Mathematics, 30:187–189, 1980.

[GO81] E. Goles and J. Olivos. Comportement p’eriodique des fonctions ‘a seuil
binaires et applications. Discrete Applied Mathematics, 3:93–105, 1981.

[Gol86] E. Goles. Positive automata networks, pages 101–112. Disordered Systems
and Biological Organization. Springer-Verlag, 1986.

[Has98] Y. Hassin. Probabilistic local polling processes in graphs. M.Sc. Thesis,
The Weizmann Institute, Rehovot, Israel, 1998.

[HP99] Y. Hassin and D. Peleg. Distributed probabilistic polling and applications
to proportionate agreement. In Proc. 26th International Colloqium on Au-
tomata, Languages, and Programming, pages 402–411, 1999.

[HP00] Y. Hassin and D. Peleg. Extremal bounds for probabilistic polling in graphs.
In Proc. 7th International Colloqium on Structural Information and Com-
munication Complexity, 2000.

[LPS99] F. Luccio, L. Pagli, and H. Sanossian. Irreversible dynamos in butterflies.
In Proc. 6th International Colloqium on Structural Information and Com-
munication Complexity, pages 204–218, 1999.

[Mor94a] G. Moran. Parametrization for stationary patterns of the r-majority oper-
ators on 0–1 sequences. Discrete Mathematics, 132:175–195, 1994.

[Mor94b] G. Moran. The r-majority vote action on 0–1 sequences. Discrete Mathe-
matics, 132:145–174, 1994.

[Mor95] G. Moran. On the period-two-property of the majority operator in infinite
graphs. Trans. Amer. Math. Soc., 347(5):1649–1667, 1995.

[MP00] N. H. Mustafa and A. Pekeč. Democratic consensus and the local majority
rule. Research Series RS-00-08, BRICS, University of Aarhus, Denmark,
2000.

[NIY99] T. Nakata, H. Imahayashi, and M. Yamashita. Probabilistic local majority
voting for the agreement problem on finite graphs. In Proc. 5th Computing
and Combinatorics Conference, pages 330–338, 1999.

[NIY00] T. Nakata, H. Imahayashi, and M. Yamashita. A probabilistic local polling
game on weighted directed graphs with an application to the distributed
agreement problem. Networks, 35(4):266–273, 2000.

[Pel98] D. Peleg. Size bounds for dynamic monopolies. Discrete Applied Mathe-
matics, 86:263–273, 1998.

[PS83] S. Poljak and M. Sura. On periodical behaviour in societies with symmetric
influences. Combinatorica, 3(1):119–121, 1983.

[PT86a] S. Poljak and D. Turzik. On an application of convexity to discrete systems.
Discrete Applied Mathematics, 13:27–32, 1986.

[PT86b] S. Poljak and D. Turzik. On pre-periods of discrete influence systems.
Discrete Applied Mathematics, 13:33–39, 1986.

Solvability of Equations in Free Partially
Commutative Groups Is Decidable

Volker Diekert1 and Anca Muscholl2

1 Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, D-70565 Stuttgart
diekert@informatik.uni-stuttgart.de

2 LIAFA, Université Paris VII,
2, place Jussieu, case 7014, F-75251 Paris Cedex 05

muscholl@liafa.jussieu.fr

Abstract. Trace monoids are well-studied objects in computer science
where they serve as a basic algebraic tool for analyzing concurrent sys-
tems. The question whether the existential theory of trace equations is
decidable has been solved positively in 1996. Free partially commutative
groups (graph groups) generalize trace monoids in the sense that every
element has an inverse. In this paper we show that the existential theory
of equations over graph groups is decidable, too. Our decision procedure
is non-elementary, but if a certain graph theoretical parameter is viewed
as a constant, then we obtain a PSPACE-completeness result. Restrict-
ing ourselves to trace monoids we still obtain a better complexity result,
as it was known previously.

1 Introduction

Free partially commutative monoids (or trace monoids) serve as a basic algebraic
tool for investigating concurrent systems, [15,16]. Atomic actions are represented
by letters and independency of actions is reflected by an independence relation
on the alphabet. The independency defines a partial commutation. If each atomic
action a has an inverse a, then, on the algebraic level, we switch from monoids to
groups. This means that we work with free partially commutative groups, which
in algebra are also known as graph groups, see e.g. [7].

We show that the existential theory of equations over graph groups is de-
cidable. Our decision procedure is non-elementary, but if a certain graph the-
oretical parameter is viewed as a constant, then we can establish a PSPACE-
completeness result. In fact, we generalize a recent result of [4], which is also the
starting point for us.

In the simplest setting we ask whether a single word equation in unknowns
and constants is solvable. This problem is well-known to be NP-hard. It becomes
PSPACE-hard, as soon as we add regular constraints for the unknowns, simply
because the intersection problem for regular languages is PSPACE-complete,
[10]. Makanin proved the decidability of word equations [11] and Schulz extended
this decidability result in order to include regular constraints [20]. Standard

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 543–554, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

544 V. Diekert and A. Muscholl

methods imply that the existential theory of word equations is decidable, once
the problem of solving a single equation is settled. The same holds for equations
over free groups and again Makanin proved decidability [12,13]. The scheme
of Makanin in the case of free groups is however known to be non primitive-
recursive, see [9]. Only when Plandowski invented a new method for solving
word equations by some polynomial space bounded algorithm [19], the corre-
sponding problem for free groups was reconsidered and Gutiérrez [8] succeeded
in extending Plandowski’s polynomial space algorithm to free groups. In fact, it
has been possible to prove decidability (and PSPACE-completeness) of equations
with rational constraints in free groups, see [4].

The situation in trace monoids turned out to be quite different and decid-
ability for trace equations was shown only in 1996 by Matiyasevich, see [14,5].
It remained open whether the solvability of graph group equations is decidable,
but it was known that rational constraints are too powerful: They lead to un-
decidability (although this is not treated here). The good notion turned out to
be normalized rational constraint (this concept is introduced here). Moreover,
the main result of [4] is not about free groups, but about free monoids with
involution. This is another key: It is not necessary to reduce to the situation in
free groups. We introduce the notion of trace monoid with involution and reduce
stepwise to the case of free monoids with involution by removing independency.
This reduction is the main technical contribution of our work. We are strictly
more general than in the case of trace monoids, and when applying our method
in this special case we still obtain a better complexity result as known previously.

2 Preliminaries

2.1 Free Partially Commutative Monoids with Involution

Let us recall some basic concepts of trace theory, for details we refer to [6]. By
Γ we mean a finite alphabet which is equipped with an involution : Γ → Γ .
An involution is a mapping such that a = a for all a ∈ Γ . By I ⊆ Γ × Γ we
denote an independence relation, its complement is D = (Γ ×Γ)\I. It is called a
dependence relation and we demand both that D is reflexive and symmetric and
that (a, b) ∈ D implies (a, b) ∈ D for all a, b ∈ Γ . In particular, we have (a, a) ∈
D for all a ∈ Γ . The free partially commutative monoid M(Γ, I) is defined by
the quotient monoid Γ ∗/{ab = ba | (a, b) ∈ I}. According to Mazurkiewicz [15]
it is also called a trace monoid and its elements are traces. If the reference to
(Γ, I) is clear, we also write M instead of M(Γ, I). The length |x| of a trace x is
the length of any representing word. A letter a ∈ Γ is called minimal (maximal
resp.) in x, if we can write x = ay (x = ya resp.) for some y ∈ M. The set of
minimal (maximal resp.) elements consists of pairwise independent letters. The
set of letters occurring in x ∈ Γ ∗ or in x ∈ M is denoted alph(x). For a ∈ Γ let
I(a) = {b ∈ Γ | (a, b) ∈ I}. By 1 we denote the empty word, the empty trace,
and the unit element in a group.

We shall use node-labeled directed acyclic graphs [V,E, λ] in order to repre-
sent traces. We assume that V is finite and that λ : V → Γ is a labeling such

Solvability of Equations in Free Partially Commutative Groups Is Decidable 545

that (λ(v), λ(v′)) ∈ D implies either (v, v′) ∈ E∗ or (v′, v) ∈ E∗, so all depen-
dent vertices are ordered. Then [V,E, λ] defines a unique trace x = [V,E, λ] ∈ M

in a canonical way. A trace x ∈ M may have many different representations. We
say that [V,E, λ] is a dependence graph of a trace x ∈ M, if [V,E, λ] represents x
and in addition (λ(v), λ(v′)) ∈ D is equivalent to (v, v′) ∈ idΓ ∪E ∪ E−1. Up to
isomorphism, the dependence graph of x is unique, and so is its induced labeled
partial order (pomset) [V,E∗, λ] which is also denoted by [V,≤, λ].

The involution : Γ → Γ is extended to the free monoid Γ ∗ by a1 · · · an =
an · · · a1. Since the independence relation I is supposed to be compatible with the
involution, the same definition transfers to traces. Hence (M,) is a trace monoid
with involution. Note that we have [V,E, λ] = [V,E−1, λ] and [V,≤, λ] = [V,≥, λ]
respectively, where λ(v) = λ(v) for all v ∈ V .

2.2 Recognizable and Rational Subsets, Factor Traces

For a moment let M be any finitely generated monoid and ψ : Γ ∗ → M be a
surjective homomorphism. A subset L ⊆ M is called recognizable, if ψ−1(L) is a
regular word language. Languages of the form ψ(L) with L ⊆ Γ ∗ being regular
are called rational.

Henceforth by ψ we mean the canonical homomorphism from words to traces,
ψ : Γ ∗ → M. Two words representing the same trace have the same length.
Fixing some linear order on Γ we can choose for a given trace x ∈ M the lex-
icographical first word representing x, which is denoted by µ(x) ∈ Γ ∗. Clearly
ψ(µ(x)) = x. It is well-known [1] that µ(M) ⊆ Γ ∗ is a regular word language.
If L ⊆ M is recognizable, then ψ−1(L) ∩ µ(M) is regular, too; and L is a homo-
morphic image of some regular subset of µ(M). Ochmański’s Theorem says that
this correspondence is one-to-one between recognizable subsets of M and regular
subsets of µ(M), see [17], [18, Thm. 6.3.12].

Let x = [V,≤, λ] ∈ M be a trace where ≤ is the partial order induced by the
dependence graph. A factor or factor trace is a trace f ∈ M such that we can
write x = pfq. Given a factorization x = pfq, we find some F ⊆ V such that the
induced pomset of F in [V,≤, λ] represents f . Moreover, F has the property that
whenever v ≤ v′ ≤ v′′ with v, v′′ ∈ F , then v′ ∈ F , too. Conversely, let F ⊆ V
be a subset with this property: v ≤ v′ ≤ v′′ with v, v′′ ∈ F implies v′ ∈ F . Then
we can factorize x = pfq such that F represents the factor f , but due to partial
commutation the factorization is not unique (even if F 6= ∅). There is another
warning. Assume that V = F ∪G is a disjoint union where F represents f and
G represents g. This does not mean that x is a product of f and g, in general.
Indeed, let {a, b} × {c, d} ⊆ I and x = abcd. Then we have abcd = cadb, so both
f = bc and g = ad are factors. But x is not a product of f and g as soon as both
ab 6= ba and cd 6= dc.

2.3 Graph Groups and Their Normalized Rational Subsets

We can switch from monoids with involution to groups by interpreting a as a−1.
Formally, we define the quotient monoid G(Γ, I,) by M(Γ, I)/{aa = 1 | a ∈ Γ},

546 V. Diekert and A. Muscholl

and the canonical homomorphism is denoted by ϕ : M(Γ, I) → G(Γ, I,). Since
a = a, this is a group. It is called the graph group over (Γ, I,). This is a slight
abuse of language, since the involution may have fixed points, i.e., we allow
a = a for some a ∈ Γ . This freedom is very useful for various reasons. Here it
means that G(Γ, I,) may have elements of order two. Torsion free groups arise
if the involution has no fixed points. This is the usual setting of graph groups
as investigated e.g. by Droms in [7]. If the reference to (Γ, I,) is clear we
sometimes write G instead of G(Γ, I,). We can describe the group G by means
of a confluent and Noetherian trace rewriting system S = {aa → 1 | a ∈ Γ}.
Termination and confluence of S as a rewriting system over M can be easily
verified. For a general treatment or trace rewriting systems the interested reader
is referred to [3]. A trace x ∈ M is called reduced, if it is irreducible with respect
to the system S, i.e., the trace x contains no factor of the form aa with a ∈ Γ .
Then every group element x ∈ G has a unique reduced representation. This
means there is a unique reduced trace ρ(x) = x̃ ∈ M such that ϕ(x̃) = x.

The set of all reduced traces G̃ ⊆ M is therefore in one-to-one correspondence
with G via some injective mapping ρ. Since G̃ is defined by some finite set
of forbidden factors, it is a recognizable subset of M. Hence µ(G̃) is a regular
language of words. The mapping ν : G(Γ, I,) → Γ ∗ which maps a group element
x to ν(x) = µ(x̃) = µ(ρ(x)) is a normal-form mapping, i.e., ϕ(ψ(ν(x))) = x. The
word ν(x) is the lexicographical first word among the shortest words which
represent x.

We obtain the following commutative diagram:

G̃ ⊂ can.- M
⊂ µ -��

ψ
Γ ∗

I@
@

@
@

@

∼
ρ

�
�

�
�

�
�

ν

�

G

??

ϕ

A group language L ⊆ G is called normalized regular, if the set of normal
forms ν(L) ⊆ Γ ∗ is a regular word language. Since ν(G \ L) = ν(G) \ ν(L), the
class of normalized rational languages is an effective Boolean algebra. If G is
a free group, then every rational language is normalized regular. This is non-
trivial; it follows from [2]. In general, the class of normalized regular languages
is strictly contained in the class of rational subsets.

3 Equations over Graph Groups and Trace Monoids with
Involution

In the following Ω denotes a set of variables (or unknowns) and we let :
Ω → Ω act as an involution on unknowns without fixed points. A propositional
formula over Γ and Ω is inductively defined as follows. Atomic formulas are

Solvability of Equations in Free Partially Commutative Groups Is Decidable 547

either equations of the form α = β, where α, β ∈ (Γ ∪ Ω)∗, or constraints. A
constraint is of the form X ∈ L, where X ∈ Ω, and L is either recognizable (if we
deal with monoids) or normalized regular (if we deal with graph groups). For the
specification of L we may use some NFA (non-deterministic finite automaton)
where the accepted language is either in µ(M) (if we deal with monoids) or in
ν(G) (if we deal with graph groups). Propositional formulas are built from atomic
formulas using the Boolean connectives. A formula in the existential theory is
an existentially quantified sentence. An assignment for a propositional formula
is a mapping σ : Ω → Γ ∗ such that σ(X) = σ(X) for all X ∈ Ω. As usual,
we extend σ to a homomorphism σ : (Γ ∪ Ω)∗ → Γ ∗ by letting σ(a) = a for
a ∈ Γ . By extending σ further with the homomorphism Γ ∗ → M (if we consider
trace monoids) and with the homomorphism Γ ∗ → G respectively (if we consider
graph groups), we read σ also as σ : (Γ ∪Ω)∗ → M and σ : (Γ ∪Ω)∗ → G. There
will be no risk of confusion. The evaluation of a propositional formula under an
assignment σ : Ω → Γ ∗ is defined in a canonical way: The evaluation under σ of
a constraint X ∈ L is the truth value of µ(σ(x)) ∈ µ(L) and of ν(σ(x)) ∈ ν(L),
respectively. The evaluation of a formula depends on whether we work with a
trace monoid M or with a graph group G. An existentially quantified sentence
is true, if and only if the underlying propositional formula evaluates to true by
some assignment.

Our main theorem states that the existential theory of trace monoids with
involution is decidable. The group case becomes a corollary. This is due to the
following lemma and proposition which are close to similar statements in [4].

Lemma 1. Let x̃, ỹ, z̃ ∈ M be reduced traces representing the group elements
x, y, z ∈ G. Then we have xy = z in G if and only if there are traces p, q, r ∈ M

such that x̃ = pq, ỹ = qr, and z̃ = pr.

Proposition 1. The existential theory of equations with normalized regular con-
straints over G(Γ, I,) is PSPACE-hard. There is a polynomial time reduction
of this theory to the existential theory of equations with recognizable constraints
over trace monoids with involution M(Γ, I).

4 The Main Theorem

In order to have a convenient complexity bound below we introduce the graph
theoretical concept of a complete clan. A complete clan in (Γ,D) is a maximal
subset A ⊆ Γ such that (a, c) ∈ D ⇔ (b, c) ∈ D for all a, b ∈ A, c ∈ Γ . Note
that a complete clan is a complete subgraph of (Γ,D), since D is reflexive. The
set of complete clans is a partition of Γ and we denote by c(Γ,D) the number
of complete clans. A complete clan A is called thin, if there are a ∈ A, b ∈ Γ \A
such that (a, b) ∈ I. The following facts are easily verified: The number of thin
clans is either c(Γ,D) or c(Γ,D) − 1, it is never 1. If M is a direct product of d
free monoids, then the number of thin clans is d for d > 1, and it is 0 for d = 1.

Recognizable constraints are a natural concept in the framework of trace
equations: They are needed for negations and more importantly for expressing

548 V. Diekert and A. Muscholl

commutation during the reduction. For this we introduce two macros: The
formula ∨

a∈Γ

(
(X ∈ aM & Y /∈ aM) ∨ (X 6∈ aM & Y ∈ aM)

)

represents min(X) 6= min(Y). With the help of this macro we can replace
an inequality α 6= β by the equivalent formula ∃Z∃X∃Y : α = ZX & β =
ZY & min(X) 6= min(Y).

A formula alph(X) × alph(Y) ⊆ I stands for
∧

a∈Γ

(X 6∈ Γ ∗aΓ ∗ ∨ Y ∈ I(a)∗).

So, if I = ∅, then the macro means nothing but X ∈ {1} ∨ Y ∈ {1}. A formula
as above is called a commutation constraint.

Theorem 1. Let τ ≥ 0. The following problem is PSPACE-complete.
Input: An existentially quantified sentence Φ of equations with recognizable

constraints over a trace monoid with involution (M(Γ, I),) such that the number
of complete thin clans is at most τ .

Question: Is the sentence Φ true?

Corollary 1. Let τ ≥ 0. The following problem is PSPACE-complete.
Input: An existentially quantified sentence Φ of equations with normalized

rational constraints over a graph group G(Γ, I,) such that the number of com-
plete thin clans is at most τ .

Question: Is the sentence Φ true?

For τ = 0 Thm. 1 follows by [4], since τ = 0 is the situation of free monoids.
We assume τ ≥ 1 and since τ is a constant, it is enough to give reduction to
the case τ − 1. This is done stepwise. First, we deal with negations: Using the
first macro above (and the fact that the class of recognizable languages is closed
under complementation) we may assume without restriction that Φ is a positive
sentence. More precisely, for the polynomial time reduction we will assume that Φ
may contain negations only on the constraints. We still call it a positive sentence.

Second, we make a reduction to the case where the set of fixed points ∆ =
{a ∈ Γ | a = a} is empty. This reduction is omitted for lack of space. Hence,
in the following we shall assume that the involution has no fixed points, i.e.,
a 6= a for all a ∈ Γ . Moreover, we shall assume that all equations of Φ are in
triangulated form, X = X1X2.

We fix for the rest of the paper some thin complete clan in (Γ,D) which we
write in the form A∪A with A∩A = ∅. We define D̂ = D∪Γ×(A∪A)∪(A∪A)×Γ ,
so the clan is not thin anymore with respect to D̂. Let Î = Γ × Γ \ D̂, then
M̂ = M(Γ, Î) is a trace monoid with involution, but the number of thin complete
clans in (Γ, D̂) is at most τ − 1.

In the remaining of the section ψ̂ means the canonical homomorphism
ψ̂ : M̂ → M. By induction, it is enough to transform Φ into some equivalent
sentence Φ̂ over M̂. The handling of recognizable constraints is trivial: A con-
straint X ∈ L (X /∈ L resp.) is replaced by X ∈ ψ̂−1(L) (X /∈ ψ̂−1(L) resp.).

Solvability of Equations in Free Partially Commutative Groups Is Decidable 549

For a replacement of an equation X = X1X2 let d = 3τ2 + 8τ + 7 and choose d
new, existentially quantified variables Y1, . . . , Yd. The replacement is a disjunc-
tion over all permutations π ∈ Perm(d) and all c with 0 ≤ c ≤ d. Each clause
in the disjunction is the following conjunction of equations and commutation
constraints:

X1 = Y1 · · ·Yc & X2 = Yc+1 · · ·Yd & X = Yπ(1) · · ·Yπ(d)

&
∧

(i−j)(π(i)−π(j))<0

alph(Yi) × alph(Yj) ⊆ I

We obtain a system of equations with a larger set of variables and a new
sentence Φ̂. An easy reflection shows that if Φ̂ evaluates to true over M̂, then Φ

evaluates to true over M. Since τ is a constant, the size of Φ̂ is polynomial in the
size of Φ when using the commutation macro. In any case the transformation
from Φ to Φ̂ can be performed by some polynomially space bounded Turing
machine. The heart of the paper is the proof of the converse: If Φ evaluates to
true, then Φ̂ evaluates to true as well.

5 Normal Forms

The aim of this section is to define a normal form mapping nf : M → M̂ which
associates with each trace x ∈ M a unique trace nf(x) ∈ M̂ and which is com-
patible with the involution, i.e., we demand ψ̂(nf(x)) = x and nf(x) = nf(x). As
we will see below the existence of the normal form relies on the following:

Lemma 2. Let a ∈ Γ such that a 6= a and let w ∈ {a, a}∗ be any word. Then
there exists a unique k ≥ 0 such that w ∈ a∗(aa∗)k(a∗a)ka∗.
For the same k we also have w ∈ a∗(aa∗)k(a∗a)ka∗.

We view a trace x as a labeled pomset [V,≤, λ], λ : V → Γ . We write v ∈ x
for a vertex v ∈ V and u ‖ v whenever u, v are incomparable with respect to ≤.
We also write (u, v) ∈ I if (λ(u), λ(v)) ∈ I, and analogously for D = (Γ ×Γ) \ I.
Let a1 < · · · < aq be the linearly ordered subset of (V,≤) containing all vertices
with label in the clan A ∪ A. We might have q = 0 meaning that there are no
vertices with label in A ∪ A. We read a1 < · · · < aq as a word a1 · · · aq in the
free monoid (A ∪ A)∗. With each vertex v ∈ V we shall associate the maximal
factor of a1 · · · aq consisting of the vertices w with label in A ∪ A which are
incomparable with v, i.e., w ‖ v. For this, we introduce the source s(v) and the
target point t(v) of v:

s(v) = sup {i | ai ≤ v} , t(v) = inf {i | v ≤ ai} ,
where by convention, sup ∅ = 0 and inf ∅ = q + 1. Thus, 0 ≤ s(v) ≤ q, 1 ≤
t(v) ≤ q + 1 and s(v) ≤ t(v) for all v ∈ V . Note that we have s(v) = t(v) if and
only if the label of v belongs to A ∪A.

For 0 ≤ s ≤ t ≤ q + 1 we define the median position m(s, t). For s = t let
m(s, t) = s. For s < t we choose by Lem. 2 the unique c with s ≤ c < t and

550 V. Diekert and A. Muscholl

k ≥ 0 such that as+1 · · · ac ∈ A∗(AA∗)k and ac+1 · · · at−1 ∈ (A
∗
A)kA

∗
. Then

we define m(s, t) = c + 1
2 and we call m(s, t) the median position. The median

position m(s(v), t(v)) is called the global position of a vertex v ∈ V , it is denoted
by g(v). Hence g(v) = m(s(v), t(v)).

Lemma 3. Let x = [V,≤, λ] and v, w ∈ V be vertices such that v ≤ w. Then we
have s(v) ≤ s(w), t(v) ≤ t(w), and g(v) ≤ g(w).

We define the normal form nf(x) ∈ M̂ by introducing new arcs into the
dependence graph [V,E, λ] of x. Let v, w ∈ V such that λ(w) ∈ A∪A and v ‖ w.
(In particular, λ(v) /∈ A ∪ A and g(v) 6= g(w).) We define a new arc from v to
w, if g(v) < g(w), otherwise we define a new arc from w to v. The arcs being
already present in the dependence graph of x are called old arcs. The union Ê
of old and new arcs defines a labeled directed graph [V, Ê, λ]. From the lemma
below it follows that [V, Ê, λ] is an acyclic graph:

Lemma 4. Let x ∈ M and consider vertices u, v in x. For u ≤ v in nf(x) we
have g(u) ≤ g(v). Moreover, we have g(u) < g(v) whenever there is a path from
u to v in nf(x) using at least one new arc.

Thus, [V, Ê, λ] defines a unique trace nf(x) = [V, Ê, λ] of M̂. The important
property of the normal form is nf(x) = nf(x) for all x ∈ M, which can be
derived from Lem. 2.

Example 1. Let x = a a a a a a a a a a a b and (a, b) ∈ I. Then k = 3, g(b) = 61
2

and nf(x) = a a a a a a b a a a a a.

Remark 1. A normal form satisfying nf(x) = nf(x) for all x ∈ M cannot exist,
in general, if the involution has fixed points. Indeed, assume we were in the
situation a, b ∈ A, a = a, b = b, and (a, b) ∈ I. Then ab = ab, but (a, b) ∈ D̂, so
necessarily nf(ab) 6= nf(ab) in M̂.

After these preparations Thm. 1 becomes a consequence of the next one.

Theorem 2. Let d = 3τ2+8τ+7 and let x, x1, x2 ∈ M such that x = x1x2. Then
there are y1, . . . , yd ∈ M̂, an index 0 ≤ c ≤ d, and a permutation π ∈ Perm(d)
with the following properties:

nf(x) = yπ(1) · · · yπ(d),

nf(x1) = y1 · · · yc,

nf(x2) = yc+1 · · · yd,

alph(yi) × alph(yj) ⊆ I for all i, j, where (i− j)(π(i) − π(j)) < 0.

The proof of Thm. 2 covers the rest of the paper. First note that if the
theorem is true for some d ≤ 3τ2 + 8τ + 7, then it is true for d = 3τ2 + 8τ + 7.
We let x, x1, x2 ∈ M such that x = x1x2. We present x by its pomset [V,≤, λ]
and a1 < · · · < aq is the linearly ordered subset of all vertices in V which have
a label in A ∪ A. We define p to be the index such that a1, . . . , ap ∈ x1 and
ap+1, . . . , aq ∈ x2. We have 0 ≤ p ≤ q.

Solvability of Equations in Free Partially Commutative Groups Is Decidable 551

The case q = 0 is trivial (it could be excluded), the case p = 0 or p = q is not
trivial in the sense that we might have nf(x) 6= nf(x1) nf(x2), c.f. Ex. 1 above
with x2 = b.

In order to determine how nf(x) can be obtained from nf(x1),nf(x2), we
introduce the notion of local position. The local position `(v) is the global position
of v in x1, if v belongs to x1. If v belongs to x2, then `(v) is the global position
of v in x2 plus p, since we define `(v) in x. Suppose that v is in x1. With respect
to x1, the target point t′(v) of v is min{p+ 1, t(v)}, hence we define:

`(v) = m(s(v),min{p+ 1, t(v)}) .

Similarly, if v belongs to x2 then the source point s′(v) of v with respect to x2
is s′(v) = max{s(v), p} and we define:

`(v) = m(max{s(v), p}, t(v)) .

The next proposition is a crucial technical result. It shows that among the
vertices v with s(v) ≤ p < t(v), i.e., among the vertices where the local and
global positions may differ, there is a constant number of different source points.

Proposition 2. Let x ∈ M and define S = {s(v) | s(v) ≤ p < t(v), v ∈ x}.
Then we have |S| ≤ τ + 1.

Proof. We may assume that |S| ≥ 2. Choose a sequence b1, . . . , bk, bk+1 ∈ x
with k minimal such that S = {s(bi) | 1 ≤ i ≤ k + 1}. We may assume that
0 ≤ s(b1) < · · · < s(bk) < p and p < t(bi) for 1 ≤ i ≤ k. Hence we have bi ‖ ap

for all 1 ≤ i ≤ k. We will show that k ≤ τ . For each 1 < i ≤ k we choose a
path from as(bi) to bi in the dependence graph of x. On this path we pick a last
vertex ci with ci ≤ ap. This vertex cannot be bi. Hence there is a next vertex di

with (ci, di) ∈ D, ci < di ≤ bi, and di ‖ ap for 1 < i ≤ k. Let d1 = b1. We claim
that {di} × {ci+1, . . . , ck} ⊆ I for 1 ≤ i ≤ k. Indeed assume by contradiction
that (di, cj) ∈ D for some i < j ≤ k. Then di ≤ cj since s(bi) < s(bj). But we
have cj ≤ ap, hence di ≤ cj implies di ≤ ap in contradiction to di ‖ ap.

Next, (di, ci) ∈ D and {di} × {ci+1, . . . , ck} ⊆ I imply that ci and cj are in
different thin clans for all 2 ≤ i < j ≤ k. Moreover, there is another thin clan
containing d1. ut

Analogously to Prop. 2 it holds that |T | ≤ τ + 1, where T is the set of target
points: T = {t(v) | s(v) ≤ p < t(v), v ∈ x}.

The positions we are interested in will be called in the following cutting
points. The set of cutting points C is the union C = Cg ∪ C` ∪ {0, p+ 1

2 , q + 1}
where

Cg = {g(v) | s(v) ≤ p < t(v), v ∈ x},
C` = {`(v) | s(v) ≤ p < t(v), v ∈ x}.

Proposition 3. The number of cutting points is bounded by τ2 + 4τ + 6.

552 V. Diekert and A. Muscholl

The cutting points split the real interval [0, q + 1] into open intervals of the
form (i, j) where i, j ∈ C, i < j, and (i, j)∩C = ∅. There are |C|−1 such intervals,
so the number is at most τ2 + 4τ + 5. With each interval (i, j) we associate a
factor trace of x. The factor trace is denoted either x[0; i, j] or x[3; i, j]; we call
x[m; i, j], 0 ≤ m ≤ 3, a segment. (Later on we will define segments with index 1
and 2.) Since p+ 1

2 is a cutting point we have either j ≤ p+ 1
2 or p+ 1

2 ≤ i. For
j ≤ p+ 1

2 we define

x[0; i, j] = {v ∈ x | i < g(v) ≤ j and t(v) ≤ p}.
For p+ 1

2 ≤ i we define

x[3; i, j] = {v ∈ x | i ≤ g(v) < j and p < s(v)}.
Note that we have `(v) = g(v) for all v ∈ x[0; i, j] or v ∈ x[3; i, j]. A segment
as defined above is just a set of vertices of x. However, it is easy to see that
a segment defines a factor trace of x and a factor trace of either x1 or x2. In
the lemma below, we show that this property is still true for the normal forms
nf(x),nf(x1),nf(x2).

Lemma 5. Each segment x[m; i, j],m = 0, 3, defines a factor trace y of nf(x).
If j ≤ p + 1

2 , then x[0; i, j] also defines a factor trace y1 of nf(x1) and we have
y = y1 in M̂. If p+ 1

2 ≤ i, then x[3; i, j] also defines a factor trace y2 of nf(x2)
and we have y = y2 in M̂.

The segments x[0; i, j], x[3; i, j] are pairwise disjoint subsets of x, but they
do not cover x, in general. The missing points are those vertices v where s(v) ≤
p < t(v). Therefore for each m = 1, 2 and i ≤ p < j we define an m-segment by:

x[m; i, j] = {v ∈ xm | s(v) = i and t(v) = j} , m = 1, 2 .

Note that the indices i, j are not required to be cutting points. However, all
vertices v ∈ x[m; i, j] have the same local position `(v) and the same global
position g(v), which are both cutting points. The number of non-empty 1 and 2
segments is at most 2(τ + 1)2 = 2τ2 + 4τ + 2 by Prop. 2.

Lemma 6. Each m-segment x[m; i, j], m = 1, 2 defines a factor trace y of nf(x)
and a factor trace ym of nf(xm). We have y = ym in M̂.

Let us summarize the notations we have introduced up to this point. For
each m = 0, 1, 2, 3 we have defined m-segments of the form x[m; i, j] which are
pairwise disjoint subsets of x and cover x. Hence F = {x[m; i, j] | x[m; i, j] 6= ∅}
is a partition of the set x. Each x[m; i, j] with m ≤ 1 is a factor trace of both
nf(x) and nf(x1) (respectively, each x[m; i, j] with m > 1 is a factor trace of
both nf(x) and nf(x2)). Using the counting above (Props. 2 and 3) we have
|F | ≤ 3τ2 + 8τ + 7.

By Lemma 5 and 6 we denote by yf ∈ M̂ the factor trace of nf(x) associated
with f ∈ F . Since the segments in F cover all of nf(x),nf(x1) and nf(x2) it
remains to show how to write nf(x),nf(x1) and nf(x2) as products of yf , where
f is in F . For this we have to compare segments. Every segment is associated

Solvability of Equations in Free Partially Commutative Groups Is Decidable 553

with either a pair of consecutive cutting points or a single cutting point. For
a non-empty m-segment f = x[m; i, j] we define a global weight ωg(f) and a
local weight ω`(f) as follows. For m ∈ {0, 3} let ωg(f) = ω`(f) = i+j

2 , which
is the center of the half-open interval associated with f . For m ∈ {1, 2} let
ωg(f) = g(v) and ω`(f) = `(v) for some v ∈ f . Recall that all v ∈ f in this case
have the same global position and the same local position.

We endow the set F of m-segments, m ∈ {0, 1, 2, 3} with a global total order
vg and a local total order v`. In the following let h ∈ {g, `}, so h refers either
to the global or to the local situation.

For f = x[m; i, j], f ′ = x[m′; i′, j′] we write f vh f
′ if one of the following

conditions holds:

1. ωh(f) < ωh(f ′).
2. ωh(f) = ωh(f ′), and m < m′.
3. ωh(f) = ωh(f ′), m = m′, and i < i′.
4. ωh(f) = ωh(f ′), m = m′, i = i′, and j ≤ j′.

It is clear that vg and v` are both total orders. The next proposition has
several important consequences. For example, it implies that vg and v` are both
linearizations of the partial order ≤ of x.

Proposition 4. Let v, v′ ∈ x be vertices such that v ∈ f = x[m; i, j] and v′ ∈
f ′ = x[m′; i′, j′], where f, f ′ ∈ F . Then we have:

– If v ≤ v′ or g(v) < g(v′) holds, then f vg f
′.

– If v ≤ v′ or `(v) < `(v′) holds, then f v` f
′.

Corollary 2. Let F = {f1, . . . , fd} be sorted such that fi vg fi+1 for all i and
let yi = yfi be the associated factors of nf(x). Then we have nf(x) = y1 · · · yd.

Corollary 3. Let F = {f1, . . . , fd} be sorted such that fi v` fi+1 for all i and
let yi = yfi

be the associated factors of nf(x). Then there exists some c with
0 ≤ c ≤ d satisfying

nf(x1) = y1 · · · yc and nf(x2) = yc+1 · · · yd .

Corollary 4. Let f, f ′ ∈ F be segments such that f v` f
′. Then f ′ vg f and

f 6= f ′ imply alph(yf) × alph(yf ′) ⊆ I.

For the final step we consider the normal forms of x, x1, x2 and express them
as products of factor traces yf associated with segments f ∈ F . We sort F
such that f1 v` · · · v` fd. Let π ∈ Perm(d) be the permutation such that
fπ(1) vg · · · vg fπ(d) is F sorted with respect to vg. By Cor. 4 we have alph(yi)×
alph(yj) ⊆ I whenever (i− j)(π(i) − π(j)) < 0. (As above, yi is the factor trace
associated with fi ∈ F .) This completes the proof of Thms. 2 and 1.

Acknowledgment. We thank Yuri Matiyasevich for various contributions
which were at the beginning of this work.

554 V. Diekert and A. Muscholl

References

1. A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. International Journal
of Computer and Information Sciences, 8:255–260, 1979.

2. M. Benois. Parties rationelles du groupe libre. C. R. Acad. Sci. Paris, Sér. A,
269:1188–1190, 1969.

3. V. Diekert. Combinatorics on Traces. LNCS 454. Springer, 1990.
4. V. Diekert, C. Gutiérrez, and C. Hagenah. The existential theory of equations

with rational constraints in free groups is PSPACE-complete. In Proc. 18th
Ann. Symp. on Theor. Aspects of Comp. Sci. (STACS’01), LNCS 2010:170–182,
Springer, 2001.

5. V. Diekert, Yu. Matiyasevich, and A. Muscholl. Solving word equations modulo
partial commutations. Theoretical Computer Science, 224:215–235, 1999. Special
issue of LFCS’97.

6. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

7. C. Droms. Isomorphisms of graph groups. Proc. American Mathematical Society,
100:407–408, 1987.

8. C. Gutiérrez. Satisfiability of equations in free groups is in PSPACE. In Proc. 32nd
Ann. ACM Symp. on Theory of Computing, STOC’2000, pp. 21–27. ACM Press
2000.

9. A. Kościelski and L. Pacholski. Makanin’s algorithm is not primitive recursive.
Theoretical Computer Science, 191:145–156, 1998.

10. D. Kozen. Lower bounds for natural proof systems. In Proc. 18th Ann. Symp. on
Found. of Comp. Sci., FOCS’77, pp. 254–266, IEEE Computer Society Press 1977.

11. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147–236, 1977. English transl. in Math. USSR Sbornik 32 (1977).

12. G. S. Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math.
46:1199–1273, 1983. English transl. in Math. USSR Izv. 21 (1983).

13. G. S. Makanin. Decidability of the universal and positive theories of a free group.
Izv. Akad. Nauk SSSR, Ser. Mat. 48:735–749, 1984. In Russian; English translation
in: Math. USSR Izvestija, 25, 75–88, 1985.

14. Yu. Matiyasevich. Some decision problems for traces. In Proc. 4th Int. Symp. on
Log. Found. of Comp. Sci. (LFCS’97), LNCS 1234: 248–257, Springer, 1997. In-
vited lecture.

15. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus, 1977.

16. A. Mazurkiewicz. Trace theory. In Petri Nets, Applications and Relationship to
other Models of Concurrency, LNCS 255: 279–324, Springer, 1987.

17. E. Ochmański. Regular behaviour of concurrent systems. Bulletin of the European
Association for Theoretical Computer Science (EATCS), 27:56–67, 1985.

18. E. Ochmański. Recognizable trace languages. In The Book of Traces, Chapter 6:
167–204. World Scientific, Singapore, 1995.

19. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Proc. 40th Ann. Symp. on Found. of Comp. Sci., FOCS’99, pages 495–500. IEEE
Computer Society Press 1999.

20. K. U. Schulz. Makanin’s algorithm for word equations — Two improvements and a
generalization. In Word Equations and Related Topics, LNCS 572: 85–150, Springer
1991.

Rational Transformations of Formal Power Series

Manfred Droste1 and Guo-Qiang Zhang2??

1 Institut für Algebra, Technische Universität Dresden
D-01062 Dresden, Germany
droste@math.tu-dresden.de

2 Department of EECS, Case Western Reserve University
Cleveland, Ohio 44106, U.S.A.

gqz@eecs.cwru.edu

Abstract. Formal power series are an extension of formal languages.
Recognizable formal power series can be captured by the so-called
weighted finite automata, generalizing finite state machines. In this
paper, motivated by codings of formal languages, we introduce and
investigate two types of transformations for formal power series. We
characterize when these transformations preserve rationality, generaliz-
ing the recent results of Zhang [15] to the formal power series setting. We
show, for example, that the “square-root” operation, while preserving
regularity for formal languages, preserves rationality for formal power
series when the underlying semiring is commutative or locally finite, but
not in general.

Keywords. Formal power series, rational languages, recognizable lan-
guages, weighted finite automata.

Introduction

In automata theory, Kleene’s fundamental theorem on the equivalence of regular
languages and finite automata has been extended in several ways. Schützenberger
investigated formal power series over arbitrary semirings (such as the natural
numbers) with non-commuting variables and showed that the recognizable for-
mal power series [13], which represent precisely the behavior of automata with
multiplicities (cf. Eilenberg [4]), coincide with the rational series. This was the
starting point for a large amount of work on formal power series – see Kuich [9],
Berstel-Reutenauer [1], Kuich-Salomaa [10], or Salomaa-Soittola [11] for sur-
veys. Special cases of automata with multiplicities are networks with capacities
(costs), which have been also investigated in operations research for algebraic
optimization problems, cf. [16] and in the ‘max-plus-community’ [5].

Regular language operations such as union, concatenation, and star have
their straightforward corresponding parts in formal power series. In fact, the
concept of rational formal power series is based on these operations: a formal
?? Corresponding author.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 555–566, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

556 M. Droste and G.-Q. Zhang

power series is rational precisely when it can be defined in terms of (a finite
number of) these operations starting from the polynomials.

Many other operations on formal languages exist. An interesting and histor-
ically important class is captured by regularity preserving functions [7,12,14,15].
A simple yet nontrivial example is the so-called “square-root” operation: the
square-root of a language L is the language sqrt(L) := {w | ww ∈ L}, consisting
of all the words w such that ww is in L. Although the square-root operation
preserves regular languages, a closely related duplication operation, defined by
{ww | w ∈ L}, clearly does not preserve regularity.

The square-root operation extends straightforwardly to formal power series.
For a formal power series S ∈ K〈〈A∗〉〉, define (sqrt(S), w) := (S, ww), i.e., the
coefficient of w in the new series is just the coefficient of ww in the original series.
Does sqrt preserve rational formal power series? This is one of many questions
that is easy to formulate, but nontrivial to answer. On the other hand, the
notion of “rationality-preserving functions” takes some effort even to formulate
precisely. In fact, it leads to two kinds of transformations with distinct properties.

The purpose of this paper is to introduce and investigate two types of trans-
formations motivated from the coding of formal languages and their regularity-
preserving properties. We provide characteristic conditions on the rationality-
preserving property of these transformations, generalizing the recent results of
Zhang [15] to the formal power series setting. Unlike the case for formal lan-
guages, the rationality-preserving property of these transformations critically
depends on the property of the underlying semiring. The “square-root” opera-
tion, while preserving regularity for formal languages, preserves rationality for
formal power series if the underlying semiring is commutative or locally finite,
but not in general.

We note that for the Boolean semiring, there is already a rich class of
regularity-preserving functions (see, e.g. [15]) which readily generalize to locally
finite semirings by the results of this paper. These functions include polynomi-
als and exponentials, and are preserved under most constructions such as sum,
multiplication, exponentiation, but not subtraction. In fact, this function class
is not even properly contained in the class of recursively enumerable functions,
just to give an idea of how rich it is.

1 Formal Power Series and Weighted Finite Automata

We begin with the necessary notation and background for formal power series
and for weighted finite automata. While a couple of introductory textbooks [10,
1] on formal power series are available, the concept of weighted finite automata
remains folklore (or implicit in the literature). Weighted finite automata extract
the computational content of recognizable formal power series. We recall the
background here since this is a useful concept and several of our results depend
on the intuitions provided by such a view.

A semiring is a structure K = (K, +, ·, 0, 1) where (K, +, 0) is a commu-
tative monoid and (K, ·, 1) is a monoid such that multiplication distributes

Rational Transformations of Formal Power Series 557

over addition, and 0 · x = x · 0 = 0 for each x ∈ K. If the multiplication
is commutative, we say that K is commutative. If the addition is idempo-
tent, then the semiring is called idempotent. For instance, the Boolean semir-
ing B = ({0, 1}, +, ·, 0, 1) is both commutative and idempotent. The semiring of
natural numbers (N, +, ·, 0, 1) is commutative but not idempotent.

Also, the semiring K is locally finite if any finitely generated subsemiring of K
is finite. For instance, if both sum and product are commutative and idempotent
then it is easy to see that the semiring is locally finite. This is in particular
the case for the min-max semiring (R ∪ {−∞, +∞}, min, max, +∞,−∞) or for
semirings which are Boolean algebra, such as (P(A∗),∪,∩, ∅, A∗).

A formal power series is a mapping S : A∗ → K. It is usually denoted as a
formal sum S =

∑
w∈A∗(S, w)w. The set supp(S) := {w ∈ A∗ | (S, w) 6= 0} is

called the support of S. If supp(S) is finite, then S is called a polynomial. The
collection of all formal power series is denoted by K〈〈A∗〉〉. If L ⊆ A∗, we define
the characteristic series of L by 1L :=

∑
w∈L 1w. Let S, T ∈ K〈〈A∗〉〉 be two

series. The Hadamard product S � T ∈ K〈〈A∗〉〉 is the series defined by

(S � T, w) := (S, w) · (T, w) (w ∈ A∗).

It is known that if S, T are both recognizable and T is a characteristic series
(T = 1L for some L), then S � T is again recognizable, see [11], Theorem II.4.5.

In this paper we will be mostly concerned with formal power series where
the underlying monoid is the freely-generated monoid A∗ over a finite alphabet
A. For this class of formal power series the machine concept of weighted finite
automata is useful.

Definition 1. A weighted finite automaton over a semiring (K, +, ·, 0, 1) is a
structure W = (Q, A, µ, λ, γ) where Q is a finite set of states, A is the input
alphabet, µ : Q×Q×A → K is the cost function, and λ : Q → K and γ : Q → K
are cost functions for entering and leaving a state, respectively.

The key distinction from the standard finite state machine is that in a
weighted finite automaton, a cost is attached to a transition from one state
to another while reading an input symbol. Weighted finite automata are inher-
ently non-deterministic – the value 0 can be attached to impossible transitions.
For simplicity, no ε-transitions are permitted.

The cost of a string a1a2 · · · an along a path p1 −→a1
k1

p2 −→a2
k2

p3 · · · −→an

kn

pn+1 in W is the product λ(p1)k1k2 · · · kn · γ(pn+1). The cost of a string with
respect to W is the sum of all the costs of the string along every distinct path.
Thus, every weighted finite automaton determines a formal power series K〈〈A∗〉〉.

Rational formal power series are those which can be constructed using the
operations of sum, product, and star (with the star operation applied only to
those formal power series having 0 coefficient for the empty word). We write
Krat〈〈A∗〉〉 for the set of rational formal power series over the semiring K.

Theorem 1 (Schützenberger). A formal power series in K〈〈A∗〉〉 is rational
if and only if it is the formal power series determined by some weighted finite
automaton.

558 M. Droste and G.-Q. Zhang

Let Kn×n be the monoid of all (n × n)-matrices over K, with matrix mul-
tiplication. A series S ∈ K〈〈A∗〉〉 is called recognizable, if there exists an integer
n ≥ 1, a monoid morphism µ : A∗ → Kn×n and vectors λ ∈ K1×n, γ ∈ Kn×1

such that
(S, w) = λ · µ(w) · γ

for each w ∈ A∗. We let Krec〈〈A∗〉〉 denote the collection of all recognizable
formal power series S ∈ K〈〈A∗〉〉.

It can be seen that weighted finite automata correspond precisely to recog-
nizable series: the cost function provides the generating matrices for the monoid
morphism µ : A∗ → Kn×n. More intuitively, the cost for the automaton to go
from state p to state q while reading an a ∈ A is the (p, q)-entry in the matrix
µ(a), assuming that states are labeled by consecutive integers starting from 1.

The generality of the semiring structure makes it possible to put many fa-
miliar examples in the context of weighted finite automata:

– A = {1}, K = (R+ ∪{∞}, min, +,∞, 0) where R+ is the set of non-negative
real numbers. The weighted finite automata model shortest paths in the
underlying graph.

– A, K = ([0, 1], max, ·, 0, 1). In this case the weighted finite automata model
the probability/reliability of an action sequence, as in stochastic automata.

– A = {1}, K = (R+ ∪ {∞}, max, min, 0,∞). This models path capacity as in
network flow analysis.

– A, Boolean semiring B = ({0, 1}, +, ·, 0, 1). This corresponds to classical
non-deterministic finite automata theory.

We also note that Hashiguchi’s solution to the restricted star-height problem
[6] hinges upon a novel concept of the degree of non-determinism associated
with a non-deterministic finite automaton, which can be formulated naturally as
a weighted finite automaton. The power of weighted automata for the recognition
of context-free languages was recently pointed out in [2].

2 Amplifying Transformations

Consider the following situation:

h
B∗-A∗

f

?

h B∗A∗ -

where h and f are any functions.
For any formal power series S ∈ K〈〈A∗〉〉, define, for every w ∈ A∗,

(A(S, f, h), w) :=
∑

y∈A∗
h(y)=f(h(w))

(S, y).

Rational Transformations of Formal Power Series 559

This is called an amplifying transformation. Intuitively, the entry/coefficient
for w is the sum of the entries of all ys whose target under h is the same as the
target of w under f composed with h.

The assumption is that h is a non-deleting epimorphism for most results of
this section (non-deleting in the sense that for all w, |w |≤|h(w) |), and length-
preserving epimorphism for the next section. For convenience, B can sometimes
be considered as a subset of A by renaming.

As an example, take B = {a} to be a singleton, and take h to be the length
function w 7−→ a|w|. The function f can be seen as a function from A∗ to the
natural numbers. For any language L (over the Boolean semiring), we have
w ∈ A(L, f, h) (using the standard correspondence between formal languages
and their characteristic series) if and only if there is a string y ∈ L such that
|y |= f(|w |). In other words,

A(L, f, h) = {w | (∃y ∈ L) |y |= f(|w |)}.

This is precisely one of the language transformations considered in the literature
[7,12,14,15].

It is both interesting and useful to note that such kind of transformations
can be factored as the composition of familiar, more basic transformations on
formal power series.

Let h : A∗ → B∗ be a function. If T ∈ K〈〈B∗〉〉, then

(h−1T, w) := (T, h(w)) for each w ∈ A∗

defines a formal power series in K〈〈A∗〉〉. Similarly, for S ∈ K〈〈A∗〉〉,
(h̄S, v) :=

∑

h(x)=v

(S, x) for each v ∈ B∗

defines a formal power series in K〈〈B∗〉〉.
For any homomorphism h, h−1 preserves rationality (see e.g. [10]). If h is

a non-deleting homomorphism then h̄ preserves rationality. If, moreover, h is
length-preserving then one can obtain an explicit expression. Indeed, if S ∈
Krec〈〈A∗〉〉 is represented by (λ, µ, γ), then h̄S is given by (λ, h̄µ, γ) where h̄µ :
B∗ → Kn×n is the homomorphism defined by (h̄µ)(v) :=

∑
x∈h−1(v) µx.

The following lemma says that A(S, f, h) is nothing but the formal power
series obtained by first transforming S in K〈〈A∗〉〉 to h̄S in K〈〈B∗〉〉 and then
transforming h̄S under f−1 before being transformed back in K〈〈A∗〉〉 by h−1.

Lemma 1 (Factorization Lemma). For any function h : A∗ → B∗ and any
f : B∗ → B∗, the following equality holds for any S ∈ K〈〈A∗〉〉:

A(S, f, h) = h−1f−1h̄S.

Proof. For any w ∈ A∗, we have

(h−1f−1h̄S, w) = (h̄S, f(h(w))) =
∑

y∈A∗
h(y)=f(h(w))

(S, y) = (A(S, f, h), w). 2

560 M. Droste and G.-Q. Zhang

Let h : A∗ → B∗ be an epimorphism. For each b ∈ B there exists a letter
ab ∈ A such that h(ab) = b. Let X := {ab | b ∈ B}. Now define a linear order
≤ on A such that x < y for each x ∈ X and y ∈ (A \ X). This order can be
extended lexicographically to a linear order on A∗, also denoted by ≤. That is,
for v, w ∈ A∗ put v ≤ w if either v is a prefix of w or there are u ∈ A∗ and
a, b ∈ A such that ua is a prefix of v, ub is a prefix of w, and a < b in (A,≤).

Now for each word w ∈ A∗, the set {w′ ∈ A∗ | h(w′) = h(w)} is non-empty
and contains, with respect to ≤, a smallest element w̌ because ≤ is well-founded.
This element w̌ is called the lexicographic normal form of w (with respect to h).
Let LNF(h) be the set of all lexicographic normal forms of words w ∈ A∗. One
can show that LNF(h) = X∗ and hence it is a rational language in A∗ (we leave
the proof for the full paper). Moreover, |LNF(h) ∩ h−1(v) |= 1 for each v ∈ B∗.

Lemma 2. Let h : A∗ → B∗ be an epimorphism, let W ∈ K〈〈B∗〉〉, and put
V = (h−1W) � 1LNF(h). Then h̄V = W , and if W is recognizable, then so is V .

Proof. Since LNF(h) is a recognizable language in A∗, 1LNF(h) is a recognizable
series (cf. [1]). Hence, if W is recognizable, so is V by the preceding remarks.
Now, for each w ∈ A∗ we have

(h̄V, w) =
∑

x∈A∗
h(x)=w

(W, h(x)) · 1LNF(h)(x) = (W, w). 2

Here is our first main result of the section, which (together with the results
of Section 4) appropriately generalizes the results of Seiferas and McNaughton
(Theorem 5, [12]) and Kozen (Theorem 5, [8]) to the formal power series setting.

Theorem 2. Suppose h : A∗ → B∗ is a non-deleting epimorphism and K a
semiring. Given any function f : B∗ → B∗, the following are equivalent:

1. f−1 preserves recognizability (for series in K〈〈B∗〉〉).
2. the transformation S 7−→ A(S, h, f) preserves recognizability (for series in

K〈〈A∗〉〉).

Proof. 1 ⇒ 2: This follows directly from Lemma 1 and the fact that each of
the transformations h̄, f−1, and h−1 preserves recognizability under the given
conditions.

2 ⇒ 1: Suppose for any S ∈ Krec〈〈A∗〉〉, A(S, h, f) ∈ Krec〈〈A∗〉〉. Suppose
also that T ∈ Krec〈〈B∗〉〉. By Lemma 2, S := (h−1T) � 1LNF(h) is a recognizable
series in K〈〈A∗〉〉 and h̄S = T . By assumption, A(S, h, f) is recognizable, and
by Lemma 1 we have A(S, h, f) = h−1f−1T . So, h̄((h−1f−1T) � 1LNF(h)) is
recognizable, and by Lemma 2 this series equals to f−1T . 2

With exactly the same proof, we have the following result, substituting f−1

by f̄ in the previous theorem.

Theorem 3. Suppose h : A∗ → B∗ is a non-deleting epimorphism and K a
semiring. Given any function f : B∗ → B∗, the following are equivalent:

1. f̄ preserves recognizability (for series in K〈〈B∗〉〉).
2. the amplifying transformation S 7−→ h−1f̄ h̄S preserves recognizability.

Rational Transformations of Formal Power Series 561

3 Coding Transformations

For coding transformations to make sense, we require B ⊆ A for the homomor-
phism h : A∗ → B∗. But this is not a severe condition: in the case that h is
a surjective homomorphism, one can always rename the letters in B to ensure
B ⊆ A.

For any formal power series S ∈ K〈〈A∗〉〉, define, for every v ∈ B∗,

(h̃S, v) :=
∑

x∈A∗
h(x)=v

(S, vx).

Here the distinction from h̄ is that the summation now is over (S, vx) instead of
simply (S, x).

Note that if A = B and h : A∗ → A∗ is the identity function, then h̃S =
sqrt(S). Next we show that if K is commutative, then any such transformation
h̃, hence in particular sqrt(S), preserves recognizability.

Proposition 1. Let h : A∗ → B∗ be a length-preserving epimorphism, let K
be commutative, and let S ∈ Krec〈〈A∗〉〉. Then h̃S is recognizable. In particular,
sqrt(S) is recognizable.

Proof. We first show the result for the sqrt-transformation, since this may be of
independent interest. We then indicate how to modify the argument to get the
general result for h̃S.

Let W = (Q, A, µ, λ, γ) be a weighted finite automaton recognizing S. For
each i ∈ Q, define W ′

i = (Q × Q, A, µ′, λ′, γ′) by putting

– µ′((q, q′), (r, r′), a) = µ(q, r, a) · µ(q′, r′, a),
– λ′(q, q′) = 0 if q′ 6= i; λ′(q, i) = λ(q),
– γ′(r, r′) = 0 if r 6= i; γ′(i, r′) = γ(r′),

for any q, q′, r, r′ ∈ Q and a ∈ A.
Intuitively, both components of W ′

i are copies of W , with the first component
having i as the only final state and the second component having i as the only
initial state.

Now the executions of a word w in W ′
i correspond bijectively to those exe-

cutions of ww in W for which the first w leads to i (from which the second w
continues), and since K is commutative, this correspondence preserves the costs.
Let S′

i be the series recognized by W ′
i . Then

(sqrt(S), w) = (S, ww) =
∑

i∈Q

(S′
i, w)

for each w ∈ A∗, showing that sqrt(S) =
∑

i∈Q S′
i is recognizable.

To obtain the result for h̃, we replace in the above argument the second copy
by an automaton for h̄S, i.e., µ′((q, q′), (r, r′), b) = µ(q, r, b) ·(h̄µ)(q′, r′, b), where
b ∈ B, and we argue as before. 2

562 M. Droste and G.-Q. Zhang

Related to h̃ is the coding transformation, defined as, for each w ∈ A∗,

(C(S, f, h), w) :=
∑

y∈A∗
h(y)=f(h(w))

(S, h(y)y).

Lemma 3. For any h : A∗ → B∗ with B ⊆ A and any function f : B∗ → B∗,
the equality C(S, f, h) = h−1f−1h̃S holds for any S ∈ K〈〈A∗〉〉.

Proof. For any w ∈ A∗, we have

(h−1f−1h̃S, w) = (h̃S, f(h(w))) =
∑

y∈A∗
h(y)=f(h(w))

(S, h(y)y) = (C(S, f, h), w).

2

We have a similar result to Proposition 1 when K is locally finite. The proof
uses matrix-based techniques as given in Section 4.

Proposition 2. If K is locally finite and h is a length-preserving epimorphism,
then h̃S is rational for any rational S in K〈〈A∗〉〉.

We also have the following useful result.

Proposition 3. Suppose K is locally finite and f : B∗ → B∗ is any function.
Then f−1 preserves recognizability of languages over B if and only if f−1 pre-
serves recognizability of formal power series of K〈〈B∗〉〉.

It is interesting to point out that the “only if” part is independent of the
locally finite semiring K. The proof for this proposition uses some techniques
developed in [3]; it is omitted here due to lack of space and will be included in
the full paper.

Theorem 4. Suppose h : A∗ → B∗ is a length-preserving epimorphism with
B ⊆ A and K is locally finite. Then for any function f : B∗ → B∗,

1. if f−1 preserves recognizability then the coding transformation preserves rec-
ognizability.

2. if B is a singleton, then the converse of (1) is also true.

Proof. (1) Straightforward by Lemma 3 and Proposition 2.
(2) Choose any S ∈ Krec〈〈A∗〉〉 and consider the Hadamard product S′ =

S � 1B∗ . Then for each w ∈ A∗, we obtain

(C(S′, f, h), w) =
∑

y∈B∗
h(y)=f(h(w))

(S′, h(y)y) = (S, f(h(w))f(h(w)))

Rational Transformations of Formal Power Series 563

since h acts like the identity on B∗ (i.e. h(y) = y for y ∈ B∗). By Lemma 4 in the
next section, the support of this series is a recognizable language in A∗. Putting
S = 1L, we obtain that for any recognizable language L in A∗, the language

L′ = {w ∈ A∗ | f(h(w))2 ∈ L}

is recognizable. Hence

L′ ∩ B∗ = {w ∈ B∗ | (f(w))2 ∈ L} = f−1(sqrt(L))

is recognizable in B∗ for any recognizable language L. But since B is a singleton,
any recognizable language in B∗ is of the form sqrt(L) for some recognizable
language L ⊆ B∗. This proves that f−1 preserves recognizability of languages
and now we apply Proposition 3 to get the required conclusion. 2

It should be interesting to compare this proof with the combinatorial proof
of Kozen [8] for a related result for formal language transformations.

We end this section showing by a pumping argument that if K is not commu-
tative, then in general even the sqrt-operation need not preserve recognizability.

Example. Let K = B〈〈{a, b}∗〉〉, and let S ∈ K〈〈{a, b}∗〉〉 be given by (S, w) =
w. Clearly, S is recognizable. We show that T = sqrt(S) is not recognizable.
Indeed, suppose there was a weighted finite automaton W recognizing T . Say W
has n states. Consider w = abn. Then (T, w) = (S, ww) = w2. This cost equals
the sum over the costs of all paths realizing w in W . But w2 cannot be written
as a proper sum in K. Due to the idempotence of K, the cost w2 can be the
sum of the costs of several paths realizing w; however, each of them has to have
the same cost w2. Fix a path realizing w with cost w2. This path contains a
loop which is labeled only with b’s, say of length j > 0. So w = abibjbk where
i+j+k = n, and the loop realizing bj has some non-zero cost c ∈ K. Now consider
wm = abibmjbk = abn+(m−1)j(m ≥ 2). Its cost in W is abn+(m−1)jabn+(m−1)j ,
which is obtained from the cost of the loop bmj , so it has some power of c as
a factor. If we choose m large enough, it follows that the fixed costs of the
beginning sub-path labeled with abi and of the finishing sub-path labeled with
bk cannot contribute to the a in the middle of the cost of wm. So the cost (word)
c of the loop must contain an a. But then the cost of w2 (containing the loop
twice) would contain at least three a’s, a contradiction.

We note that the above example would also work for the semiring K =
N〈〈A∗〉〉 with a similar argument.

4 Periodicity of Matrices and Recognizability-
Preservation

For formal power series over a locally finite semiring K, the recognizability-
preserving property can be characterized by the periodicity of matrices Kn×n –
we establish results of this kind in this section.

564 M. Droste and G.-Q. Zhang

Let W = (Q, A, µ, λ, γ) be a weighted finite automaton. We can take Q to be
the initial segment {1, 2, 3, . . . , n} of positive integers and obtain a matrix ∆a

in Kn×n for each a ∈ A. For notational convenience, we write ∆(w) to be the
matrix product ∆a1∆a2 · · ·∆am , where w = a1a2 · · · am, and each ai is a symbol
in A.

We first have an observation (see [3] as well).

Lemma 4. Let S be a series over a locally finite semiring K. If S is rational,
then for each k ∈ K, the sliced series S−1(k), defined as (S−1(k), w) = 1 if
(S, w) = k and (S−1(k), w) = 0 otherwise, is again rational.

Proof. Suppose W = (Q, A, µ, λ, γ) is a weighted finite automaton recognizing S
with n states. Since µ is finite, we obtain a finite semiring K ′ ⊆ K generated from
the entries in µ. Construct a deterministic finite automaton M = (P, A, δ, q0, F)
as follows:

– P = K ′n×n,
– q0 = I (the identity matrix as the starting state),
– δ(∆, a) = ∆ µ(a) for each state ∆,
– ∆ is a final state if and only if λ∆γ = k.

Then a string w is accepted by M precisely when λ(µ(w))γ = k. 2

Now consider the situation (where a ∈ A)

h {a}∗-A∗

f

?

h {a}∗A∗ -

with h a non-deleting epimorphism. In this setting, we think of f as a function
on natural numbers N.

Definition 2. Let K be a semiring. A function f : N → N is said to be ul-
timately periodic with respect to K-matrices if for each n ≥ 1 and for each
∆ ∈ Kn×n, there exists an integer m > 0 such that

∆f(i) = ∆f(i+m)

for all but finitely many i ≥ 0.

Lemma 5. Suppose f : N → N is ultimately periodic with respect to K-matrices.
Then the amplifying transformation preserves recognizability.

Proof. Let W = (Q, A, µ, λ, γ) be a weighted finite automaton that recognizes
the formal power series S ∈ K〈〈A∗〉〉. We want to construct a weighted finite
automaton W ′ = (Q′, A, µ′, λ′, γ′) recognizing A(S, f, h).

Since f is ultimately periodic with respect to matrices, for the matrix ∆ :=∑
a∈Σ µ(a) there exist integers t, m > 0 such that ∆f(j) = ∆f(j−m) for all

j > t+m. Now let W ′ be the following deterministic weighted finite automaton:

Rational Transformations of Formal Power Series 565

– Q′ = {i | 0 ≤ i ≤ t + m},
– λ′(0) = 1 and λ′(i) = 0 for i > 0 (so 0 is the only starting state),
– For each a ∈ A, µ′(i, j, a) = 1 if either j = i + 1 ≤ t + m or i = t + m and

j = t + 1; otherwise µ′(i, j, a) = 0,
– γ′(i) = λ(∆f(i))γ.

The cost for a string w ∈ A∗ in W ′ is simply the exit cost λ(∆f(|w|))γ (by
determinism), which is equal to

∑
|y|=f(|w|)(S, y). 2

The next result is concerned with the converse.

Lemma 6. Suppose K is a locally finite semiring and suppose the amplifying
transformation A(S, f, h) preserves recognizability for S ∈ K〈〈{a}∗〉〉. Then f :
N → N is ultimately periodic with respect to K-matrices.

Proof. For any ∆ ∈ Kn×n, the series Sp,q defined by (Sp,q, a
i) = ∆i(p, q) is

clearly recognizable, where M(p, q) stands for the (p, q)-entry of the matrix M .
Since K is locally finite, the semiring K ′ generated by entries in ∆ is finite. By
Lemma 4, for each k ∈ K ′, {ai | ∆i(p, q) = k} is a regular language. Under the
amplifying transformation, we see that {ai | ∆f(i)(p, q) = k} is again regular.
This means that there is some m > 0 such that ∆f(i)(p, q) = k if and only if
∆f(i+m)(p, q) = k for all but finitely many i ≥ 0. Since there are only finitely
many choices for p, q, and k ∈ K ′, we can obtain a common period m′ > 0 such
that ∆f(i)(p, q) = k if and only if ∆f(i+m′)(p, q) = k for all p, q, all k ∈ K ′, and
all but finitely many i ≥ 0. Therefore, ∆f(i) = ∆f(i+m′) for all but finitely many
i ≥ 0. 2

The previous two lemmata and Theorem 2 lead to the following theorem.

Theorem 5. Suppose K is a locally finite semiring. Then the following are
equivalent:

1. f : N → N is ultimately periodic with respect to K-matrices.
2. f−1 preserves recognizability for S ∈ K〈〈{a}∗〉〉.
3. the amplifying transformation A(S, f, h) preserves recognizability for S ∈

K〈〈{a}∗〉〉.
This result, together with the results of the previous sections, allows us to

derive further results simply by chaining them together.

5 Conclusion

We have considered two kinds of transformations on formal power series and
considered their recognizability-preserving properties. A rich class of functions
have been shown to induce recognizability-preserving transformations by our
characterization theorems.

566 M. Droste and G.-Q. Zhang

Weighted finite automata provide a computationally intuitive representation
of rational series. They serve as a valuable method for proving many results in
this paper using the matrix-based idea described in [15].

Other variations of the transformations considered here are possible and those
will be discussed in the full paper. We also note that although our results are
formulated in the free monoid A∗, most of them generalize straightforwardly to
general monoids.

References

1. J. Berstel and Ch. Reutenauer. Rational Series and Their Languages, volume 12
of EATCS Monographs in Theoretical Computer Science. Springer Verlag, 1988.

2. C. Cortes and M. Mohri. Context-free recognition with weighted automata, Gram-
mars 3: 133–150, 2000.

3. M. Droste and P. Gastin. On aperiodic and star-free formal power series in par-
tially commuting variables. In: Formal power series and algebraic combinatorics
(Moscow, 2000), 158–169, Springer, Berlin, 2000.

4. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
New York, 1974.

5. S. Gaubert and M. Plus. Methods and applications of (max,+) linear algebra.
In Proceedings of STACS’97, number 1200 in Lecture Notes in Computer Science,
pages 261–282. Springer Verlag, 1997.

6. K. Hashiguchi. Algorithms for determining relative star height and star height.
Inform. and Comput. 78 no. 2, 124–169, 1988.

7. S.R. Kosaraju. Regularity preserving functions. SIGACT News, 6 (2), 16–17, 1974.
8. D. Kozen. On regularity-preserving functions. Bulletin of the EATCS 58, 131-138,

1996.
9. W. Kuich. Semirings and formal power series: Their relevance to formal languages

and automata. In G. Rozenberg and A. Salomaa, editors, Handbook on Formal
Languages, volume 1, pages 609–677. Springer Verlag, 1997.

10. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 6 of EATCS
Monographs in Theoretical Computer Science. Springer Verlag, 1986.

11. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer Verlag, 1978.

12. J.I. Seiferas and R. McNaughton. Regularity preserving relations. Theoretical
Computer Science 2:147–154, 1976.

13. M.P. Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

14. R.E. Stearns and J. Hartmanis. Regularity preserving modifications of regular
expressions. Information and Control, 6 (1), 55–69, 1963.

15. G.-Q. Zhang. Automata, Boolean matrices, and ultimate periodicity. Information
and Computation vol 152, 138–154, 1999.

16. U. Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic
Structures, volume 10 of Annals of Discrete Mathematics. North Holland, 1981.

Combinatorics of Three-Interval Exchanges

Sébastien Ferenczi1, Charles Holton2, and Luca Q. Zamboni3

1 Institut de Mathématiques de Luminy
CNRS - UPR 9016

Case 907, 163 av. de Luminy
F13288 Marseille Cedex 9 (France)

2 Department of Mathematics
University of California

Berkeley, CA 94720-3840 (USA)
3 Department of Mathematics

University of North Texas
Denton, TX 76203-5116 (USA)

Abstract. We generalize the interaction between Sturmian infinite
words and rotations of the 1-dimensional torus by giving a set of nec-
essary and sufficient conditions for a language to be a natural coding
of a three-interval exchange. This solves an old question of Rauzy, and
allows us to give a complete combinatorial description of such languages
through an algorithm of simultaneous approximation.

1 Introduction

A well-known and well-working interaction between ergodic theory, arithmetics,
and symbolic dynamics is provided by the study of irrational rotations on the
torus TT1. To an irrational real number α we associate a dynamical system,
the rotation Rx = x + α mod 1, an arithmetic algorithm, the usual continued
fraction approximation, and a set of infinite words (a part of the class of Sturmian
words) which are codings of trajectories under R by a canonical partition; the
continued fraction algorithm forms the link between the dynamical system and
the symbolic words, and the study of the arithmetic and symbolic objects is a
great help for the study of the dynamical system. In this paper, we generalize
this situation to the case of two real numbers 0 < α < 1 and 0 < β < 1, starting
from the dynamical system called a three-interval exchange transformation and
defined on the interval [0, 1[by

– Ix = x + 1− α if x ∈ [0, α[,
– Ix = x + 1− 2α− β if x ∈ [α, α + β[,
– Ix = x− α− β if x ∈ [α + β, 1[.

The interval exchange transformations have been introduced by Katok and
Stepin [10]. They were further studied by Keane [11], Veech [16] and many oth-
ers; it was Rauzy [14] who first saw the interval exchange transformations as a
possible framework for generalizing the rotations/continued fractions/Sturmian

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 567–578, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

568 S. Ferenczi, C. Holton, and L.Q. Zamboni

words interaction, and the Rauzy induction is an algorithm of simultaneous ap-
proximation associated to interval exchange transformations. But the symbolic
part was not complete, even in the simplest case of three-interval exchange trans-
formations; indeed, several works ([6], [15]) were devoted to partial answers to
the question asked by Rauzy “describe the category of infinite words which are
natural codings of three-interval exchange transformations”, a natural coding
meaning a word (xn) taking the value 1, 2, 3 when the n-th iterate of some
point x lies in the first, second, third interval.

We are now able to answer the question of Rauzy, and give a full charac-
terization of the infinite words, on three symbols, which are natural codings of
three-interval exchange transformations with permutation (321); our main result
is
Theorem 1. A minimal infinite word is the natural coding of a non-trivial
three-interval exchange transformation with 2α < 1 and 2α + β > 1 if and
only if it satisfies the following four conditions:

– The factors of length 2 of u are {12, 13, 21, 22, 31}.
– If the w = w1 . . . ws is a factor of u, its retrograde w̄ = ws . . . w1 is also a

factor of u.
– For every n there are exactly two left special factors of length n, one beginning

in 1 and one beginning in 2.
– If w is a bispecial factor ending in 1 and w 6= w̄ then w2 is left special if and

only if w̄1 is left special.

For all combinatorial definitions see section 2 below; “nontrivial” refers to a
condition called i.d.o.c. described in subsection 3.1 below. If 2α > 1 or 2α+β < 1,
we reduce this cases to the previous one by using morphisms, see subsection 4.2
below.

The “only if” part of our main result uses geometric considerations; the “if”
part uses two powerful tools, the negative slope expansion which is the algorithm
of simultaneous approximation defined and studied in [9], and the hat algorithm
first defined in [13] for other types of infinite words: we start from an abstract
language satisfying the four conditions of our theorem (we call such languages
symmetric 3-hat because they are generated by the hat algorithm and linked
to the geometry of three intervals), and the hat algorithm allows us to build
it explicitely through its nested sequences of bispecial factors, this building be-
ing coded by a sequence (mk ∈ IN∗, nk ∈ IN∗, εk+1 = ±)k≥1. Then, when the
symmetric 3-hat language does come from a three-interval exchange transfor-
mation, we are able to identify its coding sequence with the “partial quotients”,
for a variant of the negative slope expansion, of its parameters (α, β); thus we
prove that every possible coding sequence can be associated to a three-interval
exchange transformation, and this gives the “only if” part of our theorem.

And thus, as is the case with the link between Sturmian words and irrational
rotations through the classical continued fraction approximation, this character-
ization gives also a full description of the language of three-interval exchange
transformations for given (α, β), and, through a description of return words, an
S-adic presentation of the dynamical system.

Combinatorics of Three-Interval Exchanges 569

2 Combinatorics of Symmetric 3-Hat Languages

2.1 Symmetric Languages

Definition 2. Let A be a finite set. By a language L over A we mean a collection
of sets (Ln)n≥1 where each Ln consists of blocks of the form a1a2 · · · an with
ai ∈ A and such that for each v ∈ Ln there exists a, b ∈ A with av, vb ∈ Ln+1
and for all v ∈ Ln+1 if v = au = u′b with a, b ∈ A then u, u′ ∈ Ln. We write
L = ∪n≥0Ln∪{ε∅} where ε∅ denotes the empty word, the unique word of length
zero. The set A is called the alphabet.
The complexity function pL : IN→ IN is defined by pL(n) = Card (Ln).
A language L is minimal if for each v ∈ L there exists n such that v is a factor
of each word w ∈ Ln.
For an infinite word u, the language L(u) is the set of its factors.

Definition 3. A word w in L is called right special (left special) if there exists
distinct letters a, b ∈ A such that both wa, wb ∈ L (aw, bw ∈ L). If w ∈ L is
both right special and left special, then w is called bispecial. We regard ε∅ as
bispecial.

Definition 4. If u, w ∈ L we write

u ` w

if u is a prefix of w, and, for all z ∈ L|w| if u is a prefix of z then z = w;

u |= w

if w is the longest word so that u ` w.

In other words, u ` w if w is the only extension of u with a given length.
Thus if u is left special and u ` w then w is also left special. If u ` w and u ` z
then either w ⊆ z or z ⊆ w. u |= w if u is a prefix of only one word of length |w|
(namely w) and u is a prefix of at least two words of length |w| + 1. Thus if u
is right special then u |= u. If u is left special and u |= w then w is the shortest
bispecial word beginning in u.

Lemma 5. Let L be a minimal nonperiodic language. For all u ∈ L there exists
w ∈ L so that u |= w. In other words for each u there exists a shortest right
special word w beginning in u.

Definition 6. Given a word w = a1a2 · · · an with ai ∈ A, let w̄ denote the
retrograde word of w, that is w̄ = anan−1 · · · a1. A word w is called a palindrome
if w = w̄.
We will call a language L symmetric if w ∈ L implies w̄ ∈ L.

There are many examples of symmetric languages in the literature, the most
well known being binary languages of complexity pL(n) = n+ 1 called Sturmian
languages [12] [4]. Other examples include languages derived from the Thue-
Morse infinite word, Arnoux-Rauzy infinite words [1], and Episturmian infinite
words [7].

570 S. Ferenczi, C. Holton, and L.Q. Zamboni

Lemma 7. Let L be a nonperiodic minimal symmetric language. Suppose u ∈
L \ {ε∅}, a ∈ A and ua is left special.

(1) If for all proper prefixes v of ū the word av is not right special, then ua |=
uaū.

(2) Otherwise let v (possibly the empty word) be the longest proper prefix of ū
such that av is right special. Writing ū = vx with x 6= ε∅ let b denote the
first letter of x. Let w be the shortest word beginning in v̄a such that bw is
right special. Writing w = v̄y then ua |= uy.

Lemma 8. Let L be a nonperiodic minimal symmetric language with the prop-
erty that for each left special word u ∈ L\{ε∅} there exists a unique letter a ∈ A
so that ua is left special. Let u ∈ L \ {ε∅} be bispecial and a ∈ A so that ua is
left special. Suppose we are in case (2) of Lemma 7; Let v, x, b, w, and y be as
in Lemma 7. Suppose further that v is non-empty.

(1) If v̄ = v then a = b, w = ū, x = y and uy = uy.
(2) If v̄ 6= v then w 6= ū.

2.2 Symmetric 3-Hat Languages: Description of the Bispecial
Words

Definition 9. A language L on the alphabet {1, 2, 3} is called a symmetric 3-hat
language if it satisfies the following conditions:

– L2 = {12, 13, 21, 22, 31}.
– L is minimal and symmetric.
– For every n there are exactly two left special words of length n, one beginning

in 1 and one beginning in 2.
– If w is a bispecial word ending in 1 and w 6= w̄ then w2 is left special if and

only if w̄1 is left special.

Note that, because of the description of L2, if w is left special, it has exactly
two left extensions aw and bw; hence the third condition implies pL(n + 1) −
pL(n) = 2, hence pL(n) = 2n + 1. We check that this third condition could be
replaced by

– pL(n) = 2n + 1.
– each bispecial word w is ordinary ([3]), meaning that exactly three of the

possible words awb are allowed.

Thus if u 6= ε∅ is left special there exists a unique a ∈ {1, 2, 3} such that ua is
left special, in other words a symmetric 3-hat language satisfies the hypothesis
of Lemma 8. It follows that there exists two minimal infinite words O1 and
O2 in {1, 2, 3}IN with Oi beginning in i and such that each prefix of Oi is left
special. The Oi are called the characteristic words.

Combinatorics of Three-Interval Exchanges 571

Knowing that a language is a symmetric 3-hat language, we are now able to
build explicitely each Oi : this algorithm is a variant of the hat algorithm given
in [13] for constructing characteristic Sturmian or Arnoux-Rauzy words.

As in [13], to keep track of the bispecial prefixes of Oi we will accent the first
letter of x with either an upper * or lower * according to the following rule: If
u ends in 1, then x begins in either 2 or 3. The 2 is accented 2∗ while the 3 is
accented 3∗. If u ends in 2 then x begins in either 1 or 2. The 1 is accented 1∗
and the 2 is accented 2∗. In this way, the bispecial prefixes of Oi are precisely
those prefixes followed by a *-letter. When we copy the prefix x to the end of
u we only accent the first letter of x and delete other accents which may be
occurring in u. For example, suppose Oi begins in

Oi = 1∗3∗13∗12∗22∗131313∗1221313131222∗13131 . . .

then the bispecial prefixes are (with the accents removed) 1∗, 1∗3∗1, 1∗3∗13∗1,
1∗3∗13∗12∗2, 1∗3∗13∗12∗22∗13131, 1∗3∗13∗12∗22∗131313∗122131313122.
Suppose the next bispecial word u is 1∗3∗13∗12∗22∗131313∗1221313131222∗13131
and u2 is left special. Then following Lemma 7, let v denote the longest prefix of
ū = u so that 2v is right special. Then v is right special (being a suffix of 2v) and
left special (being a prefix of u) and hence bispecial. It is readily verified that
v = 1∗3∗13∗1 which is a palindrome. Thus following Lemma 8 the next bispecial
word is obtained by copying the suffix x = 2∗22∗131313∗1221313131222∗13131
to the end of u. In doing so we delete all accents in x except the initial 2∗ and
obtain u2 |=
1∗3∗13∗12∗22∗131313∗1221313131222∗131312∗22131313122131313122213131.
Observe that x is the longest suffix of u beginning in 2∗ and containing no other
occurrences of 2∗ or equivalently that v is the longest prefix of u followed by a 2∗.
In general, a suffix x of u which begins in an accented letter a ∈ {1∗, 2∗, 2∗, 3∗}
and has no other occurrences of a is called a cutting suffix and denoted u(a).
Proposition 10. Let L be a symmetric 3-hat language. Then for every k ≥
1 there exist positive integers nk and mk and non-empty bispecial words uk,

w
(k)
1 , w

(k)
2 , . . . , w

(k)
nk , and v

(k)
1 , v

(k)
2 , . . . , v

(k)
mk in the alphabet {1, 2, 3, 1∗, 2∗, 2∗, 3∗}

so that

– uk is a prefix of O1, |uk−1| < |uk| (where for k = 0 we take u0 = ε∅), and
uk 6= ūk.

– w
(1)
1 = 1∗ and v

(1)
1 = 2∗

∗ where 2∗
∗ counts as a 2∗ and 2∗.

– w
(k)
1 , w

(k)
2 , . . . , w

(k)
nk and v

(k)
1 , v

(k)
2 , . . . , v

(k)
mk are each palindromes and

uk−1 ⊂ w
(k)
1 ⊂ w

(k)
2 ⊂ · · · ⊂ w(k)

nk
⊂ uk

and
ūk−1 ⊂ v

(k)
1 ⊂ v

(k)
2 ⊂ · · · ⊂ v(k)

mk
⊂ ūk.

{w(k)
i | 1 ≤ i ≤ nk} are all the bispecial prefixes of O1 of length greater than

|uk−1| and less than |uk| and {v(k)
i | 1 ≤ i ≤ mk} are all the bispecial prefixes

of O2 of length greater than |ūk−1| and less than |ūk|.

572 S. Ferenczi, C. Holton, and L.Q. Zamboni

– If uk−11 is left special, then w
(k)
nk is the shortest word beginning in uk−1 such

that 2w
(k)
nk is right special and v

(k)
mk is the shortest word beginning in ūk−1

such that 1v
(k)
mk is right special.

– If uk−12 is left special, then w
(k)
nk is the shortest word beginning in uk−1 such

that 3w
(k)
nk is right special and v

(k)
mk is the shortest word beginning in ūk−1

such that 2v
(k)
mk is right special.

– If uk−11 is left special, then w
(k)
1 = uk−1ūk−1(1∗). For 2 ≤ i ≤ nk

w
(k)
i = w

(k)
i−1w

(k)
i−1(3∗) if w

(k)
i−1(3∗) exists, otherwise w

(k)
i = w

(k)
i−13∗w(k)

i−1.

While uk = w
(k)
nk v

(k)
mk(2∗). Similarly, v

(k)
1 = ūk−1uk−1(2∗). For 2 ≤ i ≤ mk

v
(k)
i = v

(k)
i−1v

(k)
i−1(2∗), and ūk = v

(k)
mkw

(k)
nk (1∗).

– If uk−12 is left special, then w
(k)
1 = uk−1ūk−1(2∗). For 2 ≤ i ≤ nk w

(k)
i =

w
(k)
i−1w

(k)
i−1(2∗) and uk = w

(k)
nk v

(k)
mk(3∗). Similarly, v

(k)
1 = ūk−1uk−1(3∗) if it

exists, otherwise v
(k)
1 = ūk−13∗uk−1. For 2 ≤ i ≤ mk v

(k)
i = v

(k)
i−1v

(k)
i−1(1∗),

and ūk = v
(k)
mkw

(k)
nk (2∗).

Let L be a symmetric 3-hat language. Let (uk)k≥0, (nk)k≥1 and (mk)k≥1
be as in Proposition 10. For each k ≥ 1 define εk ∈ {+,−} as follows: Let
a, b ∈ {1∗, 2∗} such that uk−1a and ukb is left special. For k = 1, since u0 is the
empty word we set a = 1. Then set

εk =
{

+ if a = b
− if a 6= b

We call the sequence (nk, mk, εk)k≥1 the coding sequence of L. In view of
Proposition 10, this sequence contains the necessary information to construct
all bispecial factors of L and hence L itself: in order to construct the language
L we must specify for each bispecial word w the unique letter c ∈ {1, 2, 3} such
that wc is left special, and this information is contained in the coding sequence
(nk, mk, εk). If w is bispecial and not a palindrome, then w = uk or w = ūk for
some k ≥ 1. In this case the information is coded in εk. On the other hand if w is
a palindrome then w = w

(k)
i for some k ≥ 1 and 1 ≤ i ≤ nk or w = v

(k)
i for some

k ≥ 1 and 1 ≤ i ≤ mk. The nk (respectively mk) count the number of bispecial
palindromes between uk−1 and uk (respectively ūk−1 and ūk). If w = w

(k)
i then

nk specifies the letter c ∈ {2∗, 3∗} such that wc is left special since for one value
of c (which by the last two points of Proposition 10 is determined from εk−1)
the next bispecial prefix of O1 is a palindrome, while for the other value of c
the next bispecial prefix of O1 is uk and hence not a palindrome. Similarly if
w = v

(k)
i then c is coded in mk.

Example 1. Let L be a symmetric 3-hat language whose coding sequence starts
off as
(3, 2,−), (1, 2, +), (2, 1, +). Then

O1 = 1∗3∗13∗12∗22∗131313∗1221313131222∗13131
2∗221313131221313131222131313∗122131313122

Combinatorics of Three-Interval Exchanges 573

2∗13131222131313122131313122213131 . . .

O2 = 2∗
∗2∗1∗31313∗1221∗313131222∗131313∗122131313122

2∗13131222131313122131313122213131
3∗122131313122 . . .

Example 2. Let L be a 3-SIET language with periodic coding sequence
(1, 1,−), (1, 1,−), (1, 1,−) Then

O1 = 1∗2∗2∗13∗121∗312212∗213122∗1221312131221
3∗121312212213121∗3122131213122122131221221312131221 . . .

O2 = 2∗
∗1∗3∗122∗12∗213121∗312213∗12131221221312

2∗12213121312212∗2131221221312131221312131221221312 . . .

It can be shown that O2 is the fixed point of the morphism τ given by 1 7→ 2,
2 7→ 2131 and 3 7→ 21.

Another consequence of Proposition 10 is
Corollary 11. If (mk, nk, εk+1)k≥1 is the coding sequence of a symmetric 3-hat
language, then (nk, εk+1) 6= (1, +) for infinitely many k and (mk, εk+1) 6= (1, +)
for infinitely many k.

2.3 Return Words and Rauzy Graphs

Definition 12. For a word w in the language L, a return word of w = w1 . . . wl

is any word w′ = w′
1 . . . w′

l′ such that there exist i < j with w = xi . . . xi+l−1 =
xj . . . xj+l−1, w 6= xi′ . . . xi′+l−1 for every i < i′ < j, and w′ = xi+l . . . xj+l−1.

We shall be interested in computing the return words of some remarkable
words; for this, we need the following tools from the theory of Rauzy graphs (see
[1] or [2]).
Definition 13. For two words w and w′ of equal length l, w′ is a successor (in
the Rauzy graph) of w if there exists j such that xj . . . xj+l−1 = w, xj+1 . . . xj+l =
w′. The Rauzy graph Γl is the graph whose vertices are all words of length l in
the language of T , with an edge between each word w and each of its successors
w′, labelled with the last letter of w′.
Lemma 14. k being fixed, let l be the length of uk; the Rauzy graph Γl has the
following shape:

−→ −→ −→
↑ ↓
−→ −→ −→

uk ūk

←−←− ←−
↑ ↓
←− ←− ←−

574 S. Ferenczi, C. Holton, and L.Q. Zamboni

Proposition 15. Let L be a symmetric 3-hat language. For every k, the k-th
non-palindrome bispecial word uk has exactly three return words, Ak, Bk and
Ck, where A0 = 13, B0 = 2, C0 = 12, and

Ak = Ank

k−1Ck−1B
mk−1
k−1 ,

Bk = Bk−1A
nk−1
k−1 Ck−1B

mk−1
k−1 ,

Ck = Ank−1
k−1 Ck−1B

mk−1
k−1

if εk+1 = +1,
and

Ak = Bk−1A
nk−1
k−1 Ck−1B

mk−1
k−1 ,

Bk = Ank

k−1Ck−1B
mk−1
k−1 ,

Ck = Bk−1A
nk

k−1Ck−1B
mk−1
k−1

if εk+1 = −1.

3 Languages of Symmetric Three-Interval Exchange
Transformations

3.1 Preliminaries

Definition 16. A symmetric three-interval exchange transformation is the
transformation defined by equation (1):

– Ix = x + 1− α if x ∈ [0, α[,
– Ix = x + 1− 2α− β if x ∈ [α, α + β[,
– Ix = x− α− β if x ∈ [α + β, 1[.

We say that I, or equivalently (α, β), satisfies the infinite distinct orbit condition
(or i.d.o.c. for short) of Keane [11] if for every integer p and q

– pα + qβ 6= p− q,
– pα + qβ 6= p− q − 1,
– pα + qβ 6= p− q + 1

This property is (strictly) weaker than the irrational independence of α, β
and 1. The i.d.o.c. condition for I or (α, β) implies that I is minimal (every
orbit is dense).
Definition 17. For every point x in [0, 1[, we define an infinite word (xn)n∈IN
by putting xn = i if Inx falls into Di, i = 1, 2, 3. This word is again denoted
by x; we call it the trajectory of x.

If I satisfies the i.d.o.c. condition, the minimality implies that all trajectories
have the same language, which we call the language of I, and denote by L(I).

Equivalently, L(I) is the set of all words w = w0w1 · · ·wn with wi ∈ {1, 2, 3}
such that ∩n

i=1I−iDwi
is a nonempty interval.

Lemma 18. Let I be a symmetric three-interval exchange transformation sat-
isfying the i.d.o.c. condition, and suppose that in the equation (1) 2α < 1 and
2α + β > 1. Then L(I) is a symmetric 3-hat language.

Combinatorics of Three-Interval Exchanges 575

3.2 Description of the Language

Proposition 19. Let I be a symmetric three-interval exchange transformation
defined by equation (1), and satisfying the i.d.o.c. condition. We assume that
2α < 1, α + β < 1, 2α + β > 1.

Then L(I) is the symmetric 3-hat language whose coding sequence
(nk, mk, εk+1)k≥1 is defined in the following way:
we start from x0 = 1−α−β

1−α and y0 = 1−2α
1−α and define for k ≥ 0

x′
k+1 =

yk

(xk + yk)− 1

y′
k+1 =

xk

(xk + yk)− 1

if xk + yk > 1,

x′
k+1 =

1− yk

1− (xk + yk)

y′
k+1 =

1− xk

1− (xk + yk)

if xk + yk < 1. Then for k ≥ 0 mk+1 is the integer part of x′
k+1, nk+1 is the

integer part of y′
k+1, , xk+1 is the fractional part of x′

k+1, , yk+1 is the fractional
part of y′

k+1, while εk+1 is the sign of (1− xk − yk).

4 Structure Theorems

4.1 Answer to Rauzy’s Question: The Privileged Triangle

Definition 20. Let D0 ⊂ [0, 1[×[0, 1[be the simplex bounded by the lines y = 0,
x = 0, and x + y = 1. The privileged triangle D is the triangular region bounded
by the lines x = 1

2 , x + y = 1, and 2x + y = 1.

Lemma 21. [9] The infinite sequence (nk, mk, εk+1)k≥1 is the expansion, in the
sense of Proposition 19, of some (α, β) ∈ D satisfying the i.d.o.c. if and only
if nk and mk are positive integers, εk+1 = ±, (nk, εk+1) 6= (1, +) for infinitely
many k and (mk, εk+1) 6= (1, +) for infinitely many k.

Theorem 22. A language L is a symmetric 3-hat language if and only if L =
L(I), where I is a symmetric three-interval exchange transformation defined by
equation (1) with (α, β) ∈ D, and satisfying the i.d.o.c. condition.

576 S. Ferenczi, C. Holton, and L.Q. Zamboni

4.2 Answer to Rauzy’s Question: Outside the Privileged Triangle

Proposition 23. We define two mappings on [0, 1[×[0, 1[,

F (x, y) =
(

2x− 1
x

,
y

x

)

R(x, y) = (1− x− y, y) .

If (α, β) ∈ D0 is not in D and is not on any of the rational lines pα+qβ = p−q,
pα+qβ = p−q +1, pα+qβ = p−q−1 then there exists a unique finite sequence
of integers l0, l1, . . . , lk such that (α, β) is in H−1D where H is a composition
of the form Rt ◦ F l0 ◦R ◦ F l1 ◦R . . . ◦R ◦ F lk ◦Rs, s, t ∈ {0, 1}.

Proposition 24. For (α, β) /∈ D satisfying the i.d.o.c. condition, we let H be
the function in Proposition 23 for which (α, β) ∈ H−1D and put

(
ᾱ, β̄

)
= H(α, β),

and define two morphisms, σF by

1→ 1
2→ 21
3→ 31

and σR by
1→ 3
2→ 2
3→ 1

and we define σH by replacing, in the expression of H, F by σF and R by σR.
Let I be the three-interval exchange transformation defined by (1), and I ′ be

the three-interval exchange transformation defined by putting bars on α and β
in (1); then L(I) is the image of L(I ′) by σH .

4.3 S-Adic Presentation

Theorem 25. Let I be a symmetric three-interval exchange transformation de-
fined by equation (1) and satisfying the i.d.o.c. condition. For every k, the k-th
non-palindrome bispecial word uk of L(I) has exactly three return words, Ak, Bk

and Ck, given by the recursion formulas in Proposition 15.
If (αβ) is in D, A0 = 13, B0 = 2, C0 = 12. If (α, β) is not in D, A0 is

σH(13), B0 is σH(2), C0 is σH(12), with σH as defined in Proposition 24. In all
cases the lengths of A0 and B0 differ by ±1.

Corollary 26. The symbolic system (X, T) coding I by the partition
{D1, D2, D3} is the shift on all infinite words x such that for every s < t there
exists k such that xs . . . xt is a factor of Ak, given by the above formulas.

Combinatorics of Three-Interval Exchanges 577

This last result may be interpreted as the presentation of (X, T) as generated
by the morphisms σk and σ′

k, where

σka = ankcbmk−1,

σkb = bank−1cbmk−1,

σkc = ank−1cbmk−1,

and
σ′

ka = bank−1cbmk−1,

σ′
kb = ankcbmk−1,

σ′
kc = bankcbmk−1.

A slight modification (by adding extra stages) would allow us to replace the
countable family of the σk and σ′

k by a finite family of morphisms, and thus to
define (X, T) as an S-adic system, see [8].

If, in the trajectory of a point x, we replace 1 by 0, 2 by 01, and 3 by 1, we
get a Sturmian word, which is a concatenation of words A′

k, B′
k, C ′

k given by the
same recursion formulas but from A0 = B0 = 01, C0 = 001; hence A′

k = B′
k for

all k, and this is a non-standard way to generate Sturmian words, close to the
one used in [5].

References

1. P. ARNOUX, G. RAUZY: Représentation géométrique de suites de complexité
2n+ 1, Bull. Soc. Math. France 119 (1991), p. 199-215.

2. V. BERTHÉ, N. CHEKHOVA, S. FERENCZI: Covering numbers: arithmetics and
dynamics for rotations and interval exchanges, J. Analyse Math. 79 (1999), p. 1-31.

3. J. CASSAIGNE: Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. 4 (1997),
p. 67-88.

4. E.M. COVEN, G.A. HEDLUND: Sequences with minimal block growth, Math.
Systems Theory 7 (1972), p. 138-153.

5. A. del JUNCO: A family of counterexamples in ergodic theory, Israe̋l J. Math. 44
(1983), p. 160-188.

6. G. DIDIER, Échanges de trois intervalles et suites sturmiennes, J. Théor. Nombres
Bordeaux, 9 (1997), p. 463–478.

7. X. DROUBAY, J. JUSTIN, G. PIRILLO, Episturmian words and some construc-
tions of de Luca and Rauzy, Theoret. Comp. Sci., to appear.

8. S. FERENCZI: Rank and symbolic complexity, Ergodic Th. Dyn. Syst. 16 (1996),
p. 663-682.

9. S. FERENCZI, C. HOLTON, L. ZAMBONI: The structure of three-interval ex-
change transformations I: an arithmetic study, to appear in Ann. Inst. Fourier 51
(2001).

10. A.B. KATOK, A.M. STEPIN: Approximations in ergodic theory, Usp. Math. Nauk.
22 (1967), p. 81-106 (in Russian), translated in Russian Math. Surveys 22 (1967),
p. 76-102.

11. M.S. KEANE: Interval exchange transformations, Math. Zeitsch. 141 (1975), p.
25-31.

578 S. Ferenczi, C. Holton, and L.Q. Zamboni

12. M. MORSE, G.A HEDLUND: Symbolic dynamics II. Sturmian trajectories, Amer.
J. Math. 62 (1940), p. 1-42.

13. R. RISLEY, L.Q. ZAMBONI: A generalization of Sturmian sequences; combina-
torial structure and transcendence, Acta Arith., 95 (2000), 167–184.

14. G. RAUZY: Échanges d’intervalles et transformations induites, (in French), Acta
Arith. 34 (1979), p. 315-328.

15. M.-L. SANTINI-BOUCHARD: Échanges de trois intervalles et suites minimales,
(in French), Theoret. Comput. Sci 174 (1997), p. 171-191.

16. W.A. VEECH: The metric theory of interval exchange transformations I , II, III,
Amer. J. Math. 106 (1984), p. 1331-1421.

Decision Questions Concerning Semilinearity,
Morphisms, and Commutation of Languages?

Tero Harju1, Oscar Ibarra2??, Juhani Karhumäki3, and Arto Salomaa4

1 Department of Mathematics and Turku Centre for Computer Science
University of Turku, FIN-20014 Turku, Finland

harju@utu.fi
2 Department of Computer Science

University of California, Santa Barbara, CA 93106
ibarra@cs.ucsb.edu

3 Department of Mathematics and Turku Centre for Computer Science
University of Turku, FIN-20014 Turku, Finland

karhumak@cs.utu.fi
4 Turku Centre for Computer Science

Lemminkäisenkatu 14A, FIN-20520 Turku, Finland
asalomaa@cs.utu.fi

Abstract. Let C be a class of automata (in a precise sense to be
defined) and Cc the class obtained by augmenting each automaton in
C with finitely many reversal-bounded counters. We first show that
if the languages defined by C are effectively semilinear, then so are
the languages defined by Cc, and, hence, their emptiness problem is
decidable. This result is then used to show the decidability of various
problems concerning morphisms and commutation of languages. We also
prove a surprising undecidability result: given a fixed two element code
K, it is undecidable whether a given context-free language L commutes
with K, i.e., LK = KL.

Keywords: Reversal-bounded counters, context-free languages, combi-
natorics on words, commutation of languages, morphisms

1 Introduction

We shall consider various decision problems for families of languages accepted
by classes of automata augmented with reversal-bounded counters. In particular,
we generalize the decidability results of Parikh [P66] and Ibarra [I78] that have
turned out to be very useful tools in proving other decidability results concern-
ing language families. The classical result in [P66] states that the commutative
image of a context-free language (CF-language) is semilinear, and that it can
be effectively constructed from the pushdown automaton (PDA) defining the
language.
? Supported under the grant 44087 of the Academy of Finland.

?? Supported in part by NSF Grant IRI-9700370.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 579–590, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

580 T. Harju et al.

According to [I78] one can decide the emptiness problem for the languages
accepted by pushdown automata augmented with reversal-bounded counters.
The proof consists of showing that such automata accept only semilinear sets
that are effectively constructible from the automaton.

In Section 3 we generalize the result in [I78]. We show that if the languages
defined by a class C of automata are effectively semilinear, then so are the lan-
guages defined by the automata that are obtained from those of C by augmenting
reversal-bounded counters. Several examples of C are given in Section 4. The es-
tablished decidability result for semilinearity is exploited in Section 5 to show the
decidability of the multiple equivalence problem of morphisms for a large family
of languages. In this problem, one asks for a set of morphisms h1, h2, . . . , hk and
a language L whether each word w ∈ L is identified by a pair of these morphisms,
hi(w) = hj(w) with i 6= j.

In Section 6 we apply the result to deterministic CF-languages L and regular
codes R to show that it is decidable whether L can be expressed as L = ∪i∈IRi
for some set I ⊆ N . In contrast to this result, we show that the above question
is undecidable for CF-languages and two element codes. From this later result
it follows, by a result of [ChKO99], that if K is a given two element code, then
it is undecidable whether a given CF-language L commutes with K, LK = KL.

We also present several open problems that involve the mentioned questions
on semilinearity, language equivalence and commutation of languages.

2 Preliminaries

We refer to [Sa73] or [Har78] for the basic definitions on automata and languages,
and to [ChK97] or [L83] to those on words.

For an alphabet Σ, denote by Σ∗ the set of all words over Σ including the
empty word, denoted by ε. Let w ∈ Σ∗ be a word. Then |w| denotes the length
of w, and |w|a denotes the number of occurrences of the letter a ∈ Σ in w.

For a language L ⊆ Σ∗, let L denote its complement, Σ∗ \ L, and let L+ =
{w1w2 . . . wi | wi ∈ L, i ≥ 1} be its Kleene closure. Denote L∗ = L+ ∪ {ε}.
A language L is a code, if each word w ∈ L+ has a unique factorization w =
w1w2 . . . wn in terms of elements wi ∈ L.

The shuffle u v of two words u, v ∈ Σ∗ consists of the words u1v1 . . . ukvk,
where u = u1u2 . . . uk and v = v1v2 . . . vk for some ui, vi ∈ Σ∗. For languages L
and K, their shuffle is the language L K =

⋃
u∈L,v∈K u v.

In this paper, a language family will mean a class L of languages that are
accepted (or defined) by the automata from a class of automata M. That is, if L

is a language family, then each of its element L ∈ L is specified by L = L(M) for
someM ∈ M. Let P be a (binary) language operation, i.e., P maps two languages
L1 and L2 to a language P (L1, L2). The family L is effectively closed under the
operation P , if for any Li = L(Mi) with Mi ∈ M for i = 1, 2, P (L1, L2) ∈ L and
one can effectively construct an M ∈ M such that L(M) = P (L1, L2).

We study language families accepted by multitape Turing machines, where
the worktapes have restricted behaviour. The storage types will be variants of the

Decision Questions Concerning Semilinearity, Morphisms 581

pushdown storages and queues, the behaviour of which may be further restricted.
If M is a class of automata, then L(M) = {L(M) | M ∈ M} denotes the family
of languages accepted by the automata in M. E.g., L(PDA) denotes the family
of CF-languages, the languages accepted by 1-way pushdown automata (PDAs).

Consider a class M of automata, where each M ∈ M is a nondeterministic
finite automaton possibly augmented with a data structure (consisting of Turing
tapes with restricted behaviour). Formally, M = 〈Q,Σ, q0, F,D, δ〉, where Q is
the finite state set, Σ is the input alphabet, q0 is the start state, F is the set of
accepting states, D is the data structure (consisting of k worktapes), and δ is
the (multiple valued) transition function. The automaton M has finitely many
transitions (i.e., moves) of the form (p, act) ∈ δ(q, a, loc), where q ∈ Q is the
current state, a ∈ Σ ∪{ε} is the input read, and loc = (a1, . . . , ak) is the “local”
portion of the data structure D that affects the move, where ai = ε or ai is the
letter that is read on the ith worktape; p ∈ Q is the state entered by M , and
act = (α1, α2, . . . , αk) is the action that M performs on the worktapes.

For example, if D consists of a pushdown stack and a queue, then loc = (a, b),
where a is the top symbol of the stack and b the symbol in the front of the queue
or ε if the queue is empty; and act = (α1, α2), where α1 pops the top symbol
and pushes a word (possibly empty) onto the stack, and α2 deletes the front of
the queue (if b 6= ε) and possibly adds a symbol to the rear of the queue.

3 Semilinearity and Augmented Counters

Let N = {0, 1, . . .}, and k be a positive integer. A subset S ⊆ N
k is linear, if there

exist vectors v0, . . . , vt ∈ N
k such that S = {v | v = v0+a1v1+· · ·+atvt, ai ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred to
as the periods) are called the generators of the linear set S. The set S ⊆ N

k

is semilinear if it is a finite union of linear sets. Every finite subset of N
k is

semilinear. It is also clear that the semilinear sets are closed under (finite) union.
Let Σ = {a1, a2, . . . , an}. Define the Parikh map of w ∈ Σ∗ to be ψ(w) =

(|w|a1 , . . . , |w|an
). For a language L ⊆ Σ∗, let ψ(L) = {ψ(w) | w ∈ L}. The

language L is semilinear if ψ(L) is a semilinear set.
Obviously, if the languages in a family L (= L(M)) are effectively semilin-

ear (that is, for each M ∈ M, the semilinear set S = ψ(L) can be effectively
constructed), then the emptiness problem for L is decidable.

The following result was shown in [P66].
Theorem 1. Let M be a 1-way nondeterministic pushdown automaton. Then
ψ(L(M)) is a semilinear set effectively computable from M .

We can augment a PDA with finitely many reversal-bounded counters, i.e.,
each counter can be tested for zero and can be incremented/decremented by one,
but the number of alternations between nondecreasing mode and nonincreasing
mode in any computation is bounded by a given constant. For example, a counter
whose values change according to the pattern 0 1 1 2 3 4 4 3 2 1 0 1 1 0 is 3-
reversal (here the reversals are underlined).

The next result, which generalizes Theorem 1, was proved in [I78].

582 T. Harju et al.

Theorem 2. Let M be a 1-way nondeterministic pushdown automaton aug-
mented with finitely many reversal-bounded counters. Then ψ(L(M)) is a semi-
linear set effectively computable from M .

For a class C of automata, denote by Cc the class obtained by augmenting
each automaton in C with finitely many reversal-bounded counters. The proof
technique in [I78] easily generalizes for the following result.

Theorem 3. Let C be a class of automata. If the languages in L(C) are ef-
fectively semilinear, then so are the languages in L(Cc). Hence, the emptiness
problem for the languages defined by Cc is decidable.

Proof. Let Mc ∈ Cc with k reversal-bounded counters. We may assume, without
loss of generality, that for the accepted inputs, each counter starts and ends with
zero value. Thus, each counter makes an odd number of reversals. In fact, we can
assume that each counter makes exactly one reversal, since a counter that makes
r reversals can be converted to (r+1)/2 counters, each making one reversal (one
counter for each change from a nonincremental to an incremental move). We
show that ψ(L(Mc)) is effectively semilinear. We give the proof for k = 1, i.e.,
Mc has only one 1-reversal augmented counter. The proof for the general case
follows inductively from this.

Let Σ = {a1, . . . , an} be the input alphabet of Mc, and Lc = L(Mc) be the
language accepted by Mc. Denote Σ1 = Σ ∪ {d, e}, where d, e /∈ Σ, and define a
morphism ϕ:Σ∗

1 → Σ∗ by ϕ(a) = a for a ∈ Σ and ϕ(d) = ε = ϕ(e).
We construct an automaton M in C whose input alphabet is Σ1 accepting

a language L ⊆ Σ∗ d∗e∗. The automaton M works as follows on an input
word w ∈ Σ∗

1 . M simulates the computation of Mc on w′ = ϕ(w) and uses
the letters d and e in w to simulate the actions of the counter: an increment
“+1” (resp. decrement “-1”) corresponds to reading a symbol d (resp. e) on the
input. Simultaneously M checks that w ∈ Σ∗ d∗e∗. At some point during the
simulation, M guesses that the number of e’s read is equal to the number of
d’s (corresponding to the counter becoming zero); M continues the simulation,
making sure that there are no more d’s and e’s encountered, and accepts if Mc

accepts.
Therefore, L ⊆ Σ∗ d∗e∗, and for each w′ ∈ Lc, there exists a word w ∈ L

such that w ∈ Σ∗ {diei | i ≥ 0} and ϕ(w) = w′.
By assumption, the Parikh map ψ(L) of L is an effectively computable semi-

linear set S1. Let S2 be the semilinear set {(i1, . . . , in, k, k) | ij , k ∈ N}, where
the last two coordinates correspond to symbols d and e, respectively. The set
S3 = S1 ∩ S2 is semilinear (here intersecting with S2 essentially gets rid of the
“non-valid computations”). The set S3 is effectively computable, since semilin-
ear sets are effectively closed under intersection [G66]. Now the semilinear set
S corresponding to the Parikh map ψ(Lc) of Lc is obtained from S3 by simply
removing the last two coordinates of the tuples.

We continue the proof of the previous theorem to show

Theorem 4. Let C and D be two classes of automata. If L(C) = L(D), then
also L(Cc) = L(Dc).

Decision Questions Concerning Semilinearity, Morphisms 583

Proof. Let Lc = L(Mc) ⊆ Σ∗ for Mc ∈ Cc. We adopt the notations, conventions
and the construction of the proof of Theorem 3. In particular, Mc has only one
1-reversal augmented counter. Let K = Σ∗ {dnen | n ≥ 0}, and let L = L(M),
where M ∈ C is the simulating automaton. Clearly, Lc = ϕ(L ∩ K), and, by
assumption, there is anM ′ ∈ D such that L = L(M ′). Hence Lc = ϕ(L(M ′)∩K).
Now L(M ′

c) = L∩K for some M ′
c ∈ Dc, since for the intersection with K we can

use one new 1-reversal counter. Finally, L(M ′′
c) = ϕ(L ∩K) for some M ′′

c ∈ Dc,
since for the morphic image w.r.t. ϕ, no new counters are needed.

Note that Theorem 4 does not hold in converse. Indeed, for this it suffices to
choose C as the class of all finite automata, and D = Cc.

A simple shuffle language is a language of the form Σ∗ {dnen | n ≥ 0}, for
some alphabet Σ and distinct symbols d, e.

Corollary 1. L(Cc) is the smallest class of languages containing L(C) that is
closed under morphisms and intersections with simple shuffle languages.

4 Examples of Automata Classes

In this section we give examples of classes of automata with reversal-bounded
counters that accept only semilinear languages. Hence the emptiness problem is
decidable for the defined languages.

A PCA is a 1-way nondeterministic pushdown automaton augmented with
reversal-bounded counters. By Theorem 1, every CF-language L ∈ L(PDA) is
semilinear. Hence, by Theorem 3, the languages in L(PCA) are semilinear and,
therefore their emptiness problem is decidable. (This is Theorem 2.)

A CA is a 1-way nondeterministic finite automaton augmented with revers-
al-bounded counters. Thus, it is a PCA without a pushdown stack. A 2CA is a
two-way nondeterministic finite automaton with end markers augmented with
reversal-bounded counters.

We note that the emptiness problem for 2CAs is undecidable, even when the
automaton is deterministic and it has only two reversal-bounded counters [I78].

A finite-crossing 2CA is a 2CA where the number of times the input head
crosses the boundary between any two adjacent cells of the input tape (including
the end markers) is bounded by a given constant. Every finite-crossing 2CA can
effectively be converted to a (1-way) CA [GuI81]. (However, the nondeterminism
is essential here, see [IJTW95].) Therefore,

Corollary 2. The languages accepted by finite-crossing 2CAs are semilinear,
and hence their emptiness problem is decidable.

In contrast to the undecidability for 2CAs with two reversal-bounded coun-
ters, the emptiness problem is decidable for deterministic 2CAs with only one
reversal-bounded counter [IJTW95]. These automata can accept fairly complex
languages, e.g., the language L = {0k1n | k divides n} that is not semilinear.

Problem 1. Is the emptiness problem decidable for nondeterministic 2CAs with
only one reversal-bounded counter?

584 T. Harju et al.

We extend a PCA as follows. An MPA has multiple pushdown stacks, or-
dered by name, S1, . . . , Sm, such that it can only read the top symbol of the
first nonempty stack. (Without this restriction, an MPA can simulate a Turing
machine.) An MPCA is an MPA augmented with reversal-bounded counters.
A move of an MPCA depends only on the current state, the input symbol (or
ε), the status of the counters (zero or nonzero), and the top symbol of the first
nonempty stack, say Si; initially, the first stack contains a starting top symbol Z0
and all other stacks are empty. The action taken in a move consists of the input
being consumed, each counter being updated, the top symbol of Si being popped
and a word (possibly ε) being pushed onto each stack, and the next state being
entered. An MPA can be quite powerful. E.g., the language {xk | x ∈ {a, b}∗},
where k is a fixed integer, can be accepted by an MPA. However, it was shown in
[BCCC96] that MPAs accept semilinear languages only, and thus, by Theorem 3,
we have the following result, also observed recently in [D00].

Corollary 3. The languages in L(MPCA) are semilinear, and their emptiness
problem is decidable.

A TA is a 1-way nondeterministic finite automaton with a finite-crossing two-
way read/write worktape, i.e., the number of times the head crosses the boundary
between any two adjacent cells of the worktape is bounded by a constant, inde-
pendent of the computation. A TCA is a TA with augmented reversal-bounded
counters [IBS00]. Note that in a TA there is no bound on how long the head of
the worktape can remain on a cell.

Corollary 4 will state that TCAs accept only semilinear languages. Note
that if the worktape is not finite-crossing, then the automaton is equivalent
to a Turing Machine. A TCA can be quite powerful. Let L0 ⊆ Σ∗ over Σ =
{a, b, c, d} consist of the words x = x1ac

i1bx2 . . . xnac
inbxn+1, where n ≥ 0 and

xi /∈ Σ∗aΣ∗bΣ∗ such that |x|d =
∑n
j=1 cj . It can be shown that there exists a

deterministic TCA M that accepts L = {x#x | x ∈ L0}, where # /∈ Σ. Here M
has one counter, M is 9-crossing, although the worktape is not finite-turn.

We shall prove the semilinearity of the language in L(TA) using the following
two lemmas, where we say that a TA M is non-sitting, if in any computation of
M the read/write head always moves left or right of a cell in every step.

Lemma 1. Let M1 be a TA (i.e., without counters). We can effectively construct
a TA M2 such that L(M2) = L(M1) and M2 is non-sitting.

Proof. Let # be a new ‘dummy’ symbol. Now M2 begins the simulation of M1
by writing nondeterministically a finite-length sequence of #’s on the worktape;
M2 simulates M1, but whenever M1 writes a symbol on a new tape cell, then
M2 writes nondeterministically to the right of this cell a finite-length sequence
of #’s. Thus, at any time, the worktape contains a word where every pair of
non-dummy symbols is separated by a word of #’s. During the simulation, M2
uses/moves on the #’s to simulate the sitting moves of M1, which is possible if
there are enough #’s between any pair of non-dummy symbols. To simulate a
nonsitting move of M1, M2 may need to “skip over” the #’s to get to the correct
non-dummy symbol. Clearly, M2 is non-sitting and accepts L(M1).

Decision Questions Concerning Semilinearity, Morphisms 585

Lemma 2. Let M be a TA. Then ψ(L(M)) is an effective semilinear set.

Proof. By Lemma 1, we assume that M is non-sitting. We may also assume that
M ’s worktape is 1-way infinite and that a blank cell when visited is re-written
by a non-blank symbol, unless the automaton halts directly upon visiting the
cell. We number the worktape cells by 1, 2, . . . from left to right.

Consider an accepting computation of M on an input x such that M uses n
worktape cells. By assumption, M accepts with its read/write head on cell n,
which is blank. Now look at the cell p of the worktape, p = 1, 2, . . . , n. In the
computation, cell p < n may be visited several times, but cell n is visited exactly
once, on acceptance. Let t1, . . . , tm be the times M visits p.

Corresponding to the time sequence (t1, . . . , tm) associated with p, we define
a crossing vector R = (I1, . . . , Im), where for each i, Ii = (d1, q1, r1, r2, d2),
d1 ∈ {−1,+1} is the direction from which the head entered p at time ti; q1 is the
state when M entered p; r1 is the instruction that was used in the move above;
r2 is the instruction that was used at time ti+1 when M left p; d2 ∈ {−1,+1} is
the direction to which M left p at time ti + 1. Note that instruction r2 specifies
the input ai ∈ Σ ∪ {ε} that M reads at time ti + 1. Denote γ(R) = a1 . . . am.

We construct a 1-way nondeterministic finite automaton M ′ that simulates
an accepting computation of M on w by nondeterministically guessing the se-
quence of crossing vectors R1, . . . , Rn as M ′ processes the worktape from left to
right, making sure that Rj and Rj+1 are compatible for 1 ≤ j ≤ n− 1. During
the simulation, M ′ also checks that its input is v = γ(R1)γ(R2) . . . γ(Rn−1).
Clearly, v is a permutation of w, and ψ(v) = ψ(w). Hence, by Theorem 1,
ψ(L(M)) = ψ(L(M ′)) is a semilinear set.

By Theorem 3, we have the following corollary.

Corollary 4. The languages in L(TCA) are semilinear, and their emptiness
problem is decidable.

5 The Equivalence Problems for Sets of Maps

In this section C denotes a class of automata that satisfies the requirements of
Theorem 3. In particular, the languages accepted by the automata M ∈ C are
effectively semilinear.

Let g, h:Σ∗ → ∆∗ be two mappings for the alphabets Σ and ∆. The equality
set of g and h is defined to be E(g, h) = {w ∈ Σ∗ | g(w) = h(w)}.

The problem whether E(g, h) = {ε} is undecidable for the equality sets of
morphisms. This problem is known as the Post Correspondence Problem.

Let F be a family of mappings between word monoids, and let L be a language
family. The equivalence problem of maps from F on L is the problem whether
L ⊆ E(g, h) for L ∈ L and g, h ∈ F.

The equivalence problem of morphisms is decidable on CF-languages [CS78].
However, by the undecidability of the universe problem, the problem whether
L = E(h, g) is undecidable for morphisms and CF-languages.

586 T. Harju et al.

In the multiple equivalence problem of F on L we ask for a given language
L ∈ L, and a finite set (gi, hi) of pairs of maps gi, hi ∈ F for i = 1, 2, . . . , k,
whether L ⊆ ⋃ki=1E(gi, hi).

Theorem 5. The multiple equivalence problem of morphisms is decidable on
languages accepted by automata in C.

Proof. Let L = L(M), (gi, hi), i = 1, 2, . . . , k, where M ∈ C, L ⊆ Σ∗, and
gi, hi:Σ∗ → ∆∗

i for each i. Denote L′ = {w ∈ L | gi(w) 6= hi(w) for all i}.
Clearly, each w ∈ L satisfies gi(w) = hi(w) for some i if and only if L′ = ∅. We
show that L′ = L(M ′) for an automaton M ′ ∈ Cc, obtained from a machine in
C by augmenting it with reversal-bounded counters. Hence, by Theorem 3, the
emptiness problem of the associated languages L′ is decidable.

The automaton M ′ uses 2k counters c11, c12, . . . , ck1, ck2. On an input w, the
counters ci1 and ci2 are used to find a discrepancy in gi(w) and hi(w), that is,
a position pi, where the words gi(w) and hi(w) differ from each other. Now M ′

simulates M and at the same time applies, simultaneously for all i = 1, 2, . . . , k,
the morphisms gi and hi on the input w by using the counter ci1 (resp. ci2) to
guess and store the position pi1 in gi(w) (resp. pi2 in hi(w)) where a discrepancy
might occur. Therefore, either gi(w) = u1bi1v1, where |u1| = pi1 − 1, or bi1 = ε
and pi1 > |gi(w)|; and similarly for hi, either hi(w) = u2bi2v2, where |u2| =
pi2 − 1, or bi2 = ε and pi2 > |hi(w)|. M ′ records the symbols bi1, bi2 ∈ ∆i ∪ {ε},
and continues the simulation of M until the input word w is consumed. So far,
M ′ has just increased the counters, and has made no reversals. Now, M ′ checks
that for all i, bi1 6= bi2, and if M accepts the word w, then M ′ verifies that
for all i, pi1 = pi2 by simultaneously decrementing the counters ci1 and ci2 and
checking that they reach zero at the same time. Finally, M ′ accepts when all the
counter checks succeed. Clearly, M ′ accepts L′, and the claim follows.

As a corollary to Theorem 5, we obtain

Corollary 5. It is decidable for finitely many morphisms h1, . . . , hk and a
language L accepted by an automaton in C whether for each word w ∈ L,
hi(w) = hj(w) for some i 6= j.

The proof of Theorem 5 generalizes to the case of mappings computed by de-
terministic generalized sequential machines (gsms) with reversal-bounded coun-
ters (and with or without accepting states). The following result improves a
result of [CS78].

Theorem 6. The multiple equivalence problem of the mappings computed by the
deterministic gsms with reversal-bounded counters is decidable on the languages
accepted by automata in C.

There are natural variations of the above results, e.g., one might be interested
in deciding, given L, h1, . . . , hk, and m ≤ k, whether for each w ∈ L, there are
at least m mappings hi that map w to the same word.

Problem 2. For which language families is the following problem decidable? Let
L be a language, h be a nondeterministic gsm mapping and g be a deterministic
gsm mapping. Does there exist a word w ∈ L such that g(w) /∈ h(w)?

Decision Questions Concerning Semilinearity, Morphisms 587

Note that the above problem is undecidable when both h and g are nonde-
terministic gsm mappings, in fact surprisingly, even when both h and g are finite
substitutions and L is fixed to be the bounded language ab∗c [KL00].

6 Problems on Commutation

In the commutation problem for a language family L we ask whether LK = KL
for two given languages L,K ∈ L. In the equivalence problem for a family L we
ask for given languages L,K ∈ L whether L = K.

Theorem 7. Let L be a language family containing the singleton sets and ef-
fectively closed under concatenation. Then the commutation problem is decidable
for L if and only if the equivalence problem is decidable for L.

Proof. If L,K ∈ L, then also LK,KL ∈ L, and therefore if the equivalence
problem is decidable for L, so is the commutation problem. Assume then that
the commutation problem is decidable for L. Let L,K ∈ L, and let # be a
symbol not in the alphabet of L and K. Then the equivalence L = K can be
decided, since (L#)(K#) = (K#)(L#) if and only if L = K.

It follows that the commutation problem is undecidable for CF-languages.
In fact, it is undecidable for languages accepted by finite automata augmented
with a 1-reversal counter, since for these automata, even with only 4 states the
universe problem, and hence the equivalence problem, is undecidable [HalH98].

The equivalence problem is decidable in L(DPDA) [Se97] (see also [St00]),
that is, for the languages accepted by deterministic PDAs. Now, L(DPDA) is
not closed under concatenation (even from the left by two element sets, see
[Har78]). However, L(DPDA) is effectively closed under marked concatenation:
if L,K ∈ L(DPDA), then also L#K ∈ L(DPDA), where # is a new symbol.
Therefore, by the proof of Theorem 7, if the commutation problem is decidable
for deterministic CF-languages, a direct proof of this is likely to be very difficult.

Problem 3. Is the commutation problem decidable in L(DPDA)?

Problem 4. For which language families is the commutation problem, LK =
KL, decidable when K is a finite language?

A deterministic finite-turn 2CA is a special case of the deterministic finite-
crossing 2CA, where the head makes at most a fixed number of turns on the
input tape. The equivalence problem for these automata, in fact, for deterministic
finite-crossing 2CAs, is decidable [I78,GuI81,IJTW95]. Moreover, it can be shown
that, given a finite set K and a language L accepted by a deterministic finite-
turn 2CA, we can effectively construct deterministic finite-turn 2CAs accepting
KL and LK. Hence Problem 4 is decidable for deterministic finite-turn 2CAs.

We shall now show that Problem 4 has a negative answer for CF-languages.
Indeed, we prove that the commutation problem is undecidable for K = {a, b}
and CF-languages L. For the proof we need the following result from [ChKO99].

588 T. Harju et al.

Lemma 3. Let K be a two element code and L be any language. Then LK = KL
if and only if there exists a subset I ⊆ N such that

L =
⋃

i∈I
Ki. (1)

We note that if (1) holds for a code K and a language L, then the set I is
uniquely determined, since Ki ∩Kj = ∅ for all i 6= j.

Theorem 8. Let K be a fixed two element code. It is undecidable whether for a
context-free language L there exists a set I such that L = ∪i∈IKi.

Proof. Let K = {x1, x2} ⊆ Σ∗. Let ∆ = {a1, a2} be an alphabet, and define a
bijective morphism ϕ:∆∗ → Σ∗ by ϕ(ai) = xi for i = 1, 2.

Firstly, it is undecidable for CF-languages L ⊆ Σ∗ whether or not L = K∗.
Indeed, for any CF-language L′, L′ = ∆∗ if and only if ϕ(L′) = K∗, and the claim
follows, since L = ϕ(L′) is effectively context-free, and the universe problem is
undecidable for CF-languages.

Suppose contrary to the claim of the theorem that the existence of a set I
of powers can be decided. We derive a contradiction from the undecidability of
the equivalence problem L = K∗. Let L ⊆ Σ∗ be any CF-language. If there
does not exist a set I such that L = ∪i∈IKi, then trivially L 6= K∗. Suppose
then that such an I exists. We show that I is a semilinear subset of N (that is,
I is ultimately periodic) and it can be effectively constructed from L. We have
ϕ(ϕ−1(L)) = L, since L ⊆ K∗, and hence ϕ−1(L) =

⋃
i∈I ∆

i. Because ϕ−1(L)
is effectively context-free, the length set I of ϕ−1(L) is semilinear, and it can
be effectively constructed from ϕ−1(L), and thus from L. It follows that L is
effectively regular, and therefore we can decide whether or not L = K∗. This
contradicts the undecidability claim in the beginning of the proof.

By Lemma 3, we have the following corollary.

Corollary 6. Let K be a fixed two element code. It is undecidable for context-
free languages L whether or not KL = LK.

Theorem 8 suggests the following general problem.

Problem 5. For which language families L is the following problem decidable:
Given a (possibly infinite) regular code R and a language L ∈ L, does there exist
a set I such that L = ∪i∈IRi?

By Theorem 8, Problem 5 is undecidable for CF-languages. We show now
that the problem is decidable for deterministic CF-languages.

If a set R is a code, then Ri ∩Rj = ∅ for all i 6= j, and therefore we have

Lemma 4. Let R ⊆ Σ∗ be regular code and L ⊆ Σ∗ a language. Then there
exists a set I such that L = ∪i∈IRi if and only if L ⊆ R∗ and, for all i ≥ 0,

L ∩Ri 6= ∅ =⇒ L ∩Ri = ∅. (2)

Theorem 9. It is decidable for deterministic context-free languages L and reg-
ular codes R whether or not L = ∪i∈IRi for some set I.

Decision Questions Concerning Semilinearity, Morphisms 589

Proof. The containment problem L ⊆ R∗ is decidable for CF-languages, since R∗

is a regular language. Assume thus that L ⊆ R∗ holds. For (2), we recall that the
deterministic CF-languages are effectively closed under complementation. Let
L = L(M1), L = L(M2), and L(A) = R∗, for deterministic PDAs M1,M2, and
a finite automaton A. Let # be a new symbol. We construct a nondeterministic
PDA M augmented with one 1-reversal counter that accepts a word u#v ∈
Σ∗#Σ∗ if and only if u ∈ L∩Ri and v ∈ L∩Ri for some i. Therefore L(M) = ∅ if
and only if L satisfies the condition (2). Since the emptiness problem is decidable
for the languages accepted by PCAs, the claim follows.

Let then w = u#v be an input word. Then M simulates M1 and A in
parallel on u, and M checks that u ∈ L and u ∈ Ri for some i, recording i in
the counter. Note that i is unique, because R is a code. In this part M needs to
be nondeterministic. Then M simulates M2 and A on v and checks that v ∈ L
and v ∈ Ri for the same i that was recorded in the counter. This M does by
decrementing the counter. Finally, M accepts if M2 accepts.

Theorem 9 generalizes in many different ways to larger language families.
We note that the condition (2) is decidable also in the following cases: (1) L
is accepted by a deterministic MPCA and R is accepted by a CA. (2) L is
accepted by a deterministic CA and R is accepted by an MPCA. (3) L is accepted
by deterministic finite-crossing 2CA (since this class is effectively closed under
complementation [GuI81]) and R is accepted by a CA. (4) L and R are accepted
by deterministic 2CAs with only one reversal-bounded counter, as this class is
effectively closed under complementation [IJTW95].

The condition (2) is undecidable when R is a deterministic context-free code
as is shown by the general result in Theorem 10. The disjointness problem for a
family L is the problem whether L1 ∩ L2 = ∅ for two languages L1, L2 ∈ L.

Theorem 10. Let L be a language family that is effectively closed under con-
catenation and union with singleton sets. If the disjointness problem is undecid-
able for L, then so is the condition (2) for codes L,R ∈ L.

Proof. Given L1, L2 ∈ L over the alphabet Σ, define L and R over the alphabet
Σ ∪ {#, $} by: L = L1# and R = L2# ∪ {$}. Clearly, both L and R are codes
in L. Now, there exists an i such that L ∩Ri 6= ∅ and L ∩Ri 6= ∅ if and only if
L1 ∩ L2 6= ∅. Hence, the undecidability follows.

In particular, Theorem 10 holds in the cases, where L and R are accepted
by (1) deterministic pushdown automaton whose stack is 1-turn; (2) determin-
istic one-counter automata. Indeed, the disjointness problem is undecidable for
the language family accepted by deterministic 1-turn pushdown automata (and
deterministic one-counter automata, resp.), see, e.g, [I78]).

References

[BCCC96] L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi Reghizzi. Multiple
pushdown languages and grammars. Internat. J. Found. Comput. Sci. 7
(1996), 253 – 291.

590 T. Harju et al.

[ChK97] C. Choffrut and J. Karhumäki, Combinatorics of words, in Handbook of
Formal Languages, Vol. 1, (A. Salomaa and G. Rozenberg, eds.), Springer-
Verlag, 1997, pp. 329 – 438.

[ChK99] C. Choffrut and J. Karhumäki. Characterizing the subsets of words com-
muting with a set of two words. Proc. 7th Nordic Combinatorial Confer-
ence, Turku, Finland, 1999.

[ChKO99] C. Choffrut, J. Karhumäki, and N. Ollinger. The commutation of finite
sets: challenging problem. Theoret. Comput. Sci., to appear; TUCS Tech-
nical Report 303, http://www.tucs.fi, 1999.

[CS78] K. Culik II and A. Salomaa. On the decidability of homomorphism equiv-
alence for languages. J. Comput. System Sci. 17, (1978), 163 – 175.

[D00] Z. Dang. Verification and Debugging of Infinite State Real-time Systems.
Ph.D. Thesis, University of California, Santa Barbara, 2000.

[Gi66] S. Ginsburg. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, New York, 1966.

[Gr68] S. A. Greibach. Checking automata and one-way stack languages. SDC
Document TM 738/045/00, 1968.

[GuI81] E. M. Gurari and O. H. Ibarra. The complexity of decision problems for
finite-turn multicounter machines. J. Comput. System Sci. 22 (1981), 220
– 229.

[HalH98] V. Halava and T. Harju. Undecidability in integer weighted finite au-
tomata. Fund. Inf. 38 (1999), 189 – 200.

[Har78] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Mass., 1978.

[HoKK87] S. Horvath, J. Karhumäki, and H. C. M. Kleijn. Results concerning palin-
dromicity. J. Int. Process. Cyber. EIK 23 (1987), 441 – 451.

[I78] O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. J. ACM 25 (1978), 116 – 133.

[IBS00] O. H. Ibarra, T. Bultan, and J. Su. Reachability analysis for some models
of infinite-state transition systems. Proc. 10th Int. Conf. on Concurrency
Theory, 2000.

[IJTW95] O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results
concerning two-way counter machines. SIAM J. Comput. 24 (1995), 123 –
137.

[KL00] J. Karhumäki and L. P. Lisovik. A simple undecidable problem: the inclu-
sion problem for finite substitutions on ab�c. Proc. of the STACS 2001, to
appear.

[L83] M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.
[P66] R. Parikh. On context-free languages. J. ACM 13 (1966), 570 – 581.
[Sa73] A. Salomaa. Formal Languages. Academic Press, New York, 1973.
[Se97] G. Sénizergues. L(A)=L(B)? decidability results from complete formal sys-

tems. Theoret. Comput. Sci. 251 (2001), 1 – 166.
[St00] C. Stirling. Decidability of DPDA equivalence. Theoret. Comput. Sci., to

appear.

The Star Problem in Trace Monoids:
Reductions Beyond C4?

(Extended Abstract)??

Daniel Kirsten

Institute of Algebra, Dresden University of Technology, D-01062 Dresden, Germany
kirsten@math.tu-dresden.de, www.math.tu-dresden.de/˜kirsten

Abstract. We deal with the star problem in trace monoids which means
to decide whether the iteration of a recognizable trace language is rec-
ognizable. We consider trace monoids Kn = {a1, b1}� × · · · × {an, bn}�.
Our main theorem asserts that the star problem is decidable in a trace
monoid M iff it is decidable in the biggest Kn submonoid in M. Thus,
future research on the star problem can focus on the trace monoids Kn.
The recently shown decidability equivalence between the star problem
and the finite power problem [14] plays a crucial role in the paper.

1 Introduction

We deal with the star problem in free, partially commutative monoids, also
known as trace monoids. The star problem was raised by E. Ochmański in
1984 [20]. It means to decide whether the iteration of a recognizable trace lan-
guage is recognizable.

Here, we show a new partial result: We deal with trace monoids of the form
Kn = {a1, b1}∗ × · · · × {an, bn}∗. We show that the decidability of the star
problem in some Kn implies its decidability in any other trace monoid without
a Kn+1 submonoid. Thus, future research on the star problem can focus on the
trace monoids Kn. Our main result includes Richomme’s theorem which asserts
the decidability of the star problem in trace monoids without a C4.

The paper is organized as follows: In Section 2, we explain basic notations and
recall trace monoids, reognizable sets, and related notions. Section 3 is devoted
to the star problem and the finite power problem. After a historical survey in
Section 3.1 we explain the main results and interactions with previously known
results in Section 3.2. In Section 3.3, we try to evaluate our contribution and to
point out open questions which could be next research steps.

To keep Section 3 as a lucid survey, we give the main proof in Section 4:
From Section 4.1 to 4.2, we reduce the star problem from some trace monoid
M(A, D) to some trace monoid M(A, D′), where (A, D) and (A, D′) differ in
? Partially supported by the PhD program “Specification of discrete processes and

systems of processes by operational models and logics” of the DFG.
?? See author’s homepage for a long version including complete proofs [13].

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 591–602, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

592 D. Kirsten

just one dependency. In Section 4.3, we apply this step inductively to reduce the
star problem in an arbitrary trace monoid to a trace monoid over a transitive
dependency relation.

2 Preliminaries

2.1 Generalities

Let N = {0, 1, 2, . . . }. For finite sets L, we denote by |L| the number of elements
of L. If p ∈ L, then we denote by p both the element p and the singleton set
consisting of p. We denote by the symbols ⊆ and ⊂ set inclusion and strict set
inclusion, respectively. For a binary relation D, we denote by trD the transitive
closure of D. For a mapping f , we denote by f−1 the inverse of f . We denote
the power set of some set A by 2A. We regard 2A as a monoid by considering
set union as the natural operation.

If M1 and M2 are two monoids, we define their cartesian product M1 × M2
as the cartesian product of the underlying sets of M1 and M2 equipped with the
componentwise operation of M1 and M2. We extend this definition in a natural
way to more than two monoids.

For L ⊆ M and n ≤ m ∈ N, we denote Ln,...,m =
⋃
i∈{n,...,m} Li.

Let L be a subset of some monoid M. The set L has the finite power property
(for short FPP) iff there is some n ∈ N such that L∗ = L0,...,n. Let M

′ be a
monoid and let h : M → M

′ be a homomorphism. If L has the FPP, then h(L)
has the FPP. If h is injective, then L has the FPP iff h(L) has the FPP.

2.2 Free Monoids and Trace Monoids

We recall well-known basic notions. We denote the free monoid over an alphabet
A by A∗. Its identity is the empty word ε. We define the length of words as the
homomorphism || : A∗ → (N, +) which is uniquely defined by |a| = 1 for a ∈ A.
For every b ∈ A, we define the homomorhism ||b : A∗ → (N, +) by |b|b = 1 and
|a|b = 0 for a 6= b. We define the alphabet of a word as the unique homomorphism
α : A∗ → 2A with α(a) = {a} for a ∈ A.

P. Cartier and D. Foata introduced the concept of the free partially com-
mutative monoids, usually called trace monoids, in 1969 [2]. In 1977, A. Mazur-
kiewicz considered this concept as a potential model for concurrent systems
[15]. Since then, trace monoids have been examined by both mathematicians
and theoretical computer scientists [5,6]. Recently, results and techniques from
trace theory turned out to be useful in the framework of message sequence charts.

Let A be an alphabet. We call a binary relation D over A a dependence
relation iff D is reflexive and symmetric. For every pair of letters a, b ∈ A with
aDb, we say that a and b are dependent, otherwise a and b are independent.
We call the pair (A, D) a dependence alphabet. We define the relation ∼D over
A∗ as the congruence induced by ab ∼D ba for independent letters a, b ∈ A.

We call the congruence classes of ∼D traces. We denote the factorization
A∗
/∼D by M(A, D) and call it the trace monoid over (A, D). We call subsets

The Star Problem in Trace Monoids: Reductions Beyond C4 593

of M(A, D) trace languages, or for short languages. We denote by []D, or for
short [], the canonical homomorphism from A∗ to M(A, D). We denote by []−1

D
or []−1 its inverse.

Let u, v ∈ A∗ with u ∼D v, i.e., [u]D = [v]D. We have |u| = |v|, α(u) = α(v),
and |u|a = |v|a for a ∈ A. Hence, we can define these three homomorphisms for
trace monoids. We call two traces s, t independent iff

(
α(s) × α(t)

) ∩ D = ∅.
Let (A, D) be a dependence alphabet and let B ⊆ A. We denote the depen-

dence alphabet
(
B, D ∩ (B × B)

)
by (B, D).

If D = A×A, then M(A, D) is (isomorphic to) the free monoid A∗. Cartesian
products of trace monoids are (isomorphic to) trace monoids.

Let (A, D) be a dependence alphabet with a transitive dependence relation
D, i.e., let D be an equivalence relation. The trace monoid M(A, D) is isomorphic
to A∗

1 × A∗
2 × · · · × A∗

n, where A1, . . . , An are the equivalence classes of D.
For n > 0, we define Kn = {a1, b1}∗ × {a2, b2}∗ × · · · × {an, bn}∗. We define

K0 as the trivial monoid. The trace monoid K2 is well-known in trace theory
as C4. Further, the trace monoid {a1, b1}∗ × {a2}∗ is usually called P3.

The notion of connectivity plays a key role in trace theory, particularly in the
research on the star problem. We call a dependence alphabet (A, D) connected
iff we cannot split A into two non-empty, mutually disjoint subsets A1 and A2
with (A1 × A2) ∩ D = ∅. We call a trace t ∈ M(A, D) connected iff the depen-
dence alphabet

(
α(t), D ∩ α(t)×α(t)

)
is connected. We call a trace language L

connected iff every trace in L is connected.
G. Pighizzini introduced the notion of restrictions [22]: Let (A, D) be a

dependence alphabet and let B ⊆ A. For a language L ⊆ M(A, D), we define

L⊆B =
{

t ∈ L
∣
∣ α(t) ⊆ B

}
L=B =

{
t ∈ L

∣
∣ α(t) = B

}

We abbreviate (L∗)⊆B = (L⊆B)∗ by L∗
⊆B . However, (L∗)=B and (L=B)∗ are not

necessarily equal, e.g., if B = L = A and |A| ≥ 2, then (A∗)=A 6= (A=A)∗ = ∅∗.

2.3 Recognizable Languages

We recall some notions and results concerning recognizable sets. See [1] for more
information. Let M be a monoid. We call a triple A = [Q, h, F] consisting of
a finite monoid Q, a homomorphism h : M → Q and a subset F ⊆ Q an M-
automaton, or simply automaton. We call the set h−1(F) the language (or set) of
the automaton A and denote it by L(A). We call some subset L ⊆ M recognizable
over M iff there exists an M-automaton A such that L = L(A). Then, we also
say that A recognizes L or A is an automaton for L. We denote the class of all
recognizable sets over M by REC(M).

In any monoid M, the empty set and M itself are recognizable. The family
REC(M) is closed under union, intersection, and complement. Moreover, if M

and M
′ are two monoids and g : M → M

′ is a homomorphism, then we have the
following properties:

1. For every set L′ ∈ REC(M′), we have g−1(L′) ∈ REC(M).
2. If g is surjective and L′ ⊆ M

′, then g−1(L′) ∈ REC(M) iff L′ ∈ REC(M′).

594 D. Kirsten

The study of recognizable trace languages is a central part in trace theory [5,19].
Every finite trace language is recognizable. Since the homomorphism [] is sur-
jective, a trace language L is recognizable iff [L]−1 is recognizable. M. Fliess,
R. Cori, and D. Perrin showed that the concatenation of two recognizable
trace languages yields a recognizable trace language [4,8]. Recognizable trace
languages are not closed under iteration. Consider the trace monoid a∗ × b∗.
The iteration of the singleton language {(a, b)} yields { (an, bn) |n ∈ N } which
is not recognizable, because its inverse image

{
w

∣
∣ |w|a = |w|b

} ⊆ {a, b}∗ is not
recognizable. However, the iteration of a connected recognizable trace language
always yields a recognizable trace language [3,16,20].

Let M be a trace monoid. E. Ochmański showed that the class REC(M) is
the least class which contains every finite subset of M and is closed under union,
concatenation, and iteration of connected languages [19,20].

The restrictions L=B and L⊆B preserve recognizability [14,22].
Note that every closure property which we mention is effective, i.e., we can

construct automata for the desired sets.

3 The Star Problem and the FPP

3.1 A Historical Survey

The star problem was raised by E. Ochmański in 1984 [20]. It means to decide
whether for a recognizable trace language L, the iteration L∗ is recognizable.
Recently, it turned out that the star problem for message sequence charts is
equivalent to the star problem for trace monoids [18].

The finite power problem means to decide whether a recognizable trace lan-
guage L has the finite power property, i.e., it means to decide whether there is
some n ∈ N such that L∗ = L0,...,n. It was raised for the first time just for free
monoids by J. A. Brzozowski in 1966. In 1990, E. Ochmański considered the
finite power problem in trace monoids [21]. We abbreviate both the terms finite
power problem and finite power property by FPP.

We say that the star problem (resp. FPP) is decidable in some trace monoid
M(A, D) iff it is decidable for recognizable languages over M(A, D). To say that
the star problem (resp. FPP) is decidable for a class of recognizable languages
over M(A, D) with some certain property, we say, e.g., that it is decidable for
L ∈ REC(M(A, D)) with L ⊆ M(A, D)=A.

There is an algorithm which effectively constructs an automaton for L∗ from
an automaton for L [5]. This algorithm terminates iff L∗ is recognizable.

Although during the recent 17 years many papers have dealt with the star
problem and the FPP, only partial results have been achieved. In free monoids,
the star problem is obvious and the FPP is decidable [11,25]. The star problem
is decidable in free commutative monoids due to [10].

In the eighties, E. Ochmański [20], M. Clerbout and M. Latteux [3],
and Y. Métivier [16] independently proved that the iteration of a connected
recognizable trace language yields a recognizable trace language.

The Star Problem in Trace Monoids: Reductions Beyond C4 595

In 1992, J. Sakarovitch showed as a conclusion from a more general result
the decidability of the star problem in trace monoids without a submonoid iso-
morphic to P3 [24]. In the same year, P. Gastin, E. Ochmański, A. Petit,
and B. Rozoy proved the decidability of the star problem in P3 [9].

In 1994, Y. Métivier and G. Richomme showed the decidability of the
FPP for connected recognizable trace languages and the decidability of the star
problem for particular cases of finite trace languages [17].

In 1994, G. Richomme combined and improved various approaches and
proved the following theorem [14,23]:
Theorem 1. Let M be a trace monoid. If M does not contain a C4 submonoid,
then both the star problem and the FPP are decidable in M.
He also showed the following reduction [14,23]:
Theorem 2. Let (A, D) be a connected dependence alphabet. To show the de-
cidability of the star problem in M(A, D), it suffices to show its decidability in
M(B, D) for every strict subset B ⊂ A.

The subsequent years were designated by stagnation. The star problem and
the FPP were given up and one ceased the research.

In 1999, D. Kirsten showed a crucial connection between the star problem
and the FPP [12,14]. In combination with earlier results due to G. Richomme,
we proved the following theorem [14]:
Theorem 3. The trace monoids with a decidable star problem are exactly the
trace monoids with a decidable FPP.
In [14], D. Kirsten and G. Richomme give a comprehensive presentation of
an approach which is based on induction steps on dependence alphabets. In the
present paper, we need two more results from [14]:
Theorem 4. Let (A, D) be a dependence alphabet and let b 6∈ A be a letter. If the
star problem is decidable in M(A, D), then it is also decidable in M(A, D) × b∗.
Note that by Theorem 3 the same assertion holds for the FPP. A weaker version
of Theorem 4 occured in [23]. However, in [23], G. Richomme assumed that both
the star problem and the FPP are decidable in M(A, D), because Theorem 3 was
not known. The next theorem follows from results in [14]. See [13] for a proof.
Theorem 5. Let (A, D) be a dependence alphabet. If the FPP is decidable for

1. L ∈ REC(M(A, D)) with L ⊆ (M(A, D))=A and for
2. L ∈ REC(M(B, D)) for every strict subset B ⊂ A,

then the FPP is decidable in M(A, D).

3.2 Main Results

At first, we reduce the FPP for a particular class of languages in arbitrary trace
monoids to the FPP in trace monoids over transitive dependencies.
Theorem 6. Let (A, D) be a dependence alphabet. If the FPP is decidable for
L ∈ REC(M(A, trD)) with L ⊆ M(A, trD)=A, then the FPP is also decidable for
L ∈ REC(M(A, D)) with L ⊆ M(A, D)=A.

596 D. Kirsten

We will prove this result in Section 4. We show a proposition which allows to
reduce the FPP from arbitrary cartesian products of free monoids to some Kn.

Proposition 1. Let (A, D) be a dependence alphabet, and let D be transitive.
Let n be the number of non-singleton components of (A, D). If the FPP is de-
cidable in Kn, then the FPP is decidable in M(A, D).

Proof. Note that M(A, D) is isomorphic to A∗
1 × · · · × A∗

n × b∗
1 × · · · × b∗

m where
A1, . . . , An are the non-singleton equivalence classes of D and b1, . . . , bm ∈ A.

By Theorem 4, it suffices to show the decidability of the FPP in A∗
1×· · ·×A∗

n.
There is an injective homomorphism h : A∗

1 × · · · × A∗
n → Kn such that h maps

connected traces to connected traces, i.e., h preserves both recognizability [7,19]
and the FPP. ut
From Theorem 6 and Proposition 1, we easily deduce our main result:

Theorem 7. Let n ≥ 1. If the star problem is decidable in Kn, then the star
problem is decidable in every trace monoid without a submonoid Kn+1.

Proof. By the equivalence between the star problem and the FPP (Theorem 3),
we can prove Theorem 7 by showing the same reduction for the FPP. Let

C =
{

(A, D)
∣
∣ M(A, D) does not contain a Kn+1 submonoid

}
.

We show by an induction on dependence alphabets that the FPP is decidable in
M(A, D) for every (A, D) ∈ C. Let (A, D) ∈ C be arbitrary.

If |A| = 1, then the FPP is decidable [11,25].
Let |A| > 1. Every strict subalphabet of (A, D) belongs to C. By induction,

the FPP is decidable in M(B, D) for every strict B ⊂ A. By Theorem 5, it
suffices to show the decidability of the FPP for L ∈ REC(M(A, D)) with L ⊆
M(A, D)=A. By Theorem 6, it suffices to show the decidability of the FPP for
L ∈ REC(M(A, trD)) with L ⊆ M(A, D)=A. By Proposition 1, it suffices to
show the decidability of the FPP in Kk, where k is the number of non-singleton
components of (A, trD), i.e., the number of non-singleton components of (A, D).

By choosing two dependent letters from each non-singleton component, we
locate a Kk submonoid in M(A, D). There is no Kn+1 submonoid in M(A, D).
Hence, k ≤ n, i.e., Kk is a submonoid of Kn, and the FPP is decidable in Kk. ut
To illustrate Theorem 7, we state two corollaries:

Corollary 1. To show the decidability of the star problem in a trace monoid M,
it suffices to show its decidability in the biggest Kn submonoid of M.

Corollary 2. Exactly one of the following assertions is true:

1. The star problem is decidable in every trace monoid.
2. There is some n > 1 such that the trace monoids with a decidable star

problem are exactly the trace monoids without a Kn submonoid.

The Star Problem in Trace Monoids: Reductions Beyond C4 597

3.3 Conclusions and Open Problems

The main conclusion from Theorem 7 is that future research on the star problem
and the FPP can focus on the monoids Kn. Corollary 1 strictly subsumes the
previously known reduction steps in Theorems 2 and 4. If we set n = 1 in
Theorem 7, then we obtain Theorem 1 due to G. Richomme as a particular
case of Theorem 7.

There is another well-known decision problem in trace theory: the code prob-
lem. Opposed to the star problem, there are trace monoids for which the code
problem is known to be undecidable. For the code problem, the border between
decidability and undecidability follows (as far as known) a rather mysterious
way. By Corollary 2, we know that this is not the case for the star problem.

This paper gives an application of the recently shown decidability equivalence
between the star problem and the FPP [14]. The encouraged reader is invited
to prove Theorem 7 and an analogon of Theorem 6 without using Theorem 3.

Despite this progress, several interesting questions remain open. The decid-
ability of the star problem in the monoids Kn and in particular in C4 is still not
known. Further, we do not know whether the star problem in any trace monoid
with a C4 submonoid is equivalent to the star problem in C4.

4 Reduction to Transitive Dependencies

To prove Theorem 6, we show the following slightly weaker proposition:

Proposition 2. Let (A, D) be a dependence alphabet with letters a, b, c ∈ A such
that aDb, bDc, but ¬ aDc. Let D′ = D ∪ {(a, c), (c, a)}. If the FPP is decidable
for L ∈ REC(M(A, D′)) with L ⊆ M(A, D′)=A, then the FPP is decidable for
L ∈ REC(M(A, D)) with L ⊆ M(A, D)=A.

On the one hand, the reduction from M(A, D) to M(A, D′) is technically much
easier than the reduction from M(A, D) to M(A, trD) in Theorem 6, because
(A, D) and (A, D′) differ in just one dependency. On the other hand, we will
obtain Theorem 6 as an obvious conclusion from Proposition 2 in the last line of
this section. We fix M = M(A, D), M

′ = M(A, D′), and a, b, c from Proposition 2
for the rest of the paper.

4.1 A Little Bit of Transitivity

In this section, we show the following reduction:

Proposition 3. If the FPP is decidable for L ∈ REC(M′) with L ⊆ M
′
=Ab, then

the FPP is decidable for L ∈ REC(M) with L ⊆ M=A b.

We consider the canonical homomorphism [[]] : M
′ → M which is induced by the

identity on letters. For a language L ⊆ M
′, the equation L = JJLKK−1 means that

L is closed under commutation of a and c. We need a rather technical lemma:

Lemma 1. Let K ⊆M
′b, L⊆M

′ with K = JJKKK−1 and L = JJLKK−1. We have
KL = JJKLKK−1, K0,...,k = JJK0,...,kKK−1 (for k ∈ N), and K∗ = JJK∗KK−1.

598 D. Kirsten

Proof. (sketch) We show KL = JJKLKK−1, i.e., we show that KL is closed
under commutation of a’s and c’s. Let t ∈ KL. There are rb ∈ K and s ∈ L with
rbs = t. If we transform t into some trace t′ by commuting consecutive a’s and
c’s, then we cannot commute beyond the b between r and s, i.e, we commute
inside r and inside s. Hence, we have t′ = r′bs′ where we obtained r′ and s′ from
r and s, resp., by commuting consecutive a’s and c’s. Thus, we have r′b ∈ K,
s′ ∈ L, and r′bs′ ∈ KL.

We can show the other assertions by a straightforward induction on k and
considering that K∗ =

⋃
k∈N

Kk.
See [13] for a formal precise proof based on Levi’s Lemma. ut

Example 1. Let K = {a} and L = {c}. We have a = JJaKK−1 and c = JJcKK−1,
but KL = {ac} 6= {ac, ca} = JJKLKK−1. Consequently, the assumption that
every trace in K has a trailing b must not be dropped.

Lemma 2. Let L ⊆ M b. The language L has the FPP iff JLK−1 has the FPP.

Proof. At first, note that L = JJLK−1K.
. . . ⇒ . . . Choose some k ∈ N with L∗ = L0,...,k. By L = JJLK−1K, we have

JJLK−1K∗ = JJLK−1K0,...,k. We obtain J
(
JLK−1

)∗
K = J

(
JLK−1

)0,...,k
K because J K is

a homomorphism. We apply J K−1 to both sides and use Lemma 1 with JLK−1

as K. We obtain
(
JLK−1

)∗ =
(
JLK−1

)0,...,k, i.e., JLK−1 has the FPP.
. . . ⇐ . . . Homomorphisms preserve the FPP, i.e., JJLK−1K = L has the FPP. ut
Proof of Proposition 3. To decide whether L ∈ REC(M) has the FPP it suffices
by Lemma 2 to decide whether JLK−1 ∈ REC(M′) has the FPP. ut

4.2 On Trailing b’s

This section is devoted to the proof of the following reduction, where we still
assume M and a, b, c from the beginning of Section 4.

Proposition 4. If the FPP is decidable for L ∈ REC(M) with L ⊆ M=Ab, then
the FPP is also decidable for languages L ∈ REC(M) with L ⊆ M=AbM=A.

We transform a given recognizable language L ⊆ M=AbM=A into a recognizable
language L′ ⊆ M=Ab such that L′ has the FPP iff L has the FPP.

Let L ⊆ M=AbM=A be a language, and let A = [Q, h, F] be an automaton
with L = L(A) for the rest of this section. We can freely assume that h is
surjective and that for s, t ∈ M, h(s) = h(t) implies α(s) = α(t). Consequently,
α : Q → 2A with α(q) = α(t) for every q ∈ Q and t ∈ h−1(q) is a homomorphism.

We consider the submonoid of M which is generated by (A\ b) ∪ b|Q|+1. The
unique homomorphism g : M → [

(A \ b) ∪ b|Q|+1
]∗
D

induced by

g(a) = a for a ∈ A \ b, and g(b) = b|Q|+1

is an isomorphism. We can regard g as an injective embedding of M into itself.
Moreover, g maps connected traces to connected traces, because α(t) = α(g(t))
for t ∈ M. Hence, g preserves recognizability [7,19].

The Star Problem in Trace Monoids: Reductions Beyond C4 599

Lemma 3. The language L ⊆ M has the FPP iff g(L) has the FPP.

Proof. As mentioned above, g is injective. ut
In the rest of this section, we deal with g(L). Let # : Q → {1, . . . , |Q|} be

some injective mapping. For q ∈ Q, we denote #(q) by #q.
We define three languages L1, L2, and T . Later, the language (L1L2 ∪ bTb)

plays the role of the language L′ which we mentioned above. We define:

L1 =
⋃

m, p ∈ Q, α(p) = A, m h(b) p ∈ F

b|Q|+1−#mg(h−1(p))

L2 =
⋃

q ∈ Q, α(q) = A

g(h−1(q))b#q

Note that L1 ⊆ b M=A ⊆ M=A and L2 ⊆ M=Ab ⊆ M=A. We can construct
automata for L1 and L2. Let πa,b : M → {a, b}∗ be the projection, and let:

T = π−1
a,b

(
{a, b}∗a

{
b|Q|+1}∗

b1,...,|Q|a{a, b}∗
)

∩ M=A,

i.e., a trace t ∈ M=A belongs to T iff πa,b(t) contains some subword ab+a whose
number of b’s is not a multiple of |Q| + 1.

Lemma 4. We have

1. g(M) ∩ T = ∅, (and hence, g(L) ∩ T = ∅),
2. L2L1 ⊆ g(L) ∪ T ,
3. L2L1 \ T = g(L), and
4. M T M = T .

Proof. (1) Note that πa,b(g(M)) is the free monoid over {a, b|Q|+1} and consider
the definition of T .

(2) Let s ∈ L2 and t ∈ L1. We have st ∈ M=A. By the definition of L1
and L2, there are q, m, p ∈ Q with α(p) = α(q) = A, mh(b)p ∈ F such that
s ∈ g(h−1(q))b#q and t ∈ b|Q|+1−#mg(h−1(p)).

Case a: Let m = q. We show st ∈ g(L). By m = q, we have

st ∈ g(h−1(m)) b#m b|Q|+1−#m g(h−1(p))
= g

(
h−1(m)

)
g
(
b
)
g
(
h−1(p)

)

= g
(
h−1(m) b h−1(p)

)

⊆ g(L)

The latter inclusion follows from m h(b) p ∈ F .

600 D. Kirsten

Case b: Let m 6= q. We show st ∈ T . We have
st ∈ g(h−1(q)) b#q+|Q|+1−#m g(h−1(p))

⊆ g(M=A) b|Q|+1+#q−#m g(M=A)

Every trace in g(M=A) contains every letter of A, and thus, in particular the
letter a. Hence, we have
πa,b(g(M=A)) ⊆ {a, b|Q|+1}∗a{b|Q|+1}∗ = {b|Q|+1}∗a{a, b|Q|+1}∗.
Now, we consider πa,b(st).
πa,b(st) ∈ πa,b(g(M=A)) πa,b(b|Q|+1+#q−#m) πa,b(g(M=A))

⊆ {a, b|Q|+1}∗a{b|Q|+1}∗ b|Q|+1+#q−#m {b|Q|+1}∗a{a, b|Q|+1}∗

⊆ {a, b}∗a{b|Q|+1}∗ b|Q|+1+#q−#m a{a, b}∗

Then, st ∈ T follows from #m 6= #q and st ∈ M=A.

(3) By (2) and (1), it suffices to show g(L) ⊆ L2L1. Let t ∈ L. We show
g(t) ∈ L2L1. Because L ⊆ M=AbM=A, we have t = rbs for some r, s ∈ M=A.
Let q = h(r) and p = h(s). We have α(q) = α(p) = A. By t ∈ L, we have
q h(b) p ∈ F . We have

g(t) = g(rbs) ∈ g
(
h−1(q)

)
b#q b|Q|+1−#q g

(
h−1(p)

) ⊆ L2L1.

(4) Note that πa,b(M) = {a, b}∗ and consider the definition of T .
We easily obtain πa,b(M T M) = πa,b(T). ut
The following lemma shows the connection between L1L2 ∪ bTb and g(L).
Lemma 5. The language g(L) has the FPP iff (L1L2 ∪ bTb) has the FPP.
Proof. . . . ⇐ . . . Let k ∈ N with

(
L1L2 ∪ bTb

)∗ =
(
L1L2 ∪ bTb

)0,...,k. Let n > 1
be arbitrary
g(L)n = (L2L1 \ T)n (cf. Lemma 4 (3))

⊆ (L2L1)n

= L2(L1L2)n−1L1

⊆ L2(L1L2 ∪ bTb)n−1L1

⊆ L2(L1L2 ∪ bTb)0,...,kL1

⊆ L2(L1L2)0,...,kL1 ∪ T
(cf. Lemma 4 (4))

We have g(L)n = g(Ln) ⊆ g(M). By Lemma 4 (1), g(L)n∩T = ∅. Consequently,
g(L)n ⊆ L2(L1L2)0,...,kL1

= (L2L1)1,...,k+1

⊆ (g(L) ∪ T)1,...,k+1
(cf. Lemma 4 (2))

= g(L)1,...,k+1 ∪ T
(cf. Lemma 4 (4))

Once again, we apply g(L)n ∩ T = ∅, and obtain g(L)n ⊆ g(L)1,...,k+1. Because
n > 1 is chosen arbitrarily, we have g(L)∗ = g(L)0,...,k+1, so g(L) has the FPP.

. . . ⇒ . . . Let k ∈ N with g(L)∗ = g(L)0,...,k. At first, note that
(
L1L2 ∪ bTb

)∗
bTb

(
L1L2 ∪ bTb

)∗ ⊆ bTb

as a conclusion from Lemma 4 (4). To show that L1L2 ∪ bTb has the FPP, it
suffices to show (L1L2)n ⊆ (L1L2 ∪ bTb)1,...,k+1 for every n > 1. We have

The Star Problem in Trace Monoids: Reductions Beyond C4 601

(L1L2)n = L1(L2L1)n−1L2

⊆ L1
(
g(L) ∪ T

)n−1
L2

(cf. Lemma 4 (2))

⊆ L1
(
g(L)

)n−1
L2 ∪ bTb

(cf. Lemma 4 (4))

⊆ L1
(
g(L)

)1,...,k
L2 ∪ bTb

⊆ L1
(
L2L1

)1,...,k
L2 ∪ bTb

(cf. Lemma 4 (3))

⊆ (L1L2)2,...,k+1 ∪ bTb

⊆ (L1L2 ∪ bTb)1,...,k+1 ut
Proof of Proposition 4. Let L = L(A). To determine whether L has the FPP, we
construct some automaton A′ with L(A′) = (L1L2 ∪ bTb). By Lemmas 3 and 5,
L has the FPP iff L1L2 ∪ bTb has the FPP. We can decide the latter condition,
because (L1L2 ∪ bTb) ⊆ M=Ab. ut

4.3 Completion of the Proof

At first, we show the following reduction:
Proposition 5. Let M be the trace monoid over a dependence alphabet (A, D)
and let b ∈ A. If the FPP is decidable for L ∈ REC(M) with L ⊆ M=Ab M=A,
then the FPP is decidable for L ∈ REC(M) with L ⊆ M=A.

Proof. Let L ∈ REC(M) with L ⊆ M=A. We have L3,...,5 ∈ REC(M) and
L3,...,5 ⊆ M=Ab M=A. Further, L has the FPP iff L3,...,5 has the FPP. ut
Proof of Proposition 2. We concatenate Propositions 3, 4, and 5. ut
Proof of Theorem 6. We apply Proposition 2 inductively. ut

Acknowledgements. A question from V. Diekert at the workshop “Logic
and Algebra in Concurrency” initiated some research which lead to the present
paper. The author thanks M. Droste, P. Gastin, M. Lohrey, G. Richomme,
and anonymous referees for reading preliminary versions and giving useful re-
marks.

References

1. J. Berstel. Transductions and Context-Free Languages. B.G.Teubner, Stutt., 1979.
2. P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrange-

ments, vol. 85 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1969.
3. M. Clerbout and M. Latteux. Semi-commutations. Inf. and Comp., 73:59–74, 1987.
4. R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O. - In-

formatique Théorique et Applications, 19:21–32, 1985.
5. V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and

A. Salomaa, eds., Handbook of Formal Languages, Vol. 3, Beyond Words, pages
457–534. Springer-Verlag, Berlin, 1997.

6. V. Diekert and G. Rozenberg, eds., The Book of Traces. World Scient., 1995.
7. C. Duboc. Mixed product and asynchronous automata. Theoretical Computer

Science, 48:183–199, 1986.

602 D. Kirsten

8. M. Fliess. Matrices de Hankel. J. de Math. Pures et Appl., 53:197–224, 1974.
9. P. Gastin, E. Ochmański, A. Petit, and B. Rozoy. Decidability of the star problem

in A� × {b}�. Information Processing Letters, 44(2):65–71, 1992.
10. S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages.

Pacific Journal of Mathematics, 16:285–296, 1966.
11. K. Hashiguchi. A decision procedure for the order of regular events. Theoretical

Computer Science, 8:69–72, 1979.
12. D. Kirsten. A connection between the star problem and the finite power property

in trace monoids. In P. van Emde Boas et al., eds., ICALP’99 Proceedings, vol. 1644
of LNCS, pages 473–482. Springer-Verlag, Berlin, 1999.

13. D. Kirsten. The star problem in trace monoids: Reductions beyond C4. Technical
Report MATH-AL-01-2001, Dresden University of Technology, 2001. (submitted)

14. D. Kirsten and G. Richomme. Decidability equivalence between the star problem
and the finite power problem in trace monoids. Theory of Computing Systems,
34:3:193–227, 2001.

15. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, 1977.

16. Y. Métivier. Une condition suffisante de reconnaissabilité dans un monöıde par-
tiellement commutatif. R.A.I.R.O. - Inform. Théor. et Appl., 20:121–127, 1986.

17. Y. Métivier and G. Richomme. New results on the star problem in trace monoids.
Information and Computation, 119(2):240–251, 1995.

18. R. Morin. On regular MSC languages and relationships to Mazurkiewicz trace
theory. In F. Honsell and M. Miculan, eds., FoSSaCS’2001 Proceedings, vol. 2030
of LNCS, pages 332–346. Springer-Verlag, Berlin, 2001.

19. E. Ochmański. Recognizable trace languages. Chapter 6 in [6], pages 167-204.
20. E. Ochmański. Regular Trace Languages (in Polish). PhD thesis, Warszawa, 1984.
21. E. Ochmański. Notes on a star mystery. Bulletin of the EATCS, 40:252–257, 1990.
22. G. Pighizzini. Synthesis of nondeterministic asynchronous automata. In M. Droste

and Y. Gurevich, eds., Semantics of Progr. Lang. and Model Theory, number 5 in
Algebra, Logic and Appl., p. 109–126. Gordon and Breach Sc. Publ., 1993.

23. G. Richomme. Some trace monoids where both the star problem and the finite
power property problem are decidable. In I. Privara et al., eds., MFCS’94 Proceed-
ings, vol. 841 of LNCS, pages 577–586. Springer-Verlag, Berlin, 1994.

24. J. Sakarovitch. The “last” decision problem for rational trace languages. In I.
Simon, ed., LATIN’92 Proc., vol. 583 of LNCS, p. 460–473. Springer-Verlag, 1992.

25. I. Simon. Limited subsets of a free monoid. In Proceedings of the 19th IEEE Annual
Symposium on Found. of Comp. Sc., pages 143–150. North Carolina Press, 1978.

The Trace Coding Problem Is Undecidable
(Extended Abstract)?

Michal Kunc

Department of Mathematics, Masaryk University,
Janáčkovo nám. 2a, 662 95 Brno, Czech Republic,

kunc@math.muni.cz, http://www.math.muni.cz/˜kunc

Abstract. We introduce the notion of weak morphisms of trace monoids
and use it to deal with the problem of deciding the existence of codings
between trace monoids. We prove that this problem is not recursively
enumerable, which answers the question raised by Ochmański in 1988.
We also show its decidability when restricted to instances with domain
monoids defined by acyclic dependence graphs.

1 Introduction and Notations

In [9] Mazurkiewicz proposed trace monoids as a tool for describing a behaviour
of concurrent systems. When we consider simulations of these systems, trace
morphisms come into play. In this context, the notion of a uniquely decipherable
morphism (a coding) turns out to be particularly interesting. In [10] Ochmański
raised a problem to find an algorithm deciding for each pair of trace monoids
whether there is a coding between them. Up to now, only few partial decidability
results concerning this problem were obtained in [1,2,6]. The problem was solved
completely just for so-called strong morphisms by Diekert et al. [6].

In the present paper we introduce a new concept of weak morphisms and
we show that the analogous problem for weak morphisms is even more complex
than the original one. These considerations can be used among others to prove
that the existence of codings is decidable for domain monoids whose dependence
graphs are acyclic. On the other hand, we demonstrate that both problems are
in general undecidable. In this extended abstract main ideas of these results are
briefly sketched; we refer to the current version of the manuscript [8] for details.

In Section 2 we recall basic concepts and known results; see e.g. [4] for a more
comprehensive introduction. We also define weak morphisms there and then we
demonstrate some of their characteristic properties in Section 3. The aim of
Section 4 is to describe a connection between the trace coding problem and its
equivalent for weak morphisms. A proof of the undecidability result is outlined in
Sections 5 to 7. First we show that it suffices to deal with the existence problem
for weak morphisms with prescribed contents of images of letters and then we
show how to encode the initial Post’s correspondence problem (inPCP) into it.
? This research was partially supported by the Ministry of Education of the Czech

Republic under the project MSM 143100009.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 603–614, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

604 M. Kunc

Let us fix notations. We mean by IN the set of positive integers, by |A| the
cardinality of a set A and by sym ρ the symmetric closure of a binary relation ρ.
The neutral element of any monoid is written as 1. We denote by Σ∗ the monoid
of words (free monoid) over a finite set Σ. In this context, Σ is often called
an alphabet and its elements letters. For a word w ∈ Σ∗, we mean by alph (w)
the set of all letters occurring in w (the content of w), by |w| the length of w and
by |w|x the number of occurrences of a letter x ∈ Σ in w. The prefix ordering on
Σ∗ is denoted by �. For X ⊆ Σ, let πX : Σ∗ → X∗ be the projection morphism
erasing all letters which are not in X (we write a list of letters rather than X).

2 Basic Concepts

Let Σ be a finite set and let I be an arbitrary symmetric and reflexive binary
relation on Σ. We call I an independence relation on Σ and the undirected
graph (Σ, I) an independence alphabet. The complement D = (Σ × Σ) \ I is
called a dependence relation and the graph (Σ, D) a dependence alphabet. Usually
independence relations are defined as irreflexive, but we adopt this notation
since it faithfully corresponds to the behaviour of weak morphisms. In fact, the
difference between strong and weak morphisms lies exactly in this modification.

Let ∼I be the congruence of the free monoid Σ∗ generated by the relation
{(xy, yx) | (x, y) ∈ I}. The quotient monoid Σ∗/ ∼I is denoted by IM (Σ, I) and
called a trace monoid. Elements of this monoid are called traces. In what follows,
we do not distinguish between letters and their one-element congruence classes.

It is well known that two words w, w′ ∈ Σ∗ represent the same trace in
IM (Σ, I) if and only if |w|x = |w′|x for every x ∈ Σ and πx,y (w) = πx,y (w′) for
every (x, y) ∈ D. This characterization in particular shows that trace monoids
are cancellative and that all notions such as a content, a length or a projection
can be used also for traces.

The initial alphabet and the final alphabet of a trace are defined as follows. Let
init (1) = fin (1) = ∅ and for s ∈ IM (Σ, I), s 6= 1, let init (s) = {first (w) | w ∈ s}
and fin (s) = {last (w) | w ∈ s}, where first (w) is the first letter of the word w
and last (w) is the last one. We say that traces s, t ∈ IM (Σ, I) are independent
if they satisfy alph (s) × alph (t) ⊆ I \ idΣ . Notice that in such a case st = ts.

Since trace monoids are defined by presentations, every morphism of trace
monoids (briefly trace morphism) ϕ : IM (Σ, I) → IM (Σ′, I ′) is uniquely deter-
mined by any mapping ϕ0 : Σ → (Σ′)∗, such that ϕ0(x) ∈ ϕ (x), which satisfies

∀ (x, y) ∈ I : ϕ0 (x) ϕ0 (y) ∼I′ ϕ0 (y) ϕ0 (x) . (1)

Conversely, every mapping ϕ0 : Σ → (Σ′)∗ satisfying (1) extends to a morphism.
Following the terminology from the theory of free monoids, we call a trace

morphism a coding if it is injective. In connection with decision problems of trace
codings, two particular classes of morphisms were already considered: strong
morphisms, introduced in [3], and cp-morphisms, introduced in [6] as morphisms
associated with clique-preserving morphisms of independence alphabets. For the
purpose of dealing with the general case, we generalize the latter notion and

The Trace Coding Problem Is Undecidable 605

we call the arising morphisms weak. This approach also suggests an alternative
definition of cp-morphisms. A morphism ϕ : IM (Σ, I) → IM (Σ′, I ′) is called

– strong if ∀ (x, y) ∈ I \ idΣ : alph (ϕ (x)) ∩ alph (ϕ (y)) = ∅.
– weak if ∀x ∈ Σ : alph (ϕ (x)) × alph (ϕ (x)) ⊆ I ′.
– a cp-morphism if it is weak and ∀x ∈ Σ, a ∈ Σ′ : |ϕ (x)|a ≤ 1.

To obtain a description analogous to the above one for general morphisms
also for strong and weak morphisms, it is enough to replace (1) with respectively

∀ (x, y) ∈ I \ idΣ : alph (ϕ0 (x)) × alph (ϕ0 (y)) ⊆ I ′ \ idΣ′ , (2)
∀ (x, y) ∈ I : alph (ϕ0 (x)) × alph (ϕ0 (y)) ⊆ I ′ . (3)

The (strong, weak) trace coding problem asks to decide for given two indepen-
dence alphabets (Σ, I) and (Σ′, I ′) whether there exists a (strong, weak) coding
ϕ : IM (Σ, I) → IM (Σ′, I ′). The trace code problem asks to decide for a given
morphism ϕ : IM (Σ, I) → IM (Σ′, I ′) whether it is a coding.

The trace code problem is well known to be undecidable even for strong
morphisms when both monoids are fixed and IM (Σ, I) is free (see e.g. [4]).
The undecidability result in the case of cp-morphisms was established in [5]
using substantially more complex construction; it also immediately follows from
Proposition 5 below.

If problems of existence of trace codings are considered, the situation is very
different. In the first place, unlike for the trace code problem, it is not clear
whether the dual problem (non-existence of codings) is recursively enumerable.
The two classical cases are simple: all finitely generated free monoids can be
embedded into the one with two generators and for free commutative monoids
injectivity coincides with linear independence of images of letters. In [1] these
characterizations were generalized to all instances of the trace coding problem
where the domain monoid is a direct product of free monoids. The strong trace
coding problem turned out to be NP-complete due to the following result.
Proposition 1 ([6]). There exists a strong coding ϕ : IM (Σ, I) → IM (Σ′, I ′)
if and only if there exists a mapping H : Σ → 2Σ′ satisfying for every x, y ∈ Σ :

H(x) × H(y) ⊆ I ′ \ idΣ′ ⇐⇒ (x, y) ∈ I \ idΣ ,

H(x) × H(y) ⊆ I ′ =⇒ (x, y) ∈ I .

The reason for the relative simplicity of the strong trace coding problem is
that a strong coding can be easily constructed as soon as reasonable contents of
images of letters are chosen (this choice is provided by a mapping H). To see
this notice that in the image of a letter dependent letters may occur, which
allows us to encode all of the information needed for the deciphering provided
we can ensure that images of independent letters commute. But by the defining
condition for strong morphisms, these images are even independent. On the other
hand, if we consider weak morphisms, the image of any letter consists entirely of
independent letters. So we have less opportunities to encode some information
into images of letters under weak morphisms than under general morphisms and
that is why the problem of existence of weak codings becomes even more complex
than the one for general codings (see Corollary 1).

606 M. Kunc

3 Weak Codings

The motive for considering weak morphisms is that, compared with general
morphisms, they possess many properties which simplify their manipulation.
Ideas of the proof of the main result are based on facts presented in this section.

First, one can see that the image of a free commutative monoid under a weak
morphism employs only independent letters.

Lemma 1. For every weak morphism ϕ : IM (Σ, Σ × Σ) → IM (Σ′, I ′), the set
A =

⋃ {alph (ϕ (x)) | x ∈ Σ} forms a clique in the graph (Σ′, I ′). If ϕ is a coding,
then |A| ≥ |Σ|.

We are interested mainly in minimal counter-examples to the coding property
for a trace morphism ϕ : IM (Σ, I) → IM (Σ′, I ′), i.e. in pairs (s, t) of traces
s, t ∈ IM (Σ, I) such that s 6= t and ϕ (s) = ϕ (t) having minimal |s| + |t|. Notice
that each such counter-example satisfies init (s) ∩ init (t) = fin (s) ∩ fin (t) = ∅;
otherwise we can obtain a smaller one by cancellation. For weak morphisms we
have another straightforward observation.

Lemma 2. Let ϕ : IM (Σ, I) → IM (Σ′, I ′) be a weak morphism such that
ϕ (xy) 6= ϕ (yx) for every (x, y) ∈ D. If s, t ∈ IM (Σ, I) satisfy ϕ (s) = ϕ (t),
then init (s) × init (t) ⊆ I.

When trying to disprove the coding property, one constructs potential initial
parts of counter-examples and then tries to extend them. For this, one has to
know which pairs of traces can be prolonged by appending new letters to achieve
their equality. As the next lemma shows, this can be done just when those parts
of these traces which do not belong to their common prefix are independent.

Lemma 3. Let s, t ∈ IM (Σ, I). Then there exist traces u, v ∈ IM (Σ, I) such
that su = tv if and only if for every (x, y) ∈ D either πx,y (s) � πx,y (t) or
πx,y (t) � πx,y (s). In such a case, the traces s′ and t′ resulting from s and t by
taking just the first min {|s|x , |t|x} occurrences of each letter x ∈ Σ are equal and
there exist unique traces t\s, s\t ∈ IM (Σ, I) such that s = s′ · (t\s), t = s′ · (s\t)
and alph (t\s) × alph (s\t) ⊆ I \ idΣ. In particular, s · (s\t) = t · (t\s).

The following notions are introduced in order to formalize reasoning about
initial parts of counter-examples. For s, t ∈ IM (Σ, I), we call (s, t) a semi-equality
for a morphism ϕ : IM (Σ, I) → IM (Σ′, I ′) whenever init (s) ∩ init (t) = ∅ and
there exist traces u, v ∈ IM (Σ′, I ′) such that ϕ (s) u = ϕ (t) v. We say that it is
non-trivial if there are no traces s′, t′ ∈ IM (Σ, I) such that ss′ = tt′. The pair
(ϕ (t)\ϕ (s), ϕ (s)\ϕ (t)) is called the state of (s, t).

Lemma 4. Let ϕ : IM (Σ, I) → IM (Σ′, I ′) be a morphism and let s, t ∈ IM (Σ, I)
be two traces satisfying s 6= t and ϕ (s) = ϕ (t) such that |s| + |t| is minimal.
If s = us′ and t = vt′, where u, v, s′, t′ ∈ IM (Σ, I), then (u, v) is a semi-equality.

All of the information one needs to explore possible continuations of a semi-
equality is contained in its state. For weak morphisms, Lemma 4 can be partially
reversed, namely, if we have a semi-equality whose state consists of independent
letters, then it can be prolonged into a counter-example.

The Trace Coding Problem Is Undecidable 607

Lemma 5. Let ϕ : IM (Σ, I) → IM (Σ′, I ′) be a weak morphism such that
there exists a non-trivial semi-equality (s, t) for ϕ with a state (u, v) satisfying
alph (uv) × alph (uv) ⊆ I ′. Then ϕ is not a coding.

Proof. Denoting for any trace r by r/ the trace consisting of mirror images of
elements of r, we have ϕ (st/) = ϕ (s) (ϕ (t))/ = ϕ (t) (ϕ (s))/ = ϕ (ts/) since
uv/ = vu/ due to the assumption. ut

Let us now describe one method of extending a semi-equality for a weak
morphism. It is based on modifying the semi-equality to make it suitable for
appending a given pair of elements of Σ to its sides. We demonstrate how to
use this construction to remove some letter from the state. This action usually
results in a replacement of this letter by another one together with some effect
on the rest of the state.

Let n ∈ IN. For x ∈ Σ, an x-block of length n in a trace s ∈ IM (Σ, I) is
a triple (t, xn, t′), where t, t′ ∈ IM (Σ, I), such that s = txnt′, fin (t) × {x} ⊆ D
and x 6∈ init (t′). In fact, an x-block is nothing but the maximal number of
occurrences of x which can be grouped together in a given position in the trace.
Notice that each occurrence of x in s lies in exactly one x-block. For every
independence alphabet (Σ, I), let σn : IM (Σ, I) → IM (Σ, I) denote the weak
coding defined by σn(x) = xn for every x ∈ Σ.

Lemma 6. Let ϕ : IM (Σ, I) → IM (Σ′, I ′) be a weak morphism and (s, t) a semi-
equality for ϕ with a state (u, v). Then, for any n ∈ IN, (σn(s), σn(t)) is also
a semi-equality for ϕ with the state (σn(u), σn(v)).

Let in addition x, y ∈ Σ, a ∈ init (v) ∩ alph (ϕ (x)) \ alph (ϕ (y)) be letters
which satisfy (alph (u · ϕ (x)) \ {a})×alph (v · ϕ (y)) ⊆ I ′, alph (s)×{x} 6⊆ I and
alph (t) × {y} 6⊆ I. Let m be the length of the first a-block in v and n = |ϕ (x)|a.
Then (σn(s) · xm, σn(t) · ym) is a semi-equality for ϕ and its state (u′, v′) satisfies
a 6∈ init (v′).

4 Reduction into the Weak Coding Equivalent

In this section we establish a connection between the trace coding problem and
the weak trace coding problem. It is based on the standard decomposition of
traces into primitive roots. Let us first recall basic facts about this construction.
A trace s ∈ IM (Σ, I) \ {1} is called connected if the subgraph of (Σ, D) induced
by alph (s) is connected. It is called primitive if it is connected and s = tn with
t ∈ IM (Σ, I) implies n = 1. It is well known that every connected trace s is
a power of a unique primitive trace called the primitive root of s. Clearly, every
trace s ∈ IM (Σ, I) can be uniquely decomposed into a product of independent
connected traces called connected components of s.

Proposition 2 ([7]). Let s, s′ ∈ IM (Σ, I) satisfy ss′ = s′s and let t and t′

be primitive roots of any connected components of s and s′, respectively. Then
either t and t′ are independent or t = t′.

608 M. Kunc

For an arbitrary morphism ϕ : IM (Σ, I) → IM (Σ′, I ′), we consider for every
letter x ∈ Σ the decomposition of ϕ (x) into primitive roots of its connected
components. By Proposition 2 primitive traces do not commute unless they are
equal or independent and therefore the substantial information characterizing
their behaviour is their content. So, we introduce sufficiently many new letters
for each possible content and replace these primitive roots with them. As we
never use more than one primitive root with a given content in one image,
for fixed alphabets (Σ, I) and (Σ′, I ′) we can manage with a finite number
of new letters. In this way we express every morphism ϕ as a composition of
a weak morphism and a strong morphism. Clearly, if ϕ is a coding, the arising
weak morphism is a coding as well. On the other hand, we can use Proposition 1
to find a strong coding for prolonging every weak coding to the new codomain
monoid into a coding to the original one.

More precisely, we denote by C (Σ′, D′) the set of all subsets A ⊆ Σ′, |A| ≥ 2,
such that the subgraph of (Σ′, D′) induced by A is connected. We define a new
independence alphabet (Σ′

Σ , I ′
Σ) as follows. Let Σ′

Σ = Σ′ ∪ (C (Σ′, D′) × Σ)
and for a, b ∈ Σ′, A, B ∈ C (Σ′, D′), x, y ∈ Σ :

a I ′
Σ b ⇐⇒ a I ′ b ,

a I ′
Σ (A, x) ⇐⇒ {a} × A ⊆ I ′ ,

(A, x) I ′
Σ (B, y) ⇐⇒ A × B ⊆ I ′ or (A, x) = (B, y) .

Proposition 3. Let (Σ, I) and (Σ′, I ′) be independence alphabets. Then there
exists a coding from IM (Σ, I) to IM (Σ′, I ′) if and only if there exists a weak
coding from IM (Σ, I) to IM (Σ′

Σ , I ′
Σ).

As an immediate consequence we obtain

Corollary 1. There exists an effective reduction of the trace coding problem into
the weak trace coding problem.

Notice that in Proposition 3 there is the same domain monoid on both sides
of the equivalence. This makes it suitable for showing the decidability of the
trace coding problem for some classes of instances specified by properties of the
domain monoid. For example, the following result can be obtained by means of
proving its weak coding equivalent.

Theorem 1. The trace coding problem restricted to instances whose domain
monoids are defined by acyclic dependence alphabets is decidable.

5 Content Fixation

The aim of this section is to describe how the problem of existence of weak
codings satisfying certain requirements on contents of images of letters can be
reduced to the trace coding problem.

We use two mappings to specify restrictions on contents – one of them to
express which letters are compulsory and the other to express which are allowed.

The Trace Coding Problem Is Undecidable 609

Let µ, ν : Σ → 2Σ′ be mappings. A weak morphism ϕ : IM (Σ, I) → IM (Σ′, I ′)
is called (µ, ν)-weak if it satisfies µ (x) ⊆ alph (ϕ (x)) ⊆ ν (x) for every x ∈ Σ.
It is called ν-weak whenever alph (ϕ (x)) ⊆ ν (x) for all x ∈ Σ.

Proposition 4. Let (Σ, I), (Σ′, I ′) be independence alphabets such that D 6= ∅
and I is transitive. Let µ, ν : Σ → 2Σ′ be mappings satisfying for all x, y ∈ Σ :

x I y, x 6= y =⇒ µ (x) = µ (y) = ∅ ,
(
ν (x) × ν (x) ⊆ I ′) &

(
x I y =⇒ ν (x) = ν (y)

)
.

Then one can effectively construct independence alphabets (Σ1, I1) and (Σ′
1, I

′
1)

such that the following statements are equivalent.

1. There exists a (µ, ν)-weak coding from IM (Σ, I) to IM (Σ′, I ′).
2. There exists a weak coding from IM (Σ1, I1) to IM (Σ′

1, I
′
1).

3. There exists a weak coding from IM (Σ1, I1) to IM
(
(Σ′

1)Σ1
, (I ′

1)Σ1

)
.

4. There exists a coding from IM (Σ1, I1) to IM (Σ′
1, I

′
1).

The proof of this result consists of two major steps.
First, we specify mandatory letters defined by µ using only ν. There is nothing

to take care of for letters x ∈ Σ such that |ν (x)| = 1 since alph (ϕ (x)) = ν (x) is
satisfied for every ν-weak coding ϕ. The idea of the construction is to enrich each
of the original alphabets with a set Θ of new letters and define ν (y) = {y} for
every y ∈ Θ; as the behaviour of any ν-weak coding on these letters is obvious,
it can serve as a skeleton for prescribing contents of images of other letters. More
precisely, to ensure that the image of x under every ν-weak coding contains a,
we introduce a letter (x, a) ∈ Θ dependent on x in the domain alphabet and
dependent only on a in the codomain alphabet.

Second, we show how to manage our content requirements even without
a mapping ν. This time, we add to the alphabets mutually dependent cliques
of independent letters, each of them having sufficiently distinct size. Then we
can employ Lemma 1 to verify that images of letters of a given clique under
a weak coding use almost exclusively letters from the clique of the same size. So,
in order to deal with the requirements for a letter x ∈ Σ, we introduce a clique
having all elements independent on x in the domain alphabet and independent
exactly on letters allowed in the image of x in the codomain alphabet. As images
of independent letters under a weak morphism contain only independent ones,
this ensures that prohibited letters are never used.

In effect the latter construction functions in the same way even if we add new
letters according to the previous section in order to obtain the third condition.
It is due to the fact that these new letters corresponding to connected subgraphs
of the codomain dependence alphabet do not form bigger cliques of independence
than those already existing.

Finally, we use Proposition 3 to deduce the equivalence of conditions 3 and 4.

610 M. Kunc

6 Encoding of the PCP

It is well known that the dual problem to the inPCP (co-inPCP) is not recursively
enumerable. In this section we construct a reduction of the co-inPCP into the
problem of existence of (µ, ν)-weak codings. As our construction should be based
only on contents of images of letters, we have to impose certain restriction on
instances of the inPCP, which enables us not to care about powers of letters in
these images.

Let us denote by P the following instance of the inPCP. Let n ∈ IN. We are
given n pairs (w1, w1) , . . . , (wn, wn) of non-empty words over a finite alphabet Ξ
such that every product of w1, w1, . . . , wn, wn contains no subword of the form
xk with x ∈ Ξ and k ≥ 2. The problem asks to decide whether there exists some
finite sequence i1, . . . , im of natural numbers from the set {1, . . . , n} satisfying
w1wi1wi2 · · ·wim

= w1wi1wi2 · · ·wim
.

Notice that this restriction on instances causes no loss of generality since for
every instance of the inPCP we can obtain an equivalent instance of the above
form by introducing a new letter # into Ξ and performing the substitution
x 7→ x# for all x ∈ Ξ.

For i = 1, . . . , n and j = 1, . . . , |wi| and k = 1, . . . , |wi|, we refer to the
j-th letter of the word wi as xij and to the k-th letter of wi as xik. For the rest
of this section, when writing indices i, ij or ik, we implicitly assume that they
run through all values as in the previous sentence.

We define two independence alphabets (Σ, I) and (Σ′, I ′). First, we introduce
a set of new letters:

Ω = {α, α0, β1, . . . , β8, γ1, γ2, γ3, δi1, δi2, εij1, εij2, εik1, εik2,

ζij1, ζij2, ζik1, ζik2, ηij1, ηij2, ηij3, ηik1, ηik2, ηik3, ϑij , ϑik,

ιi, κ1, κ2, λij1, λij2, λij3, λik1, λik2, λik3, ξi1, ξi2, ξi3} .

The domain alphabet Σ = (Ω \ {α0}) × {1, 2} consists of one pair of letters for
each element of Ω \ {α0}. Letters from these pairs should appear on opposite
sides of a counter-example to the coding property and correspond there to each
other according to their first coordinates. Let I = idΣ ∪ sym {((α, 1), (α, 2))}.

In the outcome, counter-examples to the coding property should correspond
to solutions of P. A computation of a solution of P is simulated by adding new
pairs from Σ to an already constructed semi-equality in the way determined by
its state. Just one pair of letters in Σ is set independent to ensure that there is
only one way to start this computation by Lemma 2.

The alphabet Σ′ is divided into several disjoint subsets according to the role
of letters in the encoding:

Σ′ = {l1, l2, r1, r2, b, c, d} ∪ S ∪ A ∪ E ∪ F ∪ G ∪ P ∪ Q ∪ Ξ ∪ {?} ∪ Ω .

Elements of the set S =
{
s, sf , si, sij , sik, tij , tik

}
control a computation during

its initial and final phase and keep it from a premature termination. The process
of composing the words wi and wi is controlled by elements of A = {a, aij , aik};

The Trace Coding Problem Is Undecidable 611

a semi-equality with aij (aik) in the state is extended by pairs introducing xij

(xik respectively) and a in the state allows to choose the next pair (wi, wi).
The progress of a computation is determined by dependences between a’s and
letters from the sets E = {e, eij , eik}, F =

{
f, fij , f ik

}
, G = {gi, gij , gik},

P = {pij , pik} and Q = {qi, qij , qik}. The letter ? behaves in the same way as
letters of Ξ; it should mark the end of a solution of P. Letters from Σ are placed
on the appropriate sides of a semi-equality thanks to l’s and r’s and the pairs of
letters in Σ are fixed using elements of Ω.

In the following we set dependences between elements of Σ′, all pairs not
mentioned below are considered independent:

l1 D′ l2, r1 D′ r2, b D′ c, b D′ d ,

pij D′ eij , pik D′ eik, qi D′ f, qij D′ fij , qik D′ f ik ,

I ′ ∩ S2 = idS , I ′ ∩ (Ξ ∪ {?})2 = idΞ∪{?} ,

I ′ ∩ Ω2 = idΩ ∪ sym ({α, α0} × {β1, β2, β3, β4}) ,

I ′∩ (A ∪ E ∪ F ∪ G)2 = idA∪E∪F∪G ∪ sym{(e, a), (eij , aij), (eik, aik),

(f, a), (fij , aij), (f ik, aik), (gi, a), (gi, ai1), (gij , aij), (gij , aij+1),

(gik, aik), (gik, aik+1), (gi, fi1), (gij , fij+1), (gik, f ik+1)} ,

where ai|wi|+1 = ai1, ai|wi|+1 = a, fi|wi|+1 = f i1 and f i|wi|+1 = f .
Now we are going to construct mappings µ, ν : Σ → 2Σ′ which satisfy the

assumptions of Proposition 4. For each ω ∈ Ω \ {α0}, the images of (ω, 1) and
(ω, 2) under µ and ν are understood as one rule for a computation. As the desired
contents are given by ν, let us define ν first.

The following rules guarantee that a computation starts correctly and that
we can remove control letters at the end of a successful computation:

ν((α, 1)) = {l1, r1, b, s1, a11, α} ν((α, 2)) = {l1, r1, b, s1, a11, α}
ν((β1, 1)) = {l2, r1, α0, β1} ν((β1, 2)) = {l2, r2, β1}
ν((β2, 1)) = {l2, α0, β2} ν((β2, 2)) = {l2, r2, α, β2}
ν((β3, 1)) = {l1, r2, α0, β3} ν((β3, 2)) = {l2, r2, β3}
ν((β4, 1)) = {r2, α0, β4} ν((β4, 2)) = {l2, r2, α, β4}
ν((β5, 1)) = {l2, sf , β5} ν((β5, 2)) = {r2, s1, β5}
ν((β6, 1)) = {l2, s1, β6} ν((β6, 2)) = {r2, sf , a, β6}
ν((β7, 1)) = {l2, c, β7} ν((β7, 2)) = {r2, b, β7}
ν((β8, 1)) = {l2, b, β8} ν((β8, 2)) = {r2, d, β8}
ν((γ1, 1)) = {l2, sf , γ1} ν((γ1, 2)) = {l1, sf , γ1}
ν((γ2, 1)) = {r1, sf , γ2} ν((γ2, 2)) = {r2, sf , γ2}
ν((γ3, 1)) = {a11, sf , γ3} ν((γ3, 2)) = {a, sf , γ3} .

612 M. Kunc

The next family of rules serves for setting initial powers of p’s and q’s:

ν((δi1, 1)) = {l2, c, si, δi1} ν((δi1, 2)) = {r2, d, si+1, qi, δi1}
ν((δi2, 1)) = {l2, c, si, qi, δi2} ν((δi2, 2)) = {r2, d, si+1, δi2}

ν((εij1, 1)) = {l2, sij , εij1} ν((εij1, 2)) = {r2, sij+1, pij , εij1}
ν((εij2, 1)) = {l2, sij , pij , εij2} ν((εij2, 2)) = {r2, sij+1, εij2}
ν((εik1, 1)) = {l2, sik, εik1} ν((εik1, 2)) = {r2, sik+1, pik, εik1}
ν((εik2, 1)) = {l2, sik, pik, εik2} ν((εik2, 2)) = {r2, sik+1, εik2}
ν((ζij1, 1)) = {l2, tij , ζij1} ν((ζij1, 2)) = {r2, tij+1, qij , ζij1}
ν((ζij2, 1)) = {l2, tij , qij , ζij2} ν((ζij2, 2)) = {r2, tij+1, ζij2}
ν((ζik1, 1)) = {l2, tik, ζik1} ν((ζik1, 2)) = {r2, tik+1, qik, ζik1}
ν((ζik2, 1)) = {l2, tik, qik, ζik2} ν((ζik2, 2)) = {r2, tik+1, ζik2} ,

where

sn+1 = s11, si|wi|+1 = si+11, sn+11 = s11, si|wi|+1 = si+11, sn+11 = t11,

ti|wi|+1 = ti+11, tn+11 = t11, ti|wi|+1 = ti+11, tn+11 = s .

The main cycle inserting letters from Ξ is performed by:

ν((ηij1, 1)) = {l2, s, pij , xij , ηij1} ν((ηij1, 2)) = {r2, s, eij , ηij1}
ν((ηij2, 1)) = {l2, s, eij , ηij2} ν((ηij2, 2)) = {r2, s, pij , ηij2}
ν((ηij3, 1)) = {l2, s, pij , ηij3} ν((ηij3, 2)) = {r2, s, eij , ηij3}
ν((ηik1, 1)) = {l2, s, pik, ηik1} ν((ηik1, 2)) = {r2, s, eik, xik, ηik1}
ν((ηik2, 1)) = {l2, s, eik, ηik2} ν((ηik2, 2)) = {r2, s, pik, ηik2}
ν((ηik3, 1)) = {l2, s, pik, ηik3} ν((ηik3, 2)) = {r2, s, eik, ηik3}
ν((ϑij , 1)) = {l2, s, aij+1, xij , ϑij} ν((ϑij , 2)) = {r2, s, aij , gij , ϑij}
ν((ϑik, 1)) = {l2, s, aik+1, ϑik} ν((ϑik, 2)) = {r2, s, aik, gik, xik, ϑik}

ν((ιi, 1)) = {l2, s, ai1, ιi} ν((ιi, 2)) = {r2, s, a, gi, ιi} ,

where ai|wi|+1 = ai1 and ai|wi|+1 = a. A computation of a solution of P is
successful if we can eventually use one of the following rules:

ν((κ1, 1)) = {l2, s, ?, κ1} ν((κ1, 2)) = {r2, sf , e, ?, κ1}
ν((κ2, 1)) = {l2, sf , ?, κ2} ν((κ2, 2)) = {r2, s, e, ?, κ2} .

Finally, for manipulating letters from G we need the rules:

ν((λij1, 1)) = {l2, s, gij−1, qij , λij1} ν((λij1, 2)) = {r2, s, fij , λij1}
ν((λij2, 1)) = {l2, s, fij , λij2}, ν((λij2, 2)) = {r2, s, qij , λij2}
ν((λij3, 1)) = {l2, s, qij , λij3} ν((λij3, 2)) = {r2, s, fij , λij3}

The Trace Coding Problem Is Undecidable 613

ν((λik1, 1)) = {l2, s, gik−1, qik, λik1} ν((λik1, 2)) = {r2, s, f ik, λik1}
ν((λik2, 1)) = {l2, s, f ik, λik2} ν((λik2, 2)) = {r2, s, qik, λik2}
ν((λik3, 1)) = {l2, s, qik, λik3} ν((λik3, 2)) = {r2, s, f ik, λik3}
ν((ξi1, 1)) = {l2, s, gi|wi|, qi, ξi1} ν((ξi1, 2)) = {r2, s, f, ξi1}
ν((ξi2, 1)) = {l2, s, f, ξi2} ν((ξi2, 2)) = {r2, s, qi, ξi2}
ν((ξi3, 1)) = {l2, s, qi, ξi3} ν((ξi3, 2)) = {r2, s, f, ξi3} ,

where gi0 = gi and gi0 = gi|wi|. The mapping µ : Σ → 2Σ′ is defined by the
same rules as ν except µ ((α, 1)) = µ ((α, 2)) = ∅.

Let ϕ be the (µ, ν)-weak morphism from IM (Σ, I) to IM (Σ′, I ′) satisfying
ϕ ((α, 1)) = l1ba11α, ϕ ((α, 2)) = r1bs1α and for all ω ∈ Ω \ {α, α0}, z ∈ Σ′

and h ∈ {1, 2} :

|ϕ ((ω, h))|z =

{
1 if z ∈ ν ((ω, h)) ,

0 otherwise .

Proposition 5. Let P, (Σ, I), (Σ′, I ′), µ, ν and ϕ be as defined above. Then
the following statements are equivalent.

1. P has no solution.
2. ϕ is a coding.
3. There exists a (µ, ν)-weak coding from IM (Σ, I) to IM (Σ′, I ′).

To prove this result, one has to find a solution of P using a minimal counter-
example (u, v), u, v ∈ IM (Σ, I), to the coding property for ϕ and conversely
to construct from a solution of P such a counter-example for every (µ, ν)-weak
morphism from IM (Σ, I) to IM (Σ′, I ′).

Since elements of Ω \ {α, α0} are pairwise dependent and in the ϕ-image of
every letter except (α, 1) and (α, 2) there is just one occurrence of exactly one of
them, letters in u and v must be paired according to them. When we go through
semi-equalities respecting these pairs obtained from u and v using Lemma 4,
it can be proved that (except for several initial ones) one side of the state always
starts on r1 and contains s and the other starts on l1 and contains some letter
from A which changes when pairs of ϑ’s, ϑ’s or ι’s are added. This happens in
such an order that the accumulation of letters from Ξ in the images of the sides
of these semi-equalities simulates a multiplication of pairs of words from the
instance P – the result differs just in powers of letters, which does not matter
due to our assumption on the instance. The letter s vanishes from the state
only when a pair of κ’s is used. But κ’s can appear just when a is in the state
thanks to the occurrences of e in ϕ-images of κ’s, that is right after completing
an addition of some pair of words from P. As all images of κ’s contain ?, we
deduce that the projections of the images of the sides of the semi-equality to Ξ
are equal and therefore correspond to a solution of P.

As for the converse, it can be shown that it is sufficient to consider only
morphisms allowing the same arguments about the pairs of letters from Σ as
above. We start with a suitable number of α’s on both sides and inductively

614 M. Kunc

construct semi-equalities similar to those for ϕ by appending new pairs using
Lemma 6. During the main cycle of a computation, we just have to take care
of letters from Ξ to ensure that the corresponding blocks of these letters in the
images of both sides of these semi-equalities have the same length. This is done
by iterative addition of pairs of η’s or η’s replacing p’s in the state with e’s and
vice versa, which modifies the number of occurrences of the corresponding letter
from Ξ in the state. If P has a solution, some pair of κ’s can be eventually used
to replace all occurrences of s in the state with sf . Then one can easily remove
all dependent letters from the state using γ’s and apply Lemma 5.

7 Conclusion

Main Theorem. The trace coding problem is not recursively enumerable.
Proof. We construct an effective reduction of the co-inPCP into our problem.
First, we utilize Proposition 5 to reduce the co-inPCP into deciding the existence
of (µ, ν)-weak codings. Since all instances (consisting of (Σ, I), (Σ′, I ′), µ and ν)
constructed there satisfy assumptions of Proposition 4, we can use it to prolong
the reduction into the trace coding problem. ut

The same result for weak morphisms immediately follows due to Corollary 1.
Corollary 2. The weak trace coding problem is not recursively enumerable.

Acknowledgement. I am grateful to Jǐŕı Srba and one of the referees for their
useful suggestions.

References

1. Bruyère, V., De Felice, C.: Coding and strong coding in trace monoids. In Proc.
STACS’95, LNCS 900, Springer (1995) 373–384.

2. Bruyère, V., De Felice, C.: On the existence of codings between trace monoids.
Journal of Automata, Languages and Combinatorics 4 (1999) 87–100.

3. Bruyère, V., De Felice, C., Guaiana, G.: On some decision problems for trace
codings. Theoretical Computer Science 148 (1995) 227–260.

4. Diekert, V., Métivier, Y.: Partial commutation and traces. In Handbook of Formal
Languages, Vol. 3, Springer (1997) 457–533.

5. Diekert, V., Muscholl, A.: Code problems on traces. In Proc. MFCS’96, LNCS
1113, Springer (1996) 2–17.

6. Diekert, V., Muscholl, A., Reinhardt, K.: On codings of traces. In Proc. STACS’95,
LNCS 900, Springer (1995) 385–396.

7. Duboc, C.: On some equations in free partially commutative monoids. Theoretical
Computer Science 46 (1986) 159–174.

8. Kunc, M.: Undecidability of the trace coding problem and some decidable cases.
manuscript (2001). http://www.math.muni.cz/˜kunc

9. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus (1977).

10. Ochmański, E.: On morphisms of trace monoids. In Proc. STACS’88, LNCS 294,
Springer (1988) 346–355.

Combinatorics of Periods in Strings

Eric Rivals1 and Sven Rahmann2

1 L.I.R.M.M., CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France,

rivals@lirmm.fr
2 Max-Planck-Institut für Molekulare Genetik,

Dept. of Computational Molecular Biology,
Ihnestraße 73, D-14195 Berlin, Germany

rahmann@molgen.mpg.de

Abstract. We consider the set Γ (n) of all period sets of strings of length
n over a finite alphabet. We show that there is redundancy in period
sets and introduce the notion of an irreducible period set. We prove that
Γ (n) is a lattice under set inclusion and does not satisfy the Jordan-
Dedekind condition. We propose the first enumeration algorithm for Γ (n)
and improve upon the previously known asymptotic lower bounds on the
cardinality of Γ (n). Finally, we provide a new recurrence to compute the
number of strings sharing a given period set.

1 Introduction

We consider the period sets of strings of length n over a finite alphabet, and
specific representations of them, (auto)correlations, which are binary vectors
of length n indicating the periods. Among the possible 2n bit vectors, only
a small subset are valid autocorrelations. In [6], Guibas and Odlyzko provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, i.e., the number of strings
sharing a given correlation. However, until now, no one has investigated the
combinatorial structure of Γ (n), the set of all correlations of length n; nor has
anyone proposed an efficient enumeration algorithm for Γ (n).

In this paper, we show that there is redundancy in period sets, introduce the
notion of an irreducible period set, and show how to efficiently convert between
the two representations (Section 2). We prove that Γ (n) is a lattice under set
inclusion and does not satisfy the Jordan-Dedekind condition. While Λ(n), the
set of all irreducible period sets, does satisfy that condition, it does not form a
lattice (Section 3). We propose the first enumeration algorithm for Γ (n) (Section
4) and improve upon the previously known asymptotic lower bounds for the
cardinality of Γ (n) (Section 5). Finally, we provide a new recurrence to compute
the population sizes of correlations (Section 6).

Periods of strings have proven useful mainly in two areas of research. First,
in pattern matching, several off-line algorithms take advantage of the periods
of the pattern to speed up the search for its occurrences in a text (see [2] for a
review). Second, several statistics of pattern occurrences have been investigated

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 615–626, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

616 E. Rivals and S. Rahmann

which take into account the pattern’s periodicity. For instance, the probability
of a pattern’s absence in a Bernoulli text depends on its correlation [9]. In an-
other work [8], we investigate the number of missing words in a random text
and the number of common words between two random texts. Computing their
expectation requires the enumeration of all correlations and the calculation of
their population sizes. This has applications in the analysis of approximate pat-
tern matching, in computational molecular biology, and in the testing of random
number generators.

1.1 Notations, Definitions, and Elementary Properties

Let Σ be a finite alphabet of size σ. A sequence of n letters of Σ indexed from
0 to n − 1 is called a word or a string of length n over Σ. We denote the length
of a word U := U0U1 . . . Un−1 by |U |. For any 0 ≤ i ≤ j < n, Ui..j := Ui . . . Uj

is called a substring of U . Moreover, U0..j is a prefix and Ui..n−1 is a suffix of
U . We denote by Σ∗, respectively by Σn, the set of all finite words, resp. of all
words of length n, over Σ.
Definition 1 (Period). Let U ∈ Σn and let p be a non-negative integer with
p < n. Then p is a period of U iff: ∀ 0 ≤ i < n − p : Ui = Ui+p.
In other words, p is a period iff another copy of U shifted p positions to the
right over the original matches in the overlapping positions, or equivalently, iff
the prefix and suffix of U of length n−p are equal. By convention, any word has
the trivial null period, 0.

Some properties of periods are: If p is a period then any multiple of p lower
than n is also period. If p is a period and the suffix of length n − p has period
q, then U has period p + q, and conversely. For an in-depth study, we refer the
reader to [1,7,6]. Here, we need the Theorem of Fine and Wilf, also called the
GCD-rule, and a useful corollary.

Theorem 1 (Fine and Wilf [4]). Let U ∈ Σn. If U has periods p and q with
p ≤ q and p + q ≤ n + gcd(p, q), then gcd(p, q) is also a period.

Lemma 1. Let U ∈ Σn with smallest non-null period p ≤ bn
2 c. If i < n − p + 2

is a period of U , then it is a multiple of p.

Proof. Assume that p - i. Then g := gcd(p, i) < p, and trivially g ≥ 1. Therefore,
p + i − g ≤ n, and Theorem 1 says that g is a period, contradicting the premise
that p is the smallest non-null period. ut

Sets of periods and autocorrelations. Let U ∈ Σn. We denote the set of
all periods of U by P (U). We have that P (U) ⊆ [0, n − 1]. The autocorrelation
v of U is a representation of P (U). It is a binary vector of length n such that:
∀ 0 ≤ i < n, vi = 1 iff i ∈ P (U), and vi = 0 otherwise. As v and P (U) represent
the same set, we use them interchangeably and write P (U) = v. We use both
i ∈ v and vi = 1 to express that i is a period of a word U with autocorrelation
v. We also write that i is a period of v. The smallest non-null period of U or of
v is called its basic period and is denoted by π(U) or π(v).

Combinatorics of Periods in Strings 617

We denote the concatenation of two binary strings s and t by s ◦ t, and the
k-fold concatenation of s with itself by sk. So 10k ◦ w is the string starting with
1, followed by k 0s, and ending with the string w.

Let Γ (n) := {v ∈ {0, 1}n | ∃U ∈ Σn : v = P (U)} be the set of all autocorre-
lations of strings in Σn. We denote its cardinality by κ(n). The autocorrelations
in Γ (n) can be partitioned according to their basic period; thus, for 0 ≤ p < n,
we denote by Γ (n, p) the subset of autocorrelations whose basic period is p, and
by κ(n, p) the cardinality of this set. The set inclusion defines a partial order
on elements of Γ (n). For u, v ∈ Γ (n), we denote by u ⊆ v, resp. by u ⊂ v, the
inclusion, resp. the strict inclusion, of u in v. We write v � u if v covers u in the
inclusion relationship, i.e., if u ⊂ v, and u ⊆ y ⊂ v implies y = u.

1.2 Characterization of Correlations

In [6], Guibas and Odlyzko characterized the correlations of length n in terms of
the Forward Propagation Rule (FPR), the Backward Propagation Rule (BPR),
and by a recursive predicate Ξ. We review the main theorem and the definitions.

Theorem 2 (Characterization of Correlations [6]). Let v ∈ {0, 1}n. The
following statements are equivalent:

1. v is the correlation of a binary word
2. v is the correlation of a word over an alphabet of size ≥ 2
3. v0 = 1 and v satisfies the Forward and Backward Propagation Rules
4. v satisfies the predicate Ξ.

Definition 2. FPR, BPR, Predicate Ξ. Let v ∈ {0, 1}n.

FPR: v satisfies the FPR iff for all pairs (p, q) satisfying 0 ≤ p < q < n and
vp = vq = 1, it follows that vp+i(q−p) = 1 for all i = 2, . . . , bn−p

q−p c.
BPR: v satisfies the BPR iff for all pairs (p, q) satisfying 0 ≤ p < q < 2p,

vp = vq = 1, and v2p−q = 0, it follows that vp−i(q−p) = 0 for all i =
2, . . . , min(b p

q−pc, bn−p
q−p c).

Predicate Ξ: v satisfies Ξ iff v0=1 and, if p is the basic period of v, one of the
following conditions is satisfied:
Case a: p ≤ bn

2 c
Let r := mod(n, p), q := p + r and w the suffix of v of length q. Then
for all j in [1, n − q] vj = 1 if j = ip for some i, and vj = 0 otherwise;
and the following conditions hold:
1. r = 0 or wp = 1
2. if π(w) < p then π(w) + p > q + gcd(π(w), p)
3. w satisfies predicate Ξ.

Case b: p > bn
2 c

We have: ∀j : 1 ≤ j < p, vj = 0. Let w be the suffix of v of length
n − p, then w satisfies predicate Ξ.

618 E. Rivals and S. Rahmann

Guibas and Odlyzko proved that verifying the predicate requires O(n) time.
Note that Ξ is recursive on the length of the binary vector. When v is tested, Ξ
is recursively applied to a unique suffix of v denoted w (in case a, |w| = p + r;
in case b, |w| = n − p). We call the corresponding w the nested autocorrelation
of v. The following theorem is a consequence of the FPR and BPR, and of
characterization (3) in Theorem 2 (see [6]).

Theorem 3. Let v be a correlation of length n. Any substring vi . . . vj of v with
0 ≤ i ≤ j < n such that vi = 1 is a correlation of length j − i + 1.

2 Irreducible Periods

We show that the period set of a word is in one-to-one correspondence with a
smaller set which we call its associated irreducible period set (IPS for short).

A full period set contains redundancies since some periods are deducible from
others as specified by the Forward Propagation Rule (FPR, see Section 1.2). For
example with n = 12, in the period set {0, 7, 9, 11}, 11 can be obtained from 7
and 9 using the FPR (11 = 9 + 1(9 − 7)) and is the only deducible period. The
IPS is thus {0, 7, 9}. In this section, we formally define the notion of IPS and we
prove that the mapping R from Γ (n) to Λ(n), the set of all IPSs, is bijective.
We also show how to compute the IPS from the period set, and conversely.

For every n ∈ N, we define a function FCn, the Forward Closure, from 2[0,n−1]

to 2[0,n−1]. Intuitively, FCn repeatedly applies the FPR to all pairs of elements
until closure is reached. Note that the order in which pairs of elements are
considered does not matter, and therefore FCn is well defined.

Definition 3 (Irreducible Period Set). Let T ∈ Γ (n) be a period set. A
subset S := {p0, . . . , pl} of T is an associated irreducible period set (IPS) of T
iff it satisfies both following conditions:

1. T is the forward closure of S, i.e., FCn(S) = T ,
2. For all triples (h, i, j) satisfying 0 ≤ h < i < j ≤ l we have ∀ k ∈ N

+ : pj 6=
pi + k(pi − ph)

Condition (2) expresses formally the fact that in an IPS no period can be ob-
tained from smaller periods with the FPR. It is equivalent to saying that S is the
smallest subset of T such that FCn(S) = T . In other words, S is an IPS of T if it
is the intersection of all sets whose forward closure is T . From this, one can see
that the associated IPS exists and is unique. Therefore, we can define a function
R that maps a period set to its associated IPS. Now, we define Λ(n) := R(Γ (n))
and prove that the correspondence between period sets and IPSs is one-to-one.

Theorem 4. R : Γ (n) → Λ(n), P 7→ R(P) is bijective.

Proof. By definition, R is surjective. To prove that R is injective we need to show
that R(P) = R(Q) implies P = Q. If R(P) = R(Q) then P = FCn(R(P)) =
FCn(R(Q)) = Q by condition (1) of Definition 3. ut

Combinatorics of Periods in Strings 619

Algorithm 1: R

Input : Word length n, array P of periods in increasing order, size t of P

Output: Associated IPS R(P) as an array I; Variable: S: a sorted set;

1 I[0] := P [0]; δ := n; i := 1; k := 1; S := ∅;
2 while ((i < t) and (δ > 1)) do

3 δ := P [i] − P [i − 1]; size := n − P [i − 1]; mul := b size
δ

c;
4 if P [i] /∈ S then

5 I[k] := P [i]; k := k + 1;
6 if mul = 2 then

7 if mod(size, δ) 6= 0 then S.insert(P [i] + δ);

8 else if mul > 2 then S.insert(P [i − 1] + mul × δ); i := i + mul − 2;
9 i := i + 1;

10 return I;

By Theorem 4, R−1 exists; indeed, it is FCn restricted to Λ(n). Algorithm 1
is an efficient implementation of R. The next theorem claims that R runs in
a time sublinear in the input size (which may be as large as Θ(n)) because
|R(P)| = O(log n) (We omit the proof and the algorithm R−1.) This is achieved
by exploiting the known structure of period sets; the algorithm does not need to
examine the whole input array P (cf. line 8 of R).
Theorem 5. For a given word length n and P ∈ Γ (n), Algorithm 1 correctly
computes R(P) in O(|R(P)| log(|R(P)|)) time.
Proof. R considers the periods of P in increasing order and uses the sorted set
S to store the forthcoming deducible periods. For each P [i], R tests whether it
is an irreducible period (line 4). If it is not, it is skipped; otherwise it is copied
into I (line 5), and we are either in case (a) or (b) of Predicate Ξ. In case (b),
no deducible periods are induced by P [i], so nothing else is done. In case (a),
we have mul ≥ 2. If mul = 2 and mod(size, δ) 6= 0, the forward propagation
generates only P [i] + δ which is inserted into S (lines 6 and 7). If mul > 2,
Lemma 1 allows to skip the periods in the range [P [i], P [i] + (mul − 2) × δ] and
insert only P [i−1]+mul ×δ, which is done on line 8. This proves the correctness.

We now prove that the running time is O(|R(P)| log |R(P)|). We claim that
the while loop is executed at most 2 · (R(P)−1) times. Indeed, in each iteration,
either an element is inserted into I and possibly into S, or nothing happens;
the latter case arises only when the current P [i] is in S. But at most R(P) − 1
elements are ever inserted into S and I, as after termination |I| = |R(P)|.
Clearly, every operation in the loop takes constant time, except the operations
on S, which take O(log |S|) time when S is implemented as a balanced tree. ut

3 Structural Properties of Γ (n) and Λ(n)

3.1 Γ (n) Is a Lattice Under Inclusion

First, we prove that the intersection of two period sets is a period set.

620 E. Rivals and S. Rahmann

Lemma 2. If u, v ∈ Γ (n), then (u ∩ v) ∈ Γ (n).

Proof. Let u, v ∈ Γ (n) and w := u ∩ v. The results hold when n = 1. If w =
{0} we are done. Otherwise assume that for all q < n, u′, v′ ∈ Γ (q) we have
(u′ ∩ v′) ∈ Γ (q). Let p be the smallest common non-null period of u and v. So p
is the smallest non-null period of w.

Case p � bn
2 c: Let i := bn

p c. We have that multiples of p are periods of u

and v: ∀ 1 ≤ j ≤ i; up·j = vp·j = 1 and so wp·j = 1. Moreover, we have
∀ 0 < k < n − p, k 6= jp : uk 6= vk, otherwise p would not be the smallest
common period of u and v. Hence, for all such k: wk = 0. Consider the
suffixes u′, v′, w′ of length n′ := n − (i − 1)p of u, v and w respectively. We
know that w = (10p−1)i−1 ◦ w′, u′

0 = v′
0 = u′

p = v′
p = 1, and w′ = u′ ∩ v′.

As from Theorem 3, we know that u′, v′ ∈ Γ (n′), we have by induction
that w′ ∈ Γ (n′). Because w′ satisfies the Theorem of Fine and Wilf, we have
π(w′)+p > n′ +gcd(π(w′), p). Hence, w satisfies Predicate Ξ, i.e., w ∈ Γ (n).

Case p > bn
2 c: Let u′, respectively v′, be the suffix of length n − p of u, resp.

of v. By Theorem 3, u′, v′ are autocorrelations of size n − p. As w = 10p−1 ◦
(u′ ∩ v′), by induction it fulfills Predicate Ξ. ut

Lemma 3. (Γ (n),⊆) has a null element, 10n−1, and a universal element, 1n.

Theorem 6. (Γ (n),⊆) is a lattice.

Proof. From Lemma 2, we know that Γ (n) is closed under intersection. There-
fore, the meet u ∧ v of u, v ∈ Γ (n) is their intersection, and the join u ∨ v is the
intersection of all elements containing both u and v. The existence of a universal
element ensures that this intersection is not empty. ut

3.2 Γ (n) Does Not Satisfy the Jordan-Dedekind Condition

We demonstrate that Γ (n) does not satisfy the Jordan-Dedekind condition, im-
plying that it is neither modular, distributive, nor a matroid. The next lemma
proves the existence of a specific maximal chain1 between 1n and 10n−1 in Γ (n).

Lemma 4. Let n ∈ N and p := bn
2 c + 1. The following chain exists in Γ (n):

1n � 10p−11n−p (1)
∀ p ≥ i ≥ n − 2 : 10i−11n−i � 10i1n−i−1 (2)

10n−21 � 10n−1 (3)

Moreover, this chain is maximal and has length dn
2 e.

1 In a partially ordered set or poset, a chain is defined as a subset of completely ordered
elements, an antichain as a subset in which any two elements are uncomparable. The
length of a chain is its number of elements minus one.

Combinatorics of Periods in Strings 621

Proof. We prove (1). Obviously, 1n ⊃ 10p−11n−p. We must show that: if 1n ⊃
x ⊇ 10p−11n−p then x = 10p−11n−p. Assume that such an x exists and is
different from 10p−11n−p. Then 0 < π(x) < p and xπ(x) = 1. By Lemma 1, we
have ∀ j < n − π(x) + 2, xj = 0 iff π(x) - j. Thus, for some p ≤ k < n, xk = 0
and x 6⊇ 10p−11n−p, which is a contradiction.

The autocorrelations involved in (2) and (3) exist by Predicate Ξ and only
differ from each other by one period. This implies (2) and (3) and proves that the
chain is maximal. By counting the links of the chain, one gets n−p+1 = dn

2 e. ut
With p := bn

2 c + 1 as above, consider Γ (n, p) and its associated sub-lattice
in Γ (n). From Predicate Ξ, we have that Γ (n, p) = {10p−1} ◦ Γ (n − p). So the
structure of the sub-lattice defined by Γ (n, p) is exactly the one of the lattice
of Γ (n − p). Using the previous lemma, we deduce the existence of an induced
maximal chain between 10p−11n−p and 10p−110n−p−1 in Γ (n). Combining this
with Equation 1 and 10p−110n−p−1 � 10n−1, we obtain another maximal chain
between 1n and 10n−1 in Γ (n). This proves the following lemma.
Lemma 5. Let n > 8 and p := bn

2 c + 1 be integers. The chain going from 1n to
10p−11n−p, from there to 10p−110n−p−1 through the induced maximal chain over
Γ (n, p), and then to 10n−1 is a maximal chain of Γ (n). Its length is d d n

2 e−1
2 e+2.

Hand inspection for n := 1, . . . , 6 shows that Γ (n) satisfies the Jordan-
Dedekind condition, i.e., all maximal chains between the same elements have
the same length. We now demonstrate it is not the case when n > 6.
Theorem 7. For n > 6, Γ (n) does not satisfy the Jordan-Dedekind condition.
Proof. From lemmas 4 and 5, we obtain the existence between 1n and 10n−1 of
two maximal chains of lengths dn

2 e and d d n
2 e−1
2 e + 2. Clearly, for n > 8 these are

different. Moreover, hand inspection of Γ (7) and Γ (8) shows that they also do
not fulfill the Jordan-Dedekind condition. ut

3.3 The Poset (Λ(n), �) Satisfies the Jordan-Dedekind Condition

For n ≥ 3, (Λ(n),⊆) is not a lattice ({0, 1} and {0, 2} never have a join). On the
other hand, in contrast to Γ (n), we have the stronger result that any subset of
an IPS containing 0 is an IPS.
Lemma 6. Let R ∈ Λ(n) and let {0} ⊂ Q ⊂ R, then Q ∈ Λ(n).
Proof. Let P := FCn(R) ∈ Γ (n). We must show that P ′ := FCn(Q) ∈ Γ (n), and
that no element of Q is deducible from others by the FPR. The latter property
follows from the minimality of R. To show P ′ ∈ Γ (n), we only need to consider
the special case where R = Q∪̇{t}, i.e., where Q contains exactly one element
less than R. The general case follows by repeated application of the special case.

For a contradiction, assume P ′ /∈ Γ (n). Since P ′ satisfies the FPR, it must
violate the BPR (see Characterization (3) of Theorem 2). So let 0 < p <
q < n with δ := q − p such that p − δ /∈ P ′, but p − iδ ∈ P ′ for some
i ∈ {2, . . . , min(b p

q−pc, bn−p
q−p c)}. Since P does satisfy the BPR, we must have

that p − δ ∈ P , and this must be a result of adding t to Q and propagating it.
From this, we conclude that one of the supposedly non-deducible elements of Q,
and hence of R, is in fact deducible from t. So R is not an IPS, a contradiction.

ut

622 E. Rivals and S. Rahmann

Theorem 8. The set Λ(n) of all Irreducible Period Sets is partially ordered and
satisfies the Jordan-Dedekind condition with respect to set inclusion.
Proof. Clearly, set inclusion induces a partial order on Λ(n). From Lemma 6, for
all pairs P, Q ∈ Λ(n): P � Q iff P = Q ∪ {q} for some q in [1, n − 1]. Thus, any
two maximal chains between the same element have the same length. ut

As a corollary of Lemma 6, the intersection of two IPSs is an IPS, but the
intersections of two IPSs is not the IPS of the intersection of their respective
period sets. Neither Γ (n) nor Λ(n) are closed under union. The union of two IPSs
may recursively violate Theorem 1 several times, as in the following example:
u := {0, 5, 7}, v := {0, 5, 8, 9}, u ∪ v = {0, 5, 7, 8, 9} ((7, 8) require 6 in the suffix
of length 5, and (5, 6) require 1 in the whole u ∪ v).

4 Enumeration of All Autocorrelations of Length n

In this section, we present the first enumeration algorithm for string autocor-
relations of length n. A brute force algorithm is to apply Predicate Ξ to each
of the 2n possible binary vectors and retain those that satisfy Ξ. This is ex-
ponential in n and not practical. The recursive structure of Ξ permits the use
of Ξ as the basis of a dynamic programming algorithm that efficiently com-
putes Γ (n) from Γ (m, p) with m < 2n/3 and 1 ≤ p ≤ m. Γ (n, 1) = {1n} and
Γ (n, n) = {10n−1} for all n. Below is the algorithm to compute Γ (n, p) for n ≥ 3
and 2 ≤ p ≤ (n − 1). We assume that all necessary Γ (m, p) with m < 2n/3 have
already been computed.

Case (a) [2 � p � n
2]: Let r′ := n mod p and r := r′ + p. Then p ≤ r < 2p,

and there are two sub-cases. In each of them, Γ (n, p) can be constructed from
a subset of Γ (r). Let sn,p := (10p−1)bn/pc−1; every correlation in Γ (n, p) is
of the form sn,p ◦ w with w ∈ Γ (r) chosen as follows.
1. Case r = p:

Γ (n, p) = {sn,p ◦ w | w ∈ Γ (r, p′); r′+gcd(p, p′) < p′ < p} (4)

2. Case p < r < 2p:

Γ (n, p) = {sn,p ◦ w | w ∈ Γ (r, p)} (5)
⋃̇ {sn,p ◦ w | w ∈ Γ (r, p′); r′+gcd(p, p′) < p′ < p; wp = 1}

In (4) and (5) : (r′+gcd(p, p′) < p′ < p) ⇒ p′
- p.

Case (b) [n
2 < p � (n − 1)]: Γ (n, p) is constructed from Γ (n − p).

Γ (n, p) = {10p−1 ◦ w | w ∈ Γ (n − p)} (6)

Proof (Correctness). Comparison with Ξ reveals that every element that is in-
cluded in Γ (n, p) according to each of (4), (5), or (6) fulfills Ξ. (Case (a) of Ξ has
been further subdivided into r = p and p < r < 2p.) It remains to be shown that
every vector satisfying Ξ is included in the appropriate Γ (n, p). If this is not the
case, let v be a vector of minimal length n that is an autocorrelation, but that is
not included in Γ (n, p) where p = π(v). The only way this could happen would
be if the r-suffix of v were already not contained in its appropriate Γ (r, p′). But
this would contradict the minimality of n. ut

Combinatorics of Periods in Strings 623

Improvements. Two improvements increase the efficiency and allow computa-
tion up to n = 450.

1. For given values of n and p, all autocorrelations in Γ (n, p) have the same
prefix. The prefix length is p for p > n

2 and p (bn/pc − 1) for p ≤ n
2 . This

prefix is immediately available, and need not be stored explicitly.
2. In case (a), Γ (n, p) is obtained from autocorrelations w ∈ Γ (r) with r ≥ p.

By Lemma 1, such w must satisfy π(w) > (n mod p), and therefore it is
possible to construct Γ (n, p) from the sets Γ (s) with s < p. Hence, to obtain
Γ (n, p), in both cases (a) and (b), only the sets Γ (m, p′) with m ≤ bn

2 c, 1 ≤
p′ ≤ m are needed. For example, to compute Γ (200), we only need to know
Γ (1), . . . , Γ (100) and their respective subsets, but not Γ (101), . . . , Γ (133).

5 Bounds on the Number of Autocorrelations

In this section, we investigate how the number κ(n) of different autocorrelations
of length n grows with n. From Theorem 2, we know that κ(n) is independent
of the alphabet size. In [6], it is shown that as n → ∞,

1
2 ln 2

+ o(1) ≤ ln κn

(ln n)2
≤ 1

2 ln(3/2)
+ o(1). (7)

As shown in Figure 1, these bounds are rather loose. In fact, for small n, the
actual value of κ(n) is below its asymptotic lower bound. While we conjecture
that limn→∞ ln κn

(ln n)2 = 1
2 ln 2 , it remains an open problem to derive a tight upper

bound and prove this conjecture. Our contribution is that a good lower bound
for κn is closely related to the number of binary partitions of an integer. Both
improved bounds we derive from this relationship are also shown in Figure 1.

We have κ0 = 1, κ1 = 1, and κ2 = 2. Considering only the correlations given
by case (b) of Predicate Ξ, we have κn ≥ ∑

n/2<p≤n κn−p =
∑dn/2e−1

i=0 κi. We

define L0 := 1, L1 := 1, and, for n ≥ 2, Ln :=
∑dn/2e−1

i=0 Li. By induction,
Ln ≤ κn for all n ≥ 0. From the definition of Ln, we deduce that for n ≥ 2,
Ln = Ln−1 for n even, and Ln = Ln−2 + Ln−1

2
for n odd.

Now we consider a related sequence: the number of binary partitions Bn of
an integer n ≥ 0, i.e., the number of ways to write n as a sum of powers of 2
where the order of summands does not matter. For example, 6 can be written
as such a sum in 6 different ways: 4+2, 4+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1,
1+1+1+1+1+1. Therefore B6 = 6. By convention, B0 = 1; furthermore B1 = 1.
Binary partitions have been extensively studied; for example, see [3,5]. For n ≥ 2,
they satisfy the recursion Bn = Bn−2 + Bn

2
for n even and Bn = Bn−1 for n

odd. The following lemma states the close relation between the lower bound Ln

for κ(n) and the number of binary partitions Bn.
Lemma 7. For n ≥ 1, Ln = 1/2 · Bn+1.
Proof. The proof is by induction. For n = 1, we have L1 = 1 = 1/2 ·B2. If n ≥ 2
is even, Ln = Ln−1 = 1

2 · B(n−1)+1 = 1
2 · Bn+1, as (n + 1) is then odd. If n ≥ 3

is odd, Ln = Ln−2 + Ln−1
2

= 1
2

(
Bn−1 + Bn+1

2

)
= 1

2 · Bn+1, by the recursion for
Bn+1 for even (n + 1). ut

624 E. Rivals and S. Rahmann

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

ln
 k

(n
)

/ (
ln

 n
)2 a

nd
 B

ou
nd

s

Comparison of Various (Asymptotic) Lower Bounds to the True Number of Autocorrelations

G&O Bound
True Value
Froberg Bound
De Bruijn Bound

Fig. 1. True values of ln κn/(ln n)2 for n ≤ 400, compared to Guibas & Odlyzko’s
(G&O) asymptotic lower bound, the improved asymptotic bound from Theorem 9 (ii)
derived from DeBruijn’s results, and the non-asymptotic lower bound from Theorem
9 (i) based on Fröberg’s work. Both of these bounds converge to the G&O asymptotic
value of 1/(2 ln 2) for n → ∞. The upper bound of G&O, corresponding to the line
y = 1/(2 ln(3/2)) ≈ 1.23, is not visible on the figure.

Fröberg [5] and De Bruijn [3] give some bounds on Bn. Combining Lemma 7,
Fröberg’s and De Bruijn’s results allows us to derive good lower bounds on κ(n)
in the next Theorem (The proof is omitted).
Theorem 9 (Lower Bounds on κ(n)). Define

F (n) :=
∞∑

k=0

nk

2
k(k+1)

2 · k!
. (8)

i/ For all n ≥ 1, κn ≥ 0.31861 · F (n+1). ii/ Asymptotically (with approximated
constants),

ln κn

(ln n)2
≥ 1

2 ln 2

(

1 − ln ln n

ln n

)2

+
0.4139

ln n
− 1.47123 ln ln n

(ln n)2
+ O

(
1

(ln n)2

)

.

6 Computing the Size of Populations

The correlation of a string depends on its self-overlapping structure, but is not
directly related to its characters. Hence, different strings share the same cor-
relation. For instance over the alphabet {a, b}, take abbabba and babbabb. The
population of a correlation v is the set of strings over Σ whose correlation is v.

Combinatorics of Periods in Strings 625

We wish to compute the size of the population of a given correlation, and by
extension of all correlations.

In [6], Guibas and Odlyzko exhibit a recurrence linking the population sizes
of a correlation and of its nested correlation. Here, we exhibit another recurrence
which links the population size of an autocorrelation v to the population sizes
of the autocorrelations it is included in. The recurrence depends on the number
of free characters (nfc for short) of v, to be defined next.
Definition 4 (Number of Free Characters). The nfc of a correlation v is
the maximum number of positions in a string U with P (U) = v that are not
determined by the periods.
To illustrate this definition, note that a correlation represents a set of equalities
between the characters of a string. For example, take v := 100001001 ∈ Γ (9). A
string U = u0 . . . u8 with P (U) = v must satisfy the following set of equations:
{u0 = u3 = u5 = u8, u1 = u6, u2 = u7}. Thus we can write any word U as
u0u1u2u0u4u0u1u2u0 for some u0, u1, u2, u4 ∈ Σ. So the nfc of v is 4.

The nfc is independent of Σ and can be computed from v alone. Given a
correlation v and its length n, Algorithm 2 (NFC), computes the nfc of v. NFC
follows the recursive structure of Predicate Ξ and requires Θ(n) time.

Algorithm 2: NFC
Input: n ∈ N, v ∈ Γ (n); Output: the number of free characters of v;

1 i := 1;while (i < n) and (vi 6= 1) do i := i + 1;// search for the basic period ;
2 if i = n then return n;// no basic period ;
3 if i = 1 then return 1 ;
4 if (i ≤ bn

2 c) then return NFC(i + mod(n, i), v[n − i − mod(n, i)..n − 1]);
5 else return 2 × i − n + NFC(n − i, v[i..n − 1]);

We now state our recurrence on the population sizes.
Theorem 10. Let n ∈ N and let vk be the k-th (k = 1, . . . , κ(n)) autocorrela-
tion of Γ (n). Let ρk denote the number of free characters of vk, and Nk be its
population size. We have:

Nk = σρk −
∑

j:vk⊂vj

Nj .

Proof. For any word U with P (U) = vk there are ρk free positions. For each of
the σρk combinations of ρk characters from Σ, we construct a word V satisfying
the character equalities associated with vk, and have vk ⊆ P (V). We do not
necessarily have vk = P (V), because V may in fact satisfy additional character
equalities. Conversely, every word V with vk ⊆ P (V) is obtained in this way.
Therefore

σρk =
∑

j:vk⊆vj

Nj = Nk +
∑

j:vk⊂vj

Nj ,

which proves the theorem. ut

626 E. Rivals and S. Rahmann

Acknowledgments. We thank D. Bryant, the groups of S. Schbath at INRA
Jouy en Josas, and of Ph. Flajolet at INRIA Rocquencourt for helpful discus-
sions. E.R. is supported by the CNRS, part of this work has been done while
working at the DKFZ, in Heidelberg, Germany. S. R. is grateful to LIRMM for
a travel grant.

References

1. C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 1, pages 329–438. Springer-
Verlag, 1997.

2. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
3. N. G. DeBruijn. On Mahler’s partition problem. Proc. Akad. Wet. Amsterdam,

51:659–669, 1948.
4. N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer.

Math. Soc., 16:109–114, 1965.
5. C.-E. Fröberg. Accurate estimation of the number of binary partitions. BIT, 17:386–

391, 1977.
6. L. J. Guibas and A. M. Odlyzko. Periods in strings. Journal of Combinatorial

Theory, Series A, 30:19–42, 1981.
7. M. Lothaire. Algebraic Combinatorics on Words. in preparation, 1999.

URL: http://www-igm.univ-mlv.fr/˜berstel/Lothaire/index.html.
8. S. Rahmann and E. Rivals. Exact and Efficient Computation of the Expected

Number of Missing and Common Words in Random Texts. In R. Giancarlo and
D. Sankoff, editors, Proc. of the 11th Symposium on Combinatorial Pattern Match-
ing, number 1848 in LNCS, pages 375–387, Montréal, Canada, 2000. Springer-
Verlag, Berlin.

9. R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, Reading,
MA, 1996.

Minimal Tail-Biting Trellises for Certain Cyclic
Block Codes Are Easy to Construct

Priti Shankar, P.N.A. Kumar, Harmeet Singh, and B.S. Rajan

Indian Institute of Science, Bangalore, 560012.
{priti,pnakumar}@csa.iisc.ernet.in,

harmeet@sasken.com,bsrajan@ece.iisc.ernet.in

Abstract. We give simple algorithms for the construction of generator
matrices for minimal tail-biting trellises for a powerful and practical
subclass of the linear cyclic codes, from which the combinatorial repre-
sentation in the form of a graph can be obtained by standard procedures.

Keywords: linear block codes, cyclic codes, Reed-Solomon codes, tail-
biting trellises.

1 Introduction

Trellis descriptions of block codes [1,15,8,10,3,6,9] are combinatorial descriptions,
as opposed to the traditional algebraic descriptions of block codes. A minimal
conventional trellis for a linear block code is just the transition graph for the
minimal finite state automaton which accepts the language consisting of the
set of all codewords. With such a description, the decoding problem reduces to
finding a cheapest accepting path in such an automaton (where transitions are
assigned costs based on a channel model.) However, trellises for many useful
block codes are often too large to be of practical value. Of immense interest
therefore, are tail-biting trellises for block codes, recently introduced in [2], which
have reduced state complexity. The strings accepted by a finite state machine
represented by a trellis are all of the same length, that is the block length of
the code. Coding theorists therefore attach to all states that can be reached by
strings of the same length l, a time index l. Conventional trellises use a linear
time index, whereas tail-biting trellises use a circular time index. It has been
observed [14] that the maximum state cardinality of a tail-biting trellis at any
time index can drop to the square root of the maximum state cardinality (over all
time indices) of a conventional trellis for the code, thus increasing the potential
practical applications of trellis representations for block codes. In this paper,
we show that finding a minimal tail-biting trellis corresponds to picking basis
vectors of the vector space defining the code in a particular way, and using the
selected vectors to build up the trellis. We then show that for various subclasses
of cyclic codes, obtaining vectors that span the space and that also yield minimal
tail-biting trellises is easy. Section 2 presents the background. Section 3 presents
our results on cyclic codes, and Section 4 gives results for Reed-Solomon codes.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 627–638, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

628 P. Shankar et al.

2 Background

We give a very brief background on subclasses of block codes called linear codes.
Readers are referred to the classic text [7].

Let GF (q) denote the field with q elements. It is customary to define linear
codes algebraically as follows:
Definition 1. A linear block code C of length n over a field GF (q) is a k-
dimensional subspace of an n-dimensional vector space over the field GF (q) (such
a code is called an (n, k) code.)
The most common algebraic representation of a linear block code is the generator
matrix G. A k × n matrix G where the rows of G are linearly independent and
which generate the subspace corresponding to C is called a generator matrix
for C. Figure 1 shows a generator matrix for a (4, 2) linear code over GF (2),
consisting of the four codewords in the set {0000,0110,1001,1111}. A cyclic linear

G =

[
0 1 1 0
1 0 0 1

]

Fig. 1. Generator matrix for a (4, 2) linear binary code

block code satisfies the additional property that any cyclic shift of a codeword is
also a codeword. (The code of the example above is linear but not cyclic.) Bose-
Chaudhari-Hocquengham(BCH) codes and Reed-Solomon codes are the best
known cyclic codes which have many practical applications. Cyclic (n, k) codes
are generated by k multiples modulo xn −1 of a polynomial g(x) of degree n−k,
that divides xn−1. A codeword corresponds to the coefficients of the polynomial.
The polynomial g(x) is chosen to be monic and has degree n−k. The codewords
corresponding to the multiples g(x), xg(x), . . . , xk−1g(x) form a basis for the
subspace that defines the code. The parity check polynomial h(x) (of degree k) is
defined as h(x) = (xn−1)/g(x). For BCH codes, g(x) has coefficients in a ground
field GF (q) and roots in an extension field GF (qm). For Reed-Solomon codes,
the coefficients and roots of g(x) are in the same field. An example of a BCH
code is a binary (7,4) Hamming code. This is generated by g(x) = x3 + x + 1
and has the generator matrix shown in Figure 2. The polynomial g(x) for the
(7,4) Hamming code above, has as roots, α, α2, α4 where α is a primitive element
of the field GF (23). The polynomial g(x) itself has coefficients in GF (2). The
parity check polynomial for this code is h(x) = x4 + x2 + x + 1 The polynomial
h(x) has as roots, all the remaining powers of α, namely, α3, α5, α6, and 1. Thus
g(x) and h(x) between them have as roots all the non zero elements of the cyclic
multiplicative group of the field GF (23). These are the seven roots of x7 − 1.

A general block code also has a combinatorial description in the form of a
trellis. We borrow from Kschischang et al. [6] the definition of a trellis for a block
code.

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes 629

G =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

Fig. 2. Generator matrix for the (7, 4) binary Hamming code

Definition 2. A trellis for a block code C of length n, is an edge labeled directed
graph with edge labels drawn from a set A, with a distinguished root vertex s,
having in-degree 0 and a distinguished goal vertex f having out-degree 0, with
the following properties:

1. All vertices can be reached from the root.
2. The goal can be reached from all vertices.
3. The number of edges traversed in passing from the root to the goal along any

path is n.
4. The set of n-tuples obtained by “reading off” the edge labels encountered in

traversing all paths from the root to the goal is C.

The length of a path (in edges) from the root to any vertex is unique and
is sometimes called the time index of the vertex. It is well known that minimal
trellises for linear block codes are unique [10] and constructable from a generator
matrix for the code [6]. In contrast, minimal trellises for non-linear codes are,
in general, neither unique, nor deterministic [6]. Figure 3 shows a trellis for the
linear code in Figure 1. Figure 4 shows the minimal conventional trellis for the

0

0 0

011

1

1

1
0 0

1

S

S

S

S

S

S

S

S
0

1

2

3

4

6

7

9
S5

S8

Fig. 3. A trellis for the linear block code of Figure 1 with S0 = s and S9 = f

Hamming code of Figure 2. Minimal trellises for linear codes are transition graphs
for bideterministic automata. The trellises are said to be biproper. Biproper
trellises minimize a wide variety of structural complexity measures. McEliece [9]
has defined a measure of Viterbi decoding complexity in terms of the number
of edges and vertices of a trellis, and has shown that the biproper trellis is

630 P. Shankar et al.

0

1

0

1

0

1

0
1

0

1

1

0

1

0

0
1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

0

1

1

1

1

0

0

0

1 1

0

0

1

Fig. 4. A conventional trellis for the Hamming code of Figure 2

the “best” trellis using this measure, as well as other measures based on the
maximum number of states at any time index, and the total number of states.

We briefly mention the algorithm given in [6] for constructing a minimal
trellis from a generator matrix(in a specified form) for the code. An important
component of the algorithm is the trellis product construction, whereby a trellis
for a “sum” code can be obtained as a product of component trellises. The set of
vertices of the product trellis at each time index, is just the Cartesian product
of the vertices of the component trellis. If we define the ith section as the set
of edges connecting the vertices at time index i to those at time index i + 1,
then the edge count in the ith section is the product of the edge counts in the
ith section of the individual trellises. Before the product is constructed we put
the matrix in trellis oriented form described now. Given a non zero codeword
C = (c1, c2, . . . cn), start(C) is the smallest integer i such that ci is non zero.
Also end(C) is the largest integer for which ci is nonzero. The linear span of
C is [start(C), end(C)]. By convention the span of the all 0 codeword 0 is the
empty span []. The minimal trellis for the binary (n, 1) code generated by a
nonzero codeword with span [a, b] is constructed as follows. There is only one
path up to a − 1 from index 0, and from b to n. From a − 1 there are 2 outgoing
branches diverging(corresponding to the 2 multiples of the codeword), and from
b − 1 to b, there are 2 branches converging. For a code over GF (q) there will be
q outgoing branches and q converging branches. It is easy to see that this is the
minimal trellis for the 1-dimensional code, and is called the elementary trellis
corresponding to the codeword. To generate the minimal trellis for C we first
put the trellis into trellis oriented form, where for every pair of rows, with spans
[a1, b1], [a2, b2], a1 6= b1 and a2 6= b2. We then construct individual trellises for
the k 1-dimensional codes as described above, and then form the trellis product.
Conversion of a generator matrix into trellis oriented form requires a sequence of
operations similar to Gaussian elimination, applied twice. In the first phase, we
apply the method to ensure that each row in the matrix starts its first nonzero
entry at a time index one higher than the previous row. In the second phase we
ensure that no two rows have their last nonzero entry at the same time index.

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes 631

The complexity of the algorithm is O(k2n + s) for an (n, k) linear code whose
minimal trellis has s states. We see that the generator matrices displayed earlier
are already in trellis oriented form. The elementary trellises for the two rows of
the generator matrix in Figure 1 are shown in Figure 5 below. The product of
these two elementary trellises yields the trellis in Figure 3.

a b

c

d

e f

00
1 1

0 0
g

i k m

h j l

0

1
0

0 0

0
1

0
n�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����������������

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

Fig. 5. Elementary trellises for the rows of the generator matrix in Figure 1

A tail-biting trellis is defined on a circular time axis of length n which is usu-
ally identified with Zn = {0, 1, 2, . . . n−1}, the integers modulo n. All arithmetic
operations on indices are performed modulo n. For each time index j ∈ Zn there
is a finite state space Sj . All edges of the tail-biting trellis are between Sj and
Sj+1(modn), and as in the conventional case, are labeled with elements from A.
One can think of a tail-biting trellis as defined on a sequential time axis with

0

1 1

0

0

0

1

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

0

1

1

0

1

0

1

0

1 1

0

Fig. 6. A tail-biting trellis for the Hamming code of Figure 2

S0 = Sn and by restricting valid paths to those that begin and end at the same
state. Figure 6 shows a tail-biting trellis for the Hamming code of Figure 2, with
|S0| = |Sn| = 2. One can also regard a conventional trellis as a tail-biting trellis
with |S0| = |Sn| = 1.

The state cardinality profile of a tail-biting trellis is the sequence (|S0|, |S1|, . . .
|Sn−1|). For example, the state cardinality profile for the tail-biting trellis for the
(7,4) Hamming code in Figure 6 is (2,4,4,4,4,4,2). The maximum state cardinality
of a trellis is defined as Smax = max{|S0|, |S1|, . . . |Sn−1|}. The minimum state

632 P. Shankar et al.

cardinality, Smin can similarly be defined. It is well known that for conventional
trellises representing linear block codes, there is a unique minimal trellis for
a given linear block code. However this is not true in general for tail-biting
trellises. There are three notions of minimality that have been suggested for
tail-biting trellises. In [2] a trellis is called µ-minimal if Smax is minimized over
all possible permutations of the time index, and choices of generator matrices.
A second definition is π-minimality, also defined in [2] where the goal is to
minimize the product of all state space sizes over all permutations of the time
indices and choices of generator matrices. Kotter and Vardy [5] define weaker
notions of minimality. In their definitions a coordinate ordering is considered to
be fixed. One definition is that of Θ-minimality. A trellis T is said to be smaller
than or equal to another trellis T ′ denoted by T ≤Θ T ′ if |Si| ≤ |S′

i| for all
i ∈ {0, 1, . . . n − 1}. If at least one of the indices has a strict inequality in the
set of inequalities above, then T < T ′. A second ordering is on the basis of the
product of all state space sizes, as defined earlier, except that permutations of
the time index are not considered.

We end this section by stating a few bounds. All of these are found in the
excellent survey on trellises for block codes [13] and in [2]. Let C be an (n, k)
linear block code over the field GF (q).

1. For a conventional trellis, Smax ≤ min(qk, qn−k)
2. For a tail-biting trellis the product complexity, π ≥ q(d−1)k, where d is the

minimum of the Hamming distances between all pairs of codewords. This
will be referred to as the total span lower bound.

3. For a tail-biting trellis Smax ≥ qd(d−1)k/ne

4. If Smid is the minimum possible state-space size of a conventional trellis for
a code C at its midpoint under any permutation of its time index, then
Smax ≥ √

Smid. This is referred to as the square root lower bound.

3 An Algorithm for the Construction of Minimal
Tail-Biting Trellises for Cyclic Codes

We first give another definition of minimality. Our definition is for a fixed coor-
dinate ordering. We say that trellis T is Σ-minimal if

∑
i |Si| ≤ ∑

i |Si|′ for any
other trellis T ′. This is a natural definition from the point of view of automata
theory. However, we must recall that we are not dealing with conventional au-
tomata, but with automata having multiple start and multiple final states, and
with a restricted definition of acceptance. We have observed that subject to min-
imization of the product of all state space sizes, the minimization of this quantity
also minimizes Smax. Also this definition seems to favour “flat” trellises over oth-
ers with the same product space size. Flat minimal trellises, in fact achieve the
square root lower bound [2]. Another definition that favours flat trellises is ∆-
minimality. We say that a tail-biting trellis is ∆-minimal for a given product
size if log(Smax) − log(Smin) is minimal, where the logarithm is to the base q if
the code symbols are from GF (q). The decoding complexity in a conventional

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes 633

trellis is closely related to the number of edges and nodes of the trellis. This is
also true for tail-biting trellises [11]. It is thus of interest to minimize the Σ-size.
We show that in the cases considered here, ∆-minimality implies Σ-minimality.

We now define a circular span of a codeword. Let C = (c1, c2 . . . cn) be a
codeword such that ci and cj are non-zero, i < j and all components between i
and j are zero. Then [j, i] is said to be a circular span of the codeword. Note that
while the linear span of a codeword is unique, a circular span is not, as it depends
on the consecutive run of zeros chosen. Given a codeword and a circular span
[j, i], there is a unique elementary trellis corresponding to it. If the code symbols
are from GF (q), then the trellis has q states from index 0 to index i − 1, one
state from index i to index j and q states from index j +1 to index n. If the start
states are numbered from 1 to q and final states likewise, only i to i paths are
codewords. Shany and Beery[12] have shown that any linear tail-biting trellis can
be constructed from a generator matrix whose rows can be partitioned into two
sets, those which are taken to have linear span, and those taken to have circular
span. The tail-biting trellis is then formed as a product of the elementary trellises
corresponding to these rows. Thus the problem of constructing a minimal tail-
biting trellis is then reduced to finding a basis for the subspace constituting the
code, and a choice of spans, such that the corresponding elementary trellises
yield a product that corresponds to a minimal tail-biting trellis.

It is convenient to introduce some notation at this point. A state complexity
profile of the form (ql, ql, . . . i1 times, qj , qj , . . . i2 times, qm, qm, . . . i3 times) is
represented as ((ql)i1 , (qj)i2 , (qm)i3). Let c be a codeword with linear span [i, j].
Then the elementary conventional trellis for the codeword has a profile of the
form (1i+1qj−i1n−j−1).We abbreviate this as ([1, q, 1], [i + 1, j]), where indices
in the trellis begin at 0, as the state cardinality remains constant at q in the
interval [i + 1, j].

For a codeword with circular span [j, i] the elementary tail–biting trellis has
profile (qi+1, 1j−i, qn−j−1).This is abbreviated as ([q, 1, q], [j + 1, i]), as the state
cardinality remains constant at q over the circular interval [j+1, i]. It is clear that
the product construction will yield linear trellises where the state cardinality at
any time index is always a power of q, where the code is over GF (q).

We now describe an algorithm for the construction of minimal tail–biting
trellises, for a subclass of cyclic codes. We establish the basis for the construction
by a sequence of results. Firstly we recall, that the generator matrix formed by
the vector representation of g(x), xg(x), x2g(x), . . . xk−1g(x) gives us the minimal
conventional trellis for the code. We aim to get a minimal tail-biting trellis having
the same product space size as this one. Since each row has linear span of width
(n − k), and there are k rows, the product of the state cardinalities is qk(n−k).
Since this is a minimal trellis, we cannot do better. Consequently, a lower bound
for the maximum size of the state space at any time index is qdk(n−k)/ne. This
improves the total span lower bound on Smax for this class, as n − k ≥ d − 1.
We also note that any row with span (linear or circular) exceeding n − k will
increase the product state space size of the code. We can therefore restrict our
attention to rows having span of width n− k. We prove the main result through

634 P. Shankar et al.

a sequence of lemmas. We assume that the codes under consideration are (n, k)
cyclic codes.

Lemma 1. Let gcd(n, k) = 1.Then the minimal tail-biting trellis for the cyclic
code cannot be flat.

Proof. Each row contributes a factor qn−k to the product of the state cardinality
and there are k rows. Thus the total product state cardinality is qk(n−k). For a
flat trellis this must be distributed evenly among the n columns. Thus n must
divide k(n − k) which implies n must divide k2. Since gcd(n, k) = 1 , this is not
possible, and hence a flat trellis cannot exist for this case.

Lemma 2. For a minimal non-flat trellis for a cyclic code, log(Smax) −
log(Smin)
≥ 1.

Proof. The proof follows from the fact that the state cardinality at each time
index is always a power of q.

A trellis which has r jumps in its state cardinality profile is called an r-jump trel-
lis. For a given trellis, if log(Smax)− log(Smin) = δ, the trellis is called a δ-trellis.
The tail-biting trellis for the Hamming code in Figure 6 is a 2-jump 1-trellis. We
will be dealing with very restricted kinds of tail-biting trellises.These will have
state cardinality profiles of the form ([ql, ql+1, ql], [i, j]) or ([ql+1, ql, ql+1], [j, i]).
The first trellis is of type LHL(L for Low , H for High) and the second of type
HLH. We will sometimes use the notation (LHL, i, j, δ) or (HLH, i, j, δ) to refer
to 2-jump δ-trellises where the state cardinality remains constant at Smax over
the linear interval [i, j] or circular interval [j, i] as the case may be. Note that
1-jump trellises do not exist and 0-jump trellises are flat.

We next present a technique to construct a minimal tail-biting trellis for a
(n, k) cyclic code when gcd(n, k) = 1.

Lemma 3. The trellis product of elementary trellises corresponding to the
code polynomials g(x), x(n−k)g(x), x2(n−k)g(x), . . . , x(k−1)(n−k)g(x) where all the
products are modulo xn − 1, yields a 2-jump 1-trellis with log(Smax) = d(k(n −
k)/n)e.

Proof. We construct the product trellis step-by-step, forming a trellis product
by including one elementary trellis at each step in the order above. At each step
the trellis is shown to be a 2-jump 1-trellis. We prove the following by induction.

Hypothesis The trellis generated by the first i codewords 1 ≤ i ≤ k is a
2-jump 1-trellis of type (LHL, 1, (i)(n − k) mod n, 1), with log(Smax) = d(i(n −
k)/n)e.

Basis i=1 The codeword corresponding to g(x) has linear span [0, n−k], and
generates a (LHL, 1, n−k, 1) trellis. Also log(Smax) = 1, proving the hypothesis
for this case.

Induction Assume the hypothesis is true for the product of the first i or
fewer trellises. Thus the trellis generated after i steps is a (LHL, 1, (i)(n − k)
mod n, 1) trellis, with log(Smax) = d(i(n − k)/n)e. The next codeword to be
added is x(i)(n−k)g(x) mod (xn − 1). If this has linear span, the trellis is of type

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes 635

(LHL, (i)(n−k)+1 mod n, (i+1)(n−k) mod n, 1). The product trellis is then of
the type (LHL, 1, (i+1)(n−k) mod n, 1) and there is no increase in Smax. If the
next codeword has a circular span, then its trellis is of type (HLH, (i)(n−k)+1
mod n, (i + 1)(n − k) mod n, 1). (Here i(n − k) mod n > (i + 1)(n − k) mod n.)
Thus the jumps in the product trellis will be at 1 and (i + 1)(n − k) + 1 mod n.
Also log(Smax) increases by 1 in this case, as the number of states from indices
i(n − k) mod n to n − 1, and 0 to (i + 1)(n − k) mod n increases by a factor
of q. We see that whenever the new elementary trellis to be added has circular
span, the value of Smax increases by a factor of q. This happens dk(n − k)/ne
times. After adding k elementary trellises, the tail-biting trellis construction is
complete. The trellis so constructed achieves the improved lower bound on Smax

for cyclic codes.

While we have proved that the k codewords selected by the lemma do indeed
give a trellis with a minimal value of Smax we need to show that they form
a basis for the subspace defining the code. Thus we need to prove that they
are linearly independent. For the next lemma we make the assumption that
gcd(q, n) = 1. This implies that the generator and parity check polynomials do
not have repeated roots. Most practical cyclic codes satisfy this property.
Lemma 4. If gcd(n, k) = 1 and gcd(q, n) = 1 then the vectors corresponding to
codewords g(x), x(n−k)g(x), x2(n−k)g(x), . . . , x(k−1)(n−k)g(x) where all the prod-
ucts are modulo xn − 1, are linearly independent.

Proof. Assume that the vectors are linearly dependent.Then there exist scalars
a0, a1, . . . , ak−1 in the field GF (q) such that

(a0 + a1x
n−k + . . . + ak−1x

(k−1)(n−k))(g(x)) ≡ 0 mod(xn − 1) (1)

Let A(x) = a0+a1x
n−k+. . .+ak−1x

(k−1)(n−k). From (1) and from the definition
of h(x), we conclude that A(x) has as roots all the k roots of h(x). Define
b(x) = a0 +a1x+ . . .+ak−1x

k−1. If β ∈ GF (qm) is a root of A(x) , then βn−k is
a root of b(x). Also if β1, β2 are distinct roots of h(x), βn−k

1 , βn−k
2 are distinct

roots of b(x). Else, if β1 = βi1 and β2 = βi2 where β generates the cyclic group
of order n, β(i1−i2)(n−k) = 1 implying that i1 − i2 ≡ 0(mod n), thereby giving a
contradiction. Hence the vectors are linearly independent.

We finally present the main theorem.
Theorem 1. For an (n, k) cyclic code over GF (q) with gcd(q, n) =
1, gcd(n, k) = 1, there exists a choice of spans, such that the
product of elementary trellises corresponding to the codewords
g(x), x(n−k)(g(x)), x2(n−k)(g(x)), . . . , x(k−1)(n−k)

(g(x)) gives a ∆-minimal trellis for the code which is also Σ-minimal.

Proof. The ∆-minimality follows from Lemmas 1, 2, 3 and 4. We next
show that the ∆-minimal trellises constructed using the procedure above are
also Σ−minimal. The trellis, say T1, constructed by the above method has
log(Smax) − log(Smin) = 1. Assume some other tail biting trellis(say T2) which
is π-minimal, also has log(Smax) − log(Smin) = 1. We show that such a trellis

636 P. Shankar et al.

has a state cardinality profile that is a permutation of T1. Since a flat trellis does
not exist, this trellis is Σ − minimal. Since log(Smax) − log(Smin) = 1 in T1, it
has a state cardinality of qm1−1 at t1 time indices and qm1 at n− t1 time indices
for some m1. Similarly T2 has a state cardinality of qm2−1 at t2 time indices and
qm2 at n−t2 time indices for some m2,where m1, m2 ≥ 1 and t1, t2 ≥ 1. Without
loss of generality assume t1 ≥ t2. Since both of them are π-minimal,we have
(m1 − 1) ∗ (t1) + (m1) ∗ (n − t1) = (m2 − 1) ∗ (t2) + (m2) ∗ (n − t2)
(m1 ∗ n) − t1 = (m2 ∗ n) − t2
n ∗ (m1 − m2) = t1 − t2
Since t1 − t2 < n , this is only possible if t1 − t2 = 0 implying that m1 = m2.
This proves that for a given (n, k) cyclic code, with gcd(n, k) = 1, assuming
π-minimality, the Σ-minimal trellis is unique up to permutations of the state
cardinality profile and is the same as the ∆-minimal trellis.

Figure 6 is the minimal tail-biting trellis for the (7,4) cyclic Hamming
code using our technique. We next turn our attention to cyclic codes for which
gcd(n, k) = t = gcd(n, n−k) > 1. We use the property that if gcd(n, k) = t then
the smallest multiple of n − k which is a multiple of n is (n/t) × (n − k).

Lemma 5. Let g(x) be the generator polynomial of an (n, k) cyclic code with
gcd(n, k) = t > 1. Also assume that k < n/t. Then the codewords corresponding
to the polynomials g(x), x(n−k)g(x), x2(n−k) . . . x(k−1)(n−k) where all products are
modulo xn − 1, generate a minimal 2-jump 1-trellis for the code, provided the
following condition is satisfied: if βi and βj are roots of h(x) where β generates
the cyclic group of order n, then i − j 6= 0(mod n/t).

Proof. From Lemma 3, we know that the vectors generate a trellis which is a
2-jump 1-trellis that is Σ-minimal as well as ∆-minimal. To show that it is a
trellis for the code, we need to show that the k vectors are linearly independent.
Assume they are not. The proof proceeds along exactly the same lines as that
of Lemma 4, with A(x), b(x), βi, βj being defined as in that lemma. If βi and βj

map to the same root of b(x) then (i − j)(n − k) = 0(mod n). But the smallest
value of i − j for which this can happen is i − j = n/t. Since this is not possible,
the k roots of h(x) map into distinct roots of b(x) giving a contradiction, as the
degree of b(x) is k − 1. Hence the vectors are linearly independent and generate
a minimal trellis for the code.

4 Minimal Tail-Biting Trellises for Reed-Solomon Codes

We now present some results on mimimal trellises for Reed-Solomon codes. We
recall that for such codes the code symbols and the roots of g(x) are in the
same field. We look at cases when gcd(n, k) = t > 1, as the case when t is 1 is
covered by the results of the previous section. It is easy to prove that minimal
flat trellises exist for several subclasses of Reed-Solomon codes.

The lemma below has a simple proof available in [4]. For the sake of brevity
the proof is not reproduced here.

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes 637

Lemma 6. Let g(x) be the generator polynomial for an (n, k) Reed-Solomon
code.Then the codewords represented by polynomials g(x), xi1g(x), xi2g(x), . . . ,
xik−1g(x) where i1, i2, . . . , ik−1 are distinct positive integers between 1 and n-
1(inclusive),(and all products are modulo xn − 1), are linearly independent.

Lemma 7. Let t = gcd(n, k).Then the integers i(n−k) mod n,i = 0, 1, . . . n/t−1
are all distinct, and the vectors corresponding to g(x), xn−kg(x), x2(n−k)g(x), . . . ,
x(n/t−1)(n−k)g(x), where all the products are modulo xn−1, generate a flat trellis.

Proof. We can easily see that the integers are all distinct. The construction
procedure of Lemma 3 will after n/t − 1 products, generate a trellis with a
“jump” up at index 1 and a “jump” down at index n/t(n−k)+1 = 1 modulo n.
Thus after the n/t − 1st product, the trellis will be a 0-trellis and is hence flat.

Lemma 8. Assume that n/t = k. Then the vectors g(x), xn−kg(x), x2(n−k)g(x),
. . . , x(k−1)(n−k)g(x) where all products are modulo xn − 1, generate a minimal
flat trellis for the code. If n/t > k, then the vectors generate a minimal 2-jump
1-trellis for the code.

Proof. We can easily see that in the first case n divides k2. By Lemmas 6 and
7 we see that the k vectors are distinct, linearly independent and also generate
a minimal flat trellis for the code. The proof for the second case follows directly
from Lemmas 3 and 6.

Lemma 9. Let t = gcd(n, k). Then if n/t divides k, the vectors in the union of
the sets below:
{g(x), xn−kg(x) . . . x(n/t−1)(n−k)g(x)}
{xg(x), xn−k+1g(x) . . . x(n/t−1)(n−k)+1g(x)}
{x2g(x), xn−k+2g(x) . . . x(n/t−1)(n−k)+2g(x)}
...
{x(k/(n/t))−1g(x), xn−k+(k/(n/t))−1g(x) . . . x(n/t−1)(n−k)+(k/(n/t))−1g(x)}
generate a flat trellis for the code.

Proof. We outline the proof here. Firstly we see that n divides k2. Also, it is
easy to see that the vectors are all distinct. We note from Lemma 7, that the
vectors in each set produce a flat trellis of width q((n−k)×(n/t))/n. (Cyclic shifts
of a generator matrix that produces a flat trellis also produce flat trellises). The
product trellis is just a product of flat trellises, and is hence also flat. To see
that it is minimal, we see that the width is q1/n((n/t)×(n−k)×k/(n/t)) = qk(n−k)/n.
Thus the trellis is minimal.

The only case left is that when k > n/t but n/t does not divide k. It is easy to see
that in this case we will get d(k/(n/t)e sets, such that the last set contains less
than n/t vectors, and generates a 2-jump 1-trellis, while the others all generate
flat trellises. The result follows from these two observations. Thus we see that
all cases for Reed-Solomon codes are covered. We consolidate all the results of
this section into one theorem.
Theorem 2. Reed-Solomon (n, k) codes have minimal flat trellises if and only if
n divides k2. If n does not divide k2 the minimal trellises are 2-jump 1-trellises.

638 P. Shankar et al.

Proof. The necessity of the condition for flat trellises is shown in Lemma 1. Let
gcd(n, k) = t, and assume n divides k2. We can write n1×n = k2 = k1×t×k, for
integers n1 and k1. Clearly n1/k1 = l, is an integer, as gcd(k1, n) = 1. Therefore
l × n/t = k which, together with lemmas 8 and 9 show the sufficiency of the
condition for a flat trellis. The case n does not divide k2 is covered by lemma
3, the second half of lemma 8 and the previous paragraph.

References

1. L.R.Bahl, J.Cocke, F.Jelinek, and J. Raviv, Optimal decoding of linear codes for
minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp
284-287.

2. A.R.Calderbank, G.David Forney,Jr., and Alexander Vardy, Minimal Tail-Biting
Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July 1999,
pp 1435-1455.

3. G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis
diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993,
pp 1491-1513.

4. Harmeet Singh, On Tail-Biting Trellises for Linear Block Codes, M.E. Thesis, De-
partment of Electrical Communication Engineering, Indian Institute of Science,
Bangalore, 2001.

5. Ralf Kotter and Vardy, A.,Construction of Minimal Tail-Biting Trellises, in Pro-
ceedings IEEE Information Theory Workshop (Killarney, Ireland, June 1998), 72-
74.

6. F.R.Kschischang and V.Sorokine, On the trellis structure of block codes, IEEE
Trans. Inform. Theory 41(6), Nov 1995, pp 1924-1937.

7. F.J. MacWilliams and N.J.A. Sloane,The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1981.

8. J.L.Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on
Information Theory and Systems 65(Berlin, Germany) Sept 1978.

9. R.J.McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform.
Theory 42, November 1996, pp 1072-1092.

10. D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform. Theory 34(5),
Sept 1988, pp 1049-1053.

11. Priti Shankar, P.N.A. Kumar, K.Sasidharan and B.S.Rajan, ML decoding of block
codes on their tail-biting trellises, to appear in Proceedings of the 2001 IEEE In-
ternational Symposium on Information Theory.

12. Yaron Shany and Yair Be’ery, Linear Tail-Biting Trellises, the Square-Root Bound,
and Applications for Reed-Muller Codes, IEEE Trans. Inform. Theory 46 (4), July
2000, pp 1514-1523.

13. A.Vardy, Trellis structure of codes, in Handbook of Coding Theory,V.S. Pless and
W.C. Huffman, Eds., Elsevier Science, 1998.

14. N.Wiberg, H.-A. Loeliger and R.Kotter, Codes and iterative decoding on general
graphs, Eoro. Trans. Telecommun.,6, Sept 1995, pp 513-526.

15. J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a
trellis, IEEE Trans. Inform. Theory 24, pp 76-80.

Effective Lossy Queue Languages

Parosh Aziz Abdulla1, Luc Boasson2, and Ahmed Bouajjani2

1 DoCS, Uppsala University, P.O. Box 325, S-75105 Uppsala, Sweden.
parosh@docs.uu.se

2 Liafa, Univ. of Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris Cedex 05, France.
{lub,abou}@liafa.jussieu.fr

Abstract. Although the set of reachable states of a lossy channel system
(LCS) is regular, it is well-known that this set cannot be constructed
effectively. In this paper, we characterize significant classes of LCS for
which the set of reachable states can be computed. Furthermore, we
show that, for slight generatlizations of these classes, computability can
no longer be achieved.
To carry out our study, we define rewriting systems which capture the be-
haviour of LCS, in the sense that (i) they have a FIFO-like semantics and
(ii) their languages are downward closed with respect to the substring
relation. The main result of the paper shows that, for context-free rewrit-
ing systems, the corresponding language can be computed. An interesting
consequence of our results is that we get a characterization of classes of
meta-transitions whose post-images can be effectively constructed. These
meta-transitions consist of sets of nested loops in the control graph of
the system, in contrast to previous works on meta-transitions in which
only single loops are considered.
Essentially the same proof technique we use to show the result mentioned
above allows also to establish a result in the theory of 0L-systems, i.e.,
context-free parallel rewriting systems. We prove that the downward clo-
sure of the language generated by any 0L-system is effectively regular.

1 Introduction

We consider the problem of model checking of lossy channel systems (LCS)
which consist of finite-state processes communicating over FIFO-buffers. The
buffers are unbounded and lossy in the sense that they can lose messages. Such
systems can be used to model the behaviour of communication protocols such
as link protocols [AJ96] and bounded retransmission protocols [GvdP93,AAB99]
which are designed to operate correctly even in the case where the underlying
communication medium cannot provide reliable communication. In [AJ96], an
algorithm for checking safety properties for LCS is described. The algorithm
performs a fixed point iteration where each iteration computes the pre-image of
a set of configurations with respect to a single transition of the system. This
corresponds to a backward reachability analysis algorithm which constructs a
characterization (as a regular set) of the set of configurations from which a set
of final configurations is reachable.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 639–651, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

640 P.A. Abdulla, L. Boasson, and A. Bouajjani

Often, it is also important to be able to perform a forward reachability analy-
sis, and characterize the set of configurations which are reachable from the initial
configuration of the system. For instance, several efficient verification methods,
such as on-the-fly algorithms [Hol91,CVWY90], are based on forward search of
the state space. Also, using forward analysis, we can often automatically gen-
erate finite-state abstractions of the system. The abstract model may then be
used to check several classes of properties which cannot be analyzed directly
in the original model. It is well known that the set of reachable configurations
in an LCS can be characterized as a regular set [CFI96,ABJ98]. On the other
hand, using undecidability results reported in [May00], it can be shown that this
characterization cannot be effectively constructed. Therefore, it is interesting to
characterize the class of LCS for which the characterization is effective.

To achieve that, we model the behaviour of an LCS as a rewriting system.
To reflect the behaviour of the LCS, we provide a FIFO-like semantics for the
rewriting system, i.e., when a rule is applied to a string, the left hand side is
removed from the head of the string, while the right hand side is appended
to the end of the string. Furthermore, corresponding to lossiness, we require
that the language generated is downward closed with respect to the substring
relation. Intuitively, the symbols in the left hand side of a rule correspond to the
messages received from the channels, while the symbols in the right hand side
correspond to messages sent to the channels. This implies that characterizing
the class of rewriting systems with effectively computable languages gives also a
characterization of the class of LCS with computable reachability sets.

In this paper, we study the limits of the computability of the reachability set,
and characterize significant classes of rewriting systems which have effectively
computable languages. The main result of the paper is showing that all context-
free rewriting systems have effectively computable languages. Furthermore, we
show that slight generalizations of the context-free class lead to uncomputability
of the language. For instance, it is sufficient to allow two symbols in the left
hand sides of the rewriting rules in order to lose computability. Moreover, if
we consider rewriting systems on vectors of words (representing FIFO-channel
systems with several queues), then computability is lost starting from dimension
2. Nevertheless, we show that for particular n-dim context-free rewriting systems
called rings, the generated language is effectively computable. The class of rings
corresponds to n-dim systems where each rewriting rule consists in receiving
a message from some channel of index say i, and sending a string (sequence
of messages) to the channel of index (i + 1) mod n. These rules correspond
to actions of communicating processes connected according to a ring topology,
where each component has an input and an output buffer.

A significant application of our results is to characterize classes of meta-
transitions which can be used in forward reachability analysis of LCS. A meta-
transition is an arbitrarily long sequence of transitions, which often corresponds
to repeated executions of loops in the syntactic code of the program. The idea
is to speed up the iterations corresponding to forward reachability analysis by
computing the post-image of a meta-transition rather than a single transition.

Effective Lossy Queue Languages 641

In almost all practical cases, applying meta-transitions is necessary to achieve
termination of the iteration procedure. Obviously, the key issue is to decide which
meta-transitions to apply during each iteration step. A necessary criterion is that
a meta-transition should allow computability of post-images, i.e., the post-image
of each constraint with respect to the meta-transition should be computable.
Since the set of transitions in a meta-transition can themselves be viewed as
an LCS, our result also gives a characterization of meta-transitions which allow
computing of post-images. Observe that the language generated describes the
application of an arbitrary sequence of rules, which means that we are able to
describe the effect of arbitrary sequences of control loops. In this way we extend
significantly the class of LCS on which accelerations can be applied, since earlier
works [BG96,BGWW97,BH97,ABJ98] only consider single loops.

It turns out that our proof can also be adapted to establish a result in the
language theoretical framework of 0L-systems [RS80]. These systems consist of
context-free sets of rules with a parallel rewriting relation. In fact, there is a
tight relation between FIFO rewriting and parallel rewriting (which is actually
used in our proof). We show that the set of subwords of the language generated
by any 0L-system is an effective regular set.

Related Work: Several works have studied computing post-images of meta-
transitions in the context of communicating finite-state processes [BG96,
BGWW97] [BH97,ABJ98]. In contrast to this paper, all these works consider
meta-transitions which correspond to single loops. This excludes several com-
mon structures which occur in protocols such as nested loops. An example of a
nested loop is two transitions sending two different messages to the channels. For
instance, in [ABJ98], we show how to compute post-images of single loops for
lossy channel systems. In [BGWW97], a complete characterization is given of the
class of simple loops which preserve regularity in the context of systems with
perfect channels. In [BH97] a constraint system is presented and shown to be
closed under the execution of any single loop in a system with perfect channels.

Context-free rewriting systems have been used for description and analysis
for several classes of infinite-state systems such as BPA and pushdown pro-
cesses (e.g., [BBK93,CHS92,GH94,Sti96]). All these works deal with the classi-
cal (stack-like) semantics, and hence cannot be applied to analyze systems with
FIFO buffers. [Bur98] considers rewriting systems with perfect FIFO behaviour.
It shows that all interesting verification problems (including reachability) are
undecidable for these systems.

0L-systems have been studied as an alternative of the classical sequential
rewriting systems, following the main lines suggested by the theory of context-
free grammars. It has been shown that the properties of the two kinds of for-
malisms are quite different. In particular, the expressive power of the 0L-systems
is not comparable with the usual Chomsky hierarchy. Our result concerning
0L-system corresponds to the result established in [Cou91] for the context-free
languages.
Outline: In Section 2 we define some basic notions and introduce FIFO rewrit-
ing systems (cyclic rewriting systems) and 0L-systems. In Section 3 we prove

642 P.A. Abdulla, L. Boasson, and A. Bouajjani

our main result concerning the effective regularity of the language of down-
ward closed context-free systems. We give also in this section our result on the
effectiveness of the downward closure of 0L languages. In Section 4 we give un-
constructibility results for downward closed rewriting systems with unrestricted
(non context-free) rules, as well as for 2-dim context-free systems. Finally, in
Section 5, we address the effective regularity of the n-dim context-free rings lan-
guages. For lack of space, some proofs are omitted in this version of the paper.

2 Preliminaries

In this section, we give some basic definitions and introduce the FIFO rewriting
systems which we call cyclic rewriting systems.

2.1 Words and Languages

Let Σ be a finite alphabet. We denote by Σ∗ the set of words over Σ, i.e.,
sequences (or strings) of symbols in Σ. We denote by ε the empty word.

We denote by � ⊆ Σ∗ × Σ∗ the subword relation, i.e., a1 . . . an � b1 . . . bm
if there exists i1, . . . , in ∈ {1, . . . ,m} such that i1 < . . . < in and ∀j ∈
{1, . . . , n}. aj = bij

. We consider the product generalization of this relation
to vectors of words.

An n-dim language over Σ, for n ≥ 1, is any subset of (Σ∗)n. 1-dim languages
are called languages as usual. An n-dim language L is downward closed if ∀u,v ∈
(Σ∗)n, if v ∈ L and u � v, then u ∈ L. Let L↓ denote the downward closure of
L, i.e., the smallest downward closed set which includes L. Notice that a set L
is downward closed if and only if L = L↓.

2.2 Simple Regular Expressions

Let us call atomic expression any expression e of the form (a+ ε) where a ∈ Σ,
or of the form A∗ where A ⊆ Σ. A product p is either the empty word ε, or
a finite sequence of the form e1 · · · em of atomic expressions. A simple regular
expression (SRE) is either ∅, or a finite union p1 + · · · + pn where each pi is a
product.

Theorem 1 ([ABJ98]). SRE definable sets are precisely downward closed sets.
Moreover, for every effective regular language L, L↓ is an effective SRE language.

Proposition 1 ([Cou91]). For every context-free language L (effectively de-
scribed by a context-free grammar), the set L↓ is an effective regular set.

2.3 Cyclic Rewriting Systems

For n ≥ 1, an n-dim rewriting rule r over the alphabet Σ is a pair 〈x,y〉 where
x,y ∈ (Σ∗)n. We denote such a rule by r : x 7→ y. The left hand side (resp.
right hand side) of r, denoted by lhs(r) (resp. rhs(r)), is the vector x (resp. y).

Effective Lossy Queue Languages 643

An n-dim rewriting rule r is context-free if lhs(r) ∈ (Σ ∪{ε})n. A set of rules
R is context-free if all its rules are context-free.

An n-dim cyclic rewriting system is a pair (R,Rc) where R is a finite set of n-
dim rewriting rules, andRc : (Σ∗)n → 2(Σ∗)n

is the cyclic rewriting mapping over
R defined as follows: for every u = (u1, . . . , un),v = (v1, . . . , vn) ∈ (Σ∗)n, we
have v ∈ Rc(u) if and only if there exists a rule r : (x1, . . . , xn) 7→ (y1, . . . , yn) ∈
R such that ∀i ∈ {1, . . . , n}. ∃wi ∈ Σ∗. ui = xiwi and vi = wiyi.

A weak cyclic rewriting system is a pair (R,Rwc) where R is a finite set of
n-dim rules and Rwc is the weak cyclic rewriting mapping over R defined as
follows: for every u,v ∈ (Σ∗)n, we have v ∈ Rwc(u) if and only if there exist
u′,v′ ∈ (Σ∗)n such that u′ � u, v′ ∈ R(u′), and v � v′.

The definition of the mappings Rc and Rwc are extended straightforwardly
to sets of vectors of words. We denote by R∗

c and R∗
wc the reflexive-transitive

closure of Rc and Rwc respectively. Given a language L, R∗
c(L) (resp. R∗

wc(L) is
called its cyclic closure (resp. weak cyclic closure) by R.

Cyclic rewriting systems can be used to model processes communicat-
ing through unbounded FIFO queues (channels). Intuitively, a rule r :
(x1, . . . , xn) 7→ (y1, . . . , yn) corresponds to an action which, for a queue of index
i, receives the sequence xi from the queue, and then sends the sequence yi to the
queue. Weak cyclic rewriting systems model processes communicating through
unbounded lossy channels (which may lose messages at any time).

Cyclic rewriting systems correspond to Post tag systems. It is well known
that they are Turing machine powerful, and hence, the set R∗

c(L) is in general
not constructible, for any language L. On the other hand, we know by Theorem 1
that for every n-dim language L and every set of rewriting rulesR, the set R∗

wc(L)
is SRE definable. However, this set is not necessarily effectively constructible.

2.4 Substitutions and 0L-Systems

A substitution is a mapping φ : Σ → 2Σ∗ which associates with each symbol
a ∈ Σ a language over Σ (which may be empty).

A substitution is extended to words by taking φ(a1 · · · an) = φ(a1) · · ·φ(an)
and φ(ε) = ε, and then generalized straightforwardly to languages. We denote
by φi the substitution obtained by i compositions of φ. Then, let φ≥n(a) denote
the set

⋃
i≥n φ

i(a), for any n ≥ 0 and a ∈ Σ. We denote by φ∗ (resp. φ+) the
reflexive-transitive (resp. transitive) closure of φ, i.e., φ≥0(a) (resp. φ≥1(a)).

A substitution φ is finite if, for every a ∈ Σ, φ(a) is a finite language. A
substitution is downward closed if it associates with each symbol a downward
closed language, and it is complete if, for every a ∈ Σ, φ(a) is nonempty. A weak
substitution is a downward closed complete substitution.

Given a set of 1-dim context-free rewriting rules R, we define a substitution
ϕR such that, for every a ∈ Σ, ϕR(a) = {rhs(r) : r ∈ R and lhs(r) = a}. We
define also a substitution φR such that, for every a ∈ Σ, φR(a) = {ε} ∪ ϕR(a)↓.
Notice that, since R is finite, both ϕR and φR are finite substitutions. Moreover,
φR is a weak substitution whereas ϕR is in general not necessarily complete and

644 P.A. Abdulla, L. Boasson, and A. Bouajjani

not downward closed. Since ϕR is not complete, ϕR(a)↓ is in general different
from φR(a) (since ∅↓= ∅).

A 0L-system (resp. weak 0L-system) is a pair (R,ϕR) (resp. (R,φR)) where
R is a finite set of context-free rewriting rules.

The following lemma shows the link between cyclic context-free rewriting
and substitution (parallel rewriting).

Lemma 1. For every finite set of 1-dim context-free rules R, and every language
L, if φ∗

R(L) is an effective SRE set, then R∗
wc(L) is also an effective SRE set.

3 Constructibility for Context-Free Systems

We give in this section our main result (Theorem 2) and present its proof. This
result says that the language generated by a weak cyclic context-free rewriting
system is an effective regular (actually SRE) set.

An adaptation of the proof for this theorem can be done to establish a result
concerning the languages generated by 0L-systems (Theorem 3). The result says
that the set of subwords of such a language is effectively regular.

Theorem 2. For every context-free language L (effectively described by a
context-free grammar), and for every finite set of (1-dim) context-free rewrit-
ing rules R, the set R∗

wc(L) is effectively SRE representable.

Proof. Clearly, R∗
wc(L) = R∗

wc(L↓) for every language L. Hence, by Proposition
1 and Theorem 1, it is sufficient to prove that R∗

wc(L) is an effective SRE set
for every SRE language L. Moreover, by Lemma 1, this can be done by proving
that φ∗

R(L) is an effective SRE set. For that, we need some definitions.
Given a finite weak substitution φ (effectively given), we define Σφ(a) =

φ∗(a) ∩Σ. Intuitively, Σφ(a) is the set of accessible symbols from a by iterated
substitutions. Notice that the set Σφ(a) contains the symbol a itself. Notice also
that this set can be computed since the alphabet Σ is finite.

We partition the set of symbols Σ according to the following equivalence
relation: two symbols a and b are equivalent if Σφ(a) = Σφ(b). The equivalence
class of a symbol a is denoted [a].

The accessibility relation induces an ordering between equivalences classes:
[a] ≤ [b] if and only if Σφ(a) ⊆ Σφ(b). Let level(a) be the level of [a] according
to this ordering: minimal elements (equivalence classes) have level 0, and level
k+ 1 corresponds to minimal elements of the set of classes without the elements
of level less than k.

Given a finite weak substitution φ, a symbol a is recursive if a ∈ φ+(a). It is
expansive if aa ∈ φ+(a). A symbol is linear if it is recursive and not expansive.
Let us denote by Recφ (resp. Expφ, Linφ, NRecφ) the set of recursive (resp.
expansive, linear, nonrecursive) symbols according to φ. Deciding whether a
symbol is recursive, linear, or expansive is straightforward. Notice that for every
a, b ∈ Σ such that [a] = [b], we have a ∈ Recφ (resp. Expφ, Linφ, NRecφ) iff
b ∈ Recφ (resp. Expφ, Linφ, NRecφ).

Effective Lossy Queue Languages 645

A substitution φ is normal if, for every a ∈ Expφ (resp. Linφ), the set φ(a)
contains aa (resp. a).

Let R be a finite set of 1-dim context-free rewriting rules. We suppose here-
after that R does not contain rules of the form ε 7→ y. The consideration of this
kind of rules is not difficult.

For every a ∈ ExpφR
(resp. LinφR

), let π(a) be the smallest strictly positive

integer such that aa (resp. a) is in φ
π(a)
R (a). Then, let π = lcm {π(a) : a ∈

RecφR
}, and let ψR = φπ

R. It is easy to see that ψR is a normal finite weak
substitution. Since for every symbol a ∈ Σ, we have φ∗

R(L) =
⋃π−1

i=1 φ
i
R(ψ∗

R(L)),
we deduce that:

Lemma 2. For every finite set of 1-dim context-free rewriting rules R, and
every language L, if the set ψ∗

R(L) is effective, then the set φ∗
R(L) is effective.

By Lemma 2, and since ψR is a normal finite weak substitution, in order
to compute the image by φ∗

R of a language L, it is sufficient to know how to
compute the image of L for every given normal finite weak substitution. The
remainder of the proof consists in showing that this is possible. For the sake
of simplicity, we show this fact for L reduced to a symbol. The generalization
to any regular language is not difficult. Therefore, we prove the following key
proposition.

Proposition 2. For every normal finite weak substitution φ, and every symbol
a ∈ Σ, the set φ∗(a) is effectively SRE representable.

Proof. To present the proof, we need to introduce some notions and to establish
several lemmas. Let φ be a substitution. Then, for any positive integer B, we
say that a symbol a is B-regular if φB+n(a) ⊆ φB+n+1(a) for every n ≥ 0.
This means that, after the B first applications of φ, the iteration of φ yields a
non-decreasing sequence of sets (i.e., each application of φ augments or at least
preserves the given set).

Remark 1. By definition, if a symbol is B-regular, then it is necessarily B′-
regular for every B′ ≥ B.

Let us consider some simple facts. The first one is that, since a ∈ φ(a), all
recursive symbols (hence, all linear and expansive symbols) are 0-regular.

Lemma 3. Let φ be normal finite weak substitution. Then, for every a ∈ Recφ,
a is 0-regular.

Next lemma says that φ∗(a) is effective when a ∈ Expφ.

Lemma 4. Let φ be a normal finite weak substitution. Then, for every a ∈ Expφ,
φ∗(a) = (Σφ(a))∗.

Now, we give the main lemma which allows to prove Proposition 2. The proof
of this lemma itself involves several lemmas (Lemmas 6, 7, 8, 9, 10, 11, and 12)
which allow to establish that φ∗(a) is effective when a ∈ Linφ.

Lemma 5. Let φ be a normal finite weak substitution. Then, for every a ∈ Σ,
there exists a B ≥ 0 such that a is B-regular and φ∗(a) is effectively regular.

646 P.A. Abdulla, L. Boasson, and A. Bouajjani

Proof. The proof is by induction on the level of the symbols.

Basis: Let a ∈ Σ such that level(a) = 0. If a is nonrecursive, then φ(a) = {ε},
and hence, a is 1-regular, and φ∗(a) = {ε} is effectively regular. If a is expansive,
then by Lemma 3 and Lemma 4, we know that a is 0-regular and φ∗(a) is
effectively regular. If a is linear, then by Lemma 3 a is 0-regular. Moreover,
since level(a) = 0, we have φ(a) = Σφ(a), and hence φ∗(a) = [a] is effectively
regular.

Inductive step: Let us now consider a symbol a such that level(a) = k + 1
for some k ≥ 0, and assume, by induction hypothesis and Remark 1, that there
exists B ≥ 0 such that every symbol b of level at most k is B-regular, and φ∗(b)
is effectively regular. We show that the symbol a is (B + 1)-regular and that
φ∗(a) is effectively regular.

Case 1: a is nonrecursive. Then, for every b ∈ Σφ(a), level(b) < level(a). By
induction hypothesis, for every b ∈ Σφ(a), b is B-regular and φ∗(b) is effective.
It easy to see that a is (B + 1)-regular and φ∗(a) is effectively regular.

Case 2: a is expansive. By Lemma 3, we know that a is 0-regular, and hence,
a is (B + 1)-regular (for any B ≥ 0). Moreover, by Lemma 4, we know that
φ∗(a) is effectively regular.

Case 3: a is linear. We know by Lemma 3 that a is 0-regular, and hence that
it is (B + 1)-regular. It remains to show that φ∗(a) is effectively regular.

Let us consider the context-free grammar Ga = (Na, Ta, Sa, ρa) such that:

– the set of nonterminal symbols is Na = [a],
– the set of terminal symbols is Ta = Σφ(a) \ [a],
– the start symbol is Sa = a,
– the set of rules is ρa = {b → w : b ∈ [a] and w ∈ φ(b)}.

Notice that, since a is linear, the rules of Ga are either nonterminal rules of the
form b → ub′v, where b′ ∈ [a] and u, v ∈ T ∗

a , or terminal rules of the form b → w
where w ∈ T ∗

a . Since φ is normal, we have by definition rules of the form b → b
for any b ∈ [a].

We index the nonterminal rule from 1 to n1 and the terminal rules from 1 to
n2, where n1 (resp. n2) is the number of nonterminal (resp. terminal) rules in Ga.
Then, we derive from Ga another context-free grammar Ĝa = (Na, T̂a, Sa, ρ̂a)
where:

– T̂a = {〈u〉i, 〈v〉i : ∃r = b → ub′v ∈ ρa. index (r) = i} ∪ {〈〈w〉〉i : ∃r = b →
w ∈ ρa. w ∈ T ∗

a and index (r) = i}.
– ρ̂a = {b → 〈u〉ib

′〈v〉i : ∃r = b → ub′v ∈ ρ. index (r) = i} ∪ {b → 〈〈w〉〉i :
∃r = b → w ∈ ρ. w ∈ T ∗

a and index (r) = i}.

The following lemmas show the links between derivation in the grammar Ĝa

and the iterations of the substitution φ.

Effective Lossy Queue Languages 647

Lemma 6. If there is a derivation in Ĝa of length ` from a to some nonterminal
word, then this word is of the form 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1b〈v1〉i1〈v2〉i2 · · · 〈v`〉i`
,

and

φ`−1(u`) · · ·φ(u2)u1bv1φ(v2) · · ·φ`−1(v`) ⊆ φ`(a).

Lemma 7. For every word ubv ∈ φ`(a) where b ∈ [a], there exists a derivation
in Ĝa of length ` from a to some nonterminal word of the form

〈u`〉i`
· · · 〈u2〉i2〈u1〉i1b〈v1〉i1〈v2〉i2 · · · 〈v`〉i`

such that u ∈ φ`−1(u`) · · ·φ(u2)u1, and v ∈ v1φ(v2) · · ·φ`−1(v`).

Lemma 8. If there is a derivation in Ĝa of length ` from a to some ter-
minal word, then this word is of the form 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1〈〈w〉〉i〈v1〉i1

〈v2〉i2 · · · 〈v`〉i`
, and

φ`(u`) · · ·φ2(u2)φ(u1)wφ(v1)φ2(v2) · · ·φ`(v`) ⊆ φ`(a).

The proofs of the three lemmas above are by straightforward inductions.

Lemma 9. For every terminal word σ in φ`(a) (i.e., σ ∈ T ∗
a ∩ φ`(a)), there

exists an integer m ≤ ` and a derivation in Ĝa of length m from a to some
terminal word µ = 〈um〉im

· · · 〈u2〉i2〈u1〉i1〈〈w〉〉i〈v1〉i1〈v2〉i2 · · · 〈vm〉im
such that

σ ∈ φ`−m[φm(um) · · ·φ2(u2)φ(u1)wφ(v1)φ2(v2) · · ·φm(vm)].

Proof. The fact that σ ∈ φ`(a) implies that there are words σ0, σ1, . . . , σ` such
that σ0 = a, σ = σ`, and σi+1 ∈ φ(σi) for every i ∈ {0, . . . , `− 1}. Let σi be the
last word in this sequence which contains a symbol b ∈ [a]. This means that after
i applications of φ, we get a terminal word σi+1. Let m = i+ 1 and µ = σm. By
Lemma 7, we know that there exists a derivation in Ĝa of length i = m−1 from a
to some nonterminal word µ′ = 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1b〈v1〉i1〈v2〉i2 · · · 〈v`〉i`
such

that µ ∈ φm−1(um) · · ·φ(u2)u1bv1φ(v2) · · ·φm−1(vm). The result follows from
the fact that µ can be derived in Ĝa from µ′ using a terminal rule, and from the
fact that σ ∈ φ`−m(µ). 2

Now, the following lemmas show the key property which allows to compute
φ∗(a) by iterating the application of φ only a finite number of times, thanks to
B-regularity.

Lemma 10. If there is a derivation in Ĝa of length ` from a to some nonter-
minal word 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1b〈v1〉i1〈v2〉i2 · · · 〈v`〉i`
, then

φ≥B(u`) · · ·φ≥B(uB+1)φB−1(uB) · · ·φ(u2)u1b

v1φ(v2) · · ·φB−1(vB)φ≥B(vB+1) · · ·φ≥B(v`) ⊆ φ∗(a)

648 P.A. Abdulla, L. Boasson, and A. Bouajjani

Proof. Suppose that there is a derivation δ in Ĝa from a to the nonterminal
word α = 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1b〈v1〉i1〈v2〉i2 · · · 〈v`〉i`
, and consider a word σ in

φ≥B(u`) · · ·φ≥B(uB+1)φB−1(uB) · · ·φ(u2)u1b

v1φ(v2) · · ·φB−1(vB)φ≥B(vB+1) · · ·φ≥B(v`). (1)

Hence, σ can be written µ` · · ·µB+1µB · · ·µ2µ1bν1ν2 · · · νBνB+1 · · · ν` where
µi ∈ φi−1(ui) and νi ∈ φi−1(vi) for every i ∈ {1, . . . , B}, and for every i ∈
{B + 1, . . . , `}, there is mi, ni ≥ B such that µi ∈ φmi(ui) and νi ∈ φni(vi). Let
κ = max {ni,mi : B + 1 ≤ i ≤ `}. Then, using the property of B-regularity
(see Remark 1), we deduce from (1) that σ is in the set:

φκ+`−(B+1)(u`) · · ·φκ(uB+1)φB−1(uB) · · ·φ(u2)u1b

v1φ(v2) · · ·φB−1(vB)φκ(vB+1) · · ·φκ+`−(B+1)(v`). (2)

Now, consider the derivation δ in Ĝa leading to the word α defined in the begin-
ning of the proof. This derivation can be decomposed as a ∗=⇒ β

∗=⇒ α, where
β = 〈u`〉i`

· · · 〈uB+1〉iB+1b
′〈vB+1〉iB+1 · · · 〈v`〉i`

where b′ ∈ [a]. This means that
we have a sub-derivation δ′ of the form b′ ∗=⇒ 〈uB〉iB

· · · 〈u1〉i1b〈v1〉i1 · · · 〈vB〉iB
.

We define another derivation in Ĝa which produces first the word β as in δ, then
iterates κ− B times the rule b′ → 〈ε〉b′〈ε〉 (recall that b′ → b′ must exist in Ga

since the original substitution φ is normal), and finally applies the rules of δ′.
This derivation produces a nonterminal word α′ of the form

〈u`〉iκ+`−B
· · · 〈uB+1〉iκ+1〈ε〉κ−B〈uB〉iB

· · · 〈u1〉i1b

〈v1〉i1 · · · 〈vB〉iB
〈ε〉κ−B〈vB+1〉iκ+1 · · · 〈v`〉iκ+`−B

.

Then, we deduce from (2) and Lemma 6 that σ ∈ φ∗(a). This completes the
proof of Lemma 10. 2

Lemma 11. If there is a derivation in Ĝa of length ` from a to some terminal
word 〈u`〉i`

· · · 〈u2〉i2〈u1〉i1〈〈w〉〉i〈v1〉i1〈v2〉i2 · · · 〈v`〉i`
, then

φ≥B(u`) · · ·φ≥B(uB)φB−1(uB−1) · · ·φ(u1)w
φ(v1) · · ·φB−1(vB−1)φ≥B(vB) · · ·φ≥B(v`) ⊆ φ∗(a).

Proof. Similar to the proof of Lemma 10. 2

We are now able to give a construction for φ∗(a): Consider the nontermi-
nal words 〈u`〉i`

· · · 〈u1〉i1b〈v1〉i1 · · · 〈v`〉i`
generated by the grammar Ĝa. They

form an effective linear context-free language. By a regular transduction, we can
decorate the terminal symbols in these words by indices in {0, 1, ..., B} in the
following manner: each nonterminal symbol 〈uj〉ij

or 〈vj〉ij
is decorated by j−1

if j < B, otherwise by B. This yields another effective context-free linear lan-
guage. Now, by induction hypothesis, we know that for every symbol b in Ta,
the set φ∗(b) is effective, and hence, the set φ≥B(u) is effective, for any u ∈ T ∗

a .
Therefore, we can use another transduction to substitute the finite set φj(u) to

Effective Lossy Queue Languages 649

each nonterminal symbol 〈u〉i decorated by an index j < B, and to substitute
the (effective) regular set φ≥B(u) to each 〈u〉i decorated by the index B. We get
in this manner a new linear context-free language, we call L1.

We apply a similar process to terminal words 〈u`〉i`
· · · 〈u1〉i1〈〈w〉〉i〈v1〉i1

· · · 〈v`〉i`
generated by Ĝa. In this case, the central symbol 〈〈w〉〉i is decorated

by index 0, and each nonterminal symbol 〈uj〉ij
or 〈vj〉ij

is decorated by j if
j < B, otherwise by B. As in the previous cases, we obtain an effective linear
language. Let us call this language L0

2. Then, we repeat this process, but this
time, we move up all the indices by one. In this manner, the regular substitution
performed after the indexing step replaces 〈〈w〉〉i by φ(w), all the 〈uj〉ij

’s such
that j < B − 1 by φj+1(uj), and all the 〈uj〉ij

’s such that j ≥ B − 1 by φB(uj).
Let us call L1

2 the so obtained linear language. We repeat this process B times.
The union of all the languages Lj

2 is an effective linear language L2.

Lemma 12. The language L1∪L2 is precisely φ∗(a) and it is effectively regular.

Proof. By Lemma 10 and Lemma 11, we know that L1 ∪ L2 ⊆ φ∗(a). Let us
consider the reverse inclusion. Let σ be a word in φ∗(a). There are two cases to
consider:

First, suppose that σ is a nonterminal word (i.e., of the form ubv where
b ∈ [a]). Then, by Lemma 7 we know that σ ∈ L1.

Consider now that σ is a terminal word (i.e. σ ∈ T ∗
a). Then, by Lemma 9,

there exists an intermediate terminal word σ′ such that σ′ ∈ L0
2 and σ ∈ φn(σ)

for some n ≥ 0. It can be seen that, if n < B, then σ ∈ Ln
2 , otherwise σ ∈ LB

2 . In
both cases, σ ∈ L2. This completes the proof of the fact that L1 ∪ L2 = φ∗(a).

As for the effective regularity of L1 ∪ L2, we know that this language is
an effective context-free language, but we know also that it must be a down-
ward closed language since φ is downward closed. Then, the result follows from
Proposition 1. 2

Lemma 12 completes the case where a is a linear symbol in the inductive step
of the proof of Lemma 5. Hence, Lemma 5 is proved. 2

Proposition 2 follows from Lemma 5 and Theorem 1. 2

Theorem 2 follows from Lemma 1, Lemma 2, and Proposition 2. 2

Remark 2. By proving the result above (in fact from Lemma 2, and Proposi-
tion 2), we have proved that the set of words generated by any weak 0L-system
is an SRE effective set.

We can adapt the proof presented above in order to show that the set of
subwords of the language generated by any 0L-system is an effective SRE set.

Theorem 3. For every context-free language L, and every 0L-system (R,ϕR),
the set ϕ∗

R(L)↓ is effectively SRE representable.

650 P.A. Abdulla, L. Boasson, and A. Bouajjani

4 Unconstructibility Results

We show in this section that the weak cyclic closure is unconstructible in general,
even though we know that it is always regular. For that, we use known results on
lossy channel systems (LCS for short). Such a system consists of a finite-state
machine operating on a single FIFO buffer which is unbounded and lossy in
the sense that it can nondeterministically lose messages (see [AJ96] for a formal
definition).

The set of reachable configurations of any LCS from any given configuration
is downard closed. Thus, we can deduce from Theorem 1 that this set is SRE
definable. However, from [May00] we know the following:
Lemma 13. For any LCS L and any configuration γ, the set of reachable con-
figuration of L starting from γ is in general not computable.

We use this lemma to establish that the weak cyclic closure is not con-
structible already for 1-dim rewriting systems. For that, given a lossy channel
system L, we derive a 1-dim cyclic rewriting system R which “simulates” L.
This simulation can be done as soon as we allow rules with two symbols in their
left hand sides.

Theorem 4. There is no algorithm which can construct the set R∗
wc(ε) for any

given finite set of 1-dim rewriting rules R.

The actions of a LCS can be straightforwardly encoded as rules of a 2-dim
context-free cyclic rewriting system. Hence, we have the following fact.

Theorem 5. There is no algorithm which can construct the set R∗
wc(ε, ε) for

any given finite set of 2-dim context-free rewriting rules R.

5 Constructibility for n-Dim Context-Free Rings

We show in this section that the weak cyclic closure is constructible for a special
kind of 2-dim context-free rewriting systems.

A set of n-dim rewriting rules R is a ring if, for every rule r : (x1, . . . , xn) 7→
(y1, . . . , yn) in R, ∃i ∈ {1, . . . , n}. ∀j 6= i. xj = ε and ∀j 6= (i+1) mod n. yj = ε.
Hence, r is either of the form (ε, . . . , ε, xi, ε, . . . , ε) 7→ (ε, . . . , ε, yi+1, ε, . . . , ε) or
of the form (ε, . . . , ε, xn) 7→ (y1, ε, . . . , ε). Notice that every set of 1-dim rewriting
rules is a 1-dim ring and vice-versa.

We consider hereafter n-dim context-free rings, i.e., the xi’s are symbols in
Σ. Intuitively, the rules of these systems correspond to actions of FIFO-channel
systems where a symbol x is received from some channel of index i, and a word
y is sent to the channel of index (i+ 1) mod n.

We can show that the computation of the weak cyclic closure for rings can be
reduced to the problem of computing the weak cyclic closure of 1-dim context
free rewriting systems.

Theorem 6. For every n-dim context-free ring R, and every n-dim language L
which is a product of n context-free languages (effectively described by context-
free grammars), the set R∗

wc(L) is effectively SRE representable.

Effective Lossy Queue Languages 651

References

[AAB99] Parosh Aziz Abdulla, Aurore Annichini, and Ahmed Bouajjani. Algorith-
mic verification of lossy channel systems: An application to the bounded
retransmission protocol. In TACAS’99. LNCS 1579, 1999.

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-
fly analysis of systems with unbounded, lossy fifo channels. In CAV’98.
LNCS 1427, 1998.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unre-
liable channels. Information and Computation, 127(2):91–101, 1996.

[BBK93] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimula-
tion equivalence for processes generating context-free languages. Journal
of the ACM, (40):653–682, 1993.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In CAV’96. LNCS 1102,
1996.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In SAS’97. LNCS 1302, 1997.

[BH97] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. In ICALP ’97.
LNCS 1256, 1997.

[Bur98] O. Burkart. Queues as processes. Electrnic Notes in Theoretical Com-
puter Science, 18, 1998.

[CFI96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable Chan-
nels Are Easier to Verify Than Perfect Channels. Information and Com-
putation, 124(1):20–31, 1996.

[CHS92] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is
decidable for all context-free processes. In CONCUR ’92. LNCS, 1992.

[Cou91] B. Courcelle. On constructing obstruction sets of words. EATCS, 44:178–
185, June 1991.

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. In CAV’90,
1990.

[GH94] J.F. Groote and H. Hüttel. Undecidable equivelences for basic process
algebra. Information and Computation, 1994.

[GvdP93] J.F. Groote and J. van de Pol. A bounded retransmission protocol for
large data packets. Tech. report, Dept. of Philosophy, Utrecht University,
Oct. 1993.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[May00] R. Mayr. Undecidable problems in unreliable computations. In
LATIN’2000. LNCS 1776, 2000.

[RS80] G. Rozenberg and A. Salomaa. The Mathematical Theory of L-systems.
Academic Press, 1980.

[Sti96] C. Stirling. Decidability of bisimulation equivalence for normed push-
down processes. In CONCUR’96. LNCS 1119, 1996.

Model Checking of Unrestricted Hierarchical
State Machines

Michael Benedikt1, Patrice Godefroid1, and Thomas Reps2

1 Bell Laboratories, Lucent Technologies, {benedikt,god}@bell-labs.com
2 University of Wisconsin, reps@cs.wisc.edu

Abstract. Hierarchical State Machines (HSMs) are a natural model for
representing the behavior of software systems. In this paper, we investi-
gate a variety of model-checking problems for an extension of HSMs in
which state machines are allowed to call each other recursively.

1 Introduction

Hierarchical State Machines (HSMs) are finite-state machines whose states them-
selves can be other machines. HSMs form the basis of several commercial model-
ing languages, such as StateCharts, ObjecTime, and UML. Various verification
problems for HSMs without recursion have been studied in [5,4,3].

In this paper, we investigate an extension of HSMs in which machines are
allowed to call each other recursively. Such “unrestricted” HSMs are strictly
more expressive than the previously-studied HSM model since HSMs with re-
cursion can model classes of infinite-state systems. For instance, unrestricted
HSMs can be used to model the control-flow graphs of procedures in program-
ming languages such as C. Unrestricted HSMs are therefore a natural model for
reasoning about the abstract behavior of reactive software programs.

We study several verification problems for unrestricted HSMs. First, we de-
fine several classes of unrestricted HSMs (or HSMs for short), and establish cor-
respondence theorems with previously-existing classes of infinite-state systems.
Specifically, we show that “single-exit” HSMs, i.e., HSMs composed exclusively of
machines each with a single exit state, have the same expressiveness as context-
free processes, while general “multiple-exit” HSMs have the same expressiveness
as pushdown processes. From these correspondence theorems and known veri-
fication results for context-free and pushdown systems, we immediately obtain
algorithms and complexity bounds for various verification problems on HSMs.

We then show how some of the above results can be improved via new verifi-
cation algorithms. We present an LTL model-checking algorithm for unrestricted
HSMs. This algorithm shows that LTL model checking for single-entry multiple-
exit HSMs (i.e., HSMs composed of machines each with a single entry state, but
possibly multiple exit states) can be solved in time linear in the size of the HSM,
instead of cubic time as previously known. This implies that the reachability and
cycle-detection problems can be solved in linear time for single-entry HSMs.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 652–666, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Model Checking of Unrestricted Hierarchical State Machines 653

We also present a new model-checking algorithm for the logic CTL∗ and
single-exit HSMs. The algorithm runs in time linear in the size of the HSM,
instead of quadratic time, the best previously-known upper bound. Due to the
correspondence results mentioned above, this algorithm also provides an im-
proved upper bound for CTL∗ model checking of context-free processes.

2 Unrestricted Hierarchical State Machines

A (flat) Kripke structure K over a set of atomic propositions P is a tuple
(S, R, L), where S is a (possibly infinite) set of states, R ⊆ S × S is a tran-
sition relation, and L : S 7→ 2P is a labeling function that associates with each
state the set of atomic propositions that are true in that state.

In this paper, we consider unrestricted hierarchical state machines (HSMs) M
over a set P of atomic propositions; these consist of a set of component structures
{M1, . . . , Mn}, where each of the Mi has

– A nonempty finite set Ni of nodes.
– A finite set Bi of boxes.
– A nonempty subset Ii of Ni, called the entry-nodes of Ni.
– A nonempty subset Oi of Ni, called the exit-nodes of Ni.
– A labeling function Xi : Ni 7→ 2P that labels each node with a subset of P .
– An indexing function Yi : Bi 7→ {1, . . . , n} that maps each box of Mi to the

index j of some structure Mj .
– A set Ci of pairs of the form (b, e), where b is a box in Bi and e is an

entry-node of Mj with j = Yi(b), called the call-nodes of Bi.
– A set Ri of pairs of the form (b, x), where b is a box in Bi and x is an

exit-node of Mj with j = Yi(b), called the return-nodes of Bi.
– An edge relation Ei. Each edge in Ei is a pair (u, v) such that (1) u is either

a node in Ni or a return-node in Ri, and (2) v is either a node in Ni or a
call-node in Ci.

M1 is called the top-level structure of M. The above definition is essentially that
of Alur and Yannakakis [5]; however, we permit component structures to call
each other recursively. An example of an unrestricted HSM is shown in Fig. 1.

To simplify notation in what follows, we assume that the sets Ii and Oi are all
pairwise disjoint, as are the sets Ci and Ri. (Note that Ci and Ri are technically
not part of Ni.) To be able to find all of the boxes that call a given component
machine j, we define callers(j) = {(b, i) | Yi(b) = j}.

An HSM M is called single-entry if every structure Mi in M has exactly one
entry-node (i.e., ∀1 ≤ i ≤ n : |Ii| = 1). An HSM M is called single-exit if every
structure Mi in M has exactly one exit-node (i.e., ∀1 ≤ i ≤ n : |Oi| = 1).

Each structure Mi can be associated with an ordinary Kripke structure,
denoted K(Mi), by recursively substituting each box b ∈ Bi by the structure
Mj with j = Yi(b). Since we allow state machines to call each other recursively,
the expanded structure K(Mi) can be infinite. A state of the expanded Kripke
structure K(M) is defined by a node and a finite sequence of boxes that specify

654 M. Benedikt, P. Godefroid, and T. Reps

M1

start
success

abort

send wait

failnack

ack

timeout

ok

M2

send
ok

fail

ok

fail
send

b1 calls M2

b2 calls M2

nack

send wait ack

timeout

ok

fail

nack

send wait ack

timeout

ok

fail

start

abort

success

Etc.
Etc.

send Etc.

b1 b1

b1

b1

b1

b1

b1

b1b2 b1b2

b1b2

b1b2 b1b2

b1b2

b1b2

b1b2b2

Fig. 1. An example of an unrestricted HSM (left) and its expansion (right). The top-
level structure M1 has one box, which calls structure M2. Structure M2 models an
attempt to send a message; if no positive or negative acknowledgment is received, a
timeout occurs and a recursive call to M2 is performed.

the context. Formally, the expansion K(M) of an HSM M is the Kripke structure
(S, R, L) defined as follows:

– S ⊆ ⋃n
i=1 Ni × (

⋃n
i=1 Bi)∗.

– R is the set of transitions ((v, w), (v′, w′)) that satisfy any of the following:
• (v, v′) ∈ Ei, v, v′ ∈ Ni and w = w′.
• (v, (b′, e′)) ∈ Ei, v ∈ Ni, v′ = e′, and w′ = wb′.
• ((b, x), v′) ∈ Ei, v = x, v′ ∈ Ni, and w = w′b.
• ((b, x), (b′, e′)) ∈ Ei, v = x, v′ = e′, and w′ = w′′b′ with w = w′′b.

– L : S 7→ 2P is defined by L((v, w)) = Xi(v) with v ∈ Ni.

The (infinite) expansion K(M1) of the HSM of Fig. 1 is shown on the right
of the figure, where the finite sequence of boxes corresponding to each state is
indicated on top of the state when it is nonempty (e.g., the state “(send,b1b2)”
is depicted as the state “send” labeled with “b1b2”). We will write K(M) to
denote the expansion of the top-level structure M1 of an HSM M .

3 Expressiveness of Unrestricted HSMs

Unrestricted HSMs are closely related to several existing models for infinite-
state systems, namely context-free grammars and pushdown automata. In this
section, we compare the expressiveness and concision of these models. We also
compare the expressiveness of the four classes of unrestricted HSMs defined in
the previous section, namely single-entry single-exit, single-entry multiple-exit,
multiple-entry single-exit, and multiple-entry multiple-exit HSMs.

Since we are interested in the temporal behavior of systems, our comparison
of expressiveness is based on the existence of bisimulation relations between the
Kripke structures corresponding to the expansions of these different classes of
models. Given two Kripke structures M1 = (S1, R1, L1) and M2 = (S2, R2, L2),
a binary relation B ⊆ S1 × S2 is a bisimulation relation if (s1, s2) ∈ B implies:
(1) L1(s1) = L2(s2), (2) if (s1, s

′
1) ∈ R1, then there is some s′2 ∈ S2 such that

Model Checking of Unrestricted Hierarchical State Machines 655

(s2, s
′
2) ∈ R2 and (s′1, s

′
2) ∈ B, and (3) if (s2, s

′
2) ∈ R2, then there is some

s′1 ∈ S1 such that (s1, s
′
1) ∈ R1 and (s′1, s

′
2) ∈ B. Two states s1 and s2 are

bisimilar, denoted s1 ∼ s2, if they are related by some bisimulation relation.
By extension, we say that two Kripke structures M1 and M2 are bisimilar if
∀s1 ∈ S1 : ∃s2 ∈ S2 : s1 ∼ s2 and ∀s2 ∈ S2 : ∃s1 ∈ S1 : s1 ∼ s2.

Obviously, any multiple-entry machine with k entry-nodes can be replaced by
k machines, each with a single entry-node. Therefore, the expressiveness of single-
entry and multiple-entry HSMs is the same, although multiple-entry HSMs can
be more concise than their equivalent single-entry HSM. In contrast, we show
in the remainder of this section that single-exit and multiple-exit HSMs have
different expressivenesses. Indeed, single-exit HSMs have the same expressiveness
as context-free processes while multiple-exit HSMs have the same expressiveness
as pushdown processes.

An alphabetic labeled rewrite system [9] is a triple R = (V, Act, R) where
V is an alphabet, Act is a set of labels, and R ⊂ V × Act × V ∗ is a finite
set of rewrite rules. The prefix rewriting relation of R is defined by 7→R=
{(uw, a, vw)|(u, a, v) ∈ R, w ∈ V ∗}. The labeled transition graph TR = (V ∗, Act,
7→R) is called the prefix transition graph ofR. Since the leftmost derivation graph
of any context-free grammar [14] is the prefix transition graph of an alphabetic
rewrite system [9], such prefix transition graphs are sometimes called context-
free processes. For purposes of comparison with HSMs, we define the expansion
of R as the (possibly infinite) Kripke structure K(R) defined as follows: a state
of K(R) is a pair (a, w) ∈ Act× V ∗ such that (v, a, w) ∈7→R for some v ∈ V ∗; a
transition of K(R) is a pair ((a, w), (a′, w′)) such that (w, a′, w′) is in 7→R; the
label of state (a, w) is a. We can now prove the following theorem:

Theorem 1. For any alphabetic labeled rewrite system R, one can construct in
linear time a single-exit HSM M such that K(R) and K(M) are bisimilar.

The converse of the previous theorem also holds:

Theorem 2. For any multiple-entry single-exit HSM M , one can construct in
linear time an alphabetic labeled rewrite system R such that K(M) and K(R)
are bisimilar.

We now establish a similar correspondence between multiple-exit HSMs and
pushdown processes. A pushdown automaton (e.g., [14]) is a tuple A = (Q, Act, Γ,
δ, q0) where Q is a finite set of states, Act is an alphabet called the input alphabet,
Γ is a set of stack symbols, q0 ∈ Q is the initial state, and δ is a mapping from
Q×Act× Γ to finite subsets of Q× Γ ∗. The initial configuration of the system
is (q0, ε). The expansion of A is the (possibly infinite) Kripke structure K(A)
defined by the expansion of the prefix rewriting relation 7→δ⊆ (Q×Γ ∗)×Act×
(Q×Γ ∗) itself defined by 7→δ= {((q, Zγ), a, (q′, βγ))|(q′, β) ∈ δ(q, a, Z), γ ∈ Γ ∗}.
We call such a Kripke structure a pushdown process. We have the following:

Theorem 3. For any pushdown automaton A, one can construct in linear time
a multiple-exit HSM M such that K(A) and K(M) are bisimilar.

Conversely, the following theorem also holds:

656 M. Benedikt, P. Godefroid, and T. Reps

Class of HSM Reachability Cycle Detection LTL CTL CTL∗

Restricted Single-exit Linear Linear Linear Linear
Restricted Multiple-exit Linear Linear Linear PSPACE
Unrestricted Single-exit Linear Linear Linear Linear Quadratic

Unrestricted Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Fig. 2. Complexity bounds derived from Sect. 3 and previously known results. (Com-
plexity bounds are given in terms of the size of the HSM.)

Theorem 4. For any multiple-entry multiple-exit HSM M , one can construct in
linear time a pushdown automaton A such that K(M) and K(A) are bisimilar.

Since it is known [9] that there exist pushdown processes that are not bisimilar
to any context-free processes, we obtain the following result:

Theorem 5. There exist multiple-exit HSMs whose expansion is not bisimilar
to the expansion of any single-exit HSM.

4 Complexity of Verification Problems for HSMs

In this section, we discuss the complexity of five verification problems for unre-
stricted HSMs: the reachability problem, the cycle-detection problem, and the
model-checking problems for the logics LTL, CTL, and CTL∗ [10]. Given an un-
restricted HSM M and a set T ⊆ ⋃n

i=1 Ni of distinguished nodes, the reachability
problem is the problem of determining whether some state (v, w) of K(M), with
v ∈ T , is reachable from some initial state (v0, ε), with v0 ∈ I1. Given M and
T , the cycle-detection problem is to determine whether there exists some state
(v, w)of K(M), with v ∈ T , such that (i) (v, w) is reachable from some initial
state (v0, ε), with v0 ∈ I1, and (ii) (v, w) is reachable from itself.

Since restricted HSMs are special cases of unrestricted HSMs, it is worth
reviewing some of the results presented in [5] for the restricted case. Lines 2
and 3 of Fig. 2 summarize the results of [5] concerning the complexity of the
verification problems considered here, except for CTL∗ model checking, which
was not discussed in [5]. Complexity bounds are given in terms of the size of the
restricted HSM; in the case of LTL and CTL model checking, this means the
size of the formula is fixed. (It is also shown in [5] that, for any fixed restricted
HSM, CTL model checking is PSPACE-complete in the size of the formula.)

Thanks to the correspondence theorems established in the previous section,
we can obtain algorithms and complexity bounds for the verification of unre-
stricted HSMs from previously existing algorithms and bounds for the verifica-
tion of context-free and pushdown processes.

For single-exit unrestricted HSMs, Theorem 2 implies that model checking for
single-exit HSMs can be reduced to model checking for context-free processes.
Since context-free processes can be viewed as pushdown processes defined by
pushdown automata with only one state [7,20], and since LTL model checking
for one-state pushdown automata can be solved in time linear in the size of the
pushdown automaton [12,13], LTL model checking for single-exit HSMs can be

Model Checking of Unrestricted Hierarchical State Machines 657

Class of Unrestricted HSM Reachability Cycle detection LTL CTL CTL∗

Multiple-entry Single-exit Linear Linear Linear Linear Linear
Single-entry Multiple-exit Linear Linear Linear EXPTIME EXPTIME

Multiple-entry Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Fig. 3. Improved complexity bounds for unrestricted HSMs. The improved bounds
obtained in Sects. 5 and 6 are highlighted in italic.

solved in time linear in the size of the HSM. This also implies a linear-time
algorithm for the reachability and cycle-detection problems. A linear-time al-
gorithm for CTL model checking for single-exit HSMs can be derived from the
CTL model-checking algorithm for context-free processes given in [7]. Finally,
since the µ-calculus model-checking algorithm of [8] for context-free processes
runs in quadratic time for formulae in the second level of the µ-calculus alterna-
tion hierarchy, which is known to contain CTL∗ [11], CTL∗ model checking for
single-exit HSMs can be solved in time quadratic in the size of the HSM.

In the case of multiple-exit unrestricted HSMs, Theorem 4 implies that model
checking for multiple-exit HSMs can be reduced to model checking for pushdown
processes. Since LTL model checking for pushdown automata can be solved in
time cubic in the size of the pushdown automaton [13,12], LTL model checking
for multiple-exit HSMs can be solved in time cubic in the size of the HSM. More-
over, a cubic-time algorithm for the reachability and cycle-detection problems
can easily be derived from this LTL model-checking algorithm. Since CTL model
checking for pushdown processes is EXPTIME-hard [20] and since CTL is con-
tained in the alternation-free µ-calculus for which the model-checking problem
can be solved with the exponential-time algorithm presented in [6], we can deduce
from Theorems 3 and 4 that the CTL model-checking problem for multiple-exit
HSMs is EXPTIME-complete in the size of the HSM. Similarly, the exponential-
time model-checking algorithm given in [8] for pushdown processes and the full
µ-calculus, which contains CTL∗, and the EXPTIME-hardness result of [20]
imply that the CTL∗ model-checking problem for multiple-exit HSMs is also
EXPTIME-complete in the size of the HSM. The bottom two lines of Fig. 2
summarize the results obtained from the foregoing discussion.

In the remainder of this paper, we present two improvements to the results
listed in Fig. 2. First, in Sect. 5, we present an LTL model-checking algorithm for
unrestricted HSMs, and analyze the complexity of this algorithm. We then show
that LTL model checking for single-entry multiple-exit HSMs can be solved with
this algorithm in time linear in the size of the HSM, instead of cubic time. This
implies that the reachability and cycle-detection problems can also be solved in
linear time for single-entry HSMs. Second, in Sect. 6, we present a new CTL∗

algorithm for single-exit HSMs that runs in time linear in the size of the HSM,
instead of quadratic time. Improved complexity bounds that take into account
these two new results are listed in Fig. 3.

658 M. Benedikt, P. Godefroid, and T. Reps

5 LTL Model Checking

Following the automata-theoretic approach to model checking [19], a model-
checking procedure for a formula φ of linear-time temporal logic can be obtained
by (1) building a finite-state Büchi automaton A¬φ that accepts exactly all the
infinite words satisfying the formula ¬φ, (2) creating a product automaton for
A¬φ and the system to be verified, and (3) checking if the language accepted
by the product automaton is empty. To apply this procedure in our context, we
define the product of a Büchi automaton A¬φ with an HSM1 M = {M1, . . . , Mn}
to be a Büchi-constrained HSM M ′ = {M ′1, . . . , M ′n}: M ′ is an HSM as defined
earlier, where the labeling function encodes a Büchi acceptance condition. In
particular, the nodes in node set N ′i of component structure M ′i are pairs (v, s),
where v ∈ Ni and s is a state of A¬φ. Each box in B′i is also a pair (b, s), where
b ∈ Bi and s is a state of A¬φ, and such that Y ′i ((b, s)) = Yi(b). Moreover, we have
C ′i = {((b, s), (e, s))|(b, s) ∈ B′i and (b, e) ∈ Ci} and R′i = {((b, s), (x, s))|(b, s) ∈
B′i and (b, x) ∈ Ri}. Edges in the edge sets E′i are of the form (v, s) → (v′, s′),
such that there is an edge v → v′ in Ei and a transition (s, `, s′) in A¬φ, where
` ∈ 2P agrees with the set of propositions true at v if v ∈ Ni, or else ` agrees
with the set of propositions true at x if v is a return-node (b, x) ∈ Ri.

We define the labeling function X ′ on nodes (v, s) of M ′ such that X ′((v, s))
is true if s is an accepting state of A¬φ, and false otherwise. Let T denote the set
of nodes of M ′ where X ′ is true. The LTL model-checking problem for an HSM
M and formula φ is thus reduced to checking whether there exists an infinite
sequence w of states in K(M ′) such that w passes through a node in T infinitely
often. (Note that K(M ′) = K(M)×A¬φ, where × denotes the traditional defi-
nition of the product of a Kripke structure with a Büchi automaton.)

The latter problem can in turn be reduced to a graph-theoretic problem ex-
pressed in terms of the finite graph G(M ′) whose nodes are the nodes of M ′ and
whose edges are the edges of M ′ plus the set CallEdges(M ′)∪ReturnEdges(M ′),
where CallEdges(M ′) = {((b, e), e) | e ∈ I ′i, b ∈ B′j , Y

′
j (b) = i} and ReturnEd-

ges(M ′) = {(x, (b, x)) | x ∈ O′i, b ∈ B′j , Y
′
j (b) = i}. This graph finitely and

completely represents K(M ′), while making explicit how behaviors of compo-
nent structures M ′i can be combined with calls and returns between component
structures: every possible execution sequence in K(M ′) is represented by a path
in G(M ′). However, not all paths in G(M ′) represent execution paths of K(M ′):
a path in G(M ′) corresponds to a path in K(M ′) if, when a call finishes, the path
in G(M ′) returns to a return-node of the invoking box. The following definition
characterizes the paths of G(M ′) that correspond to executions of K(M ′).

Definition 6. Give each box in M ′ a unique index in the range 1 . . . |B|, where
|B| is the total number of boxes in M ′. For each box b, label the associated
call-edges and return-edges with the symbols “(b” and “)b”, respectively; label
all other edges with “e”. A path in G(M ′) is called a Bal-path (resp. UnbalLeft-
path) iff the word formed by concatenating, in order, the symbols on the path’s
edges is in the language L(Bal) (resp. L(UnbalLeft)), defined as follows:
1 As usual in this context, we assume for technical convenience that every node in Ni

has an Ei successor.

Model Checking of Unrestricted Hierarchical State Machines 659

function CompSummaryEdges(M : HSM, T ⊆
⋃n

i=1
Ni) returns set of pairs (edge,Bool)

[1] PathEdges, SummaryEdges, WorkList: set of pairs (edge,Bool)

procedure Propagate(e→ v: edge, B: Bool)
[2] if there is no pair of the form (e→ v, B′) in PathEdges then
[3] Insert (e→ v, B) into PathEdges
[4] Insert (e→ v, B) into WorkList
[5] else if (e→ v, B′) ∈ PathEdges ∧ B = true ∧ B′ = false then
[6] PathEdges := (PathEdges − {(e→ v, B′)}) ∪ {(e→ v, B)}
[7] WorkList := (WorkList − {(e→ v, B′)}) ∪ {(e→ v, B)}
[8] fi

end

[9] PathEdges := ∅; SummaryEdges := ∅; WorkList := ∅
[10] for each entry-node e of some Ii, for 1 ≤ i ≤ n do Propagate(e→ e, e ∈ T) od
[11] while WorkList 6= ∅ do
[12] Select and remove a pair (e→ v, B) from WorkList
[13] switch v
[14] case v = (b, e′) ∈ Ci: /* v is a call-node */
[15] for each (b, x) such that ((b, e′)→ (b, x), B′) ∈ SummaryEdges do
[16] Propagate(e→ (b, x), B ∨ B′)
[17] od
[18] end case
[19] case v = x ∈ Oi: /* v is an exit-node */
[20] for each pair (b, j) ∈ callers(i) do /* b ∈ Bj and Yj(b) = i */
[21] if there is no pair of the form ((b, e)→ (b, x), B′) in SummaryEdges then
[22] Insert ((b, e)→ (b, x), B) into SummaryEdges
[23] else if ((b, e)→ (b, x), B′) ∈ SummaryEdges ∧ B = true ∧ B′ = false then
[24] SummaryEdges := (SummaryEdges − {((b, e)→ (b, x), B′)}) ∪ {((b, e)→ (b, x), B)}
[25] fi
[26] for each e′ ∈ Ij such that (e′ → (b, e), B′′) ∈ PathEdges do
[27] Propagate(e′ → (b, x), B ∨ B′′)
[28] od
[29] od
[30] end case
[31] default : /* v ∈ (Ni −Oi) ∪ Ri, i.e., v is not a call-node or an exit-node */
[32] for each v′ such that v → v′ ∈ Ei do Propagate(e→ v′, B ∨ (v′ ∈ T)) od
[33] end case
[34] end switch
[35] od
[36] return(SummaryEdges)

Fig. 4. An algorithm for computing summary-edges for a Büchi-constrained HSM M
with Büchi acceptance condition T .

Bal → Bal Bal
| (j Bal)j 1 ≤ j ≤ |B|
| e
| ε

UnbalLeft → UnbalLeft (j Bal 1 ≤ j ≤ |B|
| Bal

LTL model checking is carried out directly on the Büchi-constrained product-
HSM by means of the two-phase algorithm presented in Figs. 4 and 5. In the
first phase, the dynamic-programming algorithm CompSummaryEdges, shown
in Fig. 4 is applied to an HSM2 M with Büchi acceptance condition T to create a
set of summary-edges. Each summary-edge represents a Bal -path between a call-
node and a return-node, where the two nodes are associated with the same box.
More precisely, CompSummaryEdges creates the set SummaryEdges, which con-
sists of pairs of the form ((b, e) → (b, x), B). Summary-edge ((b, e) → (b, x), B)
indicates that (i) there exists a Bal -path from e to x, and (ii) if Boolean value
2 Henceforth, we drop prime symbols (0) on components of Büchi-constrained HSMs.

660 M. Benedikt, P. Godefroid, and T. Reps

function ContainsTCycle(M : HSM, T ⊆
⋃n

i=1
Ni) returns a set of nodes

[1] SummaryEdges = CompSummaryEdges(M , T)
[2] G = (

⋃n

i=1
Ni ∪ Ci ∪ Ri,

⋃n

i=1
Ei

⋃
CallEdges(M)

⋃
SummaryEdges)

[3] SCCSet = FindSCCs(G, I1) /* I1 is the set of roots of the depth-first search */
[4] for each non-trivial SCC (Nodes, Edges) ∈ SCCSet do
[5] if (Nodes ∩ T 6= ∅) or (∃((b, e)→ (b, x), B) ∈ Edges : B = true) then
[6] return(Nodes)
[7] fi
[8] od
[9] return(∅)

Fig. 5. An algorithm for detecting T-cycles.

B is true, then there exists such a path that passes through at least one node
in T . In addition to tabulating summary-edges, CompSummaryEdges builds up
the set PathEdges: a path-edge (e→ v, B) in PathEdges indicates the existence
of a Bal -path from an entry-node e ∈ Ii of component structure Mi to v, where
v ∈ Ni ∪Ci ∪Ri. As with summary-edges, the Boolean value B records whether
the Bal -path summarized by the edge traverses at least one node in T .

It is possible to make two improvements to CompSummaryEdges: first, path-
edges in each component structure can be “anchored” at exit-nodes rather than
at entry-nodes, and path-edges can be “grown” backwards rather than forwards
(a technique also used in [15]); second, path-edges in component structures Mi

where |Oi| < |Ii| can be anchored at exit-nodes (and path-edges grown back-
wards), whereas in other component structures the path-edges can be anchored
at entry-nodes (and path-edges grown forwards). Henceforth, we mean the latter
version whenever we refer to CompSummaryEdges in what follows.

The second phase of the model-checking algorithm consists of lines [2]–[8]
of function ContainsTCycle of Fig. 5. The goal of ContainsTCycle is to deter-
mine whether any component structure Mi contains a node n such that (i) n is
reachable from some entry-node of I1 along an UnbalLeft-path, and (ii) there is a
non-empty cyclic UnbalLeft-path (which might merely be a cyclic Bal -path) that
starts at n and contains a member of T . ContainsTCycle checks this condition
by searching for (nontrivial) strongly connected components that are reachable
from an entry-node of I1 (line [3]) in a directed graph G that consists of the
nodes and edges of all component structures of M , together with all of M ’s
call-edges, plus the set of summary-edges computed by CompSummaryEdges
(line [2]). The presence of call-edges and summary-edges is what allows informa-
tion to be recovered from G about UnbalLeft-paths in M . The summary-edges
permit ContainsTCycle to avoid having to explore Bal -paths between call-nodes
and return-nodes of the same box, and, in particular, whether such nodes are
connected by a Bal -path that contains a T node.

Theorem 7. Given an HSM M and an LTL formula φ, K(M) satisfies φ iff
the algorithm of Fig. 5 applied to the Büchi-constrained HSM M ×A¬φ and its
corresponding set T returns ∅.

For any component structure Mi, the worst-case time complexity of Comp-
SummaryEdges is equal to Ii, the number of entry-nodes of Mi (or Oi, if the
number of exit-nodes is smaller), multiplied by the number of Ei edges plus

Model Checking of Unrestricted Hierarchical State Machines 661

summary-edges in Mi. In the worst case, each box b ∈ Bi can have a summary-
edge from every call-node (b, e) to every return-node (b, x). Therefore, the con-
tribution of Mi to the time complexity of CompSummaryEdges is bounded by
O(min(Ii, Oi) (Ei + Σb∈BiCbRb)).

The size of the graph G computed by function ContainsTCycle is bounded by
O(Σn

i=1 (Ei+Σb∈Bi
CbRb+Σb∈Bi

Cb), and finding the strongly connected compo-
nents of G can be carried out in time linear in the size of G (e.g., see [1]). Thus,
the total worst-case cost of ContainsTCycle is bounded by O(Σn

i=1 [min(Ii, Oi)
(Ei + Σb∈BiCbRb)]). In the case of single-entry, single-exit, and single-entry
single-exit HSMs, this bound simplifies as follows:

Single-entry HSM Single-exit HSM Single-entry single-exit HSM
O(E + R) O(E + C) O(E + B)

where E, R, C, and B are the total numbers of ordinary edges, return-edges,
call-edges, and boxes, respectively.

Note that the Büchi-constrained HSM M ′ = M×A¬φ obtained by combining
a single-entry (or single-exit) HSM M with the Büchi automaton A¬φ for an LTL
formula φ will typically be multiple-entry (resp. multiple-exit). However, each
component structure M ′

i of M ′ will have at most |S¬φ| entry-nodes (resp. exit-
nodes), where |S¬φ| is the number of states of the automaton A¬φ. Therefore,
for a fixed LTL formula φ, the term min(I ′i, O

′
i) is bounded by the fixed constant

|S¬φ|. Thus, for any fixed LTL formula φ, the LTL model-checking problem for
an unrestricted HSM M that is single-entry or single-exit can be solved in time
linear in the size of M .

6 CTL∗ Model Checking for Single-Exit HSMs

In this section, we present a CTL∗ model-checking algorithm for single-exit HSMs
that runs in time linear in the size of the HSM. The logic CTL∗ uses the tem-
poral operators U (until), X (nexttime) and the existential path quantifier E,
in addition to the operators ¬ (not) and ∨ (or). Two types of CTL∗ formulas,
path formulas and state formulas, are defined by mutual induction. Every atomic
proposition is a state formula as well as a path formula. If p, q are both state for-
mulas (resp., both path formulas) then p∨q and ¬p are also state formulas (resp.,
path formulas). If p and q are path formulas, then pUq and Xp are also path
formulas while Ep is a state formula. We use the abbreviation Fp for trueUp and
Gp for ¬F¬p. Any CTL∗ state formula can be viewed as a boolean combination
of existential formulas. An existential formula is either an atomic proposition
or a CTL∗ state formula of the form E ρ(p(γ1) ← γ1, . . . , p(γn) ← γn), where
ρ is an LTL formula over propositions p(γ1), . . . , p(γn) in which each proposi-
tion p(γi) is substituted by the corresponding CTL∗ state formula γi. (For a
description of the semantics of CTL∗, see [10].)

A key technical challenge is that the truth value of a temporal-logic formula in
any state (v, w) of K(M) may not only depend on the node v but also on the stack
contents w. Fortunately, it is sufficient to consider only finitely many equivalence

662 M. Benedikt, P. Godefroid, and T. Reps

function SPLIT(φ: LTL formula) returns Set of pairs (β ∈LTL+, δ ∈LTL)
[1] if (φ = P) then return({(P, true)})
[2] if (φ = φ1 ∨ φ2) then return(SPLIT(φ1) ∪ SPLIT(φ2))
[3] if (φ = ¬φ1) then return(

⋃
A⊆SPLIT(φ1)

(
∧

(β,δ)∈A
¬β,
∧

(β,δ)∈SPLIT(φ1)−A
¬δ))

[4] if (φ = Xp) then return(
⋃

(β,δ)∈SPLIT(p)
(Xβ, δ) ∪ {(exit, p)})

[5] if (φ = pUq) then return(
⋃
∅6=A⊆SPLIT(p)

(G
∨

(β,δ)∈A
β,
∧

(β,δ)∈A
δ ∧ pUq)

∪
⋃
∅6=A⊆SPLIT(p)

⋃
(β′,δ′)∈SPLIT(q)

(
∨

(β,δ)∈A
(βUβ′), δ′ ∧

∧
(β,δ)∈A

δ))}

Fig. 6. The function SPLIT.

classes of possible stack contents, each equivalence class being represented by a
context, as already observed in [7,8,5]. A context is a set of (here CTL∗) formulas
whose truth value at the exit node of a machine Mi determine the truth value
of a formula φ at the root. The notion of context makes it possible to reason
compositionally about HSMs.

Our algorithm exploits this idea and reduces the evaluation of a path formula
φ on a sequence w; w′ of states, where w is finite while w′ is infinite, to the
evaluation of some formulas β and δ on the sequences w and w′, respectively.
We introduce a special atomic proposition exit, which holds only at the final
state of a finite sequence w, and denote by LTL+ the set of LTL formulas that
can be expressed using this extended set of atomic propositions. The function
SPLIT given in Fig. 6 specifies how the evaluation of an LTL formula φ can be
decomposed as described above. (A conjunction over an empty set of formulas
is defined to have the value true.) For instance, w; w′ |= Xp can be decomposed
either into w |= Xp and w′ |= true (for the case where |w| > 1), or into w |= exit
and w′ |= p (for the case where |w| = 1).

Given a set F of CTL∗ state formulas, let exists(F) denote the set of exis-
tential formulas that are elements or subformulas of elements of F . A set F of
existential CTL∗ formulas is closed if, for every γ = Eρ(p(γ1)← γ1, . . . , p(γn)←
γn) ∈ exists(F), for every δ such that (β, δ) ∈SPLIT(ρ), Eδ(p(γ1) ← γ1, . . . ,
p(γn)← γn) is also in F . The closure cl(φ) of a CTL∗ formula φ is the smallest
closed set containing exists({φ}). One can show, using properties of SPLIT, that
cl(φ) is always finite for any CTL∗ formula φ. Let pd(φ) be the maximal nesting
of path quantifiers (E) in a CTL∗ formula φ. Given a set F of CTL∗ formulas,
let pd(F) =maxγ∈F (pd(γ)). For φ with pd(φ) ≥ j, let cl≤j(φ) be the elements
of cl(φ) with at most j nested path quantifiers. Clearly, cl≤j(φ) is a closed set
and pd(cl≤j(φ))=j.

For any closed set F , an F -context is any assignment of truth values to all
elements of F . We say that a Kripke structure K with a single initial state s0
satisfies an F -context C, written K |= C, if, for all γ ∈ F , (K, s0) |= γ iff
C(γ) = true. An F -context is consistent if it is satisfied by some structure. All
the F -contexts generated by our model-checking algorithm will be consistent by
construction. We often identify an F -context with the elements set to true by
it. For an HSM M , a node v ∈ M , an F -context C, and a formula γ ∈ F ,
we say (M, v) satisfies γ in context C, written (M, v) |=C γ, if, for all K ′,
K ′ |= C ⇒ ((K(M); K ′), v) |= γ, where K(M); K ′ is the Kripke structure

Model Checking of Unrestricted Hierarchical State Machines 663

function MAKE CONT(F : closed set of CTL∗existential formulas,
M : HSM over {γ ∈ F :pd(γ)< pd(F)},C: F -CONTEXT) returns HSM over F

/* We assume M = {M1, . . . , Mn} with Mi = (Ni, Bi, Ii, Oi, Xi, Yi, Ci, Ri, Ei) */
[1] M1 = TopLevelMachine(M)
[2] for each γ ∈ F with γ = E ρ(p(γ1)← γ1, . . . , p(γn)← γn) do
[3] N(γ) = LTLALG(E ρ, M) /* Precompute all the LTL results needed */
[4] for each (β, δ) ∈ SPLIT(ρ)
[5] N(β) = LTLALG(E (β ∧ F exit), M)
[6] for each Mi ∈M do
[7] Nodes1(Mi,γ) = Ni∩N(γ)
[8] for each (β, δ) ∈ SPLIT(ρ) do
[9] Nodes2(Mi,β) = Ni∩N(β)
[10] od
[11] od
[12] OLDCONT = ∅ /* Find the pairs (Mi, c) reachable from (M1, C) */
[13] CONT = {(M1, C)}
[14] while (CONT 6= OLDCONT) do
[15] OLDCONT = CONT
[16] for each (Mi, c) ∈ OLDCONT do
[17] for each γ ∈ F with γ = Eρ(p(γ1)← γ1, . . . , p(γn)← γn)
[18] Sat(Mi, c, γ) =Nodes1(Mi,γ) ∪⋃

(β,δ)∈SPLIT(γ),c(Eδ(p(γ1)←γ1,...,p(γn)←γn))=true
Nodes2(Mi,β)

[19] for each b ∈ Boxes(Mi) do
[20] P(b,i,c) = (Yi(b), c′) such that ∀γ ∈ F : c′(γ) = true iff (b, x) ∈ Sat(Mi, c, γ)
[21] CONT = OLDCONT ∪{P(b,i,c)}
[22] od
[23] od
[24] od
[25] /* Now build the output HSM M∗

[26] M∗ = {Mi,c|(Mi, c) ∈ CONT }
[27] Forall 1 ≤ i ≤ n, for all c ∈ CONT,
[28] Mi,c= (Ni × {c}, Bi × {c}, Ii × {c}, Oi × {c}, X′i,c, Y ′i,c, C′i,c, Ri × {c}, Ei × {c})

where
[29] C′i,c = {((b, c), (e, c′))|(b, e) ∈ Ci and (Mk, c′) = P(b,i,c)}
[30] For all b ∈ Bi, Y ′i,c((b, c)) = (Yi(b), c′) with (Mk, c′) = P(b,i,c)
[31] For all v ∈ Ni, X′i,c((v, c)) = {γ ∈ F |v ∈ Sat(Mi, c, γ)}
[32] TopLevelMachine(M∗) = M1,C

[33] return(M∗)

Fig. 7. Construction of the context-dependent HSM.

obtained from K(M) by identifying the top-level exit node of K(M) with the
initial state of K ′.

Given a closed set F of existential formulas, an HSM M whose nodes are
labeled with formulas in {γ ∈ F |pd(γ)< pd(F)}, and an F -context C, the func-
tion MAKE CONT presented in Fig. 7 constructs a new HSM M∗ from multiple
copies of M , each of which is indexed by an F -context c. The nodes of M∗ in
copy (Mj ,c) are labeled by formulas γ ∈ F representing the truth value of γ in
the corresponding node of M in the context c. It can be shown that any node
(v, c) in M∗ is labeled with γ ∈ F iff (M, v) |=c γ.

MAKE CONT uses a variant of the LTL model-checking algorithm from
Sect. 5, called LTLALG. Given a formula of the form Eρ(p(γ1,) . . . , p(γn)) where
ρ is an LTL+ formula over atomic propositions including p(γ1,) . . . , p(γn), and
an HSM M whose nodes are also labeled with propositions in p(γ1,) . . . , p(γn),
LTLALG(Eρ, M) returns the set of nodes v of M such that (v, ε) |= Eρ. This is
done exactly as described in Sect. 5, except for the following three modifications.
First, LTLALG evaluates formulas of the form Eρ instead of Aρ. Second, we still
need to define how formulas of LTL+ are evaluated on M : we say that a formula

664 M. Benedikt, P. Godefroid, and T. Reps

function CHECK(φ: existential CTL∗ formula, M : single-exit HSM,
C : cl(φ)-CONTEXT) returns set of nodes in M1

[1] begin
[2] M0 = M
[3] for{j = 0; j <pd(φ); j++}
[4] Mj+1=MAKE CONT(cl≤j+1(φ), Mj , C ∩ cl≤j+1(φ)))
[5] return {v ∈ TopLevelMachine(Mpd(φ))|Label(v) includes φ}

end
Fig. 8. CTL� model-checking algorithm.

Eρ where ρ is in LTL+ is satisfied in a node v of a machine Mi if there is a
path w from (v, ε) that satisfies ρ, such that either w is infinite or w terminates
at (x, ε), where x is the exit node of Mi. Third, we also extend the evaluation
of formulas to include return nodes: we say that the return node (b, x) of a box
b satisfies a formula Eρ iff the corresponding exit node x satisfies Eρ when b
is the only element of the stack; in other words, we define ((b, x), ε) |= Eρ iff
(x, b) |= Eρ. It is easy to extend the LTL model-checking algorithm of Sect. 5 to
meet these additional requirements.

By repeatedly invoking MAKE CONT with cl≤j(φ) for increasing values
of j, 1 ≤ j ≤pd(φ), i.e., larger and larger subsets of cl(φ), one can thus eval-
uate CTL∗ formulas in a bottom-up manner. This is what is done in function
CHECK presented in Fig. 8. Since any CTL∗ formula φ is a boolean combina-
tion of existential formulas φi, finding the nodes of the top-level machine M1 of
an HSM M satisfying φ can be reduced to finding the nodes of M1 satisfying
each φi. This is done by computing CHECK(φi, M, C∅) where C∅ is the set of
formulas γ in cl(φi) that evaluate to true at a single node labeled as the exit
node of M1 and with a self-loop. Since C∅ is consistent, all subcontexts derived
from it during the execution of the algorithm are also consistent. The correctness
of the algorithm is established by the following theorem.

Theorem 8. Given a single-exit HSM M , a node v of M1, and an ex-
istential CTL∗ formula φi, (v, ε) satisfies φi iff v is included in the set
CHECK(φi, M, C∅).

An analysis of the overall complexity of CHECK reveals that the number
of contexts over F = cl(φ) and the number of pairs of formulas returned by
SPLIT on these formulas depends only on φ. This implies that the size of each
M j is linear in M for any fixed φ. Moreover, the number of formulas on which
the LTL algorithm is invoked in MAKE CONT is bounded independently of the
size of M . Hence, the run-time complexity of the function MAKE CONT and
the size of the returned HSM M∗ are linear in the input HSM M for any fixed
formula φ and closed set F . Therefore, the CTL∗ model-checking problem for a
single-exit HSM M can be solved in time linear in the size of M .

7 Concluding Remarks

Function CompSummaryEdges from Sect. 5 is closely related to algorithms for
solving so-called “context-free-language” reachability problems [21,17], as well
as to CFL-reachability-based algorithms for such program-analysis problems

Model Checking of Unrestricted Hierarchical State Machines 665

as interprocedural slicing [16] and interprocedural dataflow analysis [18,15]. In
particular, the notions of path-edges and summary-edges, and the dynamic-
programming technique used to compute such edges in CompSummaryEdges
already appeared in this earlier work, although the cycle-detection and LTL
model-checking problems considered in Sect. 5 have not been previously ex-
plored in the literature on CFL-reachability. The “transfer functions” used in [7]
are also similar to the “summary-edges” used here. Results similar to those of
Sect. 5 (obtained independently and contemporaneously) are reported in [2].

Thanks to Theorem 1, which provides a linear-time translation from context-
free processes to single-exit HSMs, the linear-time CTL∗ model-checking al-
gorithm of Sect. 6 can also be used for CTL∗ model-checking of context-free
processes, and hence provides an improved upper bound for this problem: the
problem can now be solved in linear-time, instead of quadratic-time.

Our other results, however, cannot even be stated in the context of context-
free or pushdown processes. For example, the distinction between single-entry
and multiple-entry HSMs has no obvious counterpart in the literature on push-
down automata, and the linear bounds for single-entry multiple-exit HSMs pre-
sented here could not be derived from such previous work.

References

1. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

2. R. Alur, K. Etessami, and M. Yannakakis. Analysis of Recursive State Machines.
In To appear in Proceedings of CAV 2001, Paris, July 2001.

3. R. Alur and R. Grosu. Modular Refinement of Hierarchic State Machines. In
Proceedings of the 27th ACM Symposium on Principles of Programming Languages,
pages 390–402, January 2000.

4. R. Alur, S. Kannan, and M. Yannakakis. Communicating Hierarchical State Ma-
chines. In Proceedings of the 26th International Colloquium on Automata, Lan-
guages, and Programming, volume 1644 of Lecture Notes in Computer Science,
pages 169–178. Springer-Verlag, 1999.

5. R. Alur and M. Yannakakis. Model Checking of Hierarchical State Machines. In
Proceedings of the Sixth ACM Symposium on the Foundations of Software Engi-
neering (FSE’98), pages 175–188, 1998.

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-
tomata: Application to Model-Checking. In Proc. of CONCUR’97, volume 1243 of
Lecture Notes in Computer Science, pages 135–150. Springer-Verlag, 1997.

7. O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In Proc.
of CONCUR’92, 1992.

8. O. Burkart and B. Steffen. Model Checking the Full Modal Mu-Calculus for Infinite
Sequential Processes. In Proc. of ICALP’97, volume 1256 of Lecture Notes in
Computer Science, pages 419–429, Bologna, 1997. Springer-Verlag.

9. B. Caucal and R. Monfort. On the Transition Graphs of Automata and Grammars.
In Graph Theoretic Concepts in Computer Science, volume 484 of Lecture Notes
in Computer Science, pages 311–337. Springer-Verlag, 1990.

10. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. Elsevier/MIT Press, Amsterdam/Cambridge, 1990.

666 M. Benedikt, P. Godefroid, and T. Reps

11. E. A. Emerson and C. Lei. Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus. In Proceedings of the First Symposium on Logic in Computer
Science, pages 267–278, Cambridge, June 1986.

12. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient Algorithms for
Model Checking Pushdown Systems. In Proceedings of the 12th Conference on
Computer Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 232–247, Chicago, July 2000. Springer-Verlag.

13. A. Finkel, B.Willems, and P. Wolper. A Direct Symbolic Approach to Model
Checking Pushdown Systems. Electronic Notes in Theoretical Comp. Sc., 9, 1997.

14. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

15. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis.
In Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 104–115, New York, NY, October 1995. ACM Press.

16. S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings of
the Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 11–20, New York, NY, December 1994. ACM Press.

17. T. Reps. Program analysis via graph reachability. Information and Software Tech-
nology, 40(11-12):701–726, November 1998. Special issue on program slicing.

18. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Symp. on Princ. of Prog. Lang., pages 49–61, New York,
NY, 1995. ACM Press.

19. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science,
pages 322–331, Cambridge, June 1986.

20. I. Walukiewicz. Pushdown Processes: Games and Model-Checking. In Proc. 8th
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Com-
puter Science, pages 62–74, New Brunswick, August 1996. Springer-Verlag.

21. M. Yannakakis. Graph-theoretic methods in database theory. In Proc. of the Symp.
on Princ. of Database Syst., pages 230–242, 1990.

Symbolic Trace Analysis of Cryptographic
Protocols?

Michele Boreale

Dipartimento di Sistemi e Informatica, Università di Firenze, Via Lombroso 6/17,
50134 Firenze, Italia.

boreale@dsi.unifi.it.

Abstract. A cryptographic protocol can be described as a system
of concurrent processes, and analysis of the traces generated by this
system can be used to verify authentication and secrecy properties of
the protocol. However, this approach suffers from a state-explosion
problem that causes the set of states and traces to be typically infinite
or very large. In this paper, starting from a process language inspired
by the spi-calculus, we propose a symbolic operational semantics that
relies on unification and leads to compact models of protocols. We prove
that the symbolic and the conventional semantics are in full agreement,
and then give a method by which trace analysis can be carried out
directly on the symbolic model. The method is proven to be complete for
the considered class of properties and is amenable to automatic checking.

Keywords: spi-calculus, concurrency, formal methods for security pro-
tocols.

1 Introduction

In recent years, formal methods have proven useful in the analysis of crypto-
graphic protocols, often revealing previously unknown attacks. A popular ap-
proach is based on the modelling of protocols as a systems of concurrent pro-
cesses, described in some an appropriate language, like CSP [13,19,21] or the
spi-calculus [1] – the latter an extension of the π-calculus [17]. In this setting,
Abadi and Gordon advocate the use of observational equivalences to formalize
and verify protocol properties [2,7]. Here, in the vein of [3,4,12,13,16,19,21], we
analyze the sequences of actions (traces) that a given process may execute. As
an example, a secrecy property like “protocol P never leaks the datum d”, might
be verified by adding to the description of P an ‘error’ action to be performed as
soon as the environment learns d (the way this is done depends on the specific
formalism, see e.g. [3]), and then checking that P never performs that ‘error’
action.
? A preliminary version of this paper has been circulated as [5]. Research partly sup-

ported by the Italian MURST Project TOSCA (Teoria della Concorrenza, Linguaggi
di Ordine Superiore e Strutture di Tipi).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 667–681, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

668 M. Boreale

The main drawback of trace analysis is that the execution of a protocol typ-
ically generates infinitely many traces. The reason lies in the modelling of the
environment, whose behaviour is largely unpredictable. Rather than trying to
describe this behaviour as a specific process, it is sensible to simply assume that
the communication network is totally under the control of the environment. The
latter can store, duplicate, hide or replace messages that travel on the network.
It can also operate according to the rules followed by honest participants and
synthetize new messages by pairing, decryption, encryption and creation of fresh
nonces and keys, or by arbitrary combinations of these operations (this approach
seems to date back to Dolev and Yao [11]). Thus, an agent waiting for an input
at a given moment may expect any of the infinitely many messages the environ-
ment can produce and send over the network. This leads to a state explosion
that makes the protocol model, typically a state-transition graph, infinite (more
precisely, infinite-branching). In practice, those approaches that rely on model
checking [13,19,21] cut down the model to a convenient finite size by imposing
upper-bounds to the critical parameters (number of keys, number of pairing and
encryption in messages,. . .). Exhaustive exploration of the state-space is then
possible by standard techniques. However, this approach makes correctness in the
general case (completeness) very difficult to establish – though some progress has
recently been made [15,20]. Furthermore, even when those upper-bounds can be
justified and the model is finite, the branching factor of input actions may cause
the number of states and traces to explode as larger systems are considered.

In this paper we explore an alternative approach to trace analysis of crypto-
graphic protocols. As a base language, we consider a variant of the spi-calculus,
but this choice is not critical for the development of the theory. The idea is to
replace the infinitely many transitions arising from an input action by a single
symbolic transition, and to represent the received message as a variable. Con-
straints on this variable are accumulated as the execution proceeds. Let us see
this in more detail. In the variant of the spi-calculus we use, the receiver of a
message is written as a(x). R, where a is an arbitrary label, x is the input variable
and R is the continuation. The conventional (‘concrete’) operational semantics
of the language requires x to be instantiated with each message that can pos-
sibly be received from the network, and this causes the state explosion. In our
symbolic semantics, x is not instantiated immediately, rather constraints on its
value are added as needed. These constraints take the form of most general uni-
fiers. As an example, suppose that a process P , after receiving a message x, tries
decryption of x using key k, and, if this succeeds, calls y the result and proceeds
like P ′. This is written as P

def= a(x). case x of {y}k inP ′. We represent a state of
the protocol as a pair (σ, Q), where σ is the trace of process’ past actions and Q
is a process term. The two initial symbolic transitions of (ε, P) will be:

(ε, P) −→S (a〈x〉, case x of {y}k inP ′) −→S (a〈{y}k〉, P ′[{y}k/x])

where [{y}k/x] is the most general unifier for x and {y}k. In general, protocols not
using replication/recursion will generate finitely many symbolic transitions. The
resulting model is rather compact: sequential processes will generate just one
maximal symbolic trace, while, for parallel compositions, traces will be obtained

Symbolic Trace Analysis of Cryptographic Protocols 669

by the usual interleaving. We prove that the symbolic and the conventional
semantics are in full agreement, and then give a method by which trace analysis
can be carried out directly on the symbolic traces. We focus our attention on a
specific class of properties, those of the form “in every execution of the protocol,
action α happens prior to action β”, for given α and β. As we shall see, this
scheme is flexible enough to express interesting forms of authentication and
secrecy. The method is proven to be complete for the language we consider,
and is easily mechanizable; this immediately yields decidability of trace analysis
for the considered language. When a protocol does not satisfy a property, the
method also gives an easy way to compute an attack, i.e. a trace that violates
the property. A prototype implementation of the method is already available [6].

The language we consider does not contain replication/recursion operators,
that would make trace analysis undecidable (see e.g. [12,10]). Thus we consider
only protocols with a bounded number of participants. However, recent work by
Lowe [15] and Stoller [22] indicates that, in some cases, it is possible to reduce the
analysis of an unbounded protocol to the analysis of a protocol with a bounded,
statically determined number of participants.

The symbolic approach to the analysis of security protocols has been explored
by other authors, including Amadio and Lugiez [4] and Huima [12]. Discussion
with these and other related work can be found in the concluding section.

The rest of the paper is organized a follows. The language, a variant of
the spi-calculus with shared-key cryptography, is introduced in Section 2, along
with its conventional operational semantics. Section 3 introduces trace analysis.
The symbolic operational semantics, and its agreement with the conventional
semantics, are discussed in Section 4. Section 5 presents the symbolic method
for trace analysis, at the core of which is the concept of refinement. For the sake of
presentation, the language of Section 2 does not include the restriction operator,
whose treatment is postponed to Section 6. Section 7 contains discussion on
related work and a few concluding remarks.

2 The Language

Syntax. (Table 1) We presuppose three countable disjoint sets: L, N and V. The
set L of labels is ranged over by a, b, The set of N of names is partitioned
into two countable sets, a set LN of local names a, b, . . . and a set EN of envi-
ronmental names a, b, . . .: these sets represent the basic data (keys, nonces,. . .)
initially known to the process and to the environment, respectively. The set V
of variables is ranged over by x, y, The set N ∪ V is ranged over by letters
u, v, Names and variables can be used to build compound messages, in M,
via shared-key encryption and pairing. In particular, {M}k represents the mes-
sage obtained by encrypting M (the argument) under name k (the key), using a
shared-key encryption system. We allow pairing and encryptions to be arbitrar-
ily nested, but only permit atomic keys. Terms are obtained by closing messages
under substitutions (they are just ‘garbage’ that can be generated at run-time,
with no semantical significance).

670 M. Boreale

The syntax of agent expressions, in A, is taken essentially from the spi-
calculus [1]. Agent case {M}h of {y}k inA tries decryption of {M}h using k as
a key: if this is possible (that is, if k = h), the result of the decryption, M , is
bound to y, and the agent proceeds like A, otherwise, the whole expression is
stuck. Similarly, pair M of 〈x, y〉 inA tries to split M into two components and
call them x and y. A difference from spi/π-calculus is that, in our case, input and
output labels (a, b, . . .) must not be regarded as a channels (as already noted, we
assume just one public network), but rather as ‘tags’ attached to process actions
for ease of reference. Also, the only useful case for output is when ζ is a message,
otherwise the whole agent is stuck.

Given the presence of binders for variables, notions of free variables, v(A) ⊆ V
and alpha-equivalence arise as expected. We shall identify alpha-equivalent agent
expressions. For any M and u, [M/u] denotes the operation of substituting the
free occurrences of u by M . An agent expression A is said to be closed or a
process if v(A) = ∅ ; the set of processes P is ranged over by P, Q, Local
names and environmental names occurring in A are denoted by ln(A) and en(A),
respectively. A process P is initial if en(P) = ∅ . These notations are extended
to terms, messages, and tuples/string/sets of such objects, component-wise. We
shall also use such abbreviations as ln(M, P, Q) to mean ln(M)∪ ln(P)∪ ln(Q).

Table 1. Syntax

m, n, . . . names N x, y, . . . variables V
a, b, . . . , h, k, . . . local names LN
a, b, . . . , h, k, . . . environmental names EN
u, v, . . . variables or names V ∪ N a, b, . . . labels L

M, N ::= u | {M}u | 〈M, N〉 messages M
η, ζ ::= u | {ζ}η | 〈ζ, η〉 terms Z

A, B ::= agents A
0 (null)

| a(x). A (input)
| a〈ζ〉. A (output)
| case ζ of {y}η in A (decryption)
| pair ζ of 〈x, y〉 in A (selection)
| [ζ = η]A (matching)
| A || B (parallel composition)

The occurrences of variables x and y in (input), (decryption) and (selection)
are bound.

Example 1 (the wide-mouthed frog protocol, WMF [8]). Principals A and B share
two secret keys, kAS and kBS respectively, with a server S. The purpose of the
protocol is that of establishing a new secret key k between A and B, which A may

Symbolic Trace Analysis of Cryptographic Protocols 671

use to send a confidential datum d to B. For the sake of simplicity, we suppose
that the protocol is always started by A. The protocol and its translation in
spi-calculus, WMF , are described below:

1. A −→ S : {k}kAS
A

def
= a1〈{k}kAS

〉. a2〈{d}k〉. A′

2. S −→ B : {k}kBS
S

def
= s1(x). case x of {x′}kAS

in s2〈{x′}kBS
〉. 0

3. A −→ B : {d}k. B
def
= b1(y). case y of {y′}kBS

in b2(z). case z of {z′}y′ in B′

WMF
def
= A || S || B .

Agents A′ and B′ represent the behaviour of A and B, respectively, after the
protocol has been completed. The above description just accounts for a single
instance of the protocol. The case of n > 1 instances is described by composing
n copies of A, S and B in parallel and then appropriately renaming the instance-
dependent quantities (k, d, nA and nB above).

Operational semantics. The basic semantics of the calculus is given in terms
of a transition relation −→ , which we will sometimes refer to as ‘concrete’ (as
opposed to the ‘symbolic’ one we shall introduce later on). We will find it con-
venient to model a state of the system as a pair (s, P), where, s records the
current environment’s knowledge (i.e. the sequence of messages the environment
has “seen” travelling on the network up to that moment) and P is a process.
Similarly to [3,4,9], we characterize the messages that the environment can pro-
duce (or deduce) at a given moment, starting from the current knowledge s, via
a deductive system. These concepts are formalized below.

Definition 1 (the deductive system). Let S ⊆fin M and M a message. We
let ` be the least binary relation generated by the deductive system in Table 2.
If S ` M we say that S can produce M . 3

Table 2. Deductive system (`)

(Ax)
S ` M

M ∈ S (Env)
S ` a

a ∈ EN

(Proj1)
S ` 〈M, N〉

S ` M
(Proj2)

S ` 〈M, N〉

S ` N
(Pair)

S ` M S ` N

S ` 〈M, N〉

(Dec)
S ` {M}u S ` u

S ` M
(Enc)

S ` M S ` u

S ` {M}u

Note that, whatever S, the set of messages that S can produce is infinite, due to
rules Env, Pair and Enc. An action is a term of the form a〈M〉 (input action)

672 M. Boreale

or a〈M〉 (output action), for a a label and M a message. The set of actions Act is
ranged over by α, β, . . ., while the set Act∗ of strings of actions is ranged over by
s, s′, String concatenation is written ‘·’ . We denote by act(s) and msg(s) the
set of actions and messages, respectively, appearing in s. A string s is closed if
v(s) = ∅ (note that s does not contain binders) and initial if en(s) = ∅ . In what
follows, we write s ` M for msg(s) ` M . We are now set to define traces, that is
sequences of actions that may result from the interaction between a process and
its environment. In traces, each message received by the process (input message)
must be deducible from the knowledge the environment has previously acquired.
In configurations, this knowledge is explicitly recorded.

Definition 2 (traces and configurations). A trace is a closed string s ∈ Act∗

such that for each s1, s2 and a〈M〉, if s = s1 · a〈M〉 · s2 then s1 ` M .
A configuration, written as 〈s, P 〉, is a pair consisting of a trace s and a

process P . A configuration is initial if en(s, P) = ∅ . Configurations are ranged
over by C, C′, 3

Table 3. Transition relation (−→).

(Inp) 〈s, a(x). P 〉 −→ 〈s · a〈M〉, P [M/x]〉 s ` M, M closed

(Out) 〈s, a〈M〉. P 〉 −→ 〈s · a〈M〉, P 〉

(Case) 〈s, case {ζ}η of {y}η in P 〉 −→ 〈s, P [ζ/y]〉

(Select) 〈s, pair 〈ζ, η〉 of 〈x, y〉 in P 〉 −→ 〈s, P [ζ/x, η/y]〉

(Match) 〈s, [ζ = ζ]P 〉 −→ 〈s, P 〉

(Par)
〈s, P 〉 −→ 〈s0, P 0〉

〈s, P || Q〉 −→ 〈s0, P 0 || Q〉

plus symmetric version of (Par).

The concrete transition relation on configurations is defined by the rules in Ta-
ble 3. Rule (Inp) makes the transition relation infinite-branching, as M ranges
over the infinite set {M : s ` M, M closed }. Note that, for the sake of unifor-
mity, in rule (Case) we allow decryption of arbitrary terms (which use a possibly
compound key η), despite the fact that we only allow sending and receiving of
messages. Similarly, we allow comparison between arbitrary terms in (Match).
Finally, no handshake communication is provided (rule (Par)): all messages go
through the environment.

Symbolic Trace Analysis of Cryptographic Protocols 673

3 Trace Analysis
Given a configuration 〈s, P 〉 and a trace s′, we say that 〈s, P 〉 generates s′,
written 〈s, P 〉 ↘ s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′. Given a string of
actions s ∈ Act∗, and actions α and β, we say that α occurs prior to β in s if
whenever s = s′ ·β ·s′′ then α ∈ act(s′). We let ρ range over ground substitutions,
i.e. finite maps from a set dom(ρ) ⊆ V to closed messages; tρ denotes the result
of replacing each x ∈ v(t)∩dom(ρ) by ρ(x). The properties of configurations we
are interested in are defined below.

Definition 3 (properties). Let α and β be actions, with v(α) ⊆ v(β), and
let s be a trace. We write s |= α ←↩ β, or s satisfies α ←↩ β, if for each ground
substitution ρ it holds that αρ occurs prior to βρ in s. We say that a configuration
C satisfies α ←↩ β, and write C |= α ←↩ β, if all traces generated by C satisfy
α←↩ β. 3

Note that the variables in α and β can be thought of as being universally quan-
tified (so any consistent renaming of these variables does not change the set of
traces and configurations that satisfy α ←↩ β). In practice, the scheme α ←↩ β
permits formalizing all forms of authentication in Lowe’s hierarchy [14], except
the most demanding one (but can be easily modified to include this one as well).
As we shall see, the scheme also permits expressing secrecy as a reachability
property, in the style of [3]. To this purpose, it is convenient to assume a fixed
‘absurd’ action ⊥ that is nowhere used in agent expressions. Thus the formula
⊥ ←↩ α expresses that no instance of action α should ever take place, and can
be used to encode reachability.

Example 2 (authentication and secrecy in WMF). We discuss the use of prop-
erties on the simple protocol WMF (Example 1), but our considerations are
indeed quite general.

A property of WMF that one would like to check is the following: if B ac-
cepts as ‘good’ a datum d encrypted under key k (step 3), then this message has
actually been sent by A. This is a form of authentication. In order to formalize
this particular property, we make B explicitly declare if, upon completion of the
protocol, a particular message has been accepted. That is, we consider the pro-
cess Bauth

def= b1(y). case y of {y′}kBS
in b2(z). case z of {z′}y′ in (B′ || accept〈z〉.0)

instead of B, and WMFauth
def= A ||S ||Bauth instead of WMF . We have to check

that, in every trace of WMFauth, every accept is preceded by the corresponding
a2. More formally, we have to check that 〈ε, WMFauth〉 |= a2〈t〉 ←↩ accept〈t〉
(where t is any variable).

Another important property is secrecy: the environment should never learn
the confidential datum d. Following [3], we can formalize this property by con-
sidering a version of WMF that also includes a ‘guardian’ listening to the public
network: WMFsecr

def= WMF || guard(x).0. Evidently, WMF generates a trace
s s.t. s ` d (i.e. the environment may learn d) if and only if 〈ε, WMFsecr〉
generates a trace containing action guard〈d〉. Thus, we have to check that action
guard〈d〉 never takes place, i.e. that 〈ε, WMFsecr〉 |= ⊥ ←↩ guard〈d〉.

674 M. Boreale

4 Symbolic Semantics

‘Concrete’ traces and configurations can be given a symbolic counterpart, which
may contain free variables.

Definition 4 (symbolic traces and configurations). A symbolic trace is
string σ ∈ Act∗ such that: (a) en(σ) = ∅ , and (b) for each σ1, σ2, α and x, if
σ = σ1 · α · σ2 and x ∈ v(α)− v(σ1) then α is an input action. Symbolic traces
are ranged over by σ, σ′,

A symbolic configuration, written 〈σ, A〉S , is a pair composed by a symbolic
trace σ and an agent A, such that en(A) = ∅ and v(A) ⊆ v(σ). 3

Note that, due to condition (b) in the definition, e.g. a〈x〉 · a〈{h}x〉 is not a sym-
bolic trace, while a〈{h}x〉 · a〈x〉 is. Let us now recall some standard terminology
about substitutions. A substitution θ is a finite partial map from V to M and,
for any object (i.e. variable, message, process, trace,. . .) t, we denote by tθ the
result of applying θ to t. A substitution θ is a unifier of t1 and t2 if t1θ = t2θ.
We denote by mgu(t1, t2) a chosen most general unifier (mgu) of t1 and t2, that
is a unifier θ such that any other unifier can be written as a composition of
substitutions θθ′ for some θ′.

The transition relation on symbolic configurations, −→S , is defined by the
rules in Table 4. There, a function newV (·) is assumed such that, for any given
V ⊆fin V, newV (V) is a variable not in V . Note that, differently from the concrete
semantics, input variables are not instantiated immediately, in the input rule
(InpS). Rather, constraints on these variables are added as soon as they are
needed, and recorded via mgu’s. This may occur due to rules (CaseS), (SelectS)
and (MatchS). In the example below, after the first input step, variable x gets
instantiated to name b due to a (MatchS)-reduction:

〈ε, a(x). [x = b]P 〉S −→S 〈a〈x〉, [x = b]P 〉S −→S 〈a〈b〉, P [b/x]〉S .

The side condition on B′ in (ParS) ensures that constraints are propagated
across parallel components sharing variables, like in the following (MatchS)-
reduction: 〈σ, [x = M]A || a〈x〉. B)〉S −→S 〈σ[M/x], A[M/x] || a〈M〉. B[M/x]〉S .

Whenever 〈σ, A〉S −→∗
S
〈σ′, A′〉S for some A′, we say that 〈σ, A〉S sym-

bolically generates σ′, and write 〈σ, A〉S ↘S σ′. The relation −→S is finite-
branching. This implies that each configuration generates a finite number of
symbolic traces. It is important to stress that many symbolic traces are in fact
‘garbage’ – jumbled sequences of actions that cannot be instantiated to give a
concrete trace. This is the case, e.g., for the trace a〈{x}k〉 · a〈x〉, which is sym-
bolically generated by 〈ε, P 〉S , where P

def= a(y). case y of {x}k in a〈x〉.0. To state
soundness and completeness of −→S w.r.t. −→ , we need a notion of consistency
for symbolic traces, given below.

Definition 5 (solutions of symbolic traces). Given a symbolic trace σ and
a ground substitution ρ, we say that ρ satisfies σ if σρ is a trace. In this case,
we also say that σρ is a solution of σ, and that σ is consistent. 3

Symbolic Trace Analysis of Cryptographic Protocols 675

Table 4. Symbolic transition relation (−→S)

(InpS) 〈σ, a(x). A〉S −→S 〈σ · a〈x〉, A〉S

(OutS) 〈σ, a〈M〉. A〉S −→S 〈σ · a〈M〉, A〉S

(CaseS) 〈σ, case ζ of {x}η in A〉S −→S 〈σθ, Aθ〉S θ = mgu(ζ, {x}η)

(SelectS) 〈σ, pair ζ of 〈x, y〉 in A〉S −→S 〈σθ, Aθ〉S θ = mgu(ζ, 〈x, y〉)

(MatchS) 〈σ, [ζ = η]A〉S −→S 〈σθ, Aθ〉S θ = mgu(ζ, η)

(ParS)
〈σ, A〉S −→S 〈σ0, A0〉S

〈σ, A || B〉S −→S 〈σ0, A0 || Bθ〉S
where σ0 = σθ, for some θ

plus symmetric version of (ParS). In the above rules, it is assumed that:
(i) x = newV (V) – where V is the set of free variables in the source
configuration
(ii) y = newV (V ∪ {x}), and
(iii) msg(σ)θ ⊆ M.

Theorem 6 (soundness and completeness). Let C be an initial configura-
tion and s a trace. Then C ↘ s if and only if there is σ s.t. C ↘S σ and s is a
solution of σ.

Proof: By transition induction on −→ and −→S , and then by induction on
the length of traces. 2

Any given configuration generates only finitely many symbolic traces. Thus, by
the previous theorem, the task of checking C |= α ←↩ β is reduced to analysing
each of these symbolic traces in turn. To do this, we need at least a method to
tell whether any given symbolic trace is consistent or not. More precisely, the
previous theorem reduces the problem C |= α←↩ β to the following, that will be
faced in the next section.

Symbolic trace analysis problem (STAP) 5. Given two actions α, β (v(α) ⊆ v(β))
and a symbolic trace σ, check whether or not each solution s of σ satisfies α←↩ β.

We write σ |= α←↩ β if the answer to STAP with σ, α and β is ‘yes’. Note that
STAP is a non-trivial problem: one has to consider every solution of σ, and there
may be infinitely many of them.

5 Refinement

As a first step towards devising a method for STAP, let us consider the simpler
problem of checking consistency of a symbolic trace. Existence of solutions (i.e.

676 M. Boreale

ground instances that are traces) of a symbolic trace σ depends on the form of
input actions in σ. For example, the symbolic trace σ0 = a〈h〉 · b〈{x}k〉 (h 6=
k) has no solution, because no matter which m is substituted for x, we have
{h} 6` {m}k. On the contrary, in σ1 = c〈k〉 · c〈{x}k〉, instantiating x with any
environmental name a ∈ EN will give a solution, because {k} ` {a}k. Yet a
different case is σ2 = c〈{a}k〉 · c〈{b}k〉 · c〈{x}k〉. Since {{a}k, {b}k} 6` k, there
are only two ways of getting a solution of σ2: to unify {x}k with either {a}k or
{b}k. These examples suggest that it should be possible to check consistency of
a symbolic trace by gradually instantiating its variables until a trace is obtained.
We shall call this process refinement. In order to formalize this concept, we first
need to lift the definition of ‘trace’ to the non-ground case. This requires a few
more notations and concepts.

In refinement, we shall consider both ordinary variables and marked variables;
roughly, the latters can only be instantiated to messages that the environment
can produce. This is made precise in the sequel. We consider a new set V̂ of
marked variables, which is in bijection with V via a mapping ·̂: thus variables
x, y, z, . . . have marked versions x̂, ŷ, ẑ, Marked messages are messages that
may also contain marked variables, and marked symbolic traces are defined sim-
ilarly. The deduction relation ` is extended to marked messages by adding the
new axiom

(Mvar)
S ` x̂

x̂ ∈ V̂

to the system of Table 2. For any x̂ and any sequence σ, we denote by σ\x̂
the longest prefix of σ not containing x̂. The satisfaction relation is extended to
marked symbolic traces as follows:

Definition 7. Let σ be a marked symbolic trace and ρ be a ground substitution.
We say that ρ satisfies σ if σρ is a trace and, for each x̂ ∈ v(σ), it holds that
(σ\x̂)ρ ` ρ(x̂). We also say that σρ is a solution of σ, and that σ is consistent.

3
The terminology introduced above agrees with Definition 5 when σ does not
contain marked variables. We can give now the definition of solved form, that
lifts the definition of trace to the non-ground case (note that this definition is
formally the same as Def. 2)

Definition 8 (solved forms). Let σ be a marked symbolic trace. We say σ is
in solved form (sf) if for every σ1, a〈M〉 and σ2 s.t. σ = σ1 · a〈M〉 · σ2 it holds
that σ1 ` M . 3

Solved forms are consistent: the next lemma gives us a specific way to instantiate
a solved form so as to get a trace.

Lemma 9. Let σ be in solved form and let ρ be any substitution from v(σ) to
EN . Then ρ satisfies σ.

A key concept of refinement is that of decomposing a message into its irreducible
components, those that cannot be further split or decrypted using the knowledge
of a given σ.

Symbolic Trace Analysis of Cryptographic Protocols 677

Definition 10 (decomposition of messages). Let σ be a marked symbolic
trace. We define the sets

– I(σ) def= {M |σ ` M and eitherM ∈ LN ∪ V or M = {N}u for some u s.t.
σ 6` u}.

– [M]σ by induction on M as follows:
[u]σ = {u} − (V̂ ∪ EN)

[〈M, N〉]σ = [M]σ ∪ [N]σ

[{M}u]σ =
{{ {M}u } if σ 6` u

[M]σ if σ ` u 3

The irreducible components of σ, I(σ), are the building blocks of messages that
can be produced by σ. This is the content of the next proposition, that makes
the relationship among I(σ), [M]σ and ` precise.

Proposition 11. Let σ be a marked symbolic trace. Then σ ` M if and only if
[M]σ ⊆ I(σ).

There are two points worth noting with respect to the above proposition. First,
I(σ) is finite and can be easily computed by an iterative procedure, thus the
proposition gives us an effective method to decide σ ` M ; this also implies that
the set of solved forms is decidable. Second, the proposition suggests a strategy
for refining a generic σ to a solved form: for any input message M in σ, one
tries to make the condition [M]σ′ ⊆ I(σ′) true, for the appropriate prefix σ′ of
σ. We are now ready to define refinement formally. In the sequel, we shall use
the following notations. We write ‘t ∈θ S’ for: there is t′ ∈ S s.t. θ = mgu(t, t′);
when ỹ is a set of variables, we denote by [ỹ/̃̂y] the substitution that for each
x ∈ ỹ maps x̂ to x.

Table 5. Refinement (�)

Let σ be a marked symbolic trace, and assume σ = σ0 · a〈M〉 · σ00, where σ0 is
the longest prefix of σ that is in solved form. Assume N ∈ [M]σ′ − I(σ0).

(Ref1)
N /∈ V, N ∈θ I(σ0), ỹ = {x| x̂ ∈ v(σ) and (σθ)\x̂ is shorter than σ\x̂}

σ � σθ[ỹ/̃̂y]

(Ref2)
N = x or N = {N 0}x

σ � σ[x̂/x]

Definition 12 (refinement). We let refinement, written � , be the least bi-
nary relation over marked symbolic traces generated by the two rules in Table 5.

3

678 M. Boreale

Rule (Ref1) implements the basic step: an element N in the decomposition of M
gets instantiated, via θ, to an irreducible component of some past message (to be
found in I(σ′)). E.g., consider again the above σ2 = c〈{a}k〉 ·c〈{b}k〉 ·c〈{x}k〉: its
possible refinements are σ2 � σ2[a/x] and σ2 � σ2[b/x], and the refined traces
are in sf. By rule (Ref2), one may choose to mark a variable x, that will be
considered as part of the environment’s knowledge in subsequent refinement.
Sometimes marked variables need to be ‘unmarked’ back to variables, and this
is achieved via the renaming [ỹ/̃̂y] in (Ref1).1

Refinement is repeatdly applied until some solved form is reached. It is
important to realize that the reflexive and transitive closure (�)∗ is a non-
deterministic relation, and that not all sequences of refinement lead to a solved
form. However, the set of possible solved forms reachable from σ completely
characterizes the set of solutions of σ. Formally, for any symbolic trace σ, we let
SF(σ) def= {σ′ |σ (�)∗ σ′ and σ′ is in sf}. Then we have the following theorem

Theorem 13 (characterization of solutions). Let σ be a symbolic trace and
s a trace. Then s is a solution of σ if and only if s is a solution of some σ′ ∈
SF(σ).

By the above theorem and Lemma 9, we obtain:

Corollary 14. A symbolic trace σ is consistent if and only if SF(σ) 6= ∅ .

Note that SF(σ) can be effectively computed, and is always finite, as: (a) � is
finitely-branching relation, and (b) infinite sequences of refinement steps cannot
arise. As to the latter point, note that, since each (Ref1)-step eliminates at least
one variable, any sequence of refinement steps can contain only finitely many
(Ref1)-steps, after the last of which rule (Ref2) can only be applied a finite
number of times. Thus, computing SF(σ) gives a method to decide consistency
of σ. This also suggests a method for solving STAP. As an example, suppose that
we want to check the property σ |= ⊥ ←↩ α, that is, no solution of σ contains an
instance of α. Then we can proceed as follows: for each action γ in σ, we check
whether there is a mgu θ that unifies γ and α; if such a θ does not exist, or if it
exists but σθ is not consistent (i.e. SF(σθ) = ∅ , Corollary 14), then the property
is true, otherwise it is not. Considering the general case α ←↩ β leads us to the
next theorem, which gives us an effective method to check σ |= α←↩ β. Its proof
relies on Theorem 13 and on Lemma 9, plus routine calculations on mgu’s.

Theorem 15 (a method for STAP). Let σ be a symbolic trace and let pr =
α←↩ β, where v(α) ⊆ v(β) and v(β)∩v(σ) = ∅ . Then σ |= pr, if and only if the
following is true: for each θ such that α ∈θ act(σ) and for each σ′ ∈ SF(σθ),
say σ′ = σθθ′, it holds that αθθ′ occurs prior to βθθ′ in σ′.

1 Unmarking of x̂ occurs in a (Ref1)-step if the prefix σ\x̂ gets shorter, like in: a〈{a}k〉·
a〈ẑ〉 · a〈{ẑ}h〉 · a〈k〉 · a〈{x̂}ŷ〉 · a〈{{x̂}ŷ}h〉 � a〈{a}k〉 · a〈{x}y〉 · a〈{{x}y}h〉 · a〈k〉 ·
a〈{x}y〉 · a〈{{x}y}h〉, where {{x̂}ŷ}h gets unified with {ẑ}h.

Symbolic Trace Analysis of Cryptographic Protocols 679

The above theorem immediately yields decidability of STAP, because there are
finitely many mgu’s θ to consider (at most one for each action in σ), and SF(σ)
can be effectively computed. This result lifts of course to configurations.

Corollary 16 (decidability). Let C be an initial configuration and α ←↩ β be
a property. It is decidable whether C |= α←↩ β or not.

Proof: Compute {σ | C symbolically generates σ}, which is finite, and then
check whether or not for each σ in this set it is the case that σ |= α←↩ β, which
can be effectively done. The thesis is a consequence of Theorem 6. 2

In a practical implementation, rather than generating the whole set of symbolic
traces of a given configuration and then check the property, it is more convenient
to check the single symbolic traces as soon as they are generated in an ‘on-the-fly’
way.

6 Restriction

We consider extending the base language via the restriction operator (new a)A,
where a ∈ LN and A an agent; (new a) is binder for name a. The intended
meaning of (new a)A is that a new name a is created, which is private to A. The
concrete and symbolic rules for restriction are given below. A function newLN (·)
is assumed that, for any set of names V ⊆fin LN , yields a local name a /∈ V .

(New) 〈s, (new a)P 〉 −→ 〈s, P 〉 a = newLN (V)
(NewS) 〈σ, (new a)A〉S −→S 〈σ, A〉S a = newLN (V)

In both rules, V is the set of local names occurring free in the source config-
uration. Note that the side-condition on name a is always met modulo alpha-
renaming. A change is required in the rules for parallel composition A ||B, both
in the concrete and in the symbolic case: in the conclusion, an additional renam-
ing [b/a] (where a = newLN (ln(σ, A)) and b = newLN (ln(σ, A || B))) is applied
onto the target configuration: this prevents a new name a possibly created by
a (New)-transition of A from clashing with free occurences of a in B (this is
just the side-condition of the rule (Par) of the π-calculus [17] rephrased in our
language).

7 Conclusions

We have presented a symbolic method for analysing cryptographic protocols.
The method is well suited for an efficient mechanization. The word ‘efficient’
should be taken with a grain of salt here. The trace analysis problem is obvi-
ouvsly NP-hard [4,10]. Pathological examples are therefore unavoidable, hence
formal statements on ‘efficiency’ are difficult to formulate. However, we expect
the method to perform well in practical cases (this is further discussed in the com-
parison with related work below). Experiments conducted with a preliminary,
non optimized implementation have given encouraging results [6]. Developments

680 M. Boreale

in the near future include an optimized implementation of the method and ex-
tension of the present results to other cryptographic primitives, like public key
and hashing: this should not present conceptual difficulties, though we have not
checked the details yet.

Approaches based on symbolic analysis have also been explored by Huima in
[12] and Amadio and Lugiez [4]. In [12], Huima presents a symbolic semantics
by which the execution of a protocol generates a set of equational constraints;
only an informal description is given of the kind of equational rewriting needed
to solve these constraints. Amadio and Lugiez in [4] consider a variant of the
spi-calculus equipped with a symbolic semantics. Similarly to Huima’s, their
symbolic semantics generates equational constraints of a special form, rather
than unifiers. The (rather complex) constraint-solving procedure is embedded
into symbolic execution, and uses a brute-force method to resolve variables in
key position (all possible instantiations of variables to names that are around are
tried). These factors have a relevant impact on the size of the symbolic model.
On the contrary, in our case symbolic execution and consistency check are kept
separate, and this permits to keep the size of the model to a minimum. The
consistency check procedure (refinement) is invoked only when necessary, and,
most important, does not rely on brute-force instantiation. As a minor point,
Amadio and Lugiez encode authentication via reachability: this may add to the
complexity of their method.

Model checking [9,13,19,21] and theorem proving [18] seem to be among the
most successful approaches to the formal analysis of security protocols. As Paul-
son has pointed out [18], theorem proving is intuitive, but, within it, verification
is not fully automated and general completeness results are difficult to estab-
lish. On the contrary, model checking is automatic, but suffers from the state
explosion problem, which requires the model to be cut down to a convenient
finite size. Our paper might be regarded as an attempt at bridging the two ap-
proaches. We extract the unification mechanism underlying theorem proving and
bring it on the ground of a process language (a variant of the spi-calculus) that
naturally supports a notion of variable binding. This allows us to obtain precise
completeness results for trace analysis.

Acknowledgements. I have benefitted from stimulating discussions with Mar-
tin Abadi, Roberto Amadio, Rocco De Nicola, Marcelo Fiore and Rosario
Pugliese.

References
1. M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148(1):1-70, 1999.
2. M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic Protocols.

Nordic Journal of Computing, 5(4):267-303, 1998.
3. R. Amadio, S. Prasad. The game of the name in cryptographic tables. RR 3733

INRIA Sophia Antipolis. In Proc. of Asian’00, LNCS, 2000.
4. R.M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocols.

In Proc. of Concur’00, LNCS, 2000. Full version: RR 3915 Inria Sophia Antipolis.

Symbolic Trace Analysis of Cryptographic Protocols 681

5. M. Boreale. Symbolic analysis of cryptographic protocols in the spi-calculus.
Manuscript, 2000. Available at
http://www.dsi.unifi.it/∼boreale/papers.html.

6. M. Boreale. STA: a tool for trace analysis of cryptographic protocols. ML object
code and examples, 2001. Available at
http://www.dsi.unifi.it/∼boreale/tool.html.

7. M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic Pro-
cesses. In Proc. of LICS’99, IEEE Computer Society Press, 1999. Full version to
appear in SIAM Journal on Computing.

8. M. Burrows, M. Abadi, R.M. Needham. A logic of authentication. Proc. of the
Royal Society of London, 426:233–271, 1989.

9. E.M. Clarke, S. Jha, W. Marrero. Using state exploration and a natural deduc-
tion style message derivation engine to verify security protocols. In Proc. of the
IFIP Working Conference on Programming Concepts and Methods (PROCOMET),
1998.

10. N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of bounded security
protocols. In Proc. of Workshop on Formal Methods and Security Protocols, Trento,
1999.

11. D. Dolev, A.C. Yao. On the security of public key protocols. In IEEE Transactions
on Information Theory 29(2):198–208, 1983.

12. A. Huima. Efficient infinite-state analysis of security protocols. In Proc. of Work-
shop on Formal Methods and Security Protocols, Trento, 1999.

13. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proceedings of TACAS’96, (T. Margaria, B. Steffen, Eds.), LNCS 1055,
pp. 147-166, Springer-Verlag, 1996.

14. G. Lowe. A Hierarchy of Authentication Specifications. In 10th IEEE Computer
Security Foundations Workshop, IEEE Computer Society Press, 1997.

15. G. Lowe. Towards a completeness result for model checking of security protocols.
In 11th Computer Security Foundations Workshop, IEEE Computer Society Press,
1998.

16. D. Marchignoli, F. Martinelli. Automatic verification of cryptographic protocols
through compositional analysis techniques. In Proc. of TACAS99, LNCS 1579:148–
163, 1999.

17. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II).
Information and Computation, 100:1-77, 1992.

18. L.C. Paulson. Proving Security Protocols Correct. In Proc. of LICS’99, IEEE Com-
puter Society Press, 1999.

19. A.W. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In 8th
Computer Security Foundations Workshop, IEEE Computer Society Press, 1995.

20. A.W. Roscoe. Proving security protocols with model checkers by data independent
techniques. In 11th Computer Security Foundations Workshop, IEEE Computer
Society Press, 1998.

21. S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on
Software Engineering, 24(8):743-758, 1998.

22. S. Stoller. A reduction for automated verification of security protocols. In Proc. of
Workshop on Formal Methods and Security Protocols, Trento, 1999.

Tree Automata with One Memory, Set
Constraints, and Ping-Pong Protocols?

Hubert Comon1,2, Véronique Cortier2, and John Mitchell1

1 Department of Computer Science, Gates 4B, Stanford University, CA 94305-9045
{comon,jcm}@theory.stanford.edu, Fax: (650) 725 4671

2 Laboratoire Spécification et Vérification, CNRS and Ecole Normale Supérieure de
Cachan,{comon,cortier}@lsv.ens-cachan.fr

Abstract. We introduce a class of tree automata that perform tests on
a memory that is updated using function symbol application and projec-
tion. The language emptiness problem for this class of tree automata is
shown to be in DEXPTIME. We also introduce a class of set constraints
with equality tests and prove its decidability by completion techniques
and a reduction to tree automata with one memory. Set constraints with
equality tests may be used to decide secrecy for a class of cryptographic
protocols that properly contains a class of memoryless “ping-pong pro-
tocols” introduced by Dolev and Yao.

1 Introduction

Set constraints were introduced in the eighties and have been studied thoroughly
since, with applications to the analysis of programs of various styles (see [2] for
a survey). Typically, the problem of interest is to decide the satisfiability of
a conjunction of set expression inclusions e ⊆ e′ in which the set expressions
are built from variables and various constructions, including, e.g., projection.
Athough some set variable may occur several time in an expression, most classes
of set constraints do not make it possible to write a set expression for a set of
terms of the form f(t, t), in which one subterm occurs more than once. One
exception is the class of constraints studied in [6].

Our motivating interest is to develop classes of cryptographic protocols for
which some form of secrecy is decidable. A historical class of decidable protocols
are the so-called ping-pong protocols [10]. Although none of the protocols of [8]
belongs to this class, ping-pong protocols remain a decidable class, while most
larger classes of security protocols are undecidable [5]. One of the main restric-
tions in [11,10] is that messages are built using unary symbols only. In contrast,
many protocols of interest are written using a binary encryption symbol and a
pairing function. Another restriction in [11,10] is that each protocol participant
is stateless: after a message is sent, the participant does not retain any memory of
the contents of the message. This is a significant limitation since many protocols
? Partially supported by DoD MURI “Semantic Consistency in Information

Exchange,” ONR Grant N00014-97-1-0505, and NSF CCR-9629754.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 682–693, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Tree Automata with One Memory 683

rely on challenge-response steps, that require memory. A previous investigation
of ping-pong protocols with added state led to undecidability [13].

It is insightful to observe that Dolev and Yao’s result [11] can be proved using
set constraints. This suggests a generalization of their approach to trees. A tech-
nical complication, though, is that the generalization to trees is less expressive
than one might expect: in the case of unary functions only, a function and its
inverse are set inverses of each other, in the sense that f(f−1(X)) is precisely
X. However, this is no longer true with trees: if f−1

1 and f−1
2 are the two projec-

tions corresponding to a binary function symbol f , the set f(f−1
1 (X), f−1

2 (X))
contains pairs f(t1, t2) which are not necessarily in X. In order to increase
the expressiveness of set constraints with binary functions, we need a “diagonal
construction”, enabling us to test for equalities the members of sets.

In this paper, we introduce a new class of set constraints, allowing limited
diagonal constructions. This class is incomparable with the class sketched in [6].
We show that satisfiability is decidable for this class, allowing us to generalize
Dolev and Yao’s result to trees. Our class of set constraints does not capture
all protocol concepts of interest. In particular, as can be seen from the survey
[8], many authentication protocols make use of nonces or time stamps, which
we cannot express. On the other hand, properties of protocols that are modeled
using set constraints are decidable, while nonces and timestamps typically lead
to undecidability [5]. Moreover, we can express conservative approximations of
general protocols, and it is possible in principle that set constraints with equality
tests provide algorithms for determining the security of some such protocols.

We prove the decidability of set constraints with equality tests by a reduc-
tion to an emptiness problem for a class of tree automata with constraints. Tree
automata with various forms of constraints have been studied by several authors
(see [9] for a survey). However, the class we consider in this paper is incompa-
rable with known decidable classes. Roughly, we allow each state to hold one
arbitrarily large memory register and restrict the use of this memory to equality
tests. Since memory registers are updated using projections and function appli-
cation, this class is a generalization of pushdown word (alternating) automata.
Despite the generality of the class, there is a simple proof that emptiness decision
is in DEXPTIME.

After discussing the correspondence between protocols and set constraints in
the next section, we recall known results on definite set constraints which will
be used later (section 3). Then we introduce tree automata with one memory
in section 4; this section can be seen as a stand-alone decidability result and
relies on definite set constraints. Next, we introduce in section 5 our class of set
constraints with one equality, showing how to reduce the satisfiability of these
constraints to the non-emptiness decision for tree automata with one memory.
The reduction is similar to the saturation process described in [7] for set con-
straints with intersection, but it is slightly more complicated due to equality
tests. (In fact, we obtain a doubly exponential algorithm if the maximum arity
of all function symbols is not constant.) Finally, we discuss the application to
security protocols in section 6.

684 H. Comon, V. Cortier, and J. Mitchell

2 Protocol Motivation

Dolev and Yao [11] consider protocols in which each principal holds a single
public key (which is known to everybody) and a corresponding private key that
is known to them only. The principals are able to build messages using plain
text, encryption eX with the public key of X and signatures dX appending the
name of principal X. Here is a simple example from [11]:

A → B : eB(dA(eB(s))) Alice sends to Bob a message encrypted using Bob’s
public key consisting of a signed encrypted text s

B → A : eA(s) Bob acknowledges the reception by sending back to Alice
the text s, encrypted using the public key of Alice

In this model, communication channels are insecure. This allows an intruder
to intercept messages, remember them, and replace them with alternate (possibly
forged) messages. The intruder may decrypt a message if the corresponding key
has become known to him, may append or remove signatures, and may encrypt
using any public key. The secrecy question asks whether there is a way for an
intruder to get the plain text message s that is supposed to be kept secret
between Alice and Bob. In the above example, the answer is yes (the protocol is
insecure).

The possible use of set constraints in cryptographic protocols analysis has
been suggested in several papers, e.g. [14]. It is however interesting to see that the
Dolev-Yao decidability proof can be summarized using set constraints by letting
I be the set of messages that can be built by the intruder (after any number of
sessions). Since I can intercept any message of any run of the protocol, we write
set constraints putting every protocol message in I. For the example protocol
above, we have

eY (dX(eY (s))) ⊆ I eX(e−1
Y (d−1

X (e−1
Y (I)))) ⊆ I

for every pair of principals X, Y , since Bob acknowledges a message m from Alice
by sending eA(e−1

B (d−1
A (e−1

B (m)))). Finally, for every principal X, we express the
ability of the intruder to perform operations using public information about X:

dX(I) ⊆ I, eX(I) ⊆ I, d−1
X (I) ⊆ I

This process translates a protocol into a collection of set constraints about the
set I of messages available to the intruder. Secrecy now becomes the question
whether the set constraints, together with s /∈ I, is satisfiable ? Assuming a fixed
number of principals, this is decidable in polynomial time for set constraints aris-
ing from Dolev-Yao’s ping-pong protocols: we can compute the minimal solution
of the definite set constraint and check the membership of s.

There are several restrictions in the Dolev-Yao approach. In particular, only
a fixed number of principals and, as mentioned above, only unary symbols may
be used. A pairing function or a binary encryption symbol, allowing to write
e.g. e(k, m) instead of ek(m), i.e. allowing to consider keys as first-class objects,
would considerably increase the expressive power.

Tree Automata with One Memory 685

3 Definite Set Constraints

This class of set constraints has been introduced in [15] and studied by various
authors (e.g. [7]). Each constraint is a conjunction of inclusions e1 ⊆ e2 where
e1 is a set expression and e2 is a term set expression. Term set expressions are
built out of a fixed ranked alphabet of function symbols F , the symbol > and
set variables. A set expression is either a term set expression or a union of two
set expressions e1 ∪ e2, or an intersection of two set expressions e1 ∩ e2 or the
image of set expressions by some function symbol f(e1, . . . , en) or a projection
f−1

i (e1) where f is a function symbol and i ∈ [1..n] if n is the rank of f . Note
that negation is not allowed. Here is a definite set constraint:

f−1
2 (X) ⊆ g(Y) f(f(X, Y) ∩ X, X) ⊆ X g(Y) ∩ Y ⊆ X a ⊆ Y

Set expressions denote sets of subsets of the Herbrand universe T (F); if σ assigns
each variable to some subset of T (F), then [[]]σ is defined by:

[[X]]σ
def= Xσ [[f(e1, . . . , en)]]σ

def= {f(t1, . . . , tn) | ∀i ∈ [1..n], ti ∈ [[ei]]σ}
[[e1 ∩ e2]]σ

def= [[e1]]σ ∩ [[e2]]σ [[f−1
i (e)]]σ

def= {ti | ∃t1, ..., tn.f(t1, ..., tn) ∈ [[e]]σ}
[[>]]σ

def= T (F) [[e1 ∪ e2]]σ
def= [[e1]]σ ∪ [[e2]]σ

σ satisfies e1 ⊆ e2 iff, [[e1]]σ ⊆ [[e2]]σ. This extends to conjunctions of inclusions.

Theorem 1 ([7]). The satisfiability of definite set constraints is DEXPTIME-
complete and each satisfiable constraint has a least solution.

4 Tree Automata with One Memory

The idea is to enrich the expressiveness of tree automata by allowing them to
carry and test some information. For instance, a pushdown automaton will keep
a stack in its memory and check the symbols at the top of the stack. What we
do here is something similar. Our automata work on trees instead of words and
may perform more general constructions and more general tests.

Informally, a tree automaton with one memory computes bottom-up on a tree
t by synthesizing both a state (in a finite set of states Q) and a memory, which
is a tree over some alphabet Γ . Each transition uses some particular function
which computes the new memory from the memories at each direct son. Each
transition may also check for equalities the contents of the memories at each son.

Given an alphabet of function symbols Γ , the set of functions Φ which we
consider here (and which may be used to compute on memories) is the least set
of functions over T (Γ) which is closed by composition and containing:

– for every f ∈ Γ of arity n, the function λx1, ...xn.f(x1, . . . , xn)
– for every n and every 1 ≤ i ≤ n, the function λx1,, xn.xi

– for every f ∈ Γ of arity n and for every 1 ≤ i ≤ n, the (partial) function
which associates each term f(t1, . . . , tn) with ti, which we write λf(x).xi.

For instance, if Γ contains a constant (empty stack) and unary function symbols,
Φ is the set of functions which push or pop after checking the top of the stack.

686 H. Comon, V. Cortier, and J. Mitchell

Definition 1. A tree automaton with one memory is a tuple (F , Γ, Q, Qf , ∆)
where F is an alphabet of input function symbols, Γ is an alphabet of memory
function symbols, Q is a finite set of states, Qf is a subset of final states, ∆ is
a finite set of transition relations of the form f(q1, ..., qn) c−→

F
q where

– f ∈ F is called the head symbol of the rule,
– c is a subset of {1, ..., n}2, defining an equivalence relation on {1, . . . , n}.
– λx1..., xkF (x1, . . . , xk) ∈ Φ, where k is the number of classes modulo c
– q1, . . . , qn, q ∈ Q, (q is the target of the rule).

A configuration of the automaton consists of a state and a term in T (Γ)
(the memory). Then computations work as follows: if t = f(t1, . . . , tn) and the
computation on t1, . . . , tn respectively yields the configurations q1, τ1, ... , qn, τn,
then the automaton, reading t, may move to q, τ when there is a transition rule
f(q1, . . . , qn) c−→

F
q and for every i = j ∈ c, τi = τj and τ = F (τi1 , . . . , τik

)

where i1, . . . , ik are representatives of the equivalence classes for c. A tree t is
accepted by the automaton whenever there is a computation of the automaton
on t yielding a configuration q, γ with q ∈ Qf .

Example 1. Assume that the transitions of the automaton A are (other compo-
nents of the automaton are obvious from the context, > is the identity relation):

g(q) >−−−−→
λx1.x1

q f(qa, qa) 1=2−−−−−−→
λx1.h(x1)

q a
>−→
b

qa

g(qa) >−−−−−−→
λx1.h(x1)

q f(q, q) 1=2−−−−−−→
λh(x1).x1

q

A computation of the automaton on f(g(f(a, a)), g(a)) is displayed on figure 1,
in which the configurations reached at each node are displayed in a frame.

f
q, b

���
PPP

g
q, h(b)

g
q, h(b)

f
q, h(b)

a
qa, b

���
PPP

a
qa, b

a
qa, b

Fig. 1. A tree t and a computation of A on t

Pushdown automata (on words) perform transitions a, q, α · γ → q′, β · γ
where a is an input symbol, q, q′ are states and α, β, γ are words over the stack
alphabet (the rule pops α and pushes β). Such a rule can be translated in
the above formalism, viewing letters as unary symbols: a(q) −−−−−−→

λx.βα−1
1 x

q′. This

Tree Automata with One Memory 687

translation does not make use of equality tests. Orthogonally, if we use the tests,
but assume that F = λx.f(x) for each rule headed with f , then we get tree
automata with equality tests between brothers (see [4]).

Theorem 2. The emptiness of the language recognized by a tree automaton with
one memory is decidable in DEXPTIME. More generally, the reachability of a
given configuration is decidable in DEXPTIME.

Proof. (sketch) For every q ∈ Q, let Mq be the subset of T (Γ) of memory
contents m such that there is a tree t and a computation of the automaton on t
yielding the configuration < q, m >. Then the sets Mq are the least solutions of
the definite set constraint, consisting, for each transition rule f(q1, . . . , qn) c−→

F
q

of the inclusion F (Lqi1
, ...Lqik

) ⊆ Mq and Lqij
is the intersection for all indices

l equivalent (w.r.t. c) to ij of Ml. Then the non-emptiness of the language
(resp. reachability of a configuration) reduces to similar questions on definite set
constraints, which are solvable in DEXPTIME.

The result can be generalized to alternating tree automata with one memory
keeping the same complexity. Alternation here has to be understood as follows:
we may replace the states occurring in the left hand sides of the rules with
arbitrary positive Boolean combinations of states. The above proof simply works,
using additional intersections and unions.

Corollary 1. The emptiness problem of alternating tree automata with one
memory is DEXPTIME-complete.

Note however that the class of automata with one memory is neither closed
under intersection nor complement (both yield undecidable models).

5 Set Constraints with Equality Tests

We consider now definite set constraints as in section 3 with an additional con-
struction: function symbols can be labeled with equality tests, which are con-
junctions of equalities p1 = p2 between paths. The intention is to represent sets
of terms t such that the subterms at positions p1 and p2 are identical.

More precisely, if c is a conjunction of equalities between paths (which we
assume w.l.o.g. closed under transitivity and such that no strict prefix of a path
in c is in c), we define

[[f c(e1, . . . , en)]]σ
def= {t ∈ [[f(e1, . . . , en)]]σ | t |= c}

and t |= c if, for every equality p1 = p2 in c, p1, p2 are positions in t and t|p1 =
t|p2 . If p1 = p2 ∈ c, we say thatp1, p2 are checked by c. All other constructions
are the same as in section 3. In particular, right hand sides of inclusions should
not contain constructions fc. When c is empty, we may omit it or write >.

688 H. Comon, V. Cortier, and J. Mitchell

Example 2. f21=12(f(Z, Y) ∩X, g(X) ∩Y) ⊆ f(Y, X) is an inclusion constraint.
σ = {X 7→ {a, b, f(a, b)}; Y 7→ {b, g(a), g(b), f(a, b)}; Z 7→ {a, b}} is a solution of
the constraint since [[f12=21(f(Z, Y) ∩ X, g(X) ∩ Y)]]σ = {f(f(a, b), g(b))}
As a consequence of undecidability results on tree automata with equality tests
(see e.g. [9]), the satisfiability of such general constraints is undecidable. That
is why we are going to put more restrictions on the constraints.

If X is a variable of a constraint S, then let R(X) be the set of atomic
constraints whose right hand side contains X. The set of variables having a
basic type is the least set of variables X such that R(X) consists of inclusions
gi(Xi

1, . . . , X
i
ni

) ⊆ X and such that

– if the symbols gi do not occur anywhere else in S and every Xi
j is either X

itself or has a basic type, then X has a basic type
– if every Xi

j has a basic type, then X has a basic type.

Intuitively, the basic types correspond to data whose format is irrelevant (first
case in the definition) or which can be built using a bounded number of symbols
on such data (second case). For example, Nat and U have basic types in

R(Nat) ∪ R(U) def= zero ⊆ Nat, s(Nat) ⊆ Nat, pn(Nat) ⊆ U

if zero and s are not used elsewhere in S.
This notion is extended to expressions: an expression e is basic if

– e is a basic variable or
– e is an intersection e1 ∩ e2 and either e1 or e2 is basic
– e is an expression e1 ∪ e2 and both e1 and e2 are basic
– e is an expression f(e1, . . . , en) (or fc(e1, . . . , en)) and e1, . . . , en are basic

The set of paths in an expression e is defined as follows: Π(f c(e1, . . . , en)) def=
1·Π(e1)∪. . .∪n·Π(en), Π(e1∩e2) def= Π(e1∪e2) def= Π(e1)∪Π(e2), Π(f−1

i (e)) def=
∅. e|p is any of the subexpressions at position p. When there is no ∪ or ∩ symbol
along a path p then e|p denotes a single expression.

The assumption: We assume that, in each subexpression fc(e1, . . . , en), for every
p1 = p2 ∈ c, p1 and p2 are paths of f(e1, . . . , en). (This is actually equivalent
to restricting the use of projections below an fc construction). Then, for each
expression f c(e1, ..., en) we require that, if p · i · q is checked by c and p is not
empty then, for i 6= j, either p · j = p · i · q ∈ c or any subexpression at position
p · j has a basic type or any subexpression at p · i · q has a basic type. This will
be referred to as the basicness condition.

Example 3. If c is 12 = 21 = 11 ∧ 22 = 3. the basicness condition imposes that
either e|21 or e|22 has a basic type (and hence the other expressions at equivalent
positions).

Tree Automata with One Memory 689

The resulting constraints are called set constraints with equality tests (ET-
constraints for short). We can construct an ET-constraint whose least solution is
the set of trees ∆ = {f(t, t) | t ∈ T (F)}. The only other decidable set constraint
formalism which allows to express ∆ is the class defined in [6], in which, however,
equality tests are restricted to brother positions (which is not the case here). On
the other hand, we have restrictions which are not present in [6].

5.1 Saturation

We use here a fixed point computation method which is similar to the one in [7]:
the goal is to deduce enough consequences so that the inclusions whose right hand
side is not a variable become redundant, hence can be discarded. Unfortunately,
the first step (representation) in [7] cannot be used in the same way here, since
it does not preserve the class of constraints we consider. Still, as a first step,
we can get rid of projections and unions: we can compute in plynomial time an
equivalent ET-constraints containing no union or projection.

Next, we normalize the expressions according to the following rule Norm:

fc(e1, . . . , en) ∩ fc′
(e′

1, . . . , e
′
n) → fc∧c′

(e1 ∩ e′
1, . . . , en ∩ e′

n)

Lemma 1. (Norm) transforms an expression in an equivalent one. Moreover,
if the basicness condition is satisfied by the premises, then there is a (effectively
computable) constraint c′′ which is logically equivalent to c ∧ c′ and such that
f c′′

(e1 ∩ e′
1, . . . , en ∩ e′

n) satisfies the basicness condition.

We can get rid of basic type variables:

Lemma 2. For each basic variable X, there is a ground expression tX such that,
if S′ is the ET-constraint obtained by replacing in S each basic variable X with
tX , then σ is a solution of S′ iff σ ◦ σX is a solution of S.

We may assume now that there is no basic variable in the constraint. Then
the tests can be simplified, removing positions of basic expressions.

Next, as in [7], we extend the language allowing non-emptiness preconditions
in the rules, which allow to simplify (some but not all) inclusion constraints
f c(e) ⊆ f(e′). Formally, the set constraints are now clauses of the form

nonempty(e1), . . . , nonempty(en) ⇒ e ⊆ e′

where e, e1, . . . , en are set expressions,e′ is a set expression using only inter-
sections, variables and function symbols (without constraints). nonempty(ei) is
satisfied by an assignment σ iff [[ei]]σ is not empty.

Then we remove constraints of the form φ ⇒ C[fc(e) ∩ gc′
(e′)] ⊆ e′′ and

replace constraints φ ⇒ e ⊆ C[f(e) ∩ g(e′)] with φ, nonempty(e) ⇒ false for
every context C and every f 6= g. These rules are correct, by definition of the
interpretation.

690 H. Comon, V. Cortier, and J. Mitchell

We also abstract out subexpressions introducing new variables, as long as
this preserves the form of the constraints. For instance, for contexts C[]p, an
inclusion C[f c(e)]p ⊆ e′ becomes C[X]p ⊆ e′, fc(e) ⊆ X where X is a new
variable. This results in an equivalent constraint (on the original variables) in
which the inclusions are e ⊆ e′ where e′ is either an intersection of variables
X1 ∩ . . . ∩ Xn or an expression f(X1, . . . , Xn) and e is either an intersection of
variables or an expression f c(e) in which, at any position which is not a strict
prefix of a position checked by c, there is a (non-basic) variable or a term tX .

In addition, each time p1 = p2 appears in c in an expression fc(e), we
assume that all subexpressions at positions p1, p2 are identical, which can be
easily ensured replacing both subexpressions with their intersection.

Transitivity 1
φ1 ⇒ e1 ⊆ e2 φ2 ⇒ e2 ⊆ e3

φ1, φ2 ⇒ e1 ⊆ e3

Transitivity 2
φ ⇒ fc(e)[X ∩ g(e1) ∩ e2]p ⊆ e3 φ′ ⇒ gc′

(e4) ⊆ X

φ, φ′ ⇒ fc(e)[gc′
(e4) ∩ g(e1) ∩ e2]p ⊆ e3

provided p is
a strict pre-
fix of a path
checked in c

Compatibility
φ ⇒ e1 ⊆ e2 φ′ ⇒ e′

1 ⊆ e′
2

φ, φ′ ⇒ e1 ∩ e′
1 ⊆ e′

1 ∩ e′
2

Clash
φ ⇒ f(e) ⊆ g(e′)

φ ⇒ false
if f 6= g

Weakenings
φ ⇒ e1 ⊆ e2 ∩ e3

φ ⇒ e1 ⊆ e2

φ ⇒ e1 ⊆ e2

φ ⇒ e1 ∩ e3 ⊆ e2

If e3 is an expres-
sion occurring some-
where in the set of con-
straints

Projection
φ ⇒ fc(e1, . . . , en) ⊆ f(e′

1, . . . , e′
n)

φ, nonempty(fc(e1, . . . , en))) ⇒ e
c↓i
i ⊆ e′

i

If the subexpression at ev-
ery strict prefix of a position
checked in c is of the form
g(e′′) for some g.

Fig. 2. The saturation rules

Now, we are ready to apply the deduction rules given in figure 2, applying
again abstractions and normalisation (eagerly) if necessary to keep the special
form of the constraint. We use e[e′]p to express either that e′ is replaced by e at
position p or that e′ has to occur at position p. This means in particular that
the subexpression at position p in e has to be defined in a unique way. c ↓i is
defined by (c ∧ c′) ↓i

def= c ↓i ∧c′ ↓i, (i · p = i · q) ↓i
def= p = q and (j · p = q) ↓i

def= >
when i 6= j. ec is the expression in which the top symbol of e is constrained by
c. (It is used only in a context where e must be headed with a function symbol
or c = >).

Tree Automata with One Memory 691

Lemma 3. The inference rules in figure 2 are correct: the new constraint is a
consequence of the previous ones.

Lemma 4. The rules of figure 2 are terminating: a fixed point is reached after
finitely many steps (at most O(2|S|×|c|×b×2a

) where a is the maximal arity of a
function symbol, b is the number of basic types and |c| is the maximal depth of
an equality test).

If S is an ET-constraint, let solved(S) be the clauses φ → a in S such that
either a is false or else a is an inclusion f c(e) ⊆ e′ where e′ is an intersection of
variables and f c(e) does not contain any subexpression of the form X ∩ gc(e′)
where X is a variable. Using a classical construction, we can show that:

Lemma 5. solved(S) is either unsatisfiable or has a least solution.

As in [7], the following completeness result is obtained by inspecting each clause
C ∈ S which is not in solved(S), showing that, thanks to saturatedness, the least
solution of solved(S) is a solution of C. There are only some additional cases for
non-flat constraints e.g. f c(X ∩ g(e), e′) ⊆ f(e′′).

Theorem 3. If S is saturated, then either both S and solved(S) are unsatisfiable
or else S has a least solution, which is the least solution of solved(S).

5.2 The Main Result

We build, for each ET-constraint S, an automaton with one memory AS such
that if α is the least solution of S, for very variable X, α(X) is a simple homo-
morphic image of the set of terms accepted by AS in state qX . 1 The memory
alphabet of the automaton is the set of function symbols used in the constraint
and the alphabet F is the memory alphabet with some additional symbols al-
lowing to check on auxilliary branches non emptiness conditions.

The set of states is the set of subexpressions occurring in the constraint,
together with some local memory. We keep in the (unbounded) memory attached
to each state the tree which will be checked later for equality. The idea is to
accept in state e a term t iff there is at least one term in [[e]]σ for every solution
σ of the constraint. We have no room here to detail the construction.

As a consequence of lemma 3, lemma 4, theorem 2, theorem 3 and the above
construction, we get:

Theorem 4. The satisfiability of ET-constraints is decidable. Furthermore,
given a set constraint with equality tests S, a term t and a free variable X
of S, the consistency of S ∧ t /∈ X is equivalent to the non-reachability of the
configuration qX , t in AS, which is decidable.
1 Note that we could prove the result directly, using the same trick as in the proof

of theorem 2, without any reference to automata with one memory. However, we
believe that theorem 2 is interesting in itself.

692 H. Comon, V. Cortier, and J. Mitchell

6 Analysis of Cryptographic Protocols

We sketch here a protocol example (inspired by Kerberos) that can be analyzed
using ET-constraints, but is beyond the scope of [11]. We use a tupling function
< , >, a binary encryption enc and several additional symbols.

1. A → S : A, B
2. S → A : enc(k(A), < B, K(A, B), enc(k(B), < A, K(A, B) >) >)
3. A → B : enc(K(A, B), m(A, B)), enc(k(B), < A, K(A, B) >)
4. B → A : enc(K(A, B), h(m(A, B)))

In words, A tells the key server S that she wants to securely communicate
with B. Then S sends back to A a message, encrypted using A’s public key and
containing a session key K(A, B) together with a certificate which can be opened
by B only. At the third step, A sends her message m(A, B), encrypted using the
key K(A, B), together with the certificate, which is copied blindly from message
2. Finally, B acknowledges the reception, sending back a digest h(m(A, B)) of
the previous message, encrypted using the shared key.

Because of lack of space, we only sketch here very briefly how to express the
intruder capabilities on one hand and how the equality tests are used.

As in section 2, the intruder’s knowledge is represented using a set variable I.
We use a set variable Si resp. Ri) for the set of messages sent (resp. received) at
step i (see e.g. [12] for more details). Since the intruder I potentially intercepts
all messages and may send any message he can forge, we have Si ⊆ I ⊆ Ri. In
addition, he has some capabilities to alter messages. For instance:

enc(I, I) ⊆ I enc(I,>) ∩ I ⊆ enc(>, I)

In words, I can encrypt a known message using a known key and I can decrypt
a message whose encrypting key is known to him.

Now comes the protocol-dependent part of the constraints. The memory
which is kept by the participants is modeled by sending at step i not only the ith
message, but also relevant previous messages. This trick does not change any-
thing to I’s knowledge as previous messages were known to him. For instance,
step 2 will consist of:

< R1∩ < U, U >, enc(k(U), < U, K(U, U), enc(k(U), < U, K(U, U) >) >) >c⊆ S2

where c
def= 11 = 211 = ... ∧ 12 = 221 = ... expresses that principal names do match.

This is necessary since the intruder may be a participant in another session of the
protocol: we would get a too rough overapproximation without these tests. At
step 3, A includes blindly a piece of message 2, which can be expressed using an
equality test on non-basic variables of the form: < R2 ∩ enc(..., ...X...), X >c⊆
S3 where c restricts the interpretations of the left hand side to sets of terms
< enc(..., ...t...), t >. The last message is successful only if B answers correctly
the challenge, which can be expressed using an equality constraint representing
A’s memory: < R4 ∩ enc(X, h(Y)), S3 ∩ enc(X, Y) >c⊆ S5 where c restricts the
instances of the expression to sets of terms < enc(t1, h(t2)), enc(t3, t2) >.

Tree Automata with One Memory 693

We can handle an unbounded number of principals and messages may be
built using any set of function symbols with any arity. However, we cannot
handle nonces (randomly generated numbers) in general. In this respect, our
decidability result is not more general than e.g. [3].

Considering nonces introduces several complications (which we can expect
[12]): first we have to ensure that all nonces are distinct. This is possible at
the price of introducing disequality tests on basic types in the set constraints,
hence disequality tests in the automata. This may yield a still decidable model.
A much harder issue is the freshness of the nonces. Indeed, each nonce has a
lifetime, hence a scope (this becomes quite clear in spi-calculus formalizations
[1]). Modeling the scope hardly fits into the (finite) set constraints formalism.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.
Information and Computation, 148(1), 1999.

2. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79–111, 1999.

3. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. CONCUR’00, volume 1877 of Lecture Notes in Computer Science, 2000.

4. B. Bogaert and S. Tison. Equality and disequality constraints on brother terms in
tree automata. In A. Finkel, editor, Proc. 9th. Symposium on Theoretical Aspects
of Comp. Science, Cachan, France, 1992.

5. I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation
for protocol analysis. In P. Syverson, editor, 12-th IEEE Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 1999.

6. W. Charatonik and L. Pacholski. Negative set constraints with equality. In Proc.
IEEE Symp. on Logic in Computer Science, pages 128–136, Paris, 1994.

7. W. Charatonik and A. Podelski. Set constraints with intersection. In Proc. IEEE
Symposium on Logic in Computer Science, Varsaw, 1997.

8. J. Clarke and J. Jacobs. A survey of authentication protocol. literature: Version
1.0. Draft paper, 1997.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

10. D. Dolev, S. Even, and R. Karp. On the security of ping pong protocols. Infor-
mation and Control, 55:57–68, 1982.

11. D. Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE
Symp. on Foundations of Computer Science, pages 350–357, 1981.

12. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Proc. Workshop on formal methods in security protocols,
Trento, Italy, 1999.

13. S. Even and O. Goldreich. On the security of multi-party ping-pong protocols.
Technical Report 285, Technion, Haifa, Israel, 1983. Extended abstract appeared
in IEEE Symp. Foundations of Computer Science, 1983.

14. N. Heintze and J. Tygar. A model for secure protocols and their compositions.
IEEE transactions on software engineering, 22(1), 1996.

15. N. Heinze and J. Jaffar. A decision procedure for a class of set constraints. In
Proc. IEEE Symp. on Logic in Computer Science, Philadelphia, 1990.

Fair Simulation Relations, Parity Games, and
State Space Reduction for Büchi Automata

Kousha Etessami1, Thomas Wilke2, and Rebecca A. Schuller3

1 Bell Labs, Murray Hill, NJ
kousha@research.bell-labs.com

2 Christian Albrecht University, 24098 Kiel, Germany
wilke@ti.informatik.uni-kiel.de

3 Cornell University, Ithaca, NY
reba@math.cornell.edu

Abstract. We give efficient algorithms, beating or matching optimal
known bounds, for computing a variety of simulation relations on the
state space of a Büchi automaton. Our algorithms are derived via a
unified and simple parity-game framework. This framework incorporates
previously studied notions like fair and direct simulation, but our main
motivation is state space reduction, and for this purpose we introduce
a new natural notion of simulation, called delayed simulation. We show
that, unlike fair simulation, delayed simulation preserves the automa-
ton language upon quotienting, and that it allows substantially better
state reduction than direct simulation. We use the parity-game approach,
based on a recent algorithm by Jurdzinski, to efficiently compute all the
above simulation relations. In particular, we obtain an O(mn3)-time and
O(mn)-space algorithm for computing both the delayed and fair simula-
tion relations. The best prior algorithm for fair simulation requires time
O(n6) ([HKR97]).
Our framework also allows one to compute bisimulations efficiently: we
compute the fair bisimulation relation in O(mn3) time and O(mn) space,
whereas the best prior algorithm for fair bisimulation requires time
O(n10) ([HR00]).

1 Introduction

There are at least two distinct purposes for which it is useful to compute sim-
ulation relationships between the states of automata: (1) to efficiently establish
language containment among nondeterministic automata; and (2) to reduce the
state space of an automaton by obtaining its quotient with respect to the equiv-
alence relation underlying the simulation preorder.

For state machines without acceptance conditions, there is a well-understood
notion of simulation with a long history (see, e.g., [Mil89,HHK95]). For ω-
automata, where acceptance (fairness) conditions are present, there are a va-
riety of different simulation notions (see, e.g.,[HKR97],[GL94]). At a minimum,
for such a simulation to be of use for purpose (1), it must have the following
property:

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 694–707, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Fair Simulation Relations, Parity Games, and State Space Reduction 695

(*) whenever state q′ “simulates” state q the language of the automaton with
start state q′ contains the language of the automaton with start state q.

This property alone however is not, as we will see in Sect. 5, sufficient to assure
usefulness for purpose (2), which requires the following stronger property:

(**) the “simulation quotient” preserves the language of the automaton.

We will state precisely what is meant by a simulation quotient later.
In [HKR97] a number of the different simulation notions for ω-automata

were studied using a game-theoretic framework. The authors also introduced a
new natural notion of simulation, titled fair simulation. They showed how to
compute fair simulations for both Büchi and, more generally, Streett automata.
For Büchi automata, their algorithm requires O(n6) time to determine, for one
pair of states (q, q′), whether q′ fairly simulates q.1 Their algorithm relies on
an algorithm for tree automaton emptiness testing developed in [KV98]. In this
paper, we present a new comparatively simple algorithm for Büchi automata.
Our algorithm reduces the problem to a parity game computation, for which
we use a recent elegant algorithm by Jurdzinski, [Jur00], along with some added
enhancements to achieve our bounds. Our algorithm determines in time O(mn3)
and space O(mn) all such pairs (q, q′) of states in an input automaton A where
q′ simulates q. Here m denotes the number of transitions and n the number
of states of A. In other words, our algorithm computes the entire maximal fair
simulation relation on the state space in the stated time and space bound.2

In [HKR97] the authors were interested in using fair simulation for purpose
(1), and thus did not consider quotients with respect to fair simulation. The ques-
tion arises whether fair simulation can be used for purpose (2), i. e., whether it
satisfies property (**). We give a negative answer by showing that quotienting
with respect to fair simulation fails badly to preserve the underlying language,
under any reasonable definition of a quotient. On the other hand, there is an
obvious and well known way to define simulation so that quotients do preserve
the underlying language: direct simulation3 ([Mil89,DHWT91]) simply accom-
modates acceptance into the standard definition of simulation by asserting that
only an accept state can simulate another accept state. Direct simulation has
already been used extensively (see, e.g., [EH00,SB00]) to reduce the state space
of automata. Both [EH00] and [SB00] describe tools for optimized translations
from linear temporal logic to automata, where one of the key optimizations is
simulation reduction. However, as noted in [EH00], direct simulation alone is
not able to reduce many obviously redundant state spaces. Recall that, in gen-
eral, it is PSPACE-hard to find the minimum equivalent automaton for a given
1 There is a typo in the original version of [HKR97] that indicates an O(n4) running

time for their algorithm, but that typo has since been corrected.
2 D. Bustan and O. Grumberg [BG00] have independently obtained an algorithm for

computing fair simulation which, while it does not improve the O(n6) time complex-
ity of [HKR97], improves the space complexity to O(n2). Thanks to Moshe Vardi for
bringing their work to our attention, and thanks to Orna Grumberg for sending us
a copy of their technical report.

3 Direct simulation is called strong simulation in [EH00].

696 K. Etessami, T. Wilke, and R.A. Schuller

nondeterministic automaton. Thus, there is a need for efficient algorithms and
heuristics that reduce the state space substantially.

We introduce a natural intermediate notion between direct and fair simula-
tion, called delayed simulation, which satisfies property (**). We show that de-
layed simulation can yield substantially greater reduction, by an arbitrarily large
factor, than direct simulation. We provide an algorithm for computing the en-
tire delayed simulation relation which arises from precisely the same parity-game
framework and has the same complexity as our algorithm for fair simulation.

Lastly, our parity game framework also easily accommodates computation
of bisimulation relations (which are generally less coarse than simulation). In
particular, we show that the fair bisimulation relation on Büchi automata can
be computed in time O(mn3) and O(mn) space. Fair bisimulation was studied
by [HR00] for Büchi and Streett automata, who for Büchi automata gave an
O(n10) time algorithm to compute whether one state is fair bisimilar to another.

The paper is organized as follows: in Sect. 2, we define all (bi)simulation
notions used in the paper. In Sect. 3 we show how for each simulation notion
(and fair bisimulation), given a Büchi automaton, we can define a parity game
that captures the (bi)simulation. In Sect. 4, we use our variant of Jurdzinski’s
algorithm for parity games to give efficient algorithms for computing several
such (bi)simulation relations. In Sect. 5, we prove that the delayed simulation
quotient can be used to reduce automaton size, and yields better reduction than
direct simulation, but that the fair simulation quotient cannot be so used. We
conclude in Sect. 6. Due to lack of space, most proofs must be omitted.

2 Delayed, Fair, and Other (Bi)Simulations

2.1 Simulation

We now define various notions of simulation, including fair and the new delayed
simulation, in terms of appropriate games.4 As usual, a Büchi automaton A =
〈Σ, Q, qI , ∆, F 〉 has an alphabet Σ, a state set Q, an initial state qI ∈ Q, a
transition relation ∆ ⊆ Q × Σ × Q, and a set of final states F ⊆ Q. We will
henceforth assume that the automaton has no dead ends, i. e., from each state of
A there is a path of length at least 1 to some state in F . It is easy to make sure
this property holds without changing the accepting runs from any state, using a
simple search to eliminate unnecessary states and transitions.

Recall that a run of A is a sequence π = q0a0q1a1q2 . . . of states alternating
with letters such that for all i, (qi, ai, qi+1) ∈ ∆. The ω-word associated with π
is wπ = a0a1a2 . . . The run π is initial if it starts with qI ; it is accepting if there
exist infinitely many i with qi ∈ F . The language defined by A is L(A) = {wπ |
π is an initial, accepting run of A}. We may want to change the start state of A
to a different state q; the revised automaton is denoted by A[q].

4 For background on simulation, and its versions incorporating acceptance, see, e. g.,
[Mil89,HHK95], and [HKR97], respectively.

Fair Simulation Relations, Parity Games, and State Space Reduction 697

As in [HKR97], we define simulation game-theoretically.5 The next defini-
tion presents all the notions of simulation we will consider: ordinary simulation,
which ignores acceptance, as well as three variants which incorporate acceptance
conditions of the given automaton, in particular, our new delayed simulation.

Definition 1. Given a Büchi automaton A and (q0, q
′
0) ∈ Q2, we define:

1. the ordinary simulation game, denoted Go
A(q0, q

′
0),

2. the direct (strong) simulation game, denoted Gdi
A (q0, q

′
0),

3. the delayed simulation game, denoted Gde
A (q0, q

′
0),

4. the fair simulation game, denoted Gf
A(q0, q

′
0).

Each of the games is played by two players, Spoiler and Duplicator, in rounds
as follows. At the start, round 0, two pebbles, Red and Blue, are placed on q0
and q′

0, respectively. Assume that, at the beginning of round i, Red is on state
qi and Blue is on q′

i. Then:

1. Spoiler chooses a transition (qi, a, qi+1) ∈ ∆ and moves Red to qi+1.
2. Duplicator, responding, must chose a transition (q′

i, a, q′
i+1) ∈ ∆ and moves

Blue to q′
i+1. If no a-transition starting from q′

i exists, then the game halts
and Spoiler wins.

Either the game halts, in which case Spoiler wins, or the game produces two
infinite runs: π = q0a0q1a1q2 . . . and π′ = q′

0a0q
′
1a1q

′
2 . . . , built from the transi-

tions taken by the two pebbles. Given these infinite runs, the following rules are
used to determine the winner.

1. Ordinary simulation: Duplicator wins in any case. (In other words, fairness
conditions are ignored; Duplicator wins as long as the game does not halt).

2. Direct simulation: Duplicator wins iff, for all i, if qi ∈ F , then also q′
i ∈ F .

3. Delayed simulation: Duplicator wins iff, for all i, if qi ∈ F , then there exists
j ≥ i such that q′

j ∈ F .
4. Fair simulation: Duplicator wins iff there are infinitely many j such that

q′
j ∈ F or there are only finitely many i such that qi ∈ F (in other words,

if there are infinitely many i such that qi ∈ F , then there are also infinitely
many j such that q′

j ∈ F).

Let ? ∈ {o, di , de, f}. A strategy for Duplicator in game G?
A(q0, q

′
0) is a

function f : (ΣQ)+ → Q which, given the history of the game (actually, the
choices of Spoiler) up to a certain point, determines the next move of Duplica-
tor. Formally, f is a strategy for Duplicator if for every run q0ρaq of A, we have
(f(ρ), a, f(ρaq)) ∈ ∆, where, by convention, f(ε) = q′

0. A strategy f for Duplica-
tor is a winning strategy if, no matter how Spoiler plays, Duplicator always wins.
5 We will focus on simulations between distinct states of the same automaton (“au-

tosimulations”), because we are primarily interested in state space reduction. Sim-
ulations between different automata can be treated by considering autosimulations
between the states of the automaton consisting of their disjoint union. In [HKR97],
the authors presented their work in terms of Kripke structures with fairness con-
straints. We use Büchi automata directly, where labels are on transitions instead of
states. This difference is inconsequential for our results.

698 K. Etessami, T. Wilke, and R.A. Schuller

Formally, a strategy f for Duplicator is winning if whenever π = q0a0q1a1 . . .
is an infinite run through A and π′ = q′

0a0q
′
1a1q

′
2 . . . is the run defined by

q′
i+1 = f(a0q1a1q2 . . . qi+1), then Duplicator wins based on π and π′.

Definition 2. Let A be a Büchi automaton. A state q′ ordinary, direct, delayed,
fair6 simulates a state q if there is a winning strategy for Duplicator in G?

A(q, q′)
where ? = o, di , de, or f , respectively. We denote such a relationship by q �? q′.

Proposition 1. Let A be a Büchi automaton.

1. For ? ∈ {o, di , de, f}, �? is a reflexive, transitive relation (aka, preorder or
quasi-order) on the state set Q.

2. The relations are ordered by containment: �di ⊆ �de ⊆ �f ⊆ �o.
3. For ? ∈ {di , de, f}, if q �? q′, then L(A[q]) ⊆ L(A[q′]).

Thus, delayed simulation is a new notion of intermediate “coarseness” be-
tween direct and fair simulation. We will see in Sect. 5 why it is more useful for
state space reduction.

2.2 Bisimulation

For all the mentioned simulations there are corresponding notions of bisimu-
lation, defined via a modification of the game. For lack of space, we will not
provide detailed definitions for bisimulation. Instead we describe intuitively the
simple needed modifications. The bisimulation game differs from the simulation
game in that Spoiler gets to choose in each round which of the two pebbles, Red
or Blue, to move and Duplicator has to respond with a move of the other pebble.
The winner of the game is determined very similarly: if the game comes to a halt,
Spoiler wins. If not, the winning condition for Fair bisimulation ([HR00]) is: “if
an accept state appears infinitely often on one of the two runs π and π′, then
an accept state must appear infinitely often on the other as well”. The winning
condition for Delayed bisimulation is: “if an accept state is seen at position i of
either run, then an accept state must be seen thereafter at some position j ≥ i
of the other run”. The winning conditions for Direct bisimulation becomes “if
an accept state is seen at position i of either run, it must be seen at position
i of both runs”. Winning strategies for the bisimulation games are defined sim-
ilarly. Bisimulations define an equivalence relation ≈bi

? (not a preorder) on the
state space, and the following containments hold: ≈bi

di⊆≈bi
de⊆≈bi

f ⊆≈bi
o . Gener-

ally, bisimulation is less coarse than the equivalence derived from the simulation
preorder, which we describe in Sect. 5, i.e., ≈bi

? ⊆≈?.

6 Our game definition of fair simulation deviates very slightly from that given in
[HKR97], but is equivalent since we consider only automata with no dead ends.

Fair Simulation Relations, Parity Games, and State Space Reduction 699

3 Reformulating (Bi)Simulations as Parity Games

3.1 Simulation

We now show how, given a Büchi automaton A and ? ∈ {o, di , de, f}, we can
obtain in a straightforward way a parity game graph G?

A such that the winning
vertices in G?

A for Zero (aka Player 0) in the parity game determine precisely
the pairs of states (q, q′) of A where q′ ?-simulates q. Importantly, the size of
these parity game graphs will be O(|Q||∆|), and the nodes of the game graphs
will be labeled by at most three distinct “priorities”. In fact, only one priority
will suffice for Go

A and Gdi
A , while Gde

A and Gf
A will use three priorities.

We briefly review here the basic formulation of a parity game. A parity game
graph G = 〈V0, V1, E, p〉 has two disjoint sets of vertices, V0 and V1, whose union
is denoted V . There is an edge set E ⊆ V × V , and p : V → {0, . . . , d − 1} is a
mapping that assigns a priority to each vertex.

A parity game on G, starting at vertex v0 ∈ V , is denoted P (G, v0), and is
played by two players, Zero and One. The play starts by placing a pebble on
vertex v0. Thereafter, the pebble is moved according to the following rule: with
the pebble currently on a vertex vi, and vi ∈ V0 (V1), Zero (One, respectively)
plays and moves the pebble to a neighbor vi+1, that is, such that (vi, vi+1) ∈ E.

If ever the above rule cannot be applied, i. e., someone can’t move because
there are no outgoing edges, the game ends, and the player who cannot move
loses. Otherwise, the game goes on forever, and defines a path π = v0v1v2 . . .
in G, called a play of the game. The winner of the game is then determined as
follows. Let kπ be the minimum priority that occurs infinitely often in the play
π, i. e., so that for infinitely many i, p(vi) = kπ and kπ is the least number with
this property; Zero wins if kπ is even, whereas One wins if kπ is odd.

We now show how to build the game graphs G?
A. All the game graphs are

built following the same general pattern, with some minor alterations. We start
with Gf

A. The game graph Gf
A = 〈V f

0 , V f
1 , Ef

A, pf
A〉 will have only three priorities

(i. e., the range of pf
A will be {0, 1, 2}). For each pair of states (q, q′) ∈ Q2, there

will be a vertex v(q,q′) ∈ V f
0 such that Zero has a winning strategy from v(q,q′)

if and only if q′ fair simulates q. Formally, Gf
A is defined by

V f
0 = {v(q,q′,a) | q, q′ ∈ Q ∧ ∃q′′((q′′, a, q) ∈ ∆)} , (1)

V f
1 = {v(q,q′) | q, q′ ∈ Q} , (2)

Ef
A = {(v(q1,q′1,a), v(q1,q′2)) | (q′

1, a, q′
2) ∈ ∆}

∪ {(v(q1,q′1), v(q2,q′1,a)) | (q1, a, q2) ∈ ∆} , (3)

pf
A(v) =

0, if (v = v(q,q′,a) or v = v(q,q′)) and q′ ∈ F ,
1, if v = v(q,q′), q ∈ F , and q′ /∈ F ,
2, otherwise.

(4)

We now describe how Gf
A can be modified to obtain Go

A and Gdi
A , both of which

require only trivial modification to Gf
A. The parity game graph Go

A is exactly

700 K. Etessami, T. Wilke, and R.A. Schuller

the same as Gf
A, except that all nodes will receive priority 0, i.e., po

A(v) = 0
for all v. The parity game graph Gdi

A is just like Go
A, meaning every vertex has

priority 0, but some edges are eliminated:

Edi
A = Ef

A \ ({(v, v(q1,q′1)) | q1 ∈ F ∧ q′
1 /∈ F} ∪ {(v(q1,q′1), w) | q1 /∈ F ∧ q′

1 ∈ F})
(5)

Finally, to define Gde
A we need to modify the game graph somewhat more. For

each vertex of Gf
A there will be at most two corresponding vertices in Gde

A :

V de
0 = {v(b,q,q′,a) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ ∆)} , (6)

V de
1 = {v(b,q,q′) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ (q′ ∈ F → b = 0)} . (7)

The extra bit b encodes whether or not, thus far in the simulation game, the Red
pebble has witnessed an accept state without Blue having witnessed one since
then. The edges of Gde

A are as follows:

Ede
A = {(v(b,q1,q′1,a), v(b,q1,q′2)) | (q′

1, a, q′
2) ∈ ∆ ∧ q′

2 /∈ F}
∪ {(v(b,q1,q′1,a), v(0,q1,q′2)) | (q′

1, a, q′
2) ∈ ∆ ∧ q′

2 ∈ F}
∪ {(v(b,q1,q′1), v(b,q2,q′1,a)) | (q1, a, q2) ∈ ∆ ∧ q2 /∈ F}
∪ {(v(b,q1,q′1), v(1,q2,q′1,a)) | (q1, a, q2) ∈ ∆ ∧ q2 ∈ F} . (8)

Lastly, we describe the priority function of Gde
A :

pde
A (v) =

{
b, if v = v(b,q,q′),
2, if v ∈ V0. (9)

In other words, we will assign priority 1 to only those vertices in V1 that signify
that an “unmatched” accept has been encountered by Red.7

The following lemma gathers a collection of facts we will need.

Lemma 1. Let A be a Büchi automaton.
1. For ? ∈ {o, di , f}, Zero has a winning strategy in P (G?

A, v(q0,q′0)) if and
only if q′

0 ?-simulates q0 in A. For ? = de, this statement holds if v(q0,q′0) is
replaced by v(b,q0,q′0), letting b = 1 if q0 ∈ F and q′

0 6∈ F , and b = 0 otherwise.
2. For ? ∈ {o, di , de, f}, |G?

A| ∈ O(|∆||Q|).
3. For ? ∈ {f, de}, |{v ∈ V ?

A | p?
A(v) = 1}| ∈ O(|Q|2).

Since vertices of Go
A and Gdi

A only get assigned a single priority, we can
dispense with algorithms for computing ordinary and direct simulation right
away, matching the best known upper bounds: with one priority the winning
set for Zero can be determined by a variant of AND/OR graph accessibility,
computable in linear time (see, e. g., [And94]). Thus:

Corollary 1. ([HHK95,BP95]) Given a Büchi automaton A, with n states and
m transitions, both �o and �di can be computed in time O(mn).
7 Note that it is possible to use only two priorities in pde

A , by assigning a vertex v the
priority b, where b is the indicator bit of v. However, it turns out that using two
priorities is a disadvantage over three because the encoding would not have property
(3) of Lemma 1, which we need for our complexity bounds.

Fair Simulation Relations, Parity Games, and State Space Reduction 701

3.2 Bisimulation

?-bisimulations can also be reformulated as parity games. For improving the
complexity, such a reformulation only helps for fair bisimulation. Ordinary and
direct bisimulation have known O(m log n) time algorithms ([PT87]), and we
will see that delayed bisimulation corresponds to direct bisimulation after some
linear time preprocessing on accept states of the Büchi automaton. We formulate
fair bisimulation with a parity game graph Gfbi

A as follows. The vertices of Gfbi
A

are

V fbi
0 = {v(q,q′,a,b1,b2) | q, q′ ∈ Q ∧ b1, b2 ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ ∆)} , (10)

V fbi
1 = {v(q0,q1,b2) | q, q′ ∈ Q ∧ b2 ∈ {0, 1}} . (11)

The two bits b1 and b2 will encode (1) which pebble was moved by Spoiler in
this round, and (2) which of the two runs was latest to see (prior to this round)
an accept state, respectively. For q0, q1 ∈ Q and b2 ∈ {0, 1}, let

new(q0, q1, b2) =

0 if q0 ∈ F ,
1 if q0 6∈ F and q1 ∈ F ,
b2 otherwise.

The edges Efbi
A are

{(v(q0,q1,b2), v(q′0,q′1,a,b1,b′2)) | (qb1 , a, q0
b1) ∈ ∆ ∧ q(1−b1) = q0

(1−b1) ∧ b0
2 = new(q0, q1, b2)}

∪ {(v(q0,q1,a,b1,b2), v(q′0,q′1,b2)) | (q(1−b1), a, q0
(1−b1)) ∈ ∆ ∧ qb1 = q0

b1} (12)

The priority function is as follows. For v ∈ V0, pfbi
A (v) = 2, and for v(q0,q1,b2) ∈ V1,

pfbi
A (v(q0,q1,b2)) =

0 if q(1−b2) ∈ F ,
1 if q(1−b2) 6∈ F and qb2 ∈ F ,
2 otherwise.

(13)

The correspondence of this parity game and fair bisimulation is as follows.

Lemma 2. Zero has a winning strategy in P (Gfbi
A , v(q0,q1,0)) if and only if q0

and q1 are fair-bisimilar in A. Furthermore, |Gfbi
A | ∈ O(|∆||Q|) and |{v ∈ V fbi

A |
pfbi

A (v) = 1}| ∈ O(|Q|2).

To compute delayed bisimulation efficiently, we show that the delayed bisim-
ulation relation corresponds to the direct bisimulation relation after some linear
time preprocessing on the accept states of the Büchi automaton. Consider the
following closure operation on accept states. Let cl(A) be the Büchi automaton
obtained from A by repeating the following until a fixed point is reached: while
there is a state q such that all of its successors are in F , put q in F . Clearly,
cl(A) can be computed in linear time and L(A) = L(cl(A)).

Proposition 2. q1 ≈bi
de q2 in A if and only if q1 ≈bi

di q2 in cl(A).

Thus, ≈bi
de can also be computed in time O(m log n) ([PT87]).

702 K. Etessami, T. Wilke, and R.A. Schuller

4 Fast Algorithm for Computing Fair (Bi)Simulations
and Delayed Simulations

We now use Gf
A, Gfbi

A , and Gde
A to give a fast algorithm for computing the

relations �f , ≈bi
f , and �de . Henceforth, we assume all parity game graphs have

neither self loops nor dead ends. We can always obtain an “equivalent” such
graph in linear time. To obtain the desired complexity bounds for solving parity
games, we describe an efficient implementation of an algorithm by Jurdzinski
[Jur00]. Jurdzinski uses progress measures (see also [Kla94,Wal96]) to compute
the set of vertices in a parity game from which Zero has a winning strategy.

We start with some terminology. Let G be a parity game graph as before,
n′ its number of vertices, m′ its number of edges, and assume there are only
three priorities, that is, p : V → {0, 1, 2}. Let n1 = |p−1(1)|. The algorithm
assigns to each vertex a “progress measure” in the range D = {0, . . . , n1}∪{∞}.
Initially, every vertex is assigned 0. The measures are repeatedly “incremented”
in a certain fashion until a “fixed point” is reached. We assume D is totally
ordered in the natural way. For i < 3 and x ∈ D, we define 〈x〉i as follows. First,
〈x〉0 = 0 if x < ∞ and 〈∞〉0 = ∞. Second, 〈x〉1 = 〈x〉2 = x for every x ∈ D.
In the same spirit, incr0(x) = incr2(x) = x for every x, and incr1(x) = x + 1
where, by convention, n1 + 1 = ∞ and ∞ + 1 = ∞. For simplicity in notation,
if v ∈ V , we write 〈x〉v and incrv(x) for 〈x〉p(v) and incrp(v)(x), respectively. For
every function ρ : V → D, called a measure, and v ∈ V , let

val(ρ, v) =
{〈min({ρ(w) | (v, w) ∈ E})〉v, if v ∈ V0,

〈max({ρ(w) | (v, w) ∈ E})〉v, if v ∈ V1. (14)

Jurdzinski defines a “lifting” operator, which, given a measure ρ and v ∈ V , gives
a new measure. In order to define it, we first need to define how an individual
vertex’s measure is updated with respect to that of its neighbors:

update(ρ, v) = incrv(val(ρ, v)) . (15)

The “lifted” measure, lift(ρ, v) : V → D, is then defined as follows:

lift(ρ, v)(u) =
{

update(ρ, v), if u = v,
ρ(u), otherwise. (16)

Jurdzinski’s algorithm is depicted in Figure 1.

1 foreach v ∈ V do ρ(v) := 0
2 while there exists a v such that update(ρ, v) 6= ρ(v) do
3 ρ := lift(ρ, v)
4 endwhile

Fig. 1. Jurdzinski’s lifting algorithm

The outcome determines the winning set of vertices for each player as follows:

Fair Simulation Relations, Parity Games, and State Space Reduction 703

Theorem 1. ([Jur00]) Let G be a parity game with p : V → {0, 1, 2}. Zero has a
winning strategy from precisely the vertices v such that, after the lifting algorithm
depicted in Fig. 1 halts, ρ(v) < ∞.

Jurdzinski’s algorithm needs at most n′(n1 + 1) iterations of the while loop.
More precisely, Jurdzinski argues as follows. Each vertex can only be lifted n1+1
times. A lifting operation at v can be performed in time O(|Sucs(v)|) where
Sucs(v) denotes the set of successors of v. So, overall, he concludes, the run-
ning time is O(m′n1). In this analysis, it is implicitly assumed that one can, in
constant time, decide if there is a vertex v such that update(ρ, v) 6= ρ(v), and
find such a vertex. We provide an implementation of Jurdzinski’s algorithm that
achieves this when the number of priorities d is bounded by a constant.

Our algorithm, depicted in Figure 2, maintains a set L of “pending” vertices
v whose measure needs to be considered for lifting, because a successor has
recently been updated resulting in a requirement to update ρ(v). Further, we
maintain arrays B and C that store, for each vertex v, the value val(ρ, v) and
the number of successors u of v with 〈ρ(u)〉p(v) = val(ρ, v), denoted cnt(ρ, v).

Fig. 2. Efficient implementation of the lifting algorithm

Lemma 3. The lifting algorithm depicted in Fig. 2 computes the same function
ρ as Jurdzinski’s algorithm, in time O(m′n1) and space O(m′).

Proof (sketch). Whether a vertex w needs to be placed on L is determined in
constant time by maintaining, for each vertex w, the current “best measure”
B(w) of any of its successors, as well as the count C(w) of how many such
neighbors there are with the “best measure”. The running time follows because
each vertex can enter L at most n1 + 1 times, and the time taken by the while
loop body is proportional to the number of edges incident on the vertex. ut

704 K. Etessami, T. Wilke, and R.A. Schuller

In the general case, where p : V → {0, . . . , d−1}, Jurdzinski’s algorithm uses
a more elaborate measure, where the elements of D are vectors of length bd/2c.
Our implementation of Jurdzinski’s algorithm extends directly to the general
case, yielding an additional factor d in comparison with the time bound claimed
by Jurdzinski. We do not know how Jurdzinski’s claimed bounds can be achieved
in the general case without the extra factor d. Finally, using Lemmas 1, 2, and
3, we may conclude:

Theorem 2. For a Büchi automaton A, �f , ≈bi
f , and �de can all be computed

in time O(|∆||Q|3) and space O(|Q||∆|).

As mentioned, in prior work O(|Q|6)-time ([HKR97]), and O(|Q|10)-time
([HR00]), algorithms were given for deciding whether q �f q′, and respectively
q ≈bi

f q′, hold for a single pair of states (q, q′).

5 Reducing State Spaces by Quotienting: Delayed
Simulation Is Better

In this section, we show: (1) quotienting with respect to delayed simulation
preserves the recognized language, (2) that this is not true with fair simulation,
and (3) quotients with respect to delayed simulation can indeed be substantially
smaller than quotients with respect to direct simulation, even when the latter
is computed on the “accept closure” cl(A) (unlike what we saw with delayed
bisimulation). We first define quotients.

Definition 3. For a Büchi automaton A, and an equivalence relation ≈ on the
states of A, let [q] denote the equivalence class of q ∈ Q with respect to ≈. The
quotient of A with respect to ≈ is the automaton A/≈ = 〈Σ, Q/≈, ∆≈, [qI], F/≈〉
where ∆≈ = {([q], a, [q′]) | ∃ q0 ∈ [q], q′

0 ∈ [q′], such that (q0, a, q′
0) ∈ ∆}.

In order to apply our simulation relations, we define, corresponding to each
simulation preorder, an equivalence relation ≈o , ≈di , ≈de , and ≈f , where: q ≈? q′

iff q �? q′ and q′ �? q. Note that both ≈? and A/≈? can be computed from �?

requiring no more time (asymptotically) than that to compute �? on A. The
quotient with respect to ≈di preserves the language of any automaton, while
this is obviously not true for ≈o . We will later see that this is not true for ≈f

either. We show that this is true for ≈de .

Lemma 4. Let A be a Büchi automaton.
1. If q0 �de q′

0 and (q0, a, q1) ∈ ∆, then there exists q′
1 with q1 �de q′

1 and
(q′

0, a, q′
1) ∈ ∆.

2. If q0 �de q′
0 and [q0]de a0 [q1]de a1 . . . is a finite or infinite run of A/≈de , then

there exists a run q′
0a0q

′
1a1 . . . of A of the same length such that qi �de q′

i

for every i.
3. If q0 �de q′′

0 and [q0]de a0 [q1]de a1 . . . is an infinite run of A/≈de with q0 ∈
F , then there exists a finite run q′′

0a0 . . . ar−1q
′′
r of A such that qj �de q′′

j for
j ≤ r and q′′

r ∈ F .

Fair Simulation Relations, Parity Games, and State Space Reduction 705

Theorem 3. For any Büchi automaton A, L(A) = L(A/≈de).

We can thus use A/≈de to reduce the size of A, just as with direct simulation.
In fact, A/≈de can be smaller than A/≈di (as well as cl(A)/≈di) by an arbitrarily
large factor:

Proposition 3. For n ≥ 2, there is a Büchi automaton An with n + 1 states
such that An/≈de has 2 states but An/≈di has n + 1 states (and An = cl(An)).

Proof. Consider automaton An in Figure 3. It is not hard to establish that in
An each outer state delayed simulates each other outer state. Thus An/≈de has
2 states. On the other hand, An = cl(An), and no state of An direct simulates
any other state of An. Thus An/≈di = An and has n + 1 states. ut

Fig. 3. Automata An and Bn

Next we see that Theorem 3 fails badly for fair simulation and bisimula-
tion, that is, fair (bi)simulation cannot be used for state space reduction via
quotienting. ([HR00] makes some related observations.)

Proposition 4. For n ≥ 2, there is a Büchi automaton Bn with n states, each
of which fairly (bi)simulates every other state, but such that no Büchi automaton
with fewer than n states accepts L(Bn). In particular, L(Bn) 6= L(Bn/≈bi

f).8

Proof. Consider the automaton Bn shown in Figure 3. It has n states, and an
alphabet Σ = {a1, . . . , an−1}. To see that every state of Bn fair simulates (and
fair bisimulates) every other state, first note that because the automaton is
8 Note that this inequality holds under any “reasonable” definition of a quotient with

respect to ≈bi
f or ≈f , e.g., as long as states of the quotient are equivalence classes.

706 K. Etessami, T. Wilke, and R.A. Schuller

deterministic Duplicator has no choice in her strategy. A run (played by Spoiler)
goes through the accept state infinitely often iff each ai is encountered infinitely
often. But this statement holds no matter which state the run begins from.
Thus Duplicator’s unique strategy from the initial state pair will be a winning
strategy. The language L(Bn) contains precisely those ω-words where each ai

occurs infinitely often. It is not hard to show that there are no Büchi automata
recognizing L(Bn) with fewer than n states. ut

6 Conclusions

We have presented a unified parity game framework in which to understand opti-
mal known algorithms for a variety of simulation notions for Büchi automata. In
particular, we have improved upon the best bounds for fair simulation (and fair
bisimulation), matched the best bound for ordinary simulation, and have pre-
sented an algorithm for the new notion of delayed simulation. Our algorithms
employ a relatively simple fixed point computation, an enhancement of an algo-
rithm by Jurdzinski for parity games, and should perform well in practice.

Our own main aim in using simulations is efficient state space reduction,
as in [EH00]. We introduced delayed simulation and showed that, unlike fair
simulation, delayed simulation quotients can be used for state space reduction,
and allow greater reduction than direct (strong) simulation, which has been used
in the past. Optimization of property automata prior to model checking is an
important ingredient in making explicit state model checkers such as SPIN more
efficient.

References

[And94] H. Andersen. Model checking and boolean graphs. TCS, 126(1):3–30,
1994.

[BG00] D. Bustan and O. Grumberg. Checking for fair simulation in models
with Büchi fairness constraints, Dec. 2000. Tech. Rep. TR-CS-2000-13,
Technion.

[BP95] B. Bloom and R. Paige. Transformational design and implementation
of a new efficient solution to the ready simulation problem. Science of
Computer Programming, 24(3):189–220, 1995.

[DHWT91] D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion
using simulation relations. In Proceedings of CAV’91, pages 329–341,
1991.

[EH00] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proc. of
11th Int. Conf on Concurrency Theory (CONCUR), pages 153–167, 2000.

[GL94] O. Grumberg and D. Long. Model checking and modular verification.
ACM Trans. on Programming Languages and Systems, 16(3):843–871,
1994.

[HHK95] M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on
finite and infinite graphs. In Proc. of 36th IEEE Symp. on Foundations
of Comp. Sci. (FOCS’95), pages 453–462, 1995.

Fair Simulation Relations, Parity Games, and State Space Reduction 707

[HKR97] T. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc.
of 9th Int. Conf. on Concurrency Theory (CONCUR’97), number 1243
in LNCS, pages 273–287, 1997.

[HR00] T. Henzinger and S. Rajamani. Fair bisimulation. In TACAS, 2000.
[Jur00] M. Jurdziński. Small progress measures for solving parity games. In

STACS 2000, 17th Symp. on Theoretical Aspects of Computer Science,
volume 1770 of LNCS, pages 290–301. Springer-Verlag, 2000.

[Kla94] N. Klarlund. Progress measures,immediate determinacy, & a subset con-
struction for tree automata. Ann. Pure & Applied Logic, 69:243–268,
1994.

[KV98] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that
weak. In Proc. 30th ACM Symp. on Theory of Computing, 1998.

[Mil89] R. Milner. Communicatation and Concurrency. Prentice-Hall, 1989.
[PT87] R. Paige and R. E. Tarjan. Three partition-refinement algorithms. SIAM

J. of Computing, 16(6):973–989, 1987.
[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae.

In Proceedings of 12th Int. Conf. on Computer Aided Verification, 2000.
[Wal96] I. Walukiewicz. Pushdown processes: games and model checking. In

Computer Aided Verification, LNCS, pages 62–75. springer-verlag, 1996.

Hypergraphs in Model Checking: Acyclicity and
Hypertree-Width versus Clique-Width?

Georg Gottlob1 and Reinhard Pichler2

1 Technische Universität Wien, gottlob@dbai.tuwien.ac.at
2 Technische Universität Wien, reini@logic.at

Abstract. The principal aim of model checking is to provide efficient
decision procedures for the evaluation of certain logical formulae over
finite relational structures. Graphs and hypergraphs are important ex-
amples of such structures. If no restrictions are imposed on the logical
formulae and on the structures under consideration, then this problem of
model checking has a very high computational complexity. Hence, several
restrictions have been proposed in the literature on the logical formulae
and/or on the structures under consideration, in order to guarantee the
tractability of this decision problem, e.g.: acyclicity, bounded tree-width,
query-width and hypertree-width in case of queries as well as bounded
tree-width and clique-width in case of structures. In this paper, we pro-
vide a detailed comparison of the expressive power of these restrictions.

1 Introduction

Model checking is the problem of deciding whether a logical formula or query Q
is satisfied by a finite structure S, which is formally written as S |= Q. Q may
be a formula in first-order logic, monadic second-order logic, existential second-
order logic, and so on. Model checking is a central issue in database systems [1],
where S represents a database and where the formula Q represents a database
query. If Q is a closed formula, then Q is a Boolean query, otherwise Q(x) with
free variables x represents the query whose output consists of all tuples of do-
main values a such that S |= Q(a). Model checking is also a basic issue in the
area of constraint satisfaction, which is essentially the same problem as conjunc-
tive query evaluation [2,23]. Finally, model checking is used in computer aided
verification [6], where S represents a state transition graph and Q is typically
a formula of modal logic describing some temporal system behaviour. The re-
sults of the present paper are, however, more relevant to the former applications,
namely, conjunctive database queries and constraint satisfaction.

Without any further restriction on the form of the structure and/or the
query, these problems have a very high computational complexity. Hence, several
restrictions have been proposed in the literature both for the structure and the
query, in order to make these problems tractable. In particular, the evaluation

? This work was supported by the Austrian Science Fund (FWF) Project N.Z29-INF.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 708–719, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Hypergraphs in Model Checking 709

problem for classes of queries that are acyclic or have bounded tree-width, query-
width or hypertree-width is tractable on arbitrary finite structures (combined
complexity). On the other hand, arbitrary but fixed fixed formulae of monadic
second order logic (MS1) can be evaluated in polynomial time on graphs of
bounded tree-width or bounded clique-width [10,13,12]. In other terms, MS1
queries have polynomial data complexity on structures of bounded tree-width
or of bounded query-width. MS1 extends first order logic by the possibility of
quantifying over monadic relational variables representing sets of vertices. Note
that only the concept of bounded tree-width has so far been applied both to
the queries and the structures. On the other hand, acyclicity, bounded query-
width and hypertree-width have primarily been investigated as restrictions on
the queries, while bounded clique-width has only been considered as a restriction
on the structures. In this paper, we apply all of these restrictions both to the
queries and to the structures. We shall thus answer the following questions:

- Question 1: How do the various notions of acyclicity and of bounded hypertree-
width relate to the concept of bounded clique-width?

- Question 2: Are Boolean conjunctive queries of bounded clique-width tractable?

- Question 3: Bounded clique-width is currently the most general restriction on
structures to make the model checking problem for monadic second order (MS1)
formulae tractable. Can the tractability barrier be pushed any further by using
known generalizations of acyclicity that are more powerful than clique-width?

As for the first question, we provide an exact classification of the expressive
power of the various restrictions. The result is depicted in Fig. 1. (Definitions of
all of these concepts are provided in Sect. 2. Note that, throughout this paper,
we only consider the clique-width of the incidence graph of a hypergraph and
not of its primal graph. This point will be briefly discussed in Sect. 6). The
arrows in the figure point from the less powerful concept to the more powerful
one. All of the results relating clique-width with the various notions of acyclicity
and query-width or hypertree-width are new, e.g.: It is shown that the class of
γ-acyclic hypergraphs has bounded clique-width (of the incidence graph).

In [19] it was shown that the evaluation of Boolean conjunctive queries with
bounded hypertree-width is tractable. Hence, together with our new results sum-
marized in Fig. 1, we immediately get a positive answer to Question 2.

As for the third question, we prove that the restriction to hypergraphs of
bounded query-width or of bounded β-hypertree-width is not sufficient to guar-
antee tractability of MS1 queries. Thus bounded clique-width remains so far
the most general restriction on structures that guarantees the tractability of
arbitrary fixed MS1 queries.

While tree-width can be recognized in linear time [4], it is currently unclear
whether bounded clique-width can be recognized in polynomial time. We there-
fore propose generalized tree-width (gtw), a cyclicity measure located between
tree-width and clique width, and show that bounded gtw is recognizable in poly-
nomial time.

710 G. Gottlob and R. Pichler

r bounded hypertree-width

�
���

@
@@I

r rbounded
query-width bounded β-hypertree-width

HHHHHHY

�
���

�
�

�
�

�
�

�
��3 6

r r bounded clique-width (of the incidence graph)α-acyclicity
6

rβ-acyclicity
6

rγ-acyclicity �
�

�
�

�
�

�
��3 6

r bounded tree-width (of the incidence graph)
6

r bounded tree-width (of the primal graph)

Fig. 1. Expressive power of various restrictions on hypergraphs

This paper is structured as follows: In Sect. 2 we recall some basic notions
and results. Restrictions on the form of the queries and of the structures will
be considered in the Sections 3 and 4, respectively. In Sect. 5, we introduce the
notion of generalized tree-width. Finally, in Sect. 6, we give some concluding
remarks. Due to space limitations, proofs can only be sketched or even have to
be omitted. Full proofs of all the results presented here are given in [21].

2 Preliminaries

A graph is a pair 〈V, E〉 consisting of a set V of vertices (or nodes) and a set E
of edges. We only consider undirected, loop-free graphs without multiple edges
here. Hence, in particular, every edge E ∈ E is a two-element subset of V. Two
vertices are called adjacent, iff they are the endpoints of an edge in E . A set
W ⊆ V is a module of a graph, iff the elements in W cannot be distinguished by
the other vertices, i.e.: every vertex in V − W is either adjacent to all vertices
W ∈ W or to none. A subgraph is a pair 〈V ′, E ′〉, s.t. V ′ ⊆ V and E ′ ⊆ E hold. A
subgraph is induced, iff E ′ is the restriction of E to those edges whose endpoints
are in V ′. In a labelled graph, every vertex has exactly one label. A k-graph is a
labelled graph where all labels are from the set {1, . . . , k}, i.e.: A k-graph can be
represented as 〈V, E ,V1, . . . ,Vk〉, where V is a set of vertices, E is a set of edges
and the sets V1, . . . ,Vk are (possibly empty) subsets of V that form a partition
of V.

A hypergraph is a pair 〈V,H〉 consisting of a set V of vertices and a set H
of hyperedges. A hyperedge H ∈ H is a subset of V. A subhypergraph is a pair
〈V ′,H′〉, s.t. V ′ ⊆ V and H′ ⊆ H hold. With every hypergraph G = 〈V,H〉, we
can associate the following two graphs: The primal graph (which is also called
the Gaifmann graph) P(G) has the same vertices V as G. Moreover, two vertices
V1, V2 ∈ V are connected by an edge in P(G), iff there is a hyperedge H ∈ H,
s.t. both V1 and V2 are contained in H. The incidence graph I(G) is a bipartite
graph with vertices in V ∪ H. Moreover, there is an edge in I(G) between two
vertices V ∈ V and H ∈ H, iff (in the hypergraph G) V occurs in the hyperedge

Hypergraphs in Model Checking 711

H. The incidence graph can either be considered as an unlabelled graph or as a
2-graph, with the labels V and H, respectively.

In order to determine the clique-width of a (labelled or unlabelled) graph,
we have to deal with so-called k-expressions t and the graphs G(t) generated by
such k-expressions:

(1) Let i ∈ {1, . . . , k} and let V be a vertex. Then i(V) is a k-expression. The
corresponding graph consists of a single vertex V whose label is i.
(2) Let r and s be k-expressions that have no vertices in common. Then r ⊕ s
is also a k-expression. The graph thus generated is the (disjoint) union of the
graphs G(r) and G(s).
(3) Let i, j ∈ {1, . . . , k} with i 6= j and let r be a k-expression. Then ηi,j(r) is
also a k-expression. The corresponding graph is the same as G(r) augmented by
edges from every vertex with label i to every vertex with label j.
(4) Let i, j ∈ {1, . . . , k} with i 6= j and let r be a k-expression. Then ρi→j(r)
is also a k-expression whose graph is the same as G(r) except that all vertices
with label i in G(r) are relabelled to j.

The graph generated by a k-expression t can be either considered as a labelled
graph with labels in {1, . . . , k} or as an unlabelled graph (by ignoring the labels
assigned by t). Every subexpression s of a k-expression t generates a subgraph
G(s) of G(t) (when considered as an unlabelled graph). The clique-width cwd(G)
of a (labelled or unlabelled) graph G is the minimum k, s.t. there exists a k-
expression that generates G. Obviously, cwd(G) ≤ n for every graph with n
vertices. It can be shown that every clique has clique-width 2, e.g. the clique
with four nodes V1, V2, V3, V4 can be generated by the 2-expression η1,2(2(V4) ⊕
(ρ2→1(η1,2(2(V3) ⊕ (ρ2→1(η1,2(2(V2) ⊕ 1(V1)))))).

A tree decomposition of a graph 〈V, E〉 is a pair 〈T, λ〉, where T = 〈N, F 〉 is
a tree and λ is a labelling function with λ(p) ⊆ V for every node p ∈ N , s.t. the
following conditions hold:

(1) ∀V ∈ V, ∃p ∈ N , s.t. V ∈ λ(p).
(2) ∀E ∈ E with endpoints V1 and V2, ∃p ∈ N , s.t. V1 ∈ λ(p) and V2 ∈ λ(p).
(3) ∀V ∈ V, the set {p ∈ N : V ∈ λ(p)} induces a connected subtree of T .

The width of a tree decomposition 〈T, λ〉 is max({|λ(p)|− 1 : p ∈ N}). The tree-
width tw(G) of a graph G is the minimum width over all its tree decompositions.

A join tree of a connected hypergraph 〈V,H〉 is a labelled tree 〈T, λ〉 with
T = 〈N, F 〉 and a labelling function λ with λ(p) ∈ H for every node p ∈ N .
Moreover, the following conditions hold:

(1) ∀H ∈ H, ∃p ∈ N , s.t. λ(p) = H.
(2) Let λ(p1) = H1 and λ(p2) = H2 for two distinct nodes p1 and p2. Moreover,
let some vertex V ∈ V occur in both hyperedges H1 and H2. Then V must also
occur in all hyperedges that are used as labels on the path from p1 to p2.

A hypergraph is α-acyclic, iff every connected component of this hypergraph has
a join tree.

In [7], a query decomposition of a hypergraph 〈V,H〉 is defined as a pair 〈T, λ〉
where T = 〈N, F 〉 is a tree and λ is a labelling function with λ(p) ⊆ (V ∪ H) for
every p ∈ N , s.t. the following conditions hold:

712 G. Gottlob and R. Pichler

(1) ∀H ∈ H, ∃p ∈ N , s.t. H ∈ λ(p).
(2) ∀V ∈ V, the set {p ∈ N : V ∈ λ(p)} ∪ {q ∈ N : ∃H ∈ H, s.t. H ∈ λ(q) and
V occurs in the hyperedge H} induces a connected subtree of T .

Note that, in the original definition in [7], it is also required that ∀H ∈ H, the
set {p ∈ N : H ∈ λ(p)} is a connected subtree of T . However, this condition is
not needed for the evaluation of queries and it has therefore been omitted here.
The width of a query decomposition is max({|λ(p)| : p ∈ N}). The query-width
qw(G) of a hypergraph G is the minimum width of its query decompositions.

In [19], a hypertree decomposition of a hypergraph 〈V,H〉 is defined as a triple
〈T, χ, λ〉 where T = 〈N, F 〉 is a tree and χ and λ are labelling functions with
χ(p) ⊆ V and λ(p) ⊆ H for every p ∈ N , s.t. the following conditions hold:

(1) ∀H ∈ H, ∃p ∈ N , s.t. H ⊆ χ(p), i.e.: “p covers H”.
(2) ∀V ∈ V, the set {p ∈ N : V ∈ χ(p)} induces a connected subtree of T .
(3) ∀p ∈ N , χ(p) contains only vertices that actually occur in at least one
hyperedge of λ(p).
(4) For every p ∈ N , if a vertex V occurs in some hyperedge H ∈ λ(p) and if V
is contained in χ(q) for some node q in the subtree below p, then V must also
be contained in χ(p).

The width of a hypertree decomposition 〈T, χ, λ〉 is max({|λ(p)| : p ∈ N}). The
hypertree-width hw(G) of a hypergraph G is the minimum width over all its
hypertree decompositions.

A conjunctive query Q is a first-order formula in prenex form whose only
connectives are ∃ and ∧. With every conjunctive query, we can associate a hy-
pergraph H, whose vertices V1, . . . , Vn correspond to the variables x1, . . . , xn oc-
curring in Q. Moreover, for every atom A with variables Var(A) = {xi1 , . . . , xiα},
there is a hyperedge H = {Vi1 , . . . , Viα} in the hypergraph and vice versa. Then
the notions of hypertree-width, query-width and acyclicity carry over in a natu-
ral way from hypergraphs to conjunctive queries. Likewise, the incidence graph
or the primal graph of a conjunctive query Q is simply the corresponding graph
of the associated hypergraph H. Actually, the clique-width and the tree-width of
a hypergraph or of a query can be either defined as the corresponding width of
the incidence graph or the primal graph. If not indicated otherwise, we shall as-
sume that the clique-width of a hypergraph or of a query refers to the incidence
graph considered as an unlabelled graph.

Clique-width and tree-width are hereditary properties in that cwd(G′) ≤
cwd(G) and tw(G′) ≤ tw(G) hold for all induced subgraphs of a graph. In con-
trast, α-acyclicity, query-width and hypertree-width do not share this property,
e.g.: a hypergraph H can be α-acyclic even though some subhypergraph H′

is not. Likewise, H can have a subhypergraph H′, s.t. qw(H) < qw(H′) or
hw(H) < hw(H′) hold. The notions of β-acyclicity and β-hypertree-width can be
regarded as the hereditary counterparts of α-acyclicity and hypertree-width: In
[16], a hypergraph H is defined to be β-acyclic, iff every subhypergraph H′ of
H is α-acyclic. Analogously, we can define the β-hypertree-width of H as the
max({hw(H′) : H′ is a subhypergraph of H}). In [16], another notion of acyclic-
ity is presented, namely γ-acyclicity. Any hypergraph, that is γ-acyclic, is also
β-acyclic. An algorithmic definition of γ-acyclicity will be given in Sect. 4.

Hypergraphs in Model Checking 713

3 Restricting the Form of the Queries

In this section we consider the case of arbitrary relational structures, where
the form of the queries is subjected to some strong restrictions. Recall that the
evaluation of arbitrary first-order queries is PSPACE-complete (cf. [24]). Ac-
tually, even if we restrict the form of first-order queries to conjunctive queries
(where only conjunctions and existential quantification are allowed), then the
query evaluation is still NP-complete (see [5]). If conjunctive queries are further
restricted to α-acyclic conjunctive queries, then this problem becomes tractable
(cf. [25]). However, acyclicity is a very severe restriction. Hence, in recent years,
several attempts to deal with “almost acyclic queries” have been made. In partic-
ular, several notions of width have been introduced, in order to extend the class
of tractable conjunctive queries, namely tree-width, query-width and hypertree-
width (cf. [7], [17], [19], [22], [23]). In [19] and [20], it has been shown that, for
some fixed k, the class of conjunctive queries with hypertree-width ≤ k properly
contains the classes where the tree-width (of the incidence graph or of the primal
graph) or the query-width, respectively, is bounded by k. Moreover, the concept
of hypertree-width is a generalization of α-acyclicity in that a conjunctive query
is acyclic, iff it has hypertree-width 1.

The notion of clique-width of (possibly labelled) graphs was originally in-
troduced as a restriction on structures over which MS1-formulae have to be
evaluated. The restriction to bounded clique-width has proved to allow for a
much larger class of structures than bounded tree-width, e.g.: In contrast to
tree-width, a graph can have bounded clique-width, even if the degree of the
vertices is unbounded. Moreover, bounded tree-width implies bounded clique-
width, while the converse is in general not true (cf. [13]). In this section, we
investigate the applicability of the criterion of bounded clique-width to (the in-
cidence graph of) conjunctive queries. We show that conjunctive queries with
bounded clique-width have bounded query-width and, therefore, also bounded
hypertree-width. The converse can be easily shown to be not true (see [21]).

Theorem 3.1. (bounded clique-width implies bounded query-width)
Let Q be a conjunctive query whose incidence graph has clique-width ≤ k. Then
qw(Q) ≤ 2k holds.

Proof (Sketch). Let H be the hypergraph of a conjunctive query Q and let I be
the incidence graph (considered as an unlabelled graph) of H. Moreover, let s
be a k-expression that generates I. Recall that the nodes in I are divided into
the nodes which correspond to a hyperedge and the nodes which correspond to
a vertex in H, respectively. Hence, the k-expression s can be transformed in the
obvious way into a 2k-expression t, s.t. t assigns each label ` ∈ {1, . . . , 2k} either
only to nodes corresponding to hyperedges or only to nodes corresponding to
vertices in H. Then we can show by structural induction how an appropriate
query decomposition QD of H (or, equivalently, of the conjunctive query Q) can
be constructed from t.

Note that every subexpression t′ of t generates a subgraph I ′ of the incidence
graph I. Moreover, every such I ′ uniquely defines a hypergraph H′. Now we can

714 G. Gottlob and R. Pichler

construct a query decomposition QD′ of H′ in the following way (For details
and for a proof of the correctness of this construction, see [21]):

Introduction of a new vertex: Let t′ = i(N) for some node N in I, i.e.: N either
corresponds to a hyperedge or to an H-vertex in H′. The corresponding query
decomposition QD′ consists of a single node r whose label is the singleton {N}.

Disjoint union: Let t′ = s′ ⊕ s′′. Moreover, let J ′ and J ′′ be the subgraphs of
I defined by s′ and s′′, respectively. Finally, let G′ and G′′ be the corresponding
hypergraphs and let QD1 and QD2 be query decompositions of G′ and G′′,
respectively. Then we construct the query decomposition QD′ = 〈T ′, λ′〉 in such
a way that the tree T ′ has a new root node r and subtrees QD1 and QD2.
Moreover, the roots r1 and r2 of QD1 and QD2, respectively, are appended to r
as its child nodes.

The labelling λ of the nodes in QD1 and QD2 is left unchanged. As for the
labelling λ(r) of the new root r, we have to select an appropriate set of vertices
and hyperedges of G′ and G′′. This is done in the following way: Let R denote
the set of all hyperedges or vertices in the hypergraphs G′ and G′′, s.t. every
N ∈ R either occurs in one of the labels of the roots r1 and r2 of QD1 and
QD2, respectively, or N is a vertex from one of the hypergraphs G′ and G′′, s.t.
N occurs in some hyperedge H and this hyperedge H is contained in the label
of either r1 or r2. By assumption, the hyperedges and vertices in R are assigned
at most 2k different labels by t′. Then we get the desired set λ(r) by selecting
one representative for each label according to t′.

Introduction of edges: Let t′ = ηi,j(s) and let QD1 = 〈T1, λ1〉 be the query
decomposition corresponding to s. Then the desired query decomposition QD′ =
〈T ′, λ′〉 of H′ is obtained in the following way: The tree T ′ consists of a new root
node r and the subtree T1, s.t. the root r1 of T1 is the only child of r. The
labelling function λ′ is defined as follows: The labelling of the root r1 of T1 is
left unchanged, i.e.: λ′(r1) = λ1(r1). It can be shown that λ′(r1) contains at
least one hyperedge G, s.t. the label of G (when considered as a node in the
incidence graph I ′) according to t′ is j. Then, for every node p 6= r1 in T1, s.t.
λ1(p) contains a vertex with label i according to s, we replace these vertices in
λ1(p) by the hyperedge G. For all other nodes p in T1, we set λ′(p) = λ1(p). The
labelling λ′(r) of the new root r is constructed analogously to the case of the
disjoint union discussed above, i.e.: Let R denote the set of all hyperedges or
vertices in the hypergraph G corresponding to s, s.t. every N ∈ R either occurs
in the label of the root r1 of QD1 or N is a vertex in the hypergraph H′, s.t.
N occurs in some hyperedge H in H′ and this hyperedge H is contained in the
label of r1. By assumption, the hyperedges and vertices in R have at most 2k
different labels according to t′. Then we select one representative for each label
according to t′ in order to get the desired set λ′(r) of hyperedges and vertices.

Renaming of labels: Let t′ = ρi→j(s). Moreover, let QD1 be the query decom-
position corresponding to s. It can be shown that then QD1 is also the desired
query decomposition corresponding to t′. ut
Recall from [19] that qw(H) ≥ hw(H) holds for every hypergraph H. Hence,
bounded clique-width clearly also implies bounded hypertree-width. Note that

Hypergraphs in Model Checking 715

this result has another interesting aspect: Apart from the special case of k ≤
3, it is not known whether graphs with clique-width ≤ k can be recognized
in polynomial time for fixed k (cf. [8]). In contrast, conjunctive queries (or,
equivalently, hypergraphs) with hypertree-width ≤ k actually can be recognized
in polynomial time (cf. [19]). Hence, apart from being the more general concept,
bounded hypertree-width also has better properties as far as recognizing such
conjunctive queries is concerned.

4 Restricting the Form of the Structures

In [9], the complexity of testing certain graph properties is investigated. In terms
of model checking, this corresponds to evaluating a fixed query over finite graphs.
If the queries are restricted to (arbitrary but fixed) first-order formulae, then
this problem is tractable for all finite graphs without any further restrictions.
However, the expressive power of first-order logic is comparatively weak. Hence,
attempts were made to investigate larger classes of queries. In particular, it was
shown that the evaluation of fixed MS1-formulae over graphs remains tractable,
if we require the graphs to have bounded tree-width or bounded clique-width
(cf. [9], [10], [11]).

In this section we consider monadic second-order queries over hypergraphs,
where quantification is allowed over variables that stand for (sets of) vertices
or hyperedges. Moreover, there are two unary predicates PV , PH and a binary
predicate edg with the following meaning: PV (x), PH(x) state that the argument
x is a vertex or a hyperedge, respectively, of the hypergraph. By edg(v, h) we can
express that the vertex v is contained in the hyperedge h. Clearly, these formulae
correspond to MS1-formulae that are evaluated over the incidence graphs (when
considered as a labelled graph with two labels) of hypergraphs. Thus, the eval-
uation of such formulae is tractable, if the incidence graphs under consideration
have bounded clique-width. From [10] we know that a class of labelled graphs
with p labels (for fixed p ≥ 1) has bounded clique-width, iff the same graphs
without labels have bounded clique-width. Hence, in the sequel, we shall ignore
the two different labels of the nodes of the incidence graph, since they have no
effect on the tractability of the evaluation of MS1-formulae.

It has already been mentioned that clique-width is a hereditary property
while α-acyclicity and hypertree-width are not. In case of restrictions on the
queries, this does not matter. However, if we look for appropriate restrictions
on the structures, then it can be easily verified that α-acyclicity or bounded
hypertree-width will clearly not suffice to make the evaluation of any fixed
MS1-formula tractable. Instead, we shall consider β-acyclicity and β-hypertree-
width here as well as γ-acyclicity, which is even slightly more restrictive than
β-acyclicity.

In [14], D’Atri and Moscarini provided an algorithm for recognizing γ-acyclic
hypergraphs. (For details, see the original paper or [16]). In terms of the incidence
graph of a hypergraph, we get an algorithm A consisting of the following rules:

1. deletion of isolated nodes: If a node N in I has no adjacent node, then N
may be deleted.

716 G. Gottlob and R. Pichler

2. deletion of “ear nodes”: If a node N in I has exactly one adjacent node,
then N may be deleted.

3. contraction of two-element modules: If two vertices N and N ′ in I are adja-
cent to exactly the same nodes, then one of them may be deleted. We require
that this rule may only be applied, if at least one such adjacent node exists.

A hypergraph H is γ-acyclic, iff the exhaustive, non-deterministic application of
the above rules transforms the incidence graph I of H into the empty graph.
The following theorem states that the class of γ-acyclic hypergraphs provides
a lower bound on the class of hypergraphs with bounded clique-width. Due to
space limitations, we can only state the result without a proof here. A proof is
given in [21].

Theorem 4.1. (γ-acyclicity implies bounded clique-width) The inciden-
ce graphs of γ-acyclic hypergraphs have clique-width ≤ 3.

An upper bound on the class of hypergraphs with bounded clique-width can be
obtained by comparing bounded clique-width with β-acyclicity and β-hypertree-
width, respectively.

Theorem 4.2. (clique-width versus β-acyclicity) The class of incidence
graphs of β-acyclic hypergraphs has unbounded clique-width.

Proof (Sketch). Consider the sequence (Hn)n≥1 of hypergraphs, where Hn has
the vertices V = {y1, . . . , yn} ∪ {xij : 1 ≤ i < j ≤ n} and the n hyperedges
H1, . . . , Hn with Hl = {yl} ∪ {xαβ : α < β ≤ l} ∪ {xlγ : l < γ ≤ n}, i.e. H1 =
{y1, x12, x13, . . . , x1n}, H2 = {y2, x12, x23, . . . , x2n}, H3 = {y3, x12, x13, x23, x34,
. . . , x3n}, . . . , Hn = {yn, x12, . . . , x1n, x23, . . . , x2n, . . . , x(n−1)n}. Then it can
be shown that, on the one hand, Hn is β-acyclic and, on the other hand, the
incidence graph In of Hn has clique-width ≥ n. ut
Recall from Theorem 3.1 that if the clique-width of the incidence graph of a
hypergraph H is ≤ k, then we have qw(H) ≤ 2k and hence also hw(H) ≤ 2k.
Actually, an inspection of the proof of Theorem 3.1 reveals that this construction
of a query decomposition also works for every subhypergraph H′ of H. In other
words, we get the following result:

Theorem 4.3. (bounded clique-width implies bounded β-hypertree-
width) Let H be a hypergraph whose incidence graph has clique-width ≤ k.
Then H has β-hypertree-width ≤ 2k.

By the Theorems 4.2 and 4.3 we know that the class of hypergraphs with
bounded β-hypertree-width strictly extends the class of hypergraphs whose in-
cidence graph has bounded clique-width. Now the question naturally arises as
to whether bounded β-hypertree-width of the structures under consideration
suffices to guarantee the tractability of the evaluation of any MS1-formula. Un-
fortunately, the answer given in Theorem 4.4 below is negative. Thus, bounded
clique-width remains the concept with the highest expressive power known so
far, s.t. the evaluation of MS1-queries is still tractable (cf. Fig. 1).

Hypergraphs in Model Checking 717

Theorem 4.4. (MS1-queries and bounded β-hypertree-width) The e-
valuation of an arbitrary fixed MS1-query over hypergraphs with bounded β-hyper-
tree-width is, in general, not tractable, i.e.: There exist NP -complete problems
that can be encoded as MS1-queries on such hypergraphs.

Proof (Sketch). Let G = 〈V, E〉 be an arbitrary graph and let H = 〈V, H〉
be a hypergraph, where the set H of hyperedges is defined as follows: H =
{V − {x, y} : {x, y} is an edge in E}, i.e.: every edge e of G is encoded by a hy-
peredge which contains all vertices from V except for the endpoints of e. Then
the hypergraph H can be shown to have β-hypertree-width ≤ 3. Moreover, the
well-known NP-complete graph-3-colourability problem can be expressed as an
MS1-query of the form (∃C1)(∃C2)(∃C3) “C1, C2 and C3 provide a partition
of V ” ∧ (∀x)(∀y)[PV (x) ∧ PV (y) ∧ (∃h)(PH(h) ∧ ¬edg(x, h) ∧ ¬edg(y, h)) → “x
and y have different colours”]. ut

5 Generalized Tree-Width

As has already been mentioned in Sect. 2, clique-width is much more powerful
than tree-width. On the other hand, the lack of an efficient procedure for rec-
ognizing graphs with clique-width ≤ k for some arbitrary but fixed k is a major
drawback of clique-width. Hence, it is worth trying to extend the notion of tree-
width to some kind of “generalized tree-width”, which is more powerful than
tree-width and which is still efficiently recognizable. One such generalization is
proposed below.

Recall from [15], that the existence of a big complete bipartite graph as a
subgraph of a graph G has a very bad effect on the tree-width of G, e.g.: consider
the sequence (Hn)n≥1 of hypergraphs, where Hn has vertices V = {x1, . . . , xn}∪
{y1, . . . , yn} and n hyperedges H1, . . . , Hn with Hi = {yi, x1, . . . , xn}. Then, for
every n, the (incidence graph In of the) hypergraph Hn has tree-width n, since it
contains the complete bipartite graph with nodes {x1, . . . , xn} and {H1, . . . , Hn},
respectively. On the other hand, for every n, Hn is γ-acyclic, i.e.: The simple
transformations of the algorithm A from Sect. 4 suffice to reduce the incidence
graph of Hn to the empty graph. In particular, the complete bipartite graphs
contained in the incidence graphs of these hypergraphs can be eliminated by
these simple transformations. It therefore makes sense to consider the following
generalization of the tree-width:

Definition 5.1. (generalized tree-width) Let G be an arbitrary graph and
let G′ be the graph that results from exhaustive application of the following rules:
deletion of isolated nodes, deletion of ear nodes and contraction of two-element
modules. Then we define the generalized tree-width of G as gtw(G) = tw(G′).

It is not hard to show that gtw(G) is well-defined. Moreover, a polynomial time
algorithm for recognizing the graphs with gtw ≤ k for some fixed k can be con-
structed in the obvious way, namely: First, an input graph G is transformed
into G′ via the transformation from Definition 5.1 above. Then we can ap-
ply the algorithm from [3], which decides in linear time, whether tw(G′) ≤ k

718 G. Gottlob and R. Pichler

holds. Moreover, recall from [13], that for every undirected graph G, the rela-
tion cwd(G) ≤ 2tw(G)+1 + 1 holds. By combining this result with the proof idea
of Theorem 4.1, it can be shown that bounded generalized tree-width implies
bounded clique-width and, therefore, bounded generalized tree-width suffices to
guarantee the tractability of the evaluation of MS1-queries. Of course, the class
of graphs with bounded generalized tree-width is smaller than the class of graphs
with bounded clique-width. However, the advantage of this new concept is that,
in contrast to bounded clique-width, it can be efficiently recognized.

6 Conclusion

In this paper, we have compared several notions of acyclicity and hypertree-
width of hypergraphs on the one hand with clique-width (of the corresponding
incidence graphs) on the other hand. This comparison has been done both if
these restrictions are imposed on the queries and on the structures. Note that
we have only considered the clique-width of the incidence graph here. When con-
sidering restrictions on conjunctive queries, this choice is somehow justified. In
particular, it can be easily shown that there are NP-hard classes of queries whose
primal graphs have bounded clique-width (cf. [21]). However, when considering
restrictions on the form of the structures, the primal graphs also play an impor-
tant role. Actually, it can be shown that β-acyclicity and bounded clique-width
of the primal graph are uncomparable (cf. [21]). However, the exact position of
bounded clique-width of the primal graph in Fig. 1 has to be determined yet.

In Sect. 5 we have shown how the insights from the comparison of γ-acyclicity
with bounded clique-width can be used for an easy generalization of the tree-
width. As long as no polynomial time algorithm for recognizing graphs with
clique-width ≤ k (for some arbitrary but fixed k) has been found, the search for
an appropriate generalization of the tree-width is an interesting research area.
We have provided a first and very simple step in this direction, to which further
steps should be added.

References

1. S.Abiteboul, R.Hull, V.Vianu. Foundations of Databases, Addison-Wesley Publish-
ing Company (1995).

2. W.Bibel. Constraint Satisfaction from a Deductive Viewpoint. In Artificial Intel-
ligence, Vol 35, pp. 401-413 (1988).

3. H.L.Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. In SIAM Journal on Computing, Vol 25, No 6, pp. 1305-1317 (1996).

4. H.L.Bodlaender. Treewidth: Algorithmic Techniques and Results. In Proc. of
MFCS’97, LNCS 1295, pp. 19-36, Springer, (1997).

5. A.K.Chandra, P.M.Merlin. Optimal Implementation of Conjunctive Queries in Re-
lational Databases. In Proc. of STOC’77, pp. 77-90, ACM Press (1977).

6. E.M.Clarke, O.Grumberg, D.Peled. Model Checking, MIT Press (1999).
7. Ch.Chekuri, A.Rajaraman. Conjunctive Query Containment Revisited. In Proc. of

ICDT’97, LNCS 1186, pp. 130-144, Springer (1997).

Hypergraphs in Model Checking 719

8. D.G.Corneil, M.Habib, J.-M.Langlinel, B.Reed, U.Rotics. Polynomial Time Recog-
nition of clique-width ≤ 3 graphs, extended abstract. In Proc. of LATIN 2000,
LNCS 1776, pp. 126-134, Springer (2000).

9. B.Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of
Theoretical Computer Science, Vol 2, pp. 194-241, J. van Leeuwen (ed.), Elsevier
Science Publishers (1990).

10. B.Courcelle. Monadic second-order logic of graphs VII: Graphs as relational struc-
tures. In Theoretical Computer Science, Vol 101, pp. 3-33 (1992).

11. B.Courcelle, J.Engelfriet, G.Rozenberg. Handle-rewriting hypergraph grammars.
In Journal of Computer and System Sciences, Vol 46, pp. 218-270 (1993).

12. B.Courcelle, J.A.Makowsky, U.Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. In Theory of Computing Systems, Vol 33, pp.
125-150 (2000).

13. B.Courcelle, S.Olariu. Upper bounds on the clique-width of graphs. In Discrete
Applied Mathematics, Vol 101, pp. 77-114 (2000).

14. A.D’Atri, M.Moscarini. Acyclic Hypergraphs: Their recognition and top-down
versus bottom-up generation. Technical Report R.29, Consiglio Nazionale delle
Ricerche, Istituto di Analisi dei Sistemi ed Informatica (1982).

15. R.G.Downey, M.R.Fellows. Parameterized Complexity, Springer-Verlag (1997).
16. R.Fagin. Degrees of Acyclicity for Hypergraphs and Relational Database Schemes.

In Journal of the ACM, Vol 30, No 3, pp. 514-550 (1983).
17. J. Flum, M. Frick, and M. Grohe. Query Evaluation via Tree-Decomposition. In

Proc. of ICDT’01. Currently available at www.math.uic.edu/grohe/pub/query.ps
18. G.Gottlob, N.Leone, F.Scarcello. The Complexity of Acyclic Conjunctive Queries.

In Proc. of FOCS’98, pp. 706-715, (1998). Full paper to appear in JACM.
19. G.Gottlob, N.Leone, F.Scarcello. Hypertree Decompositions and Tractable Que-

ries. In Proc. of PODS’99, pp. 21-32, ACM Press (1999).
20. G.Gottlob, N.Leone, F.Scarcello. A Comparison of Structural CSP Decomposition

Methods. In Proc. of IJCAI’99, pp. 394-399, Morgan Kaufmann, (1999).
21. G.Gottlob, R.Pichler. Hypergraphs in Model Checking: Acyclicity and Hypertree-

Width versus Clique-Width. Full paper. Available from the authors (2001).
22. M.Grohe, T.Schwentick, and L.Segoufin. When is the Evaluation of Conjunctive

Queries Tractable? Manuscript, currently available at: www.math.uic.edu/grohe/
pub/grid.ps (2001).

23. Ph.G.Kolaitis and M.Y.Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. In Proc. of PODS’98, pp. 205-213, ACM Press (1998).

24. K.Kunen: Answer Sets and Negation as Failure. In Proc. of the Fourth Int. Conf.
on Logic Programming, Melbourne, pp. 219-228 (1987).

25. M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc. of Int. Conf.
on Very Large Data Bases (VLDB’81), pp. 82-94, Cannes, France (1981).

From Finite State Communication Protocols to
High-Level Message Sequence Charts

Anca Muscholl1 and Doron Peled2

1 LIAFA, Université Paris VII
2, pl. Jussieu, case 7014
F-75251 Paris cedex 05

2 Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974, USA

Abstract. The ITU standard for MSCs provides a useful framework for
visualizing communication protocols. HMSCs can describe a collection
of MSC scenarios in early stages of system design. They extend finite
state systems by partial order semantics and asynchronous, unbounded
message exchange.
Usually we ask whether an HMSC can be implemented, for instance by a
finite state protocol. This question has been shown to be undecidable [5].
Motivated by the paradigm of reverse engineering we study in this paper
the converse translation, specifically the question whether a finite state
communication protocol can be transformed into an equivalent HMSC.
This kind of translation is needed when e.g. different forms of specifica-
tion (HMSC, finite automata, temporal logic) must be integrated into a
single one, for instance into an HMSC.
We show in this paper that translating finite state automata into
HMSCs is feasible under certain natural assumptions. Specifically, we
show that we can test in polynomial time whether a finite state protocol
given by a Büchi automaton is equivalent to an HMSC, provided that
the automaton satisfies the diamond property (the precise bound is
NLOGSPACE-complete). The diamond property is a natural property
induced by concurrency. Under the weaker assumption of bounded
Büchi automata we show that the test is co-NP-complete. Finally,
without any buffer restriction the problem is shown to be undecidable.

Keywords: Message sequence charts, specification, HMSC, bounded au-
tomata, partial order specification.

1 Introduction

Message Sequence Charts (MSC) is a popular formalism used in software develop-
ment. As other ITU standards, MSC also has a visual notation and therefore it is
more appealing than textual formalisms. MSCs are often used in the early design
of communication protocols for capturing requirements of a system. They have
been known for a long time as sequence or timing diagrams. A similar formalism
exists in UML for describing interactions between objects (object diagrams).

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 720–731, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

From Finite State Communication Protocols 721

High-level MSCs (HMSC) can specify collections of MSCs. The standard
description of the ITU’96 norm consists of a graph where each node contains one
MSC. Each maximal path starting from a designated initial state corresponds
to a single execution (scenario). Such an execution can be used to denote the
communication structure of a typical or an exceptional behavior of a system, or
a counterexample found during testing or model checking.

MSCs are based on partial order semantics and do not impose any limitation
on buffers (except for fifo message exchange). Therefore, HMSCs are infinite
state systems and some verification problems such as model-checking [2] or race
conditions [7] are undecidable. One possible solution is to restrict HMSCs in
a syntactic way in order to get a finite state space. To this purpose, bounded
HMSCs have been proposed in [2,7]. However, because of their partial order
semantics automatic verification is expensive in this case. For instance, positive
model-checking in form of inclusion of bounded HMSCs is EXPSPACE-complete
[7].

Using HMSCs for partial specification of system requirements means that
they are used in a specification process of stepwise refinement. At the imple-
mentation stage one important issue is whether an HMSC can be realized, for
example by a finite state machine. However, this question turns out to be unde-
cidable [5]. Motivated by the paradigm of reverse engineering we study in this
paper the converse translation, specifically the question whether a finite state
communication protocol can be transformed into an equivalent HMSC. This form
of translation is also required when one integrates different kinds of specification
(HMSC, finite automata, temporal logic) into a single one. Since HMSC is a stan-
dardized, graphical notation, it is reasonable to provide an HMSC specification,
whenever possible.

The translation from finite automata to HMSCs is well justified by the com-
putational results obtained in this paper. We show that translating finite au-
tomata into HMSCs is feasible under certain natural assumptions. Specifically,
we show that we can test in polynomial time whether a finite state protocol given
by a Büchi automaton is equivalent to an HMSC, provided that the automaton
satisfies the diamond property (the precise bound is NLOGSPACE-complete).
The diamond property is a natural property in concurrent systems. Under the
weaker assumption of bounded Büchi automata we show that equivalence to
HMSC is co-NP-complete. The advantage of using bounded Büchi automata is
that one is allowed to specify only representatives of MSC scenarios, thus the
specification is more compact. More precisely, a bounded automaton might not
accept an MSC language, however its MSC closure is still a regular language.
Finally, without any buffer restriction the problem is shown to be undecidable.

Related work. Our results extend the recent decidability results obtained for
DFA and languages of finite MSCs in [5]. A complementary approach are Com-
positional MSCs, which were proposed in [3] for representing every finite state
protocol as an MSC-like graph, by allowing communication between sequen-
tially connected nodes. However, this extension has to cope with undecidability
of simple properties, similar to communicating finite state machines.

722 A. Muscholl and D. Peled

2 Definitions and Notations

In this section we define message sequence charts (MSC) and high-level message
sequence charts (HMSC), based on the ITU’96 standard. Each MSC describes
a scenario or an execution, where processes (instances) communicate with each
other. An MSC scenario includes a description of the messages sent, messages
received, the local events, and the ordering between them. Ordering of events
is enforced by the instance ordering and the message ordering. In the visual
description of MSCs, each instance is represented by a vertical line, which gives
a total order on the events belonging to that instance. Messages are usually
represented by horizontal or slanted arrows from the sending process to the
receiving one, see Figure 1.

Throughout the paper we consider finite or infinite MSCs over a set of pro-
cesses (instances) P = {P1, . . . , Pn} and we denote by [n] the set of process
indexes {1, . . . , n}.

P1 P2 P3

M1
M2

r6

M3

M4

M5

M6

s1 r1 s2

r2

s3 r3

s4 r4

s5r5

s6

Fig. 1. Visual representation of an MSC.

Definition 1. An MSC M over process set P is a tuple 〈E, <,P, `, t, m〉:
– E is a set of events,
– ` : E → [n] is a mapping that associates each event with a process (location),
– t : E → {s, r, l} is a mapping that describes each event as send, receive or

local (type),
– m : t−1(s) −→ t−1(r) is a bijection that pairs up send and receive events

(matching function).
– < ⊆ E × E is an acyclic relation defined by:

• `−1(i) is totally ordered by < for every instance Pi.
• For all e, f ∈ E, m(e) = f implies e < f .

Note that we do not require that the set of events is finite. Therefore, an MSC
is either finite or infinite.

From Finite State Communication Protocols 723

A message (e, f) consists of a pair of matching send and receive events,
i.e., m(e) = f . We assume that communication channels are fifo. Thus, we
require that whenever the messages m(e1) = f1 and m(e2) = f2 are such that
`(e1) = `(e2) and `(f1) = `(f2), we have e1 < e2 if and only if f1 < f2.

The relation < is called the visual order of the MSC. It can be obtained from
the syntactical representation of the chart. Since < is required to be acyclic its
reflexive-transitive closure is a partial order on E. A total order � on E is called
a linearization of <, if <⊆ �. For simplifying our notations we will also write ≤
for the reflexive-transitive closure of <. The partial order between the send and
receive events of Figure 1 is shown in Figure 2. In this figure we depicted the
total order on each process and only the non-redundant message arcs.

Event labels. For reasoning about linearizations of partial orders of MSCs
we need event labels of the following kind. We label events by their type, location
and the location of the matching event. That is, for every e, f ∈ E such that
`(e) = i, `(f) = j and m(e) = f we label e by snd(i, j) and f by rec(i, j). For
example, both send events s3, s4 in Figure 1 will be labeled by snd(2, 3).

The set of send and receive labels, respectively, is LS = {snd(i, j) | i, j ∈ [n]}
and LR = {rec(i, j) | i, j ∈ [n]}, respectively. Let L = LS ∪ LR be the set of all
event labels. If there is no risk of confusion we use the notions of event and event
label interchangeably.

Remark 1. The results of this paper can be directly extended in order to include
message names or local events.

Note further that event labels provide all the necessary information for com-
puting the MSC associated with a linearization, since communication is supposed
to be fifo. Thus, we associate canonically the k-th event labeled snd(i, j) with
the k-th event labeled rec(i, j) for all k.

r2s1

r1 s3

r3

s4

r4

r5

r6

s5

s6

s2

Fig. 2. The partial order between the events of the MSC in Figure 1.

For defining more complex scenarios we need the notion of concatenation of
two MSCs M1 = 〈E1, <1,P, `1, t1, m1〉 and M2 = 〈E2, <2,P, `2, t2, m2〉 over
a mutual set of processes P. The concatenation is defined if for every process
Pi either E2 ∩ `−1

2 (i) = ∅ or E1 ∩ `−1
1 (i) is finite. When defined, it is the MSC

M1 M2 = 〈E1 ∪ E2, <, P, `1 ∪ `2, t1 ∪ t2, m1 ∪ m2〉 over the disjoint union of
events E1 ∪ E2, with the visual order given by:

< = <1 ∪ <2 ∪ {(e, f) ∈ E1 × E2 | `1(e) = `2(f)} .

724 A. Muscholl and D. Peled

That is, the events of M1 precede the events of M2 for each process, respectively.
Note that there is no synchronization of the different processes when moving from
one MSC to the next one (weak sequencing). Hence, it is possible that one process
is still involved in some actions of M1, while another process has advanced to
an event of M2. We can use the concatenation repeatedly, and define infinite
products M1M2 . . . similarly.

The high-level description of collections of MSC scenarios provided by
MSC’96 consists of a directed graph called HMSC (high-level MSC), where each
node contains a finite MSC (see example below).

Definition 2. An HMSC N is a tuple 〈S, →, s0, c,P〉 where (S, →, s0) is a finite
transition system with initial state s0 ∈ S and states labeled by finite MSCs over
P. State s ∈ S is labeled by the finite MSC c(s). An execution of N is a (finite or
infinite) MSC c(s0) c(s1) c(s2) . . . associated with a maximal path s0 → s1 → · · ·
in (S, →, s0).

ApproveConnect

Req service
Fail

P2

P2 P2

P3

P3P3

P1

Report

P1 P2 P3

P1 P1

Given an HMSC N (or a set N of MSCs) we denote by Lin(N) ⊆ L∞ =
L∗ ∪ Lω the set of L-labeled linearizations of (finite or infinite) executions in N .

3 MSC Languages

In this section we consider the question whether a regular language is an MSC
language, i.e., whether it is equivalent to Lin(N) for some (finite or infinite) set
N of (finite or infinite) MSCs. Being an MSC language is a necessary condition
for the HMSC equivalence problem. It turns out that testing whether a regular
language is an MSC language is PSPACE-complete. Fortunately, there will be a
simple syntactic condition called diamond property (Section 3.1) which ensures
that an automaton accepts an MSC language.

By regular language we mean languages given by (non-deterministic) Büchi
automata A over the set of event labels L. The accepted language L(A) contains
all finite words labelling a path to a final state and all infinite words labelling a
path that repeats infinitely often a final state.

From Finite State Communication Protocols 725

We need some further notations. For a ∈ L and v ∈ L∞ let #(v, a) ∈ N∪{∞}
denote the number of occurrences of symbol a in v. We write (a, b) ∈ M whenever
a, b ∈ L are such that with a = snd(i, j) and b = rec(i, j) for some i, j. We call
w ∈ L∞ well-formed, if all receives in w have matching sends. Formally, for every
prefix v of w, we have #(v, a) ≥ #(v, b) for all (a, b) ∈ M. A finite or infinite
word w ∈ L∞ is called complete if it is well-formed and #(w, a) = #(w, b) for
all (a, b) ∈ M.

Definition 3. A language L ⊆ L∞ over L is an MSC language if there is a set
N of finite or infinite MSCs such that L = Lin(N).

Let `(snd(i, j)) = i and `(rec(i, j)) = j. For w ∈ L∞ and i ∈ [n] we denote by
πi(w) the projection of w on the subalphabet Li = {a ∈ L | `(a) = i} of event
located on process Pi. The following characterization of MSCs is well-known
and easy to check:

Proposition 1. A language L ⊆ L∞ over L is an MSC language if and only if
it consists only of complete words and it satisfies the following property:
For every u, v ∈ L∞ with πi(u) = πi(v) for all i ∈ [n], we have u ∈ L if and only
if v ∈ L.

Suppose that a Büchi automaton A accepts only complete words. Then we
can check the second condition of Proposition 1 in PSPACE. Specifically we
test that the shuffle of (πi(L(A)))i∈[n], restricted to certain complete words,
is included in L(A). It suffices to consider only complete words w such that
0 ≤ #(v, a) − #(v, b) ≤ |A| for every prefix v of w and (a, b) ∈ M. We show
below that this cannot be improved, that is, this problem is PSPACE-complete.
The difficulty in checking whether a Büchi automaton accepts an MSC language
stems from the partial order, and not from well-formedness, as shown in the next
proposition.

Proposition 2. Let A be a Büchi automaton over the alphabet L. We can check
in polynomial time whether A accepts only complete words.

The algorithm in Proposition 2 is based on dynamic programming (e.g.,
Warshall’s algorithm). For each pair (a, b) ∈ M we view the automaton as a
weighted graph where a (b, resp.) is replaced by 1 (by -1, resp.), and every other
label by 0. Then we check that every finite path has positive weight; moreover,
that any accepting path with only finitely many weights ±1 has a prefix with
weight sum zero that includes all weights ±1.

The proof of the PSPACE lower bound is similar to the proof given in [6,8]
for testing whether a regular language is closed under partial commutations.

Proposition 3. Let A be a Büchi automaton over the alphabet L. The question
whether L(A) is an MSC language is complete for PSPACE.

726 A. Muscholl and D. Peled

3.1 Diamond Automata

We consider throughout the paper Büchi automata such that all states are acces-
sible from the initial state. The definition below presents a syntactic condition
which guarantees that a Büchi automaton where all states are final accepts an
MSC language.

Definition 4 (Diamond property). Let A be a Büchi automaton over L with
initial state q0. We say that A is a diamond automaton if for all states p, q, r

and all a, b ∈ L where p
a→ q

b→ r and `(a) 6= `(b) there is some state s of A
such that p

b→ s
a→ r whenever one of the following conditions is satisfied:

1. (a, b) /∈ M, or
2. (a, b) ∈ M and there exists a word v ∈ L∗ with q0

v→ p and #(v, a) > #(v, b).

Note that in a diamond automaton A two linearizations of the same finite
MSC cannot be distinguished in the sense that they reach the same set of states
in A. Of course, this kind of property is basic in concurrent systems.

Proposition 4. Let A be a diamond Büchi automaton where all states are final.
The restriction of L(A) to the set of complete words is an MSC language.

Remark 2. It is not difficult to check that the assumption on final states in the
proposition above is needed for the result.

4 HMSC Languages

Some simple finite state communication protocols cannot be represented by an
HMSC. The example in Figure 3 appears e.g. in [3] and describes a scenario of
the alternating bit protocol. Note that whenever we match the first unmatched
send event, say e1, we are forced to add g1, which is not yet matched. Matching g1
adds e2 and so on. That is, the execution in Figure 3 has no finite complete prefix.
In this section we propose algorithms for checking whether a specification given
as a Büchi automaton can be turned into an equivalent HMSC specification.

Definition 5 (HMSC language). A language L ⊆ L∞ is called an HMSC
language if some HMSC N exists such that L = Lin(N).

We want to test whether a Büchi automaton A accepts an HMSC language
and if this is the case, compute an equivalent HMSC. As shown in [5] we just
have to require that L(A) is a finitely generated MSC language, see Theorem 1
below. Before stating the theorem we need some further notations. For a language
L ⊆ L∞ of complete words we define [L] as the least MSC language K ⊆ L∞ with
L ⊆ K. We call [L] the MSC closure of L. Let w ∈ L∞. An MSC decomposition
of w is a sequence of complete finite words w1, w2, . . . such that w ∈ [w1w2 · · ·].

The theorem below was shown in [5] (Thm. 4.5) for languages of finite MSCs
given by deterministic finite automata. Let G ⊆ L∗, then we denote below by
G∞ the language G∗ ∪ Gω, with Gω = {w0w1 · · · | wi ∈ G}.

From Finite State Communication Protocols 727

g2

e2

g1

e1

f1

e3

e4

h1

g3

f3

f2

h2

P2P1

Fig. 3. A prefix of an infinite communication scenario that cannot be decomposed into
finite MSCs.

Theorem 1 ([5]). Let A be a Büchi automaton accepting an MSC language.
Then L(A) is an HMSC language if and only if it is finitely generated, i.e., if
there is a finite MSC language G ⊆ L∗ such that L(A) ⊆ [G∞]. Moreover, if
such G exists then there is an HMSC N of size O(|G| · |A|) with L(A) = Lin(N).

4.1 Diamond Automata and Finite Generation

The main result of [5] states that it is decidable whether a regular MSC language
L ∈ L∗ given by its minimal DFA is an HMSC language. Two structural proper-
ties are satisfied by minimal DFA of MSC languages, the diamond property and
fixed buffer capacities. The last one means that we can associate with every state
p and every pair (a, b) ∈ M a value d(a, b) such that #(u, a)−#(u, b) = d(a, b) for
all words u labelling a path from the initial state to p. Furthermore, d(a, b) < s
where s is the size of A. We denote a Büchi automaton satisfying this property
an automaton with fixed capacities. Note that the state information of a finite
state communication protocol usually determines the buffer sizes.

We extend and refine [5] by showing that for any diamond Büchi automaton
A with fixed capacities we can test in polynomial time whether the accepted
language is finitely generated. The next propositions describe the two cases where
L(A) is not finitely generated. Roughly speaking, the first case (Proposition 5)
means that for a matching pair (a, b) ∈ M of events we have an arbitrary large
number of events c between a and b. The second case (Proposition 6) corresponds
to the situation in Figure 3.

As for MSCs there is a natural pairing between events (positions) in words.
Let e be the k-th occurrence of snd(i, j) and f the k-th occurrence of rec(i, j)
in v, then we say that e matches f . Let uavbw be a complete word, a ∈ LS . If
the position matching a belongs to the suffix bw, then we say that a matches

728 A. Muscholl and D. Peled

after b. Note that with fixed capacities, the position matched by a in uavbw is
the same as in u′avbw, for all u, u′ labelling paths that end in the same state.
For any complete word w ∈ L∞ we define a partial order ≤ between events of
w in the same way we defined the visual order for MSCs. It is the partial order
generated by a < b in w = taubv where either a matches b or `(a) = `(b).

Proposition 5. Let A be a diamond Büchi automaton with fixed capacities. Let
s denote the number of states of A. Assume that there is some w ∈ L(A) of the
form

w = x a y a1b1 w1 · · ·wm−1 ambm wm bz

where a, ai ∈ LS, b, bi ∈ LR, x, y, wi ∈ L∗, z ∈ L∞, and m ≤ n satisfy the
following conditions:

1. a matches after b, and (a, b) ∈ M.
2. ai matches bi for all 1 ≤ i ≤ m.
3. `(a) = `(a1), `(b1) = `(a2), . . . , `(bm−1) = `(am) and `(bm) = `(b).
4. For some 1 ≤ k ≤ m we have

∑
e: `(e)=`(bk) #(wk, e) > s2.

Then L(A) is not finitely generated. Moreover, the conditions above can be
checked in logarithmic space.

Proof. (Sketch.) By conditions 2,3 we have that a < a1 < b1 < · · · < am <
bm < b in w. Since a matches after b, it follows that the number of occurrences
of b in ya1b1w1 · · · ambmwm is at most s. By the last condition we can obtain
some word w′ from w by pumping a factor of wk that contains no occurrence of
b. Thus, a still matches after b in w′. For all new occurrences of e we must have
bk < e < ak+1 in w′. Moreover, since A has fixed capacities, al still matches bl
in w′ for all k. Since the earliest event matched by a is b and a < b, we have that
a, b belong to the same factor in every MSC decomposition of w′. This means
that arbitrary many events must belong to the same finite factor, contradiction.

For the complexity it suffices to guess a path and store |x|a − |x|b ≤ s,
checking against the number of b following a in aya1b1w1 · · · ambmwm. 2

Proposition 6. Let A be a diamond Büchi automaton with fixed capacities. Let
s denote the number of states of A. Assume that there is some w ∈ L(A) of the
form

w = y0a1 y1 a2 x1 b1 y2 a3 x2 b2 · · · at+1 xt bt z

where ai ∈ LS, bi ∈ LR, xi, yi ∈ L∗, z ∈ L∞ satisfy the following conditions:

1. For all 1 ≤ i ≤ t, ai matches after bi. Moreover, #(xi, bi) = 0 and (ai, bi) ∈
M for all i.

2. For all 1 ≤ i < t, we have ai < ai+1 < bi in w.
3. t > sn.

Then L(A) is not finitely generated. Moreover, the conditions above can be
checked in logarithmic space.

From Finite State Communication Protocols 729

Proof. (Sketch.) The first two conditions ensure that ai < ai+1 < bi belong
to the same factor in any MSC decomposition of w into MSCs. Thus, the events
a1, . . . , at+1, b1, . . . , bt belong to the same MSC.

Since t > sn we can assume that we have an accepting path in A which is
labeled by w = uxv and such that x = aixi−1bi−1yi · · · aj−1xj−2bj−2yj−1 is a
loop where ai−1 = aj−1, for some i < j. Consider some word w′ = uxx · · ·xv ob-
tained from w by pumping x. We denote the k-th copy of x in w′ as x(k). Assume
that ai, aj−1 in x(k) must belong to the same factor in any MSC decomposition.
Note that the earliest event matched by aj−1 in x(k) is the event bi−1 in x(k+1).
Suppose that these two events belong to different factors in some MSC decompo-
sition of w′. Then the factor containing bi−1 must precede the factor containing
aj−1. Since ai < bi−1 in x(k+1), the occurrences of ai in x(k), x(k+1) must belong
to a factor preceding aj−1. This contradicts the fact that ai and aj−1 in x(k)

must belong to the same factor. By this argument we obtain that a1, . . . , ai−1
and the occurrences of ai, . . . , aj−1 in all x(k) belong to the same factor in any
MSC decomposition of w′. Thus, arbitrary many events must belong to the same
finite MSC factor, which yields a contradiction. For the complexity it suffices to
guess a path and store the difference #(xi−1yi, ai) − #(xi−1yi, bi) ≤ s between
ai and ai+1, for all i. 2

From Propositions 5 and 6 we obtain the upper bound of the following the-
orem:

Theorem 2. The following question is complete for NLOGSPACE, hence solv-
able in polynomial time:

Let A be a diamond Büchi automaton with fixed capacities. We ask whether
L(A) is finitely generated.

Remark 3. From Propositions 5 and 6 it follows that if L(A) ⊆ [G∞] for some
finite MSC language G ⊆ L∗, then G can be chosen such that all words in
G have polynomial length, hence the size of G is at most exponential in s, n.
This is also the upper bound for the size of an HMSC N with Lin(N) = L(A).
The following example matches the exponential upper bound. Let n = 3 and
let a, . . . , f denote the event labels a = snd(1, 2), b = rec(1, 2), c = snd(1, 3),
d = rec(1, 3), e = snd(3, 2), f = rec(3, 2). The automaton below has 0 as initial
state and k + 1 as final state. It accepts a finite language of 2k−1 finite words.
Every such word corresponds to a distinct MSC node in an equivalent HMSC.

1
a

0 2 (k − 1)

(cd)2ef

k
b

(k + 1)

cdef

3 · · ·

cdef cdef

(cd)2ef (cd)2ef

We describe now the algorithm for computing a finite set G ⊆ L∗ of gener-
ators for L(A), if L(A) is finitely generated. Let ` be the upper bound on the
length of elements of G. For each pair of states p, q of A of zero capacity we
consider all paths of length at most ` from p to q. This can be done in an BFS

730 A. Muscholl and D. Peled

way using partial-order reduction [1] (this avoids generating several lineariza-
tions of the same MSC factor). For each such path we check whether its label v
is non-trivially decomposable into MSCs. If this is not the case, we add v to G.
For checking whether v is decomposable we can e.g. directly adapt the following
idea of [4]. With v we associate a directed graph Gv, where nodes correspond
to events in v and edges (e, f) corresponding to e < f . Whenever e matches
f we add the back edge (f, e). Then v is indecomposable if and only if Gv is
strongly connected. We can compute Gv either using Tarjan’s linear-time algo-
rithm or on-line by an union-find algorithm keeping track of strongly connected
components.

4.2 Bounded Automata, Communicating Automata, and Finite
Generation

The diamond property required for Büchi automata in Theorem 2 plays a crucial
role for the efficient test of finite generation. We show in this section that without
this structural property, the question of finite generation becomes more difficult.
We consider two settings, bounded automata and communicating finite-state
machines.

For bounded automata we suppose that we are given a Büchi automaton
A accepting complete words. However, we drop the assumption that L(A) is
an MSC language. Instead, we require that A is bounded [2,7]. This condition
ensures that the MSC closure of L(A) is still regular, see Theorem 3 below. An
automaton A is called bounded, if every word v labelling a loop in A satisfies the
following (syntactic) condition. We associate a directed graph Cv with v. The
nodes of Cv are process indexes i ∈ [n] and we have an edge from i to j if v
contains the symbols snd(i, j) and rec(i, j). Then we require that Cv is strongly
connected.

Theorem 3 ([2,7]). Let A be bounded and accepting only complete words. Then
the MSC language [L(A)] is regular and there is an automaton of size in 2poly(s,n)

accepting [L(A)].

The question we ask is whether there is any HMSC N such that [L(A)] =
Lin(N). By Theorem 1 this problem reduces to checking whether [L(A)] is
finitely generated. Equivalently, we ask whether L(A) is finitely generated, i.e.,
if there exists some finite MSC language G ⊆ L∗ such that L(A) ⊆ [G∞]. If
such G exists then we obtain an HMSC N for [L(A)] of size O(|G| · |B|), with
L(B) = [L(A)].

Theorem 4. The following question is complete for co-NP:
Let A be a bounded Büchi automaton over L, such that every loop is labeled

by a complete word. We ask whether L(A) is finitely generated.

Proof. (Sketch.) For the lower bound we reduce from 3-SAT. Let F = C1 ∧
C2 ∧ · · · ∧Cm, with each Ci a clause with three literals over variables x1, . . . , xp.
We use m processes P1, . . . , Pm and event labels ai = snd(i, i+1), bi = rec(i, i+
1), for all 1 ≤ i ≤ m with m+1 = 1. The automaton A has p+1 states q0, . . . , qp

From Finite State Communication Protocols 731

(for simplicity we label edges by words.) There are two edges from qi to qi+1, for
0 ≤ i < p. The first edge is labeled by the word ai1 · · · aik , where Ci1 , . . . , Cik are
all clauses where the variable xi+1 occurs positively. The second edge is labeled
by the word aj1 · · · ajl , where Cj1 , . . . , Cjl are all clauses where the variable
xi+1 occurs negated. That is, any path from q0 to qp corresponds to a variable
assignment. Moreover, the send labels occurring on the path to qp correspond
to clauses which are satisfied by the assignment. Finally, there is one self-loop
around qp, labeled by a3

1b
3
1 · · · a3

mb3
m. Clearly, A is bounded.

Consider a maximal path of A starting in q0 and the associated MSC M . It
is easy to see that if the first event of each process Pi, i > 1, is a send ai and P1
starts with more than three occurrences of a1, then M is not decomposable as
product of finite MSCs. This occurs when F is satisfied by the assignment. For
the converse we show that the blocks of 3 consecutive bi suffice for a decompo-
sition in finitely many finite MSC factors.

For the upper bound we show that any automaton that accepts a non-finitely
generated language satisfies variants of Propositions 5 and 6, where the length
of the counter-example is polynomial in the size of the automaton s and the
number of instances n. For this bound we use that buffers are bounded by the
size of the automaton. 2

Not surprisingly, we can show that allowing unbounded message queues
makes the problem of HMSC equivalence undecidable. The automaton model
used in the proposition below are communicating finite state machines with fifo
buffers.

Proposition 7. It is undecidable whether a network of communicating finite
state processes is equivalent to an HMSC.

References

1. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial
order reduction in symbolic state space exploration. In Proc. of CAV’97, LNCS
1254, pp. 340–351, 1997.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc. of
CONCUR’99, LNCS 1664, 1999.

3. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
Proc. of TACAS’2001, LNCS 2031, pp. 496–511, 2001.

4. L. Hélouët and P. Le Maigat. Decomposition of Message Sequence Charts. In
Proc. of the 2nd Workshop on SDL and MSC (SAM’2000), pages 46–60, 2000.

5. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. Thiagarajan. On mes-
sage sequence graphs and finitely generated regular MSC languages. In Proc. of
ICALP’2000, LNCS 1853, pages 675–686, 2000.

6. A. Muscholl. Über die Erkennbarkeit unendlicher Spuren. Teubner, 1996.
7. A. Muscholl and D. Peled. Message sequence graphs and decision problems on

Mazurkiewicz traces. In Proc. of MFCS’99, LNCS 1672, pp. 81–91, 1999.
8. D. A. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking

closure properties of temporal logic specifications and omega-regular languages.
Theoretical Computer Science, 195(2):183–203, 1998.

Fractional Path Coloring with Applications to
WDM Networks?

Ioannis Caragiannis1, Afonso Ferreira2, Christos Kaklamanis1,
Stéphane Pérennes2, and Hervé Rivano2

1 Computer Technology Institute and
Department of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
{caragian,kakl}@cti.gr
2 MASCOTTE Project

I3S & INRIA Sophia Antipolis
B.P. 93, 06902 Sophia Antipolis Cedex, France

{Afonso.Ferreira,Stephane.Perennes,Herve.Rivano}@sophia.inria.fr

Abstract. This paper addresses the natural relaxation of the path col-
oring problem, in which one needs to color directed paths on a sym-
metric directed graph with a minimum number of colors, in such a way
that paths using the same arc of the graph have different colors. This
classic combinatorial problem finds applications in the minimization of
the number of wavelengths in wavelength division multiplexing (wdm)
all–optical networks.

1 Introduction

Graph coloring (or vertex coloring) is a fundamental problem of Computer Sci-
ence. Given a graph, the graph coloring problem is to assign colors to vertices in
such a way that adjacent vertices are assigned different colors and the number
of colors used is minimized.

In general, graph coloring is very hard to solve to optimality or even to
approximate. A related problem, the path coloring problem, consists in coloring
a set P of paths on a graph G so that two paths sharing an edge of G have
different colors. This problem is equivalent to coloring the corresponding conflict
graph, i.e., the graph whose vertices represent the paths of P and where there
is an edge between vertices representing conflicting paths. Notice, however, that
this problem was proven to be the same as standard graph coloring in terms of
complexity or difficulty to approximate, since any n-vertex graph is the conflict
graph of a set of paths of an n × n grid [CGK92]. Furthermore, Tarjan proved
it to be NP-hard even for trees [Tar85].
? This work was supported in part by the European Union under IST FET Pro-

ject ALCOM–FT and Improving RTN Project ARACNE. Afonso Ferreira and
Stéphane Pérennes are researchers with the French CNRS.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 732–743, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Fractional Path Coloring with Applications to WDM Networks 733

Our work is motivated by applications in wavelength division multiplexing
(wdm) optical networks and call scheduling, which has recently triggered a re-
newed interest in path coloring on special classes of graphs. In such applications,
one is given an optical network with n nodes and a multiset of point-to-point
communication requests, and must assign to each request a lightpath and to each
lightpath a color (wavelength) so that conflicting lightpaths (i.e., lightpaths using
the same link) are assigned different colors. The goal is to minimize the number
of colors used. This problem (known as the wavelength routing problem) has
been widely studied in the literature [Tuc75,BGP+96,EJK+99,ACKP00] . It has
been proved to be difficult (NP-hard even for rings); moreover one can show
that there exist networks with O(n2) vertices and n requests on which it is hard
to decide if the optimal number of colors is either 1 or n; thus, in general, the
problem is also hard to approximate.

In this paper we study the case where the lightpaths have already been
assigned to requests. It is then clear that the above problem is reduced to path
coloring, with the only difference that the underlying graph is usually directed
(since optical transmissions are one-way) and symmetric. Note that there are
important differences between the directed and the undirected version of the
problem; for instance, the problem can be solved in polynomial time in symmetric
directed stars, but is in NP-hard for undirected stars [Bea00].

In the rest of the paper we shall focus on the directed version of the path
coloring problem. Unless otherwise specified, we shall use the terms paths and
graphs to denote directed paths and symmetric directed graphs, respectively.

Previous work. Recently, several papers studied path coloring on simple net-
works like meshes, rings and trees [BGP+96,GHP97,Kum98,EJK+99]; in these
topologies, the problem has been proved to be NP-hard [EJ01]. Most of the
results study the relationship between the load of the set of paths (i.e., the max-
imum number of paths crossing an arc) and the number of colors of an optimal
coloring. Notice that the load is a lower bound for the optimal number of colors.

For rings (where the problem is indeed the classical circular arc coloring
problem), a 3

2 approximation was proposed in [Kar80]; this approximation ratio
was recently improved to a 1 + 1

e ≈ 1.37 by Kumar [Kum98]. This latter result
exploits a reduction of the circular arc coloring problem to a special instance of
integral multicommodity flow problem due to Tucker [Tuc75]. Indeed, the color-
ing of [Kum98] is obtained by, first, solving the multicommodity flow problem
with fractional numbers and then, by performing a randomized rounding of this
solution.

For trees, Erlebach et al. [EJK+99] present a polynomial time deterministic
algorithm which colors any set of paths of load π using at most 5π/3 colors.
This algorithm is greedy in the following sense: it proceeds in phases, one per
each node v of the tree. The nodes are considered following their breadth–first
numbering. The phase associated with node v, assumes that there is already a
partial proper coloring where all paths that touch (i.e., start, end, or go through)
nodes with numbers strictly smaller than v’s have been colored and no other path

734 I. Caragiannis et al.

has been colored. It has also been proved that this algorithm is optimal within
the class of greedy deterministic algorithms [EJK+99].

Recently, Auletta et al. [ACKP00] used a different approach for binary trees.
Instead of computing greedily a solution from top to bottom, the algorithm
actually keeps a distribution of solutions (it computes from top to bottom one
random element of the distribution). With high probability, an element of the
distribution has the particularity to look locally random (i.e., in each 3-star).
This implies some kind of “average case” of the greedy deterministic algorithm
and yields an improvement of the approximation ratio. The algorithm colors any
set of paths of load π on a binary tree using at most 7π/5 + o(π) colors, with
high probability. The hidden constants in the low order term are huge and are
due to the integrality constraints of the problem, and the random choices of the
algorithm.

Note that these two results approximate the optimal number of colors within
5/3 and 7/5 + o(1), respectively.

Our results. Our approach is based on the fact that the graph coloring problem
is equivalent to assigning unit cost to some of the independent sets of the graph
such that all vertices are covered (i.e., are contained in an independent set of
unit cost) and the total cost (i.e., the number of independent sets of unit cost)
is minimized.

We then observe that Kumar’s fractional solution [Kum98] gives in fact an op-
timal fractional coloring [GLS81], a natural relaxation of graph coloring, where
the independent sets covering the vertices of the graph may have fractional
weights. Notice, however, that this relaxation is generally also hard to approxi-
mate.

The positive side of our observation is that it allows us to prove several results
related to integral and fractional path coloring, as follows.

– In Section 3 we show that fractional path coloring in bounded–degree trees
can be solved in polynomial time. This result is constructive, i.e., our algo-
rithm inductively builds a polynomial size linear program whose final solu-
tion is such an optimal fractional coloring.

– This fractional path coloring algorithm for trees can be easily adapted to any
bounded–degree and bounded–treewidth graph, as described in Section 4.1.
Also, extending our techniques, we characterize polynomially solvable in-
stances of the fractional path coloring problem in general graphs in Sec-
tion 4.2.

– We show an upper bound of 7π/5 on the fractional path chromatic number in
binary trees in terms of the load π of the set of paths (see Section 4.3). This is
somewhat related to the results in [ACKP00] since, their random algorithm
can be seen as an attempt to emulate a balanced fractional coloring and,
on the other hand, a balanced fractional coloring can be interpreted as a
perfect random sample. However, our fractional analysis is much simpler,
our algorithm is deterministic, and our bound is tighter.

– With respect to integral path coloring, in Section 4.4 we provide a ran-
domized approximation algorithm for path coloring in bounded–degree trees

Fractional Path Coloring with Applications to WDM Networks 735

with approximation ratio 1.61 + o(1). This is done by applying randomized
rounding to the fractional solution presented in Section 3.

In the next section we recall the formal definitions of (fractional) coloring
and (fractional) path coloring.

2 Fractional Coloring

The graph coloring problem can be considered as finding a minimum cost integral
covering of the vertices of a graph by independent sets of unit cost. Given a graph
G = (V, E), this means solving the following integer linear program:

minimize
∑

I∈I x(I)
subject to

∑
I∈I:v∈I x(I) ≥ 1 ∀ v ∈ V

x(I) ∈ {0, 1} ∀ I ∈ I
where I denotes the set of the independent sets of G.

This formulation has a natural relaxation into the following linear program:

minimize
∑

I∈I x̄(I)
subject to

∑
I∈I:v∈I x̄(I) ≥ 1 ∀ v ∈ V

0 ≤ x̄(I) ≤ 1 ∀ I ∈ I
The corresponding combinatorial problem is called the fractional coloring

problem (see [GLS81]), and the value of an optimal solution is called the frac-
tional chromatic number wf (G).

If x̄ is a valid cost function over the independent sets of the graph G, we call
it a fractional coloring of G. We use the symbol x̄(G) to denote the cost of the
solution x̄.

In general, the fractional chromatic number is as hard to approximate as the
chromatic number since a classical result states that any ρ–approximation of the
fractional chromatic number leads to a ρ log(n)–approximation of the chromatic
number. Indeed, the size of the above described linear problem is exponential
(proportional to the number of independent sets of G).

It is well–known [GLS81] that the dual of the above linear program is the
following:

maximize
∑

v∈V y(v)
subject to

∑
v∈I y(v) ≤ 1 I ∈ I

y(v) ≥ 0

In this problem, a non–trivial constraint is violated if and only if the weight of
one independent set I, defined as the sum of the weights of its vertices

∑
v∈I y(v),

is greater than 1. Hence, the maximum weighted independent set problem (mwis)
is a separation oracle for this last problem. According to the separation and
optimization equivalence (see [GLS93], Th. 4.2.7, page 106, and [GLS81]), the
dual of the fractional coloring and the mwis are equivalent up to polynomial

736 I. Caragiannis et al.

reduction. Thus, computing the fractional chromatic number is polynomially
equivalent to solving mwis, which is polynomial for trees [Gar94]. However, this
duality argument does not provide any effective fractional coloring algorithm
but rather a way to compute the fractional chromatic number.

We now extend some terms of graph coloring to path coloring. Given a set of
paths P on a graph G, we define an independent set of paths as a set of pairwise
arc–disjoint paths, i.e., a set of paths whose corresponding vertices form an
independent set of the conflict graph. If Gc is the conflict graph of P on G, we
will denote by w(G,P) (wf (G,P)) the (fractional) chromatic number of Gc and
call it the (fractional) path chromatic number of P on G. We will also denote by
π(G,P) the load of P on G. i.e. the maximum number of paths of P using any
fixed edge of G.

As far as the relationship between w and wf is concerned, the following result
is implicit in the work of Kumar [Kum98] which addresses the case of the ring:

w(Cn,P) ≤ wf (Cn,P) +
π(Cn,P)

e
+ o(π(Cn,P)).

In the very specific case where the conflict graph is a proper circular arc graph,
Niessen and Kind proved that w = dwfe in [NK98].

In the next section we show that optimal fractional path colorings in
bounded–degree trees can be computed by solving a polynomial–size linear pro-
gram. Our technique can be easily extended to networks of bounded degree and
bounded treewidth. As an application (Section 4), we adapt the idea of produc-
ing path colorings by applying the randomized rounding technique to fractional
path colorings and obtain 1.61– and 2.22–approximation algorithms for path
coloring in bounded–degree trees, and trees of rings, respectively.

3 An Algorithm for Fractional Path Coloring in Trees

In this section we study the fractional path coloring problem in trees. We assume
that paths are labeled so that labels are unique, and given a set of paths we will
denote P(p) the path of family P which has label p. The special label ∅ will be
associated to a non-existent or void path.

3.1 Trace of a Fractional Coloring

Given a solution x̄ for path coloring that is a weight function x̄ on the indepen-
dent sets of the tree T , we define the trace of the fractional coloring x̄ on an
edge e as the following function Xe:

- For any label p, let I(p) be the set of independent sets containing P(p), and
I(p, q) = I(p) ∩ I(q).

- For any pair of label p, q such that P(p) and P(q) use e in opposite directions,
let Xe(p, q) =

∑
I∈I(p,q) x̄(I).

Fractional Path Coloring with Applications to WDM Networks 737

- For any label p such that P(p) uses e, let Ie(p, ∅) be the set of inde-
pendent sets of I(p) using e in only one direction, and let Xe(p, ∅) =∑

I∈Ie(p,∅),p∈I x̄(I).
- Finally let Ie(∅, ∅) be the set of independent sets not using e.

Given an instance of fractional path coloring (T, P), we denote by
Sol((T, P), c) the set of all the fractional coloring of (T, P) with cost less than
c.

3.2 Split and Merge

Our algorithm inductively constructs a polynomial size linear program whose
solution provides a fractional coloring. Our induction is based on merge and
split operations which allow to build any instance of fractional path coloring
starting from instances on stars (i.e. trees of height 1) and merging them step
by step.

Consider a fractional path coloring of (T, P) where T is not a star and such
that e = [u, v] is a non-terminal edge of T . The splitting of T on edge e is
two smaller instances of fractional path coloring (T1,P1) and (T2,P2) defined as
follows (cf. Fig. 1):

e
4

3
2

1

e

1
2

3

4

1

2

3

Fig. 1. Splitting a tree on e.

- Let U1 and U2 be the two connected components of T \ {u, v}, and let
T1 = U1 ∪ {[u, v]} , T2 = U2 ∪ {[u, v]}.

- Let P1 = P ∩ T1, P2 = P ∩ T2 (i.e in each subtree each original path is
replaced by the path it induces with a label equal to the original one).

Note that the split operation can be easily reverted by a merge one if one
keeps track of the paths labels and of the edge where the split occurred. In
what follows, we will always assume that (T, P) can be split on the edge e into
(T1,P1) and (T2,P2).

Now, we prove that one can build Sol((T, P), c) from Sol((T1,P1), c) and
Sol((T2,P2), c).

738 I. Caragiannis et al.

Proposition 1 The elements of Sol((T, P), c) are obtained by merging elements
of Sol((T1,P1), c) and Sol((T2,P2), c) having the same trace on e.

Proof: First we remark that any fractional coloring of T with cost c induces
fractional colorings on (T1,P1) and (T2,P2) with cost less than c. From
construction both have the same trace on e.

Conversely, given two fractional colorings x̄1 ∈ Sol((T1,P1), c) and x̄2 ∈
Sol((T2,P2), c) having the same trace Xe

1 and Xe
2 on e, we merge them into a

fractional coloring in Sol((T, P), c) by repeating the following procedure until
Xe

1(p, q) = 0,∀p, q:

- If for some pair of labels p and q (including the ∅ label) Xe
1(p, q) > 0, then

since Xe
1(p, q) = Xe

2(p, q) there exists I1 ∈ I1(p, q) and I2 ∈ I2(p, q) with
x̄1(I1) > 0 and x̄2(I2) > 0.

- Let x̄min = min(x̄1(I1), x̄2(I2)).
- Let I = I1 \ {P1(p),P1(q)} ∪ I2 \ {P2(p),P2(q)} ∪ {P(p),P(q)}, and note

that I is an independent set of T
- Increase x̄(I) by x̄min decrease x̄1(I1) and x̄2(I2) by x̄min.

To verify the claim, just note that the procedure preserves the following
invariant:

- trace equality (Xe
1 = Xe

2)
- Paths are covered either by x̄1, x̄2 or x̄
- x̄(T, P) + x̄1(T1,P1) = x̄(T, P) + x̄2(T2,P2) = c

It follows that, at the end, x̄ is a fractional coloring of (T, P) with cost c.
Moreover, for i = 1, 2 the trace of x̄ on any edge of T equals the one of x̄i in
Ti. ut

Corollary 2 We can compute a polynomial size linear program whose solutions
are valid traces of elements of Sol((T, P), c)

Proof: We first assume that such a program does exist for bounded degree d
stars, a naive way to get one is to use labeled independent set variables, that is
one variable for any possible labeled independent set in a bounded degree star
(as paths are labeled, we must distinguish between similar path having different
labels). Hence, if the load is π, at most π2d different labeled independent sets
can correspond to an unlabeled independent set. Hence a pessimistic estimate
count about M(d)π2d variables, where M(d) is the number of perfect matchings
in Kd,d. Fractional coloring is trivially described from these variables, then the
trace variables are simple sum of subsets of the labeled independent set variables.

We then use an inductive algorithm to generate a linear program whose
solutions are traces of Sol((T, P), c). Assume that T can be split on edge e into

Fractional Path Coloring with Applications to WDM Networks 739

(T1,P1) and (T2,P2) and let Si be the linear program for traces of Sol((Ti,Pi), c),
where we assume that the trace on e is associated to the variables Xe

i (p, q). Then
a system for (T, P) is:

S = S1 ∪ S2 ∪ {Xe
1(p, q) = Xe

2(p, q) | ∀p, q}
ut

Proposition 3 Fractional path coloring in bounded–degree trees can be reduced
to solving a polynomial size linear program.

Proof: We simply have to show how to compute an element of Sol((T, P), c)
from a trace X = {Xe,∀e ∈ T} of an element of Sol((T, P), c) (obtained from
Corollary 2). Again we proceed inductively: we start from stars and find for each
one a fractional coloring having the trace that X induces on it. Then if (T, P)
can be split into (T1,P1) and (T2,P2), Proposition 1 provides a way to merge
fractional colorings of (T1,P1) and (T2,P2) when their traces are equal, and this
is the case since they are subsets of X . ut

3.3 Reducing the Problem Size

Note that our first model induces very large systems since we could get O(nπ6)
variables for binary trees, and O(nπ8) for ternary ones. In this section we show
how to reduce the system size to O(dM(d)π2n), that is a size of order O(nπ2)
for bounded degree trees (with still a huge constant).

Proposition 4 Fractional path coloring in bounded-degree d trees can be reduced
to solving a linear program of size O(dM(d)π2n).

Proof: First and without loss of generality we assume that the load is uniform.
Corollary 2 shows that the size of the linear program of the fractional path

coloring of (T, P) of cost less than c is O(nπ2) plus the sum of the sizes of the
linear programs for each star of the tree T , which is less than n times the size
for a star of degree d.

We use a flow-like description for the fractional path coloring problem of a
star which can be related to a well-known property: the matching polytope of a
bipartite graph is encoded by simple flow equations (or, equivalently, probability
matrices are convex combination of permutation matrices).

Let us consider a star S = {v0, v1, . . . , vd} ⊆ T where v0 is the center of S
and d its degree. Arcs of S are {(v0, vi), (vi, v0),∀i ∈ [1, . . . , d]}. Let M be the
set of load 1 independent sets of S (i.e. subsets of paths in S loading each arc
exactly once). For all M ∈ M, we build an auxiliary flow problem FM :

- For each path P(p) ∈ T including a path of M , we add a vertex V (p) .
- For each pair of vertices V (p), V (q) such that ∃ i ∈ [1, . . . , d] | (v0, vi) ⊆ P(p)

and (vi, v0) ⊆ P(q), we add the arc (V (p), V (q)).

740 I. Caragiannis et al.

- We define a flow function1 fM on the arcs which induces a flow function f ′
M

on the vertices.
- For each leaf vi of the star we add the constraint

∑

p|(v0,vi)⊆P(p)

f ′
M (V (p)) = cM

Any solution of the previous system induces a covering of the paths with
weight f ′(p) and a subpart of the trace equals to f(p, q).

The total system for a star is obtained as follows:

- FM , M ∈ M : are considered all together.
- X(p, q) =

∑
M∈M fM (p, q) : computation of the trace variables.

-
∑

M∈M f ′
M (p) ≥ 1 : covering of the paths.

-
∑

M∈M cM ≤ c : cost constraint.

Due to the above mentioned property of the matching polytope, this system
describes the fractional coloring problem for a star with an encoding of the trace
variables.

It follows the fractional coloring of each stars of T can be described with a
system of size at most M(d)(= |M|) times π2d. Hence the system for T is of
size O(dM(d)π2n). ut

Notice that an optimal fractional coloring can be computed in polynomial
time even if the degree of the tree is d = O(max{log π/ log log π, log n/ log log n}),
since M(d) = O(d!).

4 Extensions and Applications

In this section we extend the technique described in the previous section to
graphs of bounded degree and bounded treewidth. We also characterize instances
in arbitrary networks which can be solved in polynomial time. Furthermore, we
obtain an algorithm for fractional path coloring on binary trees with cost at most
7π/5. Using the results for the fractional path coloring, we achieve improved
approximation algorithms for the path coloring problem in (bounded–degree)
trees and trees of rings and upper bounds for the path chromatic number in
terms of the fractional path chromatic number and the load.

4.1 Graphs of Bounded Degree and Bounded Treewidth

In the case of graphs of bounded degree and bounded treewidth, we obtain the
following:
1 By flow function we mean conservative for vertices. One can note that this function

is a circulation since no sink and no source is present

Fractional Path Coloring with Applications to WDM Networks 741

Proposition 5 Fractional path coloring can be solved in polynomial time in
graphs of bounded degree and bounded treewidth.

Proof sketch: The proof follows similar lines with the one for trees. Now,
split and merge operations are applied to cuts of the graph. Since treewidth is
bounded, we can consider cuts in which the number of edges is upper–bounded
by a constant. The trace variables are defined for each edge of the cut, leading
to O(π2k) trace variables, where k is bounded by the treewidth. ut

4.2 Some Polynomial Instances

Based on the technique described in Section 3, we can characterize instances of
the path coloring problem in general graphs which can be solved in polynomial
time.

Note that our approach in Section 3 can be considered as dynamic program-
ming where one maintains a polynomial encoding of the valid traces. We express
the result in terms of the number of non–isomorphic paths crossing any cut of
a graph. Recall that two paths are called isomorphic if they share the same
(directed) edges of the graph.

Proposition 6 If the number of non–isomorphic paths crossing any cut of a
graph is bounded, the fractional path coloring problem can be solved in polynomial
time.

Proof sketch: Assuming that the number of non–isomorphic paths crossing
any cut of the graph is upper–bounded by a constant k, the trace for each cut
we consider can be encoded with at most O(πk) trace variables. ut

Note that this result depends only on properties of the set of paths; not on
the underlying graph.

4.3 Fractional Path Coloring on Binary Trees

Fractional coloring of binary trees can be performed using a particular coloring,
called balanced coloring, where the traces depend only on the number of paths
going trough an arc (in some sense it can be seen as a perfect random sample).
Proposition 3 states that the paths of the tree can be colored independently
(using fraction of colors) in each 3-star, so that one can find a global fractional
coloring consistent with the local colorings.

A simple but exhaustive analysis shows that 3-stars can be colored in a
balanced way with at most 7

5π colors. We then obtain that, given a set of paths
P on a binary tree T , the algorithm computes a fractional path coloring of P
with cost at most 7π(T,P)

5 .

Proposition 7 For any set of paths P of load π(T, P) on a binary tree T , there
exists a fractional coloring of cost 7π(T,P)

5 . Moreover, such a fractional coloring
can be computed in polynomial time.

As a corollary, we obtain that given a set of paths P on a binary tree T , the
maximum independent set of paths of P has size at least 5|P|

7π(T,P) .

742 I. Caragiannis et al.

4.4 Integral Path Coloring in Trees

In this section we present an important application of our methods to the path
coloring problem in trees.

Note that the result of [EJK+99] states that there exists a polynomial time
algorithm which colors any set of paths P of load π(T, P) on a tree T with at
most 5π(T, P)/3 colors. Since the load π(T, P) is a lower bound for the optimal
number of colors, this gives a 5/3–approximation algorithm. In the following
we exploit the (optimal) solution for the fractional path coloring which can be
obtained in polynomial time for bounded–degree trees to design a randomized
algorithm with better approximation ratio.

Given a solution x̄ of the fractional path coloring of the set of paths P on a
tree T , the idea is to perform a randomized rounding to x̄ and obtain an integral
solution x. After rounding, x is not a feasible solution to the path coloring
problem since some of the constraints of the form

∑
I∈I:p∈I x(I) ≥ 1 may be

violated. However, this is a feasible solution to the path coloring problem on the
set of paths P ′ ⊆ P, defined as the set of paths contained in independent sets I
such that x(I) = 1. This means that we have properly color some of the paths
of P with wf (T ,P) colors.

Following the analysis of [Kum98], we can show that if π(T, P) = Ω(log n),
where n is the number of vertices in T , then after the rounding procedure the
load of paths in P\P ′, i.e., the load of the paths not colored, is

π(T, P\P ′) ≤ π(T, P)
e

+ o(π(T, P))

with high probability. Now, we can apply the algorithm of [EJK+99] to color
the paths in P\P ′ with 5π(T,P)

3e + o(π(T, P)) additional colors. In total, we use
at most

wf (T, P) +
5π(T, P)

3e
+ o(π(T, P))

colors. Since π(T, P) ≤ wf (T, P) ≤ w(T, P), we obtain the following results.

Proposition 8 There exist a randomized 1.61 + o(1)–approximation algorithm
to the path coloring problem in bounded–degree trees.

Corollary 9 For any set of paths P on a tree T , it holds:

w(T, P) ≤ wf (T, P) +
5π(T, P)

3e
+ o(π(T, P)).

We can also apply similar arguments to bounded–degree trees of rings to
obtain a 2.22–approximation algorithm.

5 Conclusions

Our research in this paper was motivated by questions related to the design of
wavelength division multiplexing optical networks. We developed a new approx-
imation tool for wdm networks by using the classical fractional coloring. Many

Fractional Path Coloring with Applications to WDM Networks 743

applications of our techniques to wdm networks can be foreseen, as in branch
and bound methods, or even in the design of multifiber networks .

One intriguing open problem is to prove better bounds on the size of the gap
between the cost of integral and fractional path coloring in trees. We conjecture
that this gap is small.

References

[ACKP00] V. Auletta, I. Caragiannis, C. Kaklamanis, and P. Persiano. Randomized
path coloring on binary trees. In Proc. of the 3rd International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX’00), LNCS 1913, Springer, pp. 60–71, 2000.

[Bea00] B. Beauquier. Communications dans les réseaux optiques par multiplexage
en longueur d’onde. PhD thesis, Université de Nice-Sophia Antipolis, 2000.

[BGP+96] J-C. Bermond, L. Gargano, S. Pérennes, A. A. Rescigno, and U. Vaccaro.
Efficient collective communication in optical networks. In Proc. of the
23rd International Colloquium on Automata, Languages and Programming
(ICALP’96), LNCS 1099, Springer, pp. 574–585, 1996.

[CGK92] I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: An
approach to high bandwidth optical WAN’s. IEEE Transactions on Com-
munications, 40(7):1171–1182, 1992.

[EJ01] T. Erlebach and K. Jansen. The Complexity of Path Coloring and Call
Scheduling. Theoretical Computer Science, Vol. 255 (1-2), pp. 33-50, 2001.

[EJK+99] T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano. Op-
timal wavelength routing on directed fiber trees. Theoretical Computer
Science, 221(1-2):119–137, 1999.

[Gar94] N. Garg. Multicommodity Flows and Approximation Algorithms. PhD
thesis, Indian Institute of Technology, Delhi, April 1994.

[GHP97] L. Gargano, P. Hell, and S. Pérennes. Colouring paths in directed
symmetric trees with applications to WDM routing. In Proc. of the
24th International Colloquium on Automata, Languages and Programming
(ICALP’97), LNCS 1256, Springer, pp. 505–515, 1997.

[GLS81] M. Grötschel, L.Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197,
1981.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2. Springer, 2nd corrected edition,
1993.

[Kar80] I. A. Karapetian. On coloring of arc graphs. Doklady Akad. Nauk Armi-
anskoi CCP, 70(5):306–311, 1980. (In Russian)

[Kum98] V. Kumar. Approximating circular arc colouring and bandwidth allocation
in all-optical ring networks. In Proc. of the 1st International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX’98), 1998.

[NK98] T. Niessen and J. Kind. The round-up property of the fractional chromatic
number for proper circular arc graphs. Journal of Graph Theory, 1998.

[Tar85] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics,
55(2):221–232, 1985.

[Tuc75] A. Tucker. Coloring a family of circular arcs. SIAM Journal of Applied
Mathematics, 29(3):493–502, November 1975.

Performance Aspects of Distributed Caches
Using TTL-Based Consistency

Edith Cohen1, Eran Halperin2, and Haim Kaplan2

1 AT&T Labs–Research, 180 Park Avenue, Florham Park, NJ 07932,
edith@research.att.com

2 Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel,
{heran,haimk}@math.tau.ac.il

Abstract. Web objects are stored and can be requested from numerous
servers, including authoritative “origin” servers and caches. Objects can
be modified only by their origin servers and weak consistency with cached
copies is maintained by limiting their lifetime durations. Copies fetched
from origin servers are received with maximum time-to-live (TTL) that
equals their lifetime duration whereas copies obtained through a cache
have shorter TTLs since their age (elapsed time since fetched from the
origin) is deducted from their lifetime duration.
A request served by a cache constitutes a hit if the cache has a fresh
copy of the object. Otherwise, the request is considered a miss and is
propagated to another server. Performance is measured by the number
of requests constituting cache misses. It is evident that the number of
cache misses depends on the age of the copies the cache receives. Thus,
a cache that sends requests to another cache would suffer more misses
than a cache that sends requests directly to an authoritative server. More
subtly, the number of misses depends on the particular configuration of
higher-level caches, e.g., whether one or more higher-level caches are
used. Guided by practices for Web caching, we model and compare dif-
ferent configurations. We also analyze the effect of pre-term refreshes at
high-level caches and extended lifetimes at low-level caches and reveal
patterns that may seem counter-intuitive at first. Even though TTL-
based consistency is very widely used, our work seems to be the first
to formally analyze it. Our analysis yields insights and guidelines for
improving the performance of Web caches.

1 Introduction

Web objects are typically associated with one authority that originates and
modifies them (their authoritative server), but can be cached and further dis-
tributed from multiple replicating servers (caches). Indeed, caching and replica-
tion are widely deployed for reducing load on Web servers, network load, and
user-perceived latency. Replicating servers are located at different points in the
network and include reverse proxies, proxy caches, and browser caches. By and
large, Web servers do not maintain per-client state and thus are not aware of all
locations of cached copies of objects they serve. Currently the only widely sup-
ported and deployed mechanism for consistency of cached copies is client-driven

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 744–756, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Performance Aspects of Distributed Caches Using TTL-Based Consistency 745

and expiration-based: the authoritative server provides an expiration time for
each copy, beyond which it must be validated or discarded. Since this mecha-
nism is the underlying motivation for our model, we further elaborate on it.

The distribution of Web content is governed by HTTP (Hyper-Text Transfer
Protocol) [4]. Each object has a URL which specifies its “location” and its au-
thoritative server. The object is requested by sending an HTTP request and the
content is sent back on the respective HTTP response. The response includes
a header with important information on the object, including cache directives.
The directives specify if the object can be cached, and may provide explicit ex-
piration time or information that can be used to compute one. When an object
is requested from the cache then if the cache has a fresh (non-expired) copy,
the request is processed locally. If the cached copy is stale (expired), it must be
validated by contacting a server with a fresh copy. To this end, HTTP provides
conditional GET requests. Similarly, if there is no cached copy, the cache must
obtain a fresh copy. Requests for which the cache does not have a fresh copy and
thus must contact an external server are termed cache misses.

An HTTP-compliant cache [4,1,7] calculates from the header fields of an
object a freshness lifetime, which is the time interval during which the copy
remains fresh (non-expired) since it left its authoritative server. The freshness
lifetime is typically fixed for each object. The cache also determines from the
headers the age of the copy, which is the elapsed time since it left its authoritative
server (and resided in caches). If the age is smaller than the freshness lifetime
then by subtracting the age of the copy from its freshness lifetime the cache
obtains a time-to-live (TTL) duration for the copy (during which it is considered
fresh). If the age is larger than the freshness lifetime, the object is considered
stale and its TTL is zero.

Web caches are placed both as proxy caches close to clients and reverse
proxies close to Web servers [7,5]. They are also sometimes configured in hier-
archies [6]. Thus, often there is more than one cache placed between the end
user and the origin server. Different copies corresponding to the same URL and
residing in different caches can have different ages and thus different TTLs. In
particular, a copy obtained by a cache from another cache expires sooner than
a copy obtained from an authoritative server. Therefore, a cache that forwards
requests to another cache is likely to suffer more cache misses than a cache that
forwards requests to an authoritative server. Furthermore, a cache is likely to
obtain more client requests than an authoritative server since it serves older
copies. So even if a cache maintains fresh copies, since the copies are aged, the
cache is somewhat less effective than an authoritative server [3,2].

More generally, the miss rate also varies according to the configuration of
higher-level caches. We compare different basic cache configurations according
to the above notions of age, TTL, and miss rates. In particular, we show that a
cache which consistently uses the same “source” cache (for each object) would
incur a lower miss rate than a cache that alternates between several caches, on
any sequence of requests. This suggests that when a set of caches handles the
workload of a set of clients, it is better to partition the workload such that the
same primary cache is used for each client-object pair.

746 E. Cohen, E. Halperin, and H. Kaplan

We then use extensions of the basic configuration models that incorporate two
further cache behaviors [2]. The basic models assumed that only expired copies
can be refreshed. HTTP caches, however, may refresh fresh items. 1 Conceiv-
ably, a cache can deploy configured periodic pre-term refreshes (rejuvenations)
to reduce the age of cached copies and as a result, improve the miss-rate at its
client caches and consequently, the number of requests it receives. Rejuvenation
increases traffic between a cache and the authoritative server but can decrease
traffic between the cache and its clients (note that the benefit can be large since
a single cache can serve numerous clients). As pre-term refreshes decrease the
average age of cached copies, it may seem that they can only increase the ef-
fectiveness of a cache. We show, however, that this is generally not the case. In
particular we show that when pre-term refreshes occur in arbitrary points in time
and “out of synch” with the expiration times of previous copies, performance
can degrade by up to a factor of 2, which is tight under some robust conditions.
We also show however, that when used “in synch” with previous expirations,
pre-term refreshes can boost performance.

Although not typically the case, different caches can use different freshness
lifetime durations for the same copy. 2. Caches that use longer lifetime durations
relative to their source can improve their miss-rate albeit at the cost of increased
staleness. We show that for many prototypical request sequences, the tradeoff
of staleness vs. miss-rate is not convex, and that specifically, integral values of
the extension factor (the ratio of the lifetime time durations at the cache and
its source) are more effective.

We also consider worst-case behavior and show that a cache which forwards
request to another cache (even one that performs pre-term refreshes) can incur
twice the miss-rate of a cache that uses an authoritative source. This worst-case
ratio can approach e if the cache forwards requests to different caches.

In Section 2 we present the basic and extended models. In Section 3 we
provide general results for the basic models, including comparison of different
cache configurations. Section 4 provides general results on pre-term refreshes and
freshness-lifetime extensions. Section 5 includes worst-case analysis that provides
tight bounds on the competitive ratio of different configurations. We conclude
in Section 6.

2 Model

We consider a set of distributed servers that originate, cache, request, and dis-
tribute copies of an object. The object can be modified over time but only by its
1 Such pre-term refreshes occur when a client request contains a no-cache request

header. When a cache received such a request it must forward it to the origin server
even if it has a fresh copy. The cache uses the response to replace or refresh its older
copy of the object.

2 The majority of HTTP requests involve objects without explicit expiration and for
which the freshness lifetime is determined by a heuristic. Thus, different caches can
associate different freshness lifetime values with the same copy as a result of different
URL filters and selecting different values for CONF PERCENT or CONF MAX [7].

Performance Aspects of Distributed Caches Using TTL-Based Consistency 747

origin server. Each copy of an object has a designated lifetime duration which af-
ter it elapses, the copy can not be further distributed or used. The lifetime value
is assigned by the origin server when the copy is served. Our analysis focuses on
lifetime values that are fixed throughout time. That is, the origin always provides
lifetime of T . We differentiate between origin (authoritative) servers and caches
(replicating servers). The age of a cached copy is the elapsed time since it was
obtained from an origin server. The TTL of a cached copy equals the lifetime
T minus its age. If the age is larger than T , the copy is stale. Otherwise, the
copy is fresh. The object can be requested from any server. Origin servers always
provide a copy with zero age and thus a time-to-live (TTL) of T . Caches process
the request by providing a local fresh copy, if there is one. The request then is
considered as a cache hit . Otherwise, another server (see Figure 1) is contacted
and the response can be used to update the cached copy. The request then is
a cache miss. The miss rate of cache is the fraction of cache misses among the
total number of requests.

We use the term source for the entity to which a client-cache sends requests.
A source is defined by a set of one or more servers, the strategy they use to
refresh their copies, and the pattern used by the client-cache to select a server.
We are interested in how the type of the source affects the miss rate at the
client-cache.

We assume objects always remain in the cache until they expire. In particu-
lar, there is no cache capacity constraint and no object can trigger an eviction
of another, so the behavior of the cache on different objects is independent.
Therefore, our analysis considers requests for a single object. Since we focus on
age-induced effects, we generally consider sources that always provide a fresh,
but possibly aged, copy of the object.

2.1 Source Types

In [2] we defined three types of sources which capture different relationships
between a client-cache and its data source(s). The different sources are illustrated
in Figure 1. The TTL value obtained through each source as a function of time
is illustrated in Figure 2.

1. auth: An authoritative source. auth always provides a copy with zero age
(TTL that equals the freshness lifetime).

2. exc: Let α be drawn uniformly at random from the interval [0, T] (the distri-
bution U [0, T]), where T is the lifetime of the object. We call α the displace-
ment . At time t an exc source provides a copy whose age is (t − α) mod3T
(TTL equals to T − (t − α) mod T). Note that the choice of α is fixed for
each “run” on the sequence, and the performance of exc is the expected
performance over all runs with different displacements.
This source models a scenario where the client-cache upon each miss fetches
a copy from the same high-level-cache. This high-level-cache maintains a
fresh copy by refreshing it through an auth source each time it expires. The

3 “mod” is a generalized modulu operation to arbitrary nonnegative numbers
a mod b = a − b ∗ ba/bc. If b = 0 then we define a mod b ≡ 0.

748 E. Cohen, E. Halperin, and H. Kaplan

Cache 4Cache 3Cache 2Cache 1

Origin server

Client cache B Client cache CClient cache A

Fig. 1. Different types of sources: Cache A uses cache 1 as an exc source. Cache B
uses caches 1,2,. . . as an ind source. Cache C uses an auth source.

T

a T+a 2T+a 3T+a

T
T

L

Independent

Authoritative

Exclusive

time

Fig. 2. TTL obtained through different types of sources. auth source always provides
zero age and TTL of T . exc source (shown with displacement α) provides age that
cycles from 0 to T and thus TTL which cycles from T to 0. ind source provides at
each point in time age drawn independently from U [0, T] and thus TTL drawn from
U [0, T].

averaging over different displacements captures independence of the request
times at the client-cache and the particular “refresh period” of the high-
level-cache.

3. ind: Upon each miss at the client-cache, the ind source provides a copy with
age independently drawn from U [0, T] (thus a TTL that is also drawn from
U [0, T]).
This source models a scenario where upon each miss, the client-cache for-
wards the request to a different independent exc-type high-level-cache. In-
dependence means that the displacements of the different high-level-caches
are not correlated.

The exc, ind, and auth sources model pure scenarios. Currently, many Web
caches direct requests for a particular URL through a high-level-cache (e.g.,
a proxy or a reverse proxy) and hybrids of the ind and exc sources capture
scenarios where several caches are used for load balancing purposes.

Performance Aspects of Distributed Caches Using TTL-Based Consistency 749

Our analysis assumes that the request sequence is independent of the per-
formance of the client-cache (that is, future requests do not depend on which
previous requests constituted a hit or a miss).

Two properties used later on are consistency of a source and synchronization
of the relation between a cache and its source. A source is consistent if the age
provided at any given time is consistent with past values. Formally, if at time
t, the source provided an age of Φ then at time t + ∆ the source provides the
object with age of at most Φ + ∆. The auth and exc sources are consistent. In
general, we expect sources that model a single server to be consistent.

We say that a client-cache is synchronized with a source if whenever the
client-cache contains a copy of the object which expires at some time t, then
requests directed to the source at times t + ∆ (∆ > 0) obtain an object whose
age is not more than ∆. By definition, a client-cache is always synchronized with
auth and exc sources but not with an ind source. As we shall see, synchroniza-
tion helps performance. Intuitively, synchronization means that the copy at the
source expires at the same time as the copy at the client-cache, and thus, misses
at the client-cache on requests which closely follow previous requests are more
likely to yield a copy with small age.

2.2 Extended Lifetime at a Client Cache

We consider situations where a client cache uses a longer lifetime duration than
used by the source. As elaborated in the introduction, longer lifetimes can be the
outcome of different settings or simply an attempt by the client-cache to reduce
its miss-rate and decrease traffic between itself and its source. Lifetime extension
trades increased miss-rate with increased staleness. We consider client-caches
that use an extended lifetime value of r ∗T for some fixed r > 1 (As before, T is
the lifetime value as used by the source). We refer to r as the extension factor .
We use the notation auth(r) (respectively, ind(r), exc(r)) for a source of type
auth (respectively, ind, exc) in conjunction with a client-cache applying an
extension factor of r.

2.3 Rejuvenating Sources

We consider replicating servers that refresh selected objects as soon as their TTL
drops below some threshold (rather than wait for it to completely expire). We
refer to such configured periodic pre-term refreshes as rejuvenation.

We extend the definitions of our basic sources to include rejuvenation. The
source excv is an exc source that refreshes its copy of the object when the age
exceeds v fraction of the lifetime value. Formally, let α be drawn from U [0, vT].
At time t, an excv source return the object with age (t−α) mod (v ∗T) (so the
TTL is T −(t−α) mod (v∗T)). As with an exc source, α is fixed for a “run”, and
performance is the expected performance over runs with different displacements.
We say that a client-cache uses an indv source if upon each miss it forward the
request to a different independent excv source. Hence, indv source returns copies
with age drawn from U [vT, T] and thus TTL drawn from U [(1 − v)T, T]. For
both indv and excv sources, a rejuvenation interval of v = 1 corresponds to the

750 E. Cohen, E. Halperin, and H. Kaplan

respective pure source: exc1 ≡ exc and ind1 ≡ ind. A rejuvenation interval of
v = 0 corresponds to a pure auth source. That is, exc0 ≡ auth and ind0 ≡
auth.

Intuitively, we might expect a monotonic improvement in miss rate as v
decreases from v = 1 to v = 0. We show later on that this is the case with indv
sources but not with excv sources. Note that a client-cache is synchronized with
its excv source if and only if 1/v is integral.

3 Relations between the Basic Sources

In this section we demonstrate some basic relations between the performance of
a client cache through the different sources that we defined. We first prove that
on any request sequence the miss rate of a client-cache working through an auth
is never greater than through an exc, which is in turn at most the miss rate
through ind. To do this, we first establish two basic lemmas relating the miss
rate at a client cache to the distribution of ages (and therefore TTLs) provided
by the source. These lemmas will be also useful in later sections.

Lemma 1. Consider two consistent sources s1 and s2 such that at any given
point in time, the TTL available from s1 is not smaller than the TTL available
from s2. Then, for any sequence of requests, the number of misses through s1 is
no larger than the number of misses through s2.

Proof. The proof is by induction on the length of the request sequence. The
lemma clearly holds for sequences of length 1 and 2. Consider a request sequence
τ of length l. If the last request is either a miss or a hit through both s1 and s2,
or a miss through s2 but a hit through s1, then the lemma follows by using the
induction hypothesis on the prefix of length l − 1 of τ .

Consider the case where the last request is a miss through s1 but a hit
through s2. Let the ith request be the last request on which the client working
through s2 had a miss. The client working through s1 must have had a hit on the
ith request and all the requests following it including the next to last request.
(Otherwise our assumptions guarantee that it would have got a TTL that covers
the last request.) Thus by applying the induction hypothesis on the prefix of τ
of length i − 1 the lemma follows.

The proof of the following lemma is given in the full version of the paper

Lemma 2. Consider two sources s1 and s2 that serve objects with TTLs that
are independently drawn from distributions with CDFs (Cumulative Distribution
Functions) F1 and F2, respectively. Suppose that for all x ≥ 0, F1(x) ≤ F2(x) (s1
provides longer TTLs). Then for any sequence of requests, the expected number
of misses through the source s1 is no larger than the expected number of misses
through the source s2.

An immediate consequence of Lemma 1 is that auth has smaller miss rate
than other source types. The following Lemma establishes that exc always out-
performs ind.

Performance Aspects of Distributed Caches Using TTL-Based Consistency 751

Lemma 3. For any sequence of requests, the miss rate through an exc source
is never higher than through an ind.

Proof. Consider the ith request. Its likelihood of being a miss with exc is
min{1, (ti − ti−1)/T}. Let m[j] and h[j] denote the events that the jth request
is a miss or a hit respectively, with an ind source. The likelihood that the ith
request constitutes a miss with ind is

p(m[i]) = p(m[i − 1]) min{1,
ti − ti−1

T
}

+p(h[i − 1] ∩ m[i − 2]) min{1,
ti − ti−2

T
}

+p(h[i − 1] ∩ h[i − 2] ∩ m[i − 3]) min{1,
ti − ti−3

T
} + . . .

≥ min{1,
ti − ti−1

T
}

Note that with respect to one fixed displacement value α, the exc source
could perform worse than ind. Consider the following sequence where requests
are made at times (2i + ε)T and (2i − ε)T for integral i > 0. Suppose that the
source refreshes at times iT . Then all requests would constitute misses with exc,
and only 1/2 + 2ε would constitute misses with ind. Lemma 3 shows that on
average over all displacements, exc performs at least as well.

4 Rejuvenations and Extensions

In this section we show that there is a relation between rejuvenating sources
(excv sources) and clients extending the freshness lifetime of the object (exc(r)
sources). We state the following theorem (its proof will be given in the full version
of the paper):

Theorem 1. Consider the sources excv, and exc(r), for r = 1
v . Then the miss

rate of a client-cache through excv on a request sequence {ti} is identical to the
miss rate of a client-cache through exc(r) on the sequence {rti}. The same is
true for ind sources.

Notice that Theorem 1 does not imply that extensions and rejuvenations are
equivalent effects, as the miss rates are measured for different sequences. For
example, applying this correspondence to two instances with the same sequence
and sources excv and excu, we obtain two instances with two different request
sequences (and two different extension factors).

4.1 Does Lifetime Extension Pay Off?

We first observe that generally, extending an object’s lifetime cannot increase
the miss rate. We then show that sometimes, however, extending the lifetime
does not decrease the miss-rate so as a result we increase staleness without a
corresponding gain.

752 E. Cohen, E. Halperin, and H. Kaplan

Lemma 4. Consider two client caches c1 and c2 that both use either an auth,
exc, or an ind sources. Consider a request sequence. If either of the following
holds

– c1 uses the same lifetime value as the source. c2, upon some cache misses,
uses an extended lifetime.

– The object has lifetime of T . c1 uses lifetime of r1 ∗ T and c2 uses lifetime
of r2 ∗ T (r2 ≥ r1 ≥ 1).

Then the miss-rate of c2 is at most that of c1.

Proof. The proof for auth follows from Lemma 1. The proof for exc with respect
to any fixed displacement follows from Lemma 1, and still holds when we take
the expectation over all displacements. The claim for ind source follows from
Lemma 2.

The following Lemma shows that we may not reduce the miss rate for some
frequently requested objects by increasing the extension factor to a non integral
value. Therefore in such cases we increase staleness without a corresponding gain
in miss rate.

Lemma 5. Consider an exc(r) source and a request sequence at the client cache
such that the object is requested at least once every (dre − r)T time units. Then,
the miss rate of the client-cache on such sequence is the same as with exc(brc),

Proof. When the object expires at the subsidiary, the copy at the parent has
age (r −brc)T . The object is requested before the parent refreshes its own copy.
Thus, a miss at the client cache is incurred once every brcT time units.

For low request rates, however, non-integral extension factors could be ben-
eficial even with exc(r). For example, if an object is requested with intervals of
1.2T , then the miss rate would be 1 with extension factor r ≤ 1.2 and would be
0.8 with r = 1.5.

4.2 Does Rejuvenating Pay Off?

At first glance, it seems that rejuvenations can only improve performance at the
client cache. Somewhat surprising is the fact that this is not the case for exc
rejuvenating sources. As a corollary of Theorem 1 and Lemma 5, we get the
following lemma:

Lemma 6. Let v < 1, and let u = 1
b1/vc . Consider a request sequence {ti}, such

that the object is requested at least once every (d 1
v ev − 1)T time units. Let mv

denote the miss rate through excv on {ti} and mu the miss rate through excu
on {ti}. Then, mv =

u

v
mu.

Proof. First, let r = 1
v . By Theorem 1, mv equals the miss rate through exc(r)

on {rti}. Since in {rti} there is a request every (d 1
v e − 1

v)T = (dre − r)T times
units then using Lemma 5 we obtain that the miss rate of {rti} through exc(r)

Performance Aspects of Distributed Caches Using TTL-Based Consistency 753

is equal to its miss rate through exc(brc). We claim that the miss rate through
exc(brc) on {rti} equals r

brc times the miss rate through exc(brc) on {brcti}.
Assuming this claim is established then by applying Theorem 1 again the theo-
rem follows.

To prove the claim, notice that by the terms of the lemma, for every i ≥ 1,
ti+1 − ti < (d 1

v ev −1)T , and thus, rti+1 − rti < (dre− r)T < T . Therefore, when
using an exc(brc) source, for both the sequence {rti}, and {brcti} we have a
miss in the first T -interval after the extended lifetime of the last miss is over.
Hence, we have a miss every brcT time units, and thus, the claim holds.

Lemma 6 demonstrates that the performance of a cache which receives fre-
quent requests to the object can be strictly worse through excv with v < 1
than through a non-rejuvenating exc source. For example, for v > 0.5, and for
sequences satisfying that the object is requested at least once every (2v − 1)T
time units, by Lemma 6 the miss rate is strictly worse through excv than with
a non-rejuvenating exc source. In this case, rejuvenating does not pay off.

In contrast, ind sources do exhibit monotonic dependence of the miss rate
on v:

Lemma 7. On any sequence of requests through an indv, the miss rate is non-
increasing with v.

The lemma follows from the following corollary of Lemma 2.

Corollary 1. Let m1 be the expected miss rate at a client cache when it uses
ind source. Suppose now that servers in the source cluster use rejuvenation and
let m2 be the respective expected miss rate. We assume that rejuvenations are
independent of the request sequence. That is, the TTL distribution through a
uniformly sampled server is fixed over time. Then m1 ≥ m2.

Proof. The TTL distribution is U [0, T] without rejuvenation. With rejuvena-
tion, the TTL upon a miss is independently drawn from some other distribution
R[0, T]. Clearly the CDFs of R and U satisfy that for every t, FR(t) ≤ FU (t)
and Lemma 2 applies.

The following corollary of Lemma 1 shows that although generally rejuve-
nation does not always improve the performance, rejuvenation cannot degrade
performance on any sequence if the source preserves synchronization.

Corollary 2. Suppose a rejuvenating exc source adheres to the original refresh
schedule, refreshing the object at times α+iT for integral i in addition to possibly
rejuvenating it at other points in time. Then on any sequence of requests, the
number of misses is not higher than the number of misses through exc.

Proof. Follow-up rejuvenations guarantee that at any given point in time, the
TTL obtained from the source with rejuvenation is at least as large as the TTL
obtained without rejuvenation. The proof follows by Lemma 1.

In particular, performance through excv with integral 1/v, (i.e., v =
1/2, 1/3, . . .), is at least as good as through exc. In the full version of the
paper we show that even if we restrict ourselves to excv, with integral 1/v, the
miss rate is not always monotonic as a function of v, and moreover, there are
examples where excv performs worse than an ind source.

754 E. Cohen, E. Halperin, and H. Kaplan

5 Worst Case Performance

In this section we analyze the worst case performance of exc and ind rejuvenat-
ing sources. For a source S and a request sequence {ti} let ρ({ti}, S) be the ratio
between the expected miss rate of {ti} through S and through an auth source.
The supremum over all sequences {ti} of ρ({ti}, S) is called the competitive ra-
tio of S, and is denoted by ρ(S). Let P be a consistent source that may decide
occasionally to rejuvinate the object based on requests that it obtained so far.
We call such a source a rejuvinating policy . We first analyze the miss rate of
rejuvinating policies. Notice that for any given v, excv is a rejuvinating policy
(that simply takes decisions which are independent of the sequence). We next
show that the competitive ratio of any rejuvinating policy is no greater than 2.

Theorem 2. The competitive ratio of any rejuvinating policy is at most 2.

Proof. We first establish that the client can get at most two misses in each time
interval of length T . Consider two consecutive misses. Since the rejuvinating
policy is consistent the sum of the TTL obtained at the second miss, and the
elapsed time between the two misses must be at least T . Thus, a subsequent miss
can occur only after at least T time units past the first miss. We now show that
the miss rate of every policy is at most twice the optimum. Let the miss-times
through an auth source be m1, m2, . . . , mk. Clearly, the set of all request times
is covered by the mutually disjoint intervals [mi, mi + T), as a request which is
not covered by any of these intervals must be a miss. In each of these intervals,
the auth source has exactly one miss, while the rejuvinating policy could have
had at most 2, and thus the theorem holds.

Next we establish a corresponding lower bound of 2 on the performance of
any rejuvinating policy that cannot rejuvinate the object continously but must
have a small gap of ε between consecutive rejuvinations.

Theorem 3. Consider a randomized rejuvenating policy P on a consistent
source such that the time interval between any two rejuvenation points must
exceed some ε > 0. Then P has competitive ratio ρ(P) = 2.

Proof. By Lemma 1 we get that ρ(P) ≤ 2. Let δ > 0, and we prove that
ρ(P) ≥ 2−δ. We use Yao’s lemma [8], and construct a distribution on sequences
of requests r1, r2, . . . at times t1, t2, . . ., such that the miss rate of the optimal
policy is always 1

2 , while the expected miss rate of P is 1 − δ/2.
Let t1 be chosen uniformly from an arbitrary interval of length ε. For every

k ≥ 1, let t2k = t2k−1 + T − εδ, and let t2k+1 be chosen from U [t2k + 2T, t2k +
2T + ε). Using the property of P , in which the smallest distance between any
two rejuvenation points is ε, it is easy to see that for every k ≥ 1, the probability
over the request times distribution, that the TTL of r2k−1 when using P is at
least T − εδ, is at most δ. Moreover, r2k−1 constitutes a miss under any policy,
including P . The request r2k is a miss of P with probability at least 1 − δ.
Thus, the expected miss rate of P is at least (2 − δ)/2. The optimal policy can
rejuvenate just before the client incurs a miss, hence has a miss rate of 1/2.
Therefore, using Yao’s lemma [8], ρ(P) ≥ 2 − δ, and the theorem holds.

Performance Aspects of Distributed Caches Using TTL-Based Consistency 755

In particular, Theorem 2 implies that the source excv with any v > 0 has a
competitive ratio 2. A related problem is the competitive ratio of indv. Since
an indv source is not consistent it is not a rejuvinating policy and therefore
Theorem 3 does not apply. To give some intuition, if v < 1/2, then the TTL
provided for every request is at least T/2, and thus, in every interval of length
T time units, there are at most 2 misses. Therefore, in this case, the proof for
Theorem 2 holds, and thus, the competitive ratio of indv is at most 2. To see
that it is exactly 2, consider a sequence where requests are spaced T time units
apart. The miss rate is 1 through indv source whereas it is 1/2 through an auth
source. We obtain the same ratio of 2 on a sequence of requests that is constituted
of subsequences, where subsequences are spaced more than T apart and in each
subsequence the distance between the last request and the first request is exactly
T . More generally, we prove the following theorem:

Theorem 4. The competitive ratio of indv is
∑b 1

1−v c
k=0

(1−k(1−v))k

k!vk .

Thus, by Theorem 4, for v < 1/2, the competitive ratio of an indv source is 2, and
as v approaches 1, the competitive ratio approaches e = 2.718.... Interestingly,
this worst-case analysis supports the relation between basic sources established
in Section 3: exc source has competitive ratio of 2 whereas ind source has a
strictly worse competitive ratio of e. The proof of Theorem 4 is provided in
the full version and is based on establishing that the competitive ratio of indv
equals the expectation of Yv, where Yv is defined as follows. Let X1, X2, . . . be
a sequence of independent random variables drawn from U [T (1 − v), T]. Define
Yv as the random variable, such that Yv = k if and only if X1 + . . . + Xk−1 ≤
T < X1 + . . . + Xk.

6 Conclusion and Open Problems

We modeled and analyzed age-related performance issues for a distributed sys-
tem of caches that use TTL-based consistency. Our analysis revealed interesting
patterns that may seem counter-intuitive. Despite the wide-scale use of TTL-
based consistency (for Web caches and within the Domain Name System), its
performance effects are not properly understood by practitioners [3]. The models
we used closely follow the true behavior of Web caches and we believe that our
results provide insights for increasing the effectiveness of Web caches.

Our results are complemented and supported by extensive simulations us-
ing Pareto arrivals and traces from Web content caches and analysis of request
sequences with Poisson and fixed inter-request-time distributions (see [2] and
the full version). In particular, these results further demonstrate the presence of
interesting dependencies of performance on the extension factor or rejuvenation
interval values. Interestingly, the patterns are similar for the heavy-tailed Pareto,
Poisson, and for actual request sequences, but yet, are not universal (e.g., does
not occur with fixed inter-arrival times). An intriguing open question is thus to
characterize the class of request distributions for which these patterns occur.

756 E. Cohen, E. Halperin, and H. Kaplan

References

1. T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol —
HTTP/1.0. RFC 1945, MIT/LCS, May 1996.

2. E. Cohen and H. Kaplan. Aging through cascaded caches: performance issues in
the distribution of Web content. Manuscript, 2000.

3. E. Cohen and H. Kaplan. The age penalty and its effect on cache performance. In
Proc. of the 3rd USENIX Symposium on Internet Technologies and Systems, 2001.

4. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, and T. Leach, P. Berners-
Lee. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616, ISI, June 1999.

5. Inktomi Traffic Server. http://www.inktomi.com.
6. A Distributed Testbed for National Information Provisioning. www.ircache.net.
7. Squid internet object cache. http://squid.nlanr.net/Squid.
8. A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In

Proc. 17th Annual Symposium on Foundations of Computer Science, pages 222–227,
1977.

Routing in Trees

Pierre Fraigniaud? and Cyril Gavoille

1 CNRS, Laboratoire de Recherche en Informatique,
Université Paris-Sud, 91405 Orsay cedex, France.

pierre@lri.fr
2 Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, 33405

Talence Cedex, France.
gavoille@labri.fr

Abstract. This article focuses on routing messages along shortest paths
in tree networks, using compact distributed data structures. We mainly
prove that n-node trees support routing schemes with message headers,
node addresses, and local memory space of size O(log n) bits, and such
that every local routing decision is taken in constant time. This improves
the best known routing scheme by a factor of O(log n) in term of both
memory requirements and routing time. Our routing scheme requires
headers and addresses of size slightly larger than log n, motivated by
an inherent trade-off between address-size and memory space, i.e., any
routing scheme with addresses on log n bits requires Ω(

√
n) bits of local

memory-space. This shows that a little variation of the address size, e.g.,
by an additive O(log n) bits factor, has a significant impact on the local
memory space.

Keywords: compact routing, trees, routing algorithms.

1 Statement of the Problem

Delivering messages between pairs of processors is a basic and primary activity of
any distributed communication network. This task is performed using a routing
scheme, that is a mechanism working in a distributed fashion, and allowing
source-to-destination messages delivery in the network, for any source and any
destination.

Quite often, the design and the optimization of the management and control
systems of the network, including routing, is done after the network construction.
In this case, the routing problem is stated as follows: given a graph (i.e., the
underlying topology of a communication network), design for each node of the
graph (i.e., for each router of the network) a efficient computable function that
determines, for every message entering a node, the link on which the message has
to be forwarded. This computation is performed as function of the information
contained in the header of the message, e.g., the destination node address, and
? Part of this work was done while the first author was visiting Carleton University at

Ottawa, and Concordia University at Montréal. Additional support from Carleton
U, the NATO, and the RNRT project R.O.M.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 757–772, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

758 P. Fraigniaud and C. Gavoille

of local information stored at the node. The term “efficient” groups a set of
desirable quality factors like: routes of reasonable length (compared to shortest
paths); low local computation time; limited link-congestion; compact local data
structures; fault tolerance; etc.

We want to point out that the complexity results on routing are quite strongly
dependent of the model, including, e.g., the ability to setup the addresses of the
nodes, the ability to modify the headers, etc. Moreover, we also want to stress
that results strongly differ according to slight variations of parameters, including,
e.g., the size of the header, the length of the routes, etc. Therefore, let us make
clear the framework of this paper.

In the remaining, the communication network is denoted by a connected
and undirected n-node graph G = (V, E). The routing scheme makes use of
addresses, every node being identified by an address which is unique in the
network. Hereafter, the address of node u is denoted by `(u). The routing scheme
makes also use of a routing algorithm that is a distributed algorithm whose role is
to route messages. Upon reception of a message by node u, the routing decision
taken at u is performed by a routing function. It depends solely on (1) the
message header, (2) the incoming link, and (3) local data structures stored at
u. The design of the routing scheme includes not only the design of the routing
algorithm via the definition of the routing function, but also the setting of the
address-set, the header-set, and of the local data-structures. Moreover, it has to
incorporate the link labeling.

More precisely, incoming and outgoing links from every node u are identified
by numbers from 1 to deg(u), the degree of u. This labeling is local, and should
not necessarily be consistent between neighbors. In particular, the edge {u, v}
can be labeled i by u, and j by v, with i 6= j. Each node (i.e., each router) is
also supposed to have an extra link, connecting it to its local host. This link is
labeled 0. Once the routing function has selected the outgoing link on which the
message must be forwarded, i.e., a number between 0 and deg(u), it creates a
new header for that message, and it sends the message with its header through
that link. The original header of a message is given by the source host; it simply
consists of the address of the destination, and, upon reception of a message from
the source host, the attached router may modify the header, but the result of
this modification depends solely on the destination address, and, again, local
data structures stored by the router. We point out here that no time or space
consuming computations are hidden in this model.

A specific type of routing is called direct . Direct routing imposes that the
message header is fixed at once by the source host, and cannot be modified by in-
termediate nodes on its route toward the destination. In other words, the header
set is exactly the node address set. Direct routing schemes are desirable because
they do not require extra hardware facilities to rewrite headers. Note though
that relaxing this constraint allows to construct sophisticate routing schemes for
arbitrary graphs (cf., e.g., the hierarchical routing schemes introduced in [1,10]).

To summarize, solving the routing problem consists in designing the whole
routing scheme, including (1) the routing function, (2) the format of the ad-

Routing in Trees 759

dresses, (3) the local labeling of the links, (4) the format of the headers, and
(5) the local information to be stored locally at each node in order to perform
the computation of the routing function. The complexity of the setting-up of
these data is measured by the time it takes to perform those computations from
given the graph G, and is refered as the pre-processing time. The other parame-
ters that are typically addressed in the literature are the following. The size of
the addresses (that is also the size of the headers for direct routing schemes) is
measured by the range of the set in which these addresses are taken. More pre-
cisely, for m > n, a routing scheme is of [1, m]-range address if the addresses are
taken from the set {1, 2, . . . , m}. (Alternatively, such a scheme is called a log m-
bit address routing scheme.) The local memory space is the size of all the data
structures required by each node to compute the routing function. The routing
time is the worst-case time-complexity of the routing function to perform its
computation. The length of the routes is measured by competition against the
shortest paths.

In this paper we consider shortest-path routing only. Moreover, all the routing
schemes we will construct are direct, i.e., routing will be performed based on the
destination address only, and headers are not modified once set by the source.
Regarding the local labeling of the links, we will consider two main variations
of the problem: the designer-port model, and the fixed-port model. The former
allows the designer of the routing scheme to freely label (between 1 and deg(u))
the incident links of each node u while constructing and optimizing the data
structures of the routing scheme. On the contrary, the latter assumes that the
local labeling of the links is given is advance. The fixed-port model forces the
use of correspondence tables if the routing function needs a specific labeling to
perform efficiently, and therefore this model may lead to a significant increase
of the size of the data structures compared to the designer-port model. On the
positive side though, the fixed-port model allows to superimpose several routing
schemes such as, e.g., hierarchical routing schemes [1,10].

Before stating the results included in this paper, we list some previous and
related works.

Related Works

One of the most widely used routing scheme for arbitrary graphs is the routing
tables. It consists in labeling the nodes from 1 to n, and to store an n-entry table
at each node, such that its i-th entry returns the local number of the adjacent
link on which a message of destination address i has to be transmitted. Routing
tables are direct and use [1, n]-range addresses, require O(n log d) bits of memory
at each node of degree d in the fixed-port model, and perform routing in O(1)
time at each node. Although O(n log d) memory bits seems quite high, it must
be pointed out that this is the best that can be achieved for arbitrary graph.
More precisely, it has been proved in [5] that Ω(n log d) bits is a lower bound for
shortest-path routing schemes using addresses on c log n bits, for every constant
c > 1. This lower bound holds in the designer-port model. According to this

760 P. Fraigniaud and C. Gavoille

result, a tremendous effort has been done to derive routing schemes requiring
smaller memory space for specific classes of networks, in particular for trees.

In trees, a common strategy consists in setting the addresses via a Depth-
First Search (DFS) traversal of the tree, and then to use the interval routing
scheme (IRS) of [11,13] (see [4] for a survey on IRS). More precisely, at every
internal node u of the tree, the edge leading to a child v is associated to an
interval containing the set of the addresses of the nodes in the subtree rooted at
v, and the link leading to the root is associated to the complementary interval
(this latter interval may wrap modulo n). The memory space is O(d log n) bits
at each node of degree d in the fixed-port model, and the use of a binary search
in the set of intervals provides a O(log n) routing time at each node. The total
amount of routing informations, summed over all nodes, is low compared to
the routing tables, i.e., O(n log n) bits in total. However, IRS does not evenly
balance routing information among the nodes since O(n log n) bits could be
required locally for trees of large degree.

Cowen [2] proposed a direct routing scheme in the fixed-port model for
trees of large degree using O(

√
n log n) bits of memory, 3 log n bits of addresses,

and O(log n) routing time. The address-space can be optimized considering the
designer-port model: the direct routing scheme in [3] uses O(

√
n log n) bits of

memory with [1, n]-range addresses, and O(log n) routing time. Actually, if we
insist on small memory space, [4] shows that there exists a routing scheme for
trees with [1, n]-range addresses, α

√
n bits of memory, where α ≈ 3.7. However,

this latter scheme may involve exponential routing times.
Peleg [9] proposed the best known routing scheme for trees, inspired from

the so-called “distance labeling” schemes, and stated in the fixed-port model.
It is based on a recursive decomposition by “center” of the tree, using O(log n)
levels. It uses O(log2 n) bits for both the addresses and the memory at each
node, and requires O(log n) routing time. Actually, the routing algorithm is
direct and based on the destination-address only so that the node needs only to
store its address. That type of routing schemes are called “memory-free” routing
or “label-based” routing. As it is remarked in [9], every direct routing scheme
can be transformed into a memory-free routing scheme by extending the size of
each address so that it contains all the local data structures of the node.

This paper improves all these previous routing schemes for trees, including
the one in [9].

Our Contributions

1. We propose a direct shortest-path routing scheme for trees asymptotically
using 5 log n bits for the addresses, 3 log n bits of memory space, and O(1)
routing time1. This scheme is asymptotically optimal for all of the con-
sidered measures: memory space, header size, and routing time. Reducing

1 All the time complexities are computed in a word-RAM model where standard inte-
ger operations on words of O(log n) bits are performed in constant time, including
logical bitwise operations, integer division, and integer multiplication. All the loga-
rithms are in base 2.

Routing in Trees 761

the address range can be done, but up to an increase of the routing time.
More precisely, we also propose a direct shortest-path routing scheme using
2.8 log n bits for the addresses, 3 log n bits of memory space, but involving
polynomial time routing decisions.
Attaching the address with the local data structure at each node, we thence
show that there exists (1) a shortest-path memory-free routing scheme for
trees with constant routing time and 7 log n bits of addresses, and (2) a
shortest-path memory-free routing scheme for trees with a 4.8 log n bits of
addresses and polynomial routing time. All these results are stated in the
designer-port model. A similar result was founded independently by Thorup
and Zwick [12].

2. For the fixed-port model, we propose a direct shortest-path routing scheme
using O(log2 n/ log log n) bits for the addresses, O(log2 n/ log log n) bits of
memory space, and with constant routing time. We obtain a shortest-path
memory-free routing scheme using O(log2 n/ log log n) bits with constant
routing time. These results improve the best known result by a factor
O(log log n).

3. We also show lower bounds. In particular, we show that, in the designer-
port, model any shortest-path routing scheme for arbitrary tree requires a
memory space of at least α

√
n − o(

√
n) bits if using [1, n + o(

√
n/ log n)]-

range addresses. This improves and generalizes the lower bound of [3], and
shows the optimality of the results therein. By comparing this lower bound
with our first contribution, it also shows that a little variation of the address
size, e.g., by an additive O(log n) bits factor, has a significant impact on the
local memory space.
For the fixed-port model, we prove a n−o(n) bits lower bound on the memory
space for shortest-path routing scheme on trees using [1, n+o(n/ log n)]-range
addresses. In contrast with this bound, we construct a direct shortest-path
routing scheme with [1, n]-range addresses, using at most n + o(n) bits of
memory space, and constant routing time. This demonstrates an optimal
tradeoff between address-size and memory space.

2 A Routing Scheme with O(log n) Bits of Address and
Memory Space

Let T be any n-node tree, and let r be any node of T . From now, T is supposed
to be rooted at r. For every node u, let us denote by Tu the subtree of T rooted
at u induced by u and all its descendents. We denote by w(u) the number of
nodes of Tu, and we call it the weight of u. We define id(u) as the numbering
of the nodes of T by consecutive integers in [1, n] obtained by a DFS traversal
of T performed under the following guideline: at each internal node, the DFS
numbering visits first the largest subtree, then the second largest subtree, and
so on. It yields a labeling in which id(r) = 1, and, for every internal node u and
every two of its children x, y, if id(x) 6 id(y) then w(x) > w(y).

762 P. Fraigniaud and C. Gavoille

2.1 Port and Address Assignment

If y is a child of x in T , then we define the rank of x, denoted by rank(x, y), as
the number of children of x whose DFS labels are at most id(y). The labeling of
the edge {u, v} at u is denoted by port(u, v). We set port(r, v) = rank(r, v) for
any child v of the root r, and, for any u 6= r,

port(u, v) =
{

1 if v is the parent of u;
1 + rank(u, v) otherwise.

The extra edge linking any node u to its local host is labeled 0. For every
node u 6= r, we define path(u) as the sequence of ranks encountered on the
path from r to u. (We set path(r) = (), the empty sequence.) More precisely,
if the path from r to u is the sequence of nodes r = u0, u1, . . . , ut = u then
path(u) = (rank(u0, u1), . . . , rank(ut−1, ut)). We define the clean-path of u as
the sequence cpath(u) obtained from path(u) by removing all the ranks that are
equal to 1. We denote by |cpath(u)| the length of the sequence cpath(u), i.e.,
the number of ranks of path(u) distinct from 1. In particular, |cpath(u)| = 0 if
path(u) consists of 1’s only.

For every node u, the address `(u) of u satisfies `(u) = 〈id(u), cpath(u)〉.
The data structure stored at node u is

table(u) = 〈id(u), w(u), w1(u), |cpath(u)|〉
where w1(u) is the weight of the heaviest child of u, i.e., the weight of w(z) such
that rank(u, z) = 1. For a leaf u, we set w1(u) = 0. The next lemma will be
useful for computing the space needed for storing table(u).

Lemma 1.
(1) If u is the parent of v, then rank(u, v) 6 w(u)/w(v).
(2) If cpath(v) = (p1, . . . , pk), then

∏k
i=1 pi 6 n/w(v), and k 6 log(n/w(v)).

Proof.
(1) By definition, if rank(u, v) = i then there are i children of u, say

c1, . . . , ci−1, ci = v, such that id(cj) 6 id(v). For every such node cj , w(cj) >
w(v). Thus,

∑i
j=1 w(cj) > i · w(v). Since w(u) >

∑i
j=1 w(cj), it follows that

w(u) > i · w(v) that is rank(u, v) 6 w(u)/w(v) as claimed.
(2) By construction, pi = rank(ui, vi) for some edge (ui, vi), ui parent of vi.

By (1), pi 6 w(ui)/w(vi) 6 w(ui)/w(ui+1) since w(ui+1) 6 w(vi). It follows
that

∏k
i=1 pi 6 w(u1)/w(vk). We have w(u1) 6 n, and vk = v. Since pi > 2,

k 6 log
(∏k

i=1 pi

)
6 log(n/w(v)).

2.2 Routing Algorithm

Our routing algorithm is direct, i.e., a message-header consists solely of the des-
tination address of that message, and it will not be modified along its path

Routing in Trees 763

from its source to its destination. Assume that a node x receives a message
of header h = `(y). The routing decision at x is described by a function
Route1(x, h) ∈ [0, deg(x)] that returns the local label of the link on which
the message has to be forwarded from x. In the following, let b denote the value
0 if id(x) = 1 (i.e., if x = r), and 1 otherwise.

Route1(x, `(y))=

0 if id(y) = id(x);
1 if id(y) < id(x) or id(y) > id(x) + w(x);
1+b if id(x) < id(y) 6 id(x) + w1(x);
p+b otherwise, where p=(|cpath(x)|+1)-th element of cpath(y).

The next section shows that the routing algorithm is correct, and section 2.4
shows how to implement the function Route1.

2.3 Correctness

Lemma 2. For every pair of nodes x, y, the routing algorithm described by
Route1 routes any message from x to y along a shortest path.

Proof.
If id(y) = id(x), then the function returns the correct answer since the mes-

sage is arrived at destination.
If id(y) < id(x) or id(y) > id(x) + w(x), then, by definition of the DFS

numbering, y is not a descendent of x, and thus the message has to be transmitted
to the parent of x. The routing function returns in this case the correct answer,
i.e., port 1.

If id(x) < id(y) 6 id(x) + w1(x) then y is a descendent of x. Since id(y) 6
id(x)+w1(x), the message has to be transmitted on the port of the heaviest child
of x because the DFS numbering labels first the largest subtree of x. Therefore,
the routing function correctly answers port 1 + b (i.e., 1 if id(x) = 1, and 2
otherwise), because links are locally labeled in a decreasing order of the weights
of the subtrees.

If id(x) + w1(x) < id(y) < id(x) + w(x) then y is a descendent of x and the
sequence path(x) is a prefix of path(y). Therefore, cpath(x) is also a prefix of
cpath(y). The message has to be transmitted to a child of x, say z. Note that
path(z) = (path(x), rank(x, z)), and note also that rank(x, z) 6= 1 because z is
not the heaviest child of x since id(x) + w1(x) < id(y). Since rank(x, z) 6= 1,
and since cpath(x) is a prefix of cpath(y), we have that rank(x, z) is contained
in the sequence cpath(y). The value rank(x, z) is precisely the first element
of cpath(y) located after all the elements in common with cpath(x). Hence,
it is the (i + 1)-th element of cpath(y), where i is the number of elements of
cpath(x). Thus, the routing function returns the correct answer in this case as
well, completing the proof.

764 P. Fraigniaud and C. Gavoille

2.4 Implementation

Lemma 3. For every node u, its address `(u) is of length less than 5 log n + 1
bits, and its local data structure table(u) is of length less than 3 log n+log log n+4
bits.

Proof. Recall that `(u) = 〈id(u), cpath(u)〉. We represent id(u) by a binary
string of dlog ne < (log n) + 1 bits. Now, let us give a compact representation of
the sequence cpath(u) = (p1, . . . , pk). Let li be the length of the binary decompo-
sition of qi = pi − 2 (qi > 0 since pi > 2). Precisely, li = max {dlog(pi − 1)e , 1}.
The sequence cpath(u) is represented by two binary strings, say A and B, each
of length L =

∑k
i=1 li, as follows: A is composed of the concatenation of the

binary representation of the qi’s on li bits; and B is a bitmap that indicates the
begining of each field representing a qi in A (this is doable since li > 1).

Note that pi > 2 implies li < (log pi) + 1. Hence, L < log
(∏k

i=1 pi

)
+ k. By

Lemma 1, L < log(n/w(u)) + log(n/w(u)) 6 2 log n. In total, id(u), A, and B
can be represented by less than 5 log n + 1 bits.

Finally, table(u) = 〈id(u), w(u), w1(u), k〉, where k = |cpath(u)|, can
be represented by a binary string of length at most 3 dlog ne + dlog ke <
3 log n + log log n + 4 bits (by Lemma 1, k 6 log n).

Actually, `(u) can be represented in a more compact way. Indeed, the coding
of cpath(u) is not the best possible. To improve the coding we need the following
lemma originally proved by Kalmár in 1930, and that can be also founded in [14].

Lemma 4. [14] Let Z(n) be the number of ordered integer sequences p1, p2, . . .
such that pi > 2 and

∏
i>1 pi 6 n. Then, Z(n) ∼ nρ/κ, with κ = −ρ ·ζ ′(ρ) where

ρ is the unique real solution of the equation ζ(ρ) = 2 and ζ is the Riemann Zeta
function. (We have ρ ≈ 1.7286 and κ ≈ 3.1429.)

From this lemma, every clean-path can be coded using at most dlog Z(n)e 6
ρ log n < 1.8 log n bits. Moreover, there exists a polynomial time algorithm that
generates all such sequences2. Thus coding and decoding of cpath(u) can be done
in polynomial time.

Note that in order to execute Route1(x, `(y)) we need to extract rapidly each
field of `(y) and of table(x). Given a binary string S of length L, let onesS(i)
denote the function that returns the number of 1-entries in S up to (and includ-
ing) position i, and let selectS(j) denote the function that returns the position
of the j-th 1-entry in S.

Lemma 5. [7,8] Let S be a binary string of length L function of n, such that
L 6 n. The operations onesS(·) and selectS(·) can be performed in O(1) time with
o(L) pre-computed auxiliary bits, thus using a total of L+o(L) space. Moreover,
the auxiliary bits can be computed in O(L) time.
2 For instance one can generate all the b4 log nc bit strings and test if it is a valid

coding into the set of A, B strings of clean-paths.

Routing in Trees 765

Theorem 1. In the designer-port model, every n-node tree supports a direct
shortest-path routing scheme with 5 log n+o(log n) bits of address (resp., 2.8 log n
bits), 3 log n+O(log log n) bits of memory space, and O(1) (resp., nO(1)) routing
time. Moreover, the pre-processing time is O(n log n) (resp. nO(1)).

Proof. The address of a node u is composed of three binary strings: id(u), and
A and B to represents cpath(u). We enhance the address of u with o(log n) bits
in order to support the operation selectB(·) in constant time by Lemma 5. The
data structure table(u) is not modified.

Let us show how to execute Route1(x, `(y)) in constant time, for any pair of
nodes x, y. The three first conditions involve constant-time computations. (Note
that extracting fields of fixed length and at a fixed position can easily be done
by the use of binary masks and shifting.) Actually, only Condition 4 needs more
attention due to the extraction of the (i + 1)-th element of cpath(y). If cpath(y)
is compacted in dlog Z(n)e bits, that is by storing an index of the sequence
cpath(y) in the set of all such sequences, it suffices to decode cpath(y) from its
index, and to extract the (i + 1)-th element. This takes nO(1) time. However,
if cpath(y) is represented by two binary strings A and B, one can extract the
(i + 1)-th element in O(1) time. Its value p is located in A between the position
j1 = selectB(i + 1) and j2 = selectB(i + 2) (excluded). Both indices can be
computed in constant time. Thanks to a mask M = (2j1+1 − 1) − (2j2+1 − 1)
applied on the string A, and at the price of a simple shift, one can extract p
(actually, p − 2) from A, and thus compute correctly Route1(x, `(y)).

Computing the weights requires O(n) time, and sorting them at each node
takes O(n log n). The time to perform the DFS numbering is then O(n), and
the time to compute all the clean-path sequences is then O(n log n) since every
clean-path is on O(log n) bits (resp., nO(1) time if clean-paths are represented
on dlog Z(n)e bits). The time to compute all the addresses and data structures
is again O(n log n), including the generation of auxiliary tables for each node.
Therefore, the total pre-processing time is O(n log n) (resp. nO(1) if compacted).

Concatenating the address and the local data structure of each node, we
obtain (recall that `(u) and table(u) have id(u) in common):

Corollary 1. In the designer-port model, every n-node tree supports a memory-
free shortest-path routing scheme with 7 log n+o(log n) bit for the addresses (resp.
4.8 log n bits), and O(1) (resp. nO(1)) routing time. Moreover, the pre-processing
time is O(n log n) (resp. nO(1)) time.

3 Routing Schemes for the Fixed-Port Model

As mentioned in the introduction, on one hand, the fixed-port model is poten-
tially less efficient than the designer-port model in the sense that it may require
the uses of larger data structures, but on the other hand it allows the combina-
tion of several routing schemes. This latter property makes the fixed-port model
worth to be studied.

766 P. Fraigniaud and C. Gavoille

We reuse all the notations introduced in Section 2. In particular, for u par-
ent of v, the fixed-port model assumes that port(u, v) ∈ [1, deg(u)] is fixed, and
cannot be modified. This has a significant impact on the size of the local data
structures. Let us try to explain why. Assume that the routing function deals
with colored messages. Under the designer-port model, a compact routing scheme
could consist in labeling locally the links with colors so that red messages are
simply routed along the red link. Under the fixed-port model, this is not possible,
and red messages may need to be routed along a green link. Note that one cannot
simply recolor the red messages in green because there might be other nodes for
which the routing of green messages must be performed through the blue link.
Actually, the computation of “green” from “red” has an inherent cost, and re-
quires additional memory bits. There are mostly two solutions for the storage of
these bits. One consists in storing them locally, e.g., node u stores a “correspon-
dence table” of O(d log d) bits, where d = deg(u). Another consists in storing
them in the addresses of the nodes, e.g., all nodes w requiring the use of the link
labeled port(u, v) to route messages from u to w have addresses containing addi-
tional bits for the computation of that label. The former solution is costly if d is
large, e.g., it requires Ω(log n) bits if d = Ω(log n/ log log n). The latter solution
is costly if the path from u to w contains lots of nodes with large degree (such
a path can contain up to Ω(log n) nodes of degree Ω(log n/ log log n)) because
the address of w must then contain information about each of these nodes. Our
strategy will mix these two solutions.

3.1 Address Assignment

Let f(n) = Θ(log n/ log log n) (the reason for this setting will appear clear in
forthcoming proofs). For any node u, we define the light-path of u as the sequence
lpath(u) such that lpath(u) = () if u = r, and if v is u’s parent, then

lpath(u) =
{

lpath(v) if rank(v, u) 6 f(w(v));
(lpath(v), port(v, u)) otherwise.

Roughly speaking, lpath(u) contains only the large port numbers encountered
while going from r to u. Let cpath(u) = (rank(u1, v1), . . . , rank(uk, vk)). We
define E(u) as the binary string of length k such that

E(u)[i] =
{

0 if rank(ui, vi) 6 f(w(ui));
1 otherwise.

The address of u is similar to the one for the designer-port model, though it
requires two extra fields, that is

`(u) = 〈id(u), cpath(u), E(u), lpath(u)〉 .

The local data structure of u is similar to the one for the designer-port model,
though it requires an extra field P (u), i.e.,

table(u) = 〈id(u), w(u), w1(u), k, P (u)〉 .

Routing in Trees 767

P (u) consists of an array of f(w(u)) + 1 entries that are port numbers such that

P (u)[i] =

port(u, x) if i ∈ [1, f(w(u))] where x satisfies rank(u, x) = i;
0 if i = 0 and u = r;
port(u, v) if i = 0 and u 6= r, where v is the parent of u.

3.2 Routing Algorithm

Upon reception of a message of destination y, the routing decision at x is de-
scribed by a function Route2(x, `(y)) ∈ [0, deg(x)] that returns the link label
on which the message has to be forwarded from x. As under the designer-port
model, we make use of the (|cpath(x) + 1|)-th element p of cpath(y) as follows.
Let

q =
{

P (x)[p] if E(y)[p] = 0;
j-th element of lpath(y) if E(y)[p] = 1, where j = onesE(y)(p).

We then set

Route2(x, `(y)) =

0 if id(y) = id(x);
P (x)[0] if id(y) < id(x) or id(y) > id(x) + w(x);
P (x)[1] if id(x) < id(y) 6 id(x) + w1(x);
q otherwise.

3.3 Correctness

Lemma 6. For every pair of nodes x, y, the routing algorithm described by
Route2 routes any message from x to y along a shortest path.

Proof. The first three cases are trivial: x knows both the link leading to its
parent (P (x)[0]) and the link leading to its heaviest child (P (x)[1]). Only the
fourth case requires some attention. Similarly to Lemma 2, the (|cpath(x) + 1|)-
th element of cpath(y) is p = rank(x, z) where (x, z) is the edge leading from x
toward y. There are two cases:
Case 1. E(y)[p] = 0. Then i = rank(x, z) 6 f(w(x)), and thus P (x)[i] =
port(x, z) by definition of P . The function Route2 returns the correct answer
in this case.
Case 2. E(y)[p] = 1. Then i > f(w(x)) and port(x, z) is contained in lpath(y).
Note that the j-th port number along the clean-path from r to y is stored in
lpath(y) if and only if E(y)[j] is set to 1. The number of 1-entries in E(y) up
to, and including, position p indicates how many port numbers are stored in
lpath(y). This allows to extract the j-th one by computing j = onesE(y)(p). The
function Route2 returns the correct answer in this case as well, completing the
proof.

768 P. Fraigniaud and C. Gavoille

3.4 Implementation

The next lemma shows that both `(u) and table(u) can be encoded on slightly
less bits than log2 n. Recall that f(n) = Θ(log n/ log log n).

Lemma 7. For every node u, its address `(u) and its local data structure
table(u) are both of size O(log2 n/ log log n) bits.

Proof. Recall that `(u) = 〈id(u), cpath(u), E(u), lpath(u)〉. The length of
E(u) is bounded by |cpath(u)|. Thus the first three fields are all bounded
by O(log n) bits. Assume that lpath(u) = (port(u1, v1), . . . , port(ut, vt)). We
code lpath(u) via an array of t entries, where each entry is on dlog ne bits.
We have: port(ui, vi) 6 w(ui), w(ui+1) 6 w(vi), and rank(ui, vi) > f(w(ui)).
By Lemma 1, we also have rank(ui, vi) 6 w(ui)/w(vi). Hence, w(ui+1) <
w(ui)/f(w(ui)). Let g(n) = n/f(n). We have w(ui+1) < g(w(ui)). Thus, if we de-
note by g(i)(n) the i-th iteration of g, i.e., g(0)(n) = n, and g(i+1)(n) = g(g(i)(n)),
then

w(ut) < g(w(ut−1)) < · · · < g(t−1)(w(u1)) 6 g(t−1)(n) .

Since w(ut) > 1, it follows that g(t−1)(n) > 1. Since f(n) = Θ(log n/ log log n),
we have g(n) = Θ(n log log n/ log n), and therefore one can easily check that t =
O(log n/ log log n). Thus lpath(u) is coded by O(t log n) = O(log2 n/ log log n)
bits.

Recall that table(u) = 〈id(u), w(u), w1(u), |cpath(u)|, P (u)〉. The first four
fields are on O(log n) bits each. P (u) is composed of f(w(u)) + 1 entries,
each one on dlog ne bits. Hence P (u) is of size at most O(log2 n/ log log n),
completing the proof.

Theorem 2. In the fixed-port model, every n-node tree supports a direct
shortest-path routing scheme with O(log2 n/ log log n) bits for both the addresses
and the local memory spaces (thus a memory-free shortest-path routing scheme
with O(log2 n/ log log n) bits addresses), and O(1) routing time. Moreover, the
pre-processing time is O(n log n).

Proof. Given the implementation of Lemma 7, Route2 can be computed in
constant time, using the functions ones and select. The pre-precessing time does
not increase, even though the size of the labels is slightly larger. Indeed, the
pre-processing time for the operations onesS(·) and selectS(·) are still performed
on strings S of length O(log n), and hence it costs O(log n) time per node for
its setup (cf. Lemma 5).

3.5 A Routing Scheme with Short Range Addresses

In this section, we focus on routing schemes using addresses of minimum size. In
particular, we present a simple routing scheme with [1, n]-range addresses, and
using n + o(n) bits of local memory space. In Section 4 we will show that this
scheme is optimal.

Routing in Trees 769

Theorem 3. In the fixed-port model, every n-node tree supports a direct
shortest-path routing scheme with [1, n]-range address, n+o(n) bit memory space,
and with constant routing time. The pre-processing time to setup this scheme is
O(n2).

Proof. Let T be an n-node tree such that, for every edge (u, v), port(u, v) has
been fixed and cannot be modified. We consider T as rooted at an arbitrary
node, say r. We define the address `(u) of u by labeling the nodes with integers
in [1, n] using a DFS traversal of T performed as follows: `(r) = 1, and, at each
internal node u, for any two children v1 and v2 of u, if port(u, v2) > port(u, v1),
then v1 is visited before v2.

For any node u, we also define the value m(u) as the largest value of `(w)
among all descendents w of u. We finally define B(u) as the binary array of n
bits such that B(u)[i] = 1 if and only if u has a child v such that `(v) = i.
The local data structure of a node u is table(u) = 〈`(u), m(u), B(u), p(u)〉 where
p(u) = port(u, v) with v the parent of u (p(u) = 0 if u = r).

The routing algorithm Route3 is the following:

Route3(x, `(y))=

0 if `(y) = `(x);
p(x) if `(y) > m(x) or `(y) < `(x);

q + b otherwise, where q=onesB(x)(`(y)) and b=
{

0 if q > p(x)
1 otherwise.

The correctness of the algorithm is trivial in the two first cases. For the third
case, note first that if v1, . . . , vt are the children of x such that port(x, v1) <
· · · < port(x, vt), and if y belongs to some Tvi

, then the message has to be
transmitted to vi and the corresponding port number is i if x = r or if i < p(u),
and i + 1 if x 6= r or i > p(u). The test “y belongs to Tvi?” can be performed
by testing whether `(vi) 6 `(y) < `(vi+1), that is by computing the number of
1-entries in B(x) up to (and including) position `(y). Thus Route3 returns the
correct answer in the third case too. (Note that if x = r, the condition q > p(x)
is always satisfied because p(r) = 0 and q > 0, thus b = 0.)

The addresses are in the range [1, n], and the local data structure is of size
n + o(n), including the data structure for the computation of onesB(x)(·) in
constant time. The routing time is therefore O(1), and the pre-processing time
is O(n) per node (the time to compute B(x) and required to compute the o(n)
bits auxiliary bits for the ones operation, cf. Lemma 5).

4 Lower Bounds for Short Range Addresses

Computing lower bounds often requires the use of routing strategy . A routing
strategy R is simply a function that returns, for every graph G of a given family
F , a routing scheme R = R(G) for G. We denote by Mem(R, x) the set of all
the data structures used by R in node x of G.

770 P. Fraigniaud and C. Gavoille

Let M be any set, and let k be an integer. A k-protocol w.r.t. R and M is
a pair of functions (s, m) such that, for any G ∈ F , and for any x ∈ V (G), we
have

(1) s(R(G), G, x) ∈ {0, 1}k and (2) m(s(R(G), G, x),Mem(R(G), x)) ∈ M.

A k-protocol (s, m) is said complete if for any D ∈ M, there exists G ∈ F , and
x ∈ V (G) such that

m(s(R(G), G, x),Mem(R(G), x)) = D.

We can prove the following:

Lemma 8. Given a set M, and a routing strategy R on F , if there exists a
complete k-protocol, then there exists G ∈ F and x ∈ V (G) such that the size of
Mem(R(G), x) is at least log |M| − k bits.

Proof. Let (s, m) be a complete k-protocol. Each element D ∈ M can be
coded as a pair 〈S, M〉, where S = s(R(G), G, x), M = Mem(R(G), x),
G ∈ F and x ∈ V (G) are such that m(S, M) = D. By construction, given
its code 〈S, M〉, we can obtain D by applying the function m. Let L be
the size of Mem(R(G), x). The size of the coding of D ∈ M described
above is at most k + L. If k + L < log |M|, then two distinct elements of
M have the same encoding 〈S, M〉: a contradiction. Therefore, L > log |M|−k.

By comparison with the routing scheme in Theorem 3 (fixed-port model) and
the routing scheme in [4] (designer-port model), the two following lower bounds
are optimal.

Theorem 4.
In the fixed-port model, every shortest path routing strategy on n-node trees with
[1, n + o(n/ log n)]-range addresses requires at least n − o(n) bits for some node
of some tree.
In the designer-port model, every shortest path routing strategy on n-node trees
with [1, n + o(

√
n/ log n)]-range addresses requires at least α

√
n − o(

√
n) bits for

some node of some tree.

Proof. Let us denote by T1 the family of unlabeled n-node trees, and by T2 the
family of n-node trees such that every out-going edge of every node is labeled
by a unique integer between 1 and the degree of that node. Moreover, let M1 be
the set of sequences of non-null integers n1, n2, . . . such that

∑
i>1 ni = n − 1.

Let M2 be the set of non-decreasing sequences of non-null integers n1, n2, . . .
such that

∑
i>1 ni = n−1. Note that |M1| = 2n−1 and that |M2| = 2α

√
n+o(

√
n)

with α = (π
√

2/3)/ ln 2 ≈ 3.7. (The latter formula comes from the fact that the

number of ways to write n in non-null summands is asymptotically 1
4n

√
3

eπ
√

2n/3,
the well-known Harder-Ramanujan’s formula, cf. [6, Equation (4.2.7) page 44].)

Proving the two lower bounds requiring very similar technique, we give their
proofs simultaneously.

Routing in Trees 771

Let T ∈ {T1, T2}. For an arbitrary shortest-path routing strategy R on T
using [1, n + r]-range addresses (we take r = o(

√
n/ log n) in the fixed-port

model, and r = o(n/ log n) in the designer-port model), we define a complete
k-protocol (s, m) as follows. For every T ∈ T and every x ∈ V (T), we define
s(R(T), T, x) = S where S the set of all the addresses assigned by R(T) distinct
from the address of x. We define m(S,Mem(R(T), x)) = (n1, . . . , nd) where ni

is the number of nodes such that the routing function in x, applied to all the
addresses in S, returns the port number i. (For the designer-port model the ni’s
are sorted so that n1 6 · · · 6 nd).

By construction, the sequence returned by m is in M1 in the fixed-port
model, and in M2 in the designer-port model. Moreover, the k-protocol (s, m)
is complete because, for every sequence (n1, . . . , nd), there exists a tree T ∈ T ,
and a node x of degree d in T such that, for every child u of x:

– In the fixed-port model: port(x, u) = i implies w(u) = ni;
– In the designer-port model: w(u) = ni.

By Lemma 8, for any routing strategy R with [1, n+ r]-range addresses, there is
a tree T0 ∈ T and a node x0 ∈ V (T0), such that the local memory space of x0 is
at least log |M| − k. It remains to show that k = o(n) in the fixed-port model,
and k = o(

√
n) in the designer-port model.

There are at most
(

n+r
n−1

)
possible sets of n − 1 addresses in [1, n + r]. Thus

k 6 log
⌈(

n+r
n−1

)⌉
. Since n + r 6 2(n − 1), we have

(
n + r

n − 1

)

=
(

n + r

r + 1

)

6 (2(n − 1))r+1
.

Therefore, k 6 r log n + O(r + log n), that is k = o(n) if r = o(n/ log n), and
k = o(

√
n) if r = o(

√
n/ log n), which completes the proof.

5 Conclusion

We have shown that n-node trees support routing schemes with message headers,
node addresses, and local memory space of size O(log n) bits, and such that
every local routing decision is taken in constant time. Beside this result, we
have shown that little variations of the address size (by constant multiplicative
factors, or logarithmic additive factors) can have a tremendous impact on the
local memory space. In other words, the multiplicative constants hidden by the
big-O notations play a significant role on the address-range vs. memory-space
trade-off for routing. We can actually show similar results for space vs. time
trade-offs. E.g., for some trees, small headers (i.e., in [1, n + o(

√
n/ log n)]) and

compact data structures, (i.e., of size 2 log n) yield situations for which routing
along shortest-path is doable but requires exponential times. It is actually even
possible to show that the problem of whether there exists a direct shortest-path
routing scheme with [1, n + o(

√
n/ log n)]-range addresses, and using local data

772 P. Fraigniaud and C. Gavoille

structures of optimal size up to a multiplicative factor of
√

n/ log n is undecidable
for any enumerable family of graphs containing n-node trees. All these results
will be presented in the full version of the paper. As a last concluding remark,
we conjecture that Theorem 2 is optimal, i.e., Ω(log2 n/ log log n) bits for the
addresses and the local data structures is a lower bound under the fixed-port
model.

Acknowledgment. The authors are thankful to Michel Balazard and Michel
Mendès France for showing them reference [14].

References

1. B. Awerbuch and D. Peleg, Sparse partitions, in 31th Symposium on Founda-
tions of Computer Science (FOCS), IEEE Computer Society Press, 1990, pp. 503–
513.

2. L. J. Cowen, Compact routing with minimum stretch, in 10th Symposium on
Discrete Algorithms (SODA), ACM-SIAM, 1999, pp. 255–260.

3. T. Eilam, C. Gavoille, and D. Peleg, Compact routing schemes with low stretch
factor, in 17th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, Aug. 1998, pp. 11–20.

4. C. Gavoille, A survey on interval routing, Theoretical Computer Science, 245
(2000), pp. 217–253.

5. C. Gavoille and S. Pérennès, Memory requirement for routing in distributed
networks, in 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, May 1996, pp. 125–133.

6. M. J. Hall, Combinatorial Theory (second edition), Wiley-Interscience Publica-
tion, 1986.

7. J. I. Munro, Tables, in 16th FST&TCS, vol. 1180 of Lectures Notes in Computer
Science, Springer-Verlag, 1996, pp. 37–42.

8. J. I. Munro and V. Raman, Succinct representation of balanced parentheses,
static trees and planar graphs, in 38th Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society Press, Oct. 1997, pp. 118–126.

9. D. Peleg, Proximity-preserving labeling schemes and their applications, in 25th

International Workshop, Graph - Theoretic Concepts in Computer Science (WG),
vol. 1665 of Lecture Notes in Computer Science, Springer, June 1999, pp. 30–41.

10. D. Peleg and E. Upfal, A trade-off between space and efficiency for routing
tables, Journal of the ACM, 36 (1989), pp. 510–530.

11. N. Santoro and R. Khatib, Labelling and implicit routing in networks, The
Computer Journal, 28 (1985), pp. 5–8.

12. M. Thorup and U. Zwick, Compact routing schemes, in 13th Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), ACM PRESS, July
2001. To appear.

13. J. van Leeuwen and R. B. Tan, Interval routing, The Computer Journal, 30
(1987), pp. 298–307.

14. R. Warlimont, Factorisatio numerorum with constraints, Journal of Number The-
ory, 45 (1993), pp. 186–199.

Online Packet Routing on Linear Arrays and
Rings

Jessen T. Havill

Department of Mathematics and Computer Science
Denison University

Granville, OH 43023 USA
havill@denison.edu

Abstract. In contrast to classical offline k-k routing, the online packet
routing problem allows for an arbitrary number of packets with arbitrary
end points and release times. We study this problem on linear array and
ring networks. We generalize an earlier result for the offline problem by
showing that Farthest First (FF) scheduling is optimal with respect
to makespan on linear arrays. We also show that two other algorithms
(Longest in System (LIS) and Moving Priority (MP)) have compet-
itive ratio 2 with respect to makespan on linear arrays. For bidirectional
rings, we show that, the competitive ratio of shortest path routing com-
bined with LIS or MP scheduling is in [2.5, 3) and the competitive ratio
of shortest path routing combined with FF scheduling is 2. The latter
algorithm is optimal among deterministic memoryless algorithms and all
algorithms of which we are aware in the literature.

1 Introduction

The problem of efficiently moving packets of data among network nodes has
classically been studied in the context of k-k routing where it is assumed that
all packets are known to an algorithm before any packets are sent, and each
node sends and receives exactly k packets. The traditional goal of an algorithm
is to construct a schedule for any instance with makespan (maximum comple-
tion time) at most equal to the optimal makespan for a worst case instance.
In contrast, we are interested in a generalized online problem that differs from
the classical problem in three respects. First, we allow an arbitrary number of
packets in an instance. Second, we allow any number of packets to originate at
or be delivered to any node. Third, we allow packet release times to be arbitrary.
We are interested in oblivious online algorithms that assign routes at the source
before future packets are known. Our algorithms are also distributed in the sense
that packets are scheduled locally at each intermediate node without regard for
packets that have not yet passed through that node.

We will evaluate our algorithms using the competitive ratio (see below) with
respect to makespan. We choose makespan for a couple of reasons. First, we
wish to compare algorithms for the online problem with known algorithms for

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 773–784, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

774 J.T. Havill

the offline problem, using a similar objective function, to expose interesting sim-
ilarities and differences between the two problems. Second, even though we allow
for arbitrary release times, makespan is still an appropriate measure for many
situations, especially if release times are close together. For instance, suppose
we want to minimize the completion time of a job on a message passing parallel
computer when that job is characterized by a burst of packets. Then minimiz-
ing the makespan of the packets may be more important to minimizing the job
completion time than minimizing, say, the maximum or average flow time of the
packets. Of course, maximum and average flow time are also important criteria
to study. We will mention some preliminary observations on these criteria later
in the paper and leave further work as an important area for future research.

1.1 Problem Definition

In this paper, we consider full-duplex linear array and ring interconnection net-
works (and, by extension, networks with in-degree one). A linear array network
contains n nodes labeled {0, 1, . . . , n − 1} and m = 2(n − 1) directed links
{(i, i+1), (i+1, i) : i = 0, 1, . . . , n−2}. A ring network has n nodes and m = 2n
directed links {(i, (i + 1) mod n), ((i + 1) mod n, i) : i = 0, 1, . . . , n − 1}. The
input to the problem is a sequence of packets σ = p1, p2, . . . , pk, ordered by re-
lease time. Each pj = (sj , tj , aj), where sj is the packet’s source node, tj is the
packet’s destination node, and aj is the packet’s release time. Let Pj be the
(monotonic) route assigned to packet pj , and let Pj(i) denote the ith link in the
route.

Each network node with incoming links has a queue for each of its outgoing
links to temporarily store packets being forwarded over that link. During each
discrete time step t ≥ 1, which represents the continuous time interval (t − 1, t],
a node must decide whether each packet in a link’s queue should wait in the
queue or be one of at most w packets forwarded over that link during the next
time step. If a packet arrives at a node during time step t, it will cross the next
link on its path no earlier than during time step t + 1. A schedule for packet pj

is a function Sj where Sj(i) is the time step during which packet pj will cross
link Pj(i). We assume that no packet is delayed due to a full queue at its next
link. Rather, packets are delayed only when there are already w packets assigned
to the next link or the algorithm decides to hold the packet for another reason.
The overall schedule must obey the capacity constraints of the links during each
time step.

Let Cj denote the completion time of packet pj . The goal of an algorithm A
is to minimize the makespan of its schedule, CA(σ) = maxj Cj , given a request
sequence σ. Let C∗(σ) be the optimal makespan for the same request sequence.
Then A is c-competitive if and only if, for all σ, CA(σ) ≤ c · C∗(σ) + a, where a
is a constant. The competitive ratio of A is defined to be supσ CA(σ)/C∗(σ).

We observe some trivial lower bounds on the optimal makespan for an in-
stance. First, let δ = maxj{aj + |P ∗

j |}, where P ∗
j is the route assigned to packet

pj by an optimal algorithm, and let µ∗ = maxe∈E |{j : e ∈ P ∗
j }|/w be the conges-

tion of the set of routes assigned by an optimal algorithm. Then we know that the

Online Packet Routing on Linear Arrays and Rings 775

makespan of any optimal schedule must be at least ∆ = max {dµ∗e, δ}. Similarly,
define µ to be the congestion of the set of routes assigned by a particular online
algorithm. If each packet has only one route, then clearly δ = maxj {aj + dj},
where dj is the distance between sj and tj , and ∆ = max {dµe , δ}.

1.2 Packet Scheduling Algorithms

We will study three packet scheduling algorithms that are all greedy in the sense
that a packet is delayed at a link e during time step t only if w other packets are
already traversing e during t. First, LIS (Longest In System) [2] is the online
scheduling algorithm that schedules each packet as early as possible on each link
on its path, in the order it appears in the sequence. In other words, a packet
pj is given priority over packets pi with i > j. (We note that this algorithm
requires a global clock.) The second algorithm, MP (Moving Priority), gives
packets passing through a node priority over packets originating at the node.
Unlike LIS, MP does not rely upon a global clock. MP is a relaxed version of
LIS on networks with in-degree one since every schedule constructed by LIS
could have also been constructed by MP. Lastly, we study the FF (Farthest
First) algorithm, which gives priority to packets that have the farthest distance
yet to travel to their destinations.

1.3 Past Research and Our Results

Mansour and Patt-Shamir [8] proved that when packets follow shortest paths,
any greedy scheduling algorithm guarantees that each pj will arrive at its des-
tination within dj + b(k − 1)/wc steps, even in online instances. Cidon, et al.
[3] showed that greedy policies cannot achieve this bound on an arbitrary set of
paths. LIS was previously studied by Mao and Simha [9] and Rivera-Vega, et
al. [10] who showed that LIS achieves the bound in [8] on shortest paths when
w = 1. Valiant and Brebner [12] showed that MP delays each packet at most
k−1 times on a linear array. We show that, on networks with in-degree one, LIS
ensures that any packet pj arrives at its destination by time aj + |Pj |+ dµje−1,
where µj is the maximum number of packets with smaller indices that traverse
a link on Pj , normalized by w. Similarly, we show that MP guarantees a com-
pletion time of aj + |Pj | + dµe− 1. We use these results to show that each of LIS
and MP has a tight competitive ratio of 2−1/∆ on linear arrays. Kaufmann and
Sibeyn [5] showed that FF optimally solves the k-k routing problem on a linear
array by constructing a schedule with makespan maxu<v{v − u + h(u, v)} − 1
for packets moving either left or right, where h(u, v) is the number of packets
passing through nodes u and v from a particular direction. We generalize this
result for the online problem by showing that FF constructs an optimal schedule
with makespan maxv,t≤Tv

{dN≥(v, t)/we + t} − 1, where N≥(v, t) is the number
of packets that would arrive at node v at time t or later if they were not delayed
and Tv is the latest time a packet would arrive at node v if it were not delayed.

For a related offline problem with deadlines, Lui and Zaks [6] showed a nec-
essary and sufficient condition for an instance to have a schedule that meets all

776 J.T. Havill

deadlines on bottleneck-free networks with at most one path connecting any pair
of nodes. Furthermore, they showed that if this condition holds, the algorithm
that forwards packets with the closest deadlines finds that schedule. Adler, et al.
[1] designed a distributed online algorithm that meets at least O(1/ log k) of the
deadlines met in an optimal schedule. For some special cases, their algorithm
comes within a constant fraction of optimal.

The well-known worst case lower bound on makespan for the general k-k
routing problem on a ring is max{(n−1)/2, kn/4}. For the special case in which
all k packets originating at a node have the same destination, Makedon and
Symvonis [7] designed an algorithm that constructs a schedule with makespan
at most kn/4 + 5n/2. In contrast, they showed that the greedy algorithm that
assigns every packet to its shortest path requires at least kbn/2c steps in the
worst case. Kaufmann and Sibeyn [4] designed an algorithm for the general k-k
routing problem on a ring which schedules packets with FF and guarantees a
makespan of kn/4+

√
n. Sibeyn [11] designed an algorithm for the online problem

with worst case makespan at most kn/3 + n/3 for a k-k distribution. The key
to these ring routing algorithms is to always send some packets on their long
paths. However, for the online problem, we show that none of these algorithms
can have a better competitive ratio than the algorithm that sends every packet
on its shortest path and schedules the packets with FF. This algorithm has
competitive ratio 2. More specifically, we show that the competitive ratio of
an online algorithm is at least 2 if it always assigns a request to its shortest
path if the shortest path length is bounded by some fraction of the ring size.
Therefore, in order to do better, a deterministic online algorithm must make
routing decisions adaptively based on packets seen so far. We also show that the
competitive ratio of the online algorithm that uses shortest paths and schedules
packets with LIS or MP is in [2.5, 3 − 1/∆]. For the special case in which all
packets have the same source and release time, we show that this algorithm is 2
competitive.

2 Scheduling with LIS and MP

We begin by proving properties of LIS and MP on full-duplex linear array net-
works (and more generally, any network with in-degree one) and then use these
results to prove bounds on the competitive ratio of algorithms that combine LIS
or MP scheduling with shortest path routing on rings.

2.1 Linear Array Networks

We will prove the following theorem regarding LIS and MP on linear arrays:

Theorem 1. The competitive ratio of each of LIS and MP is 2− 1
∆ on networks

with in-degree one.

First, we give two lemmas, one for each algorithm, which state upper bounds
on the completion time of any packet. We omit the proof of the second lemma
to conserve space. To simplify notation, let µj = maxe∈Pj

|{i : i ≤ j, e ∈ Pi}| /w.

Online Packet Routing on Linear Arrays and Rings 777

Lemma 1. LIS guarantees that Cj ≤ aj + dj + dµje − 1, for all j.

Proof. For any j, Cj = aj +dj +x, x ≥ 0. For contradiction, assume x > dµje−1.
First, consider Pj(l), at the tail of which pj is delayed last, and notice that

Sj(l) = aj + l + x . (1)

Also notice that our assumption implies that l > 1. If this were not so then, since
LIS is greedy, w packets with indices less than j must cross Pj(1) during each
time step aj + 1, aj + 2, . . . , aj + x, implying that dµje ≥ d(xw + 1)/we = x + 1.

Now let X(τ) = {pi : i < j and pi crosses Pj(l) during time step τ}. Also, to
simplify notation, let t = Sj(l − 1) + 1. Then X(t), X(t + 1), . . . , X(Sj(l) − 1)
are the sets of packets (each with cardinality w) that delay pj on link Pj(l).
Additionally, there may be sets X(r), X(r + 1), . . . , X(t − 1) with cardinality
w. If these additional sets do not exist, then we let r = t. Formally, we define
r = min{τ : 2 ≤ τ ≤ t, |X(τ)| = w for all τ, τ + 1, . . . , t}.

We now prove the following lemma under the assumption that x > dµje − 1.

Lemma 2. If x > dµje − 1 then, for all p ∈ X(τ), r ≤ τ ≤ Sj(l) − 1, p must
have crossed link Pj(l − 1) previously.

Proof. Suppose, for contradiction, that there is a packet pi ∈ X(τ), for some
r ≤ τ ≤ Sj(l) − 1, that did not cross link Pj(l − 1). Then, Pi(1) = Pj(l).
Therefore, by the definition of LIS, if pi was delayed, then w earlier packets
must have crossed Pj(l) during each time step ai + 1, . . . , τ − 1. But since w
packets also cross Pj(l) during each time step τ, . . . , Sj(l) − 1 (if pi was not
delayed, then τ = ai + 1) and pj crosses Pj(l) during time step Sj(l),

dµje ≥
⌈

((Sj(l) − 1) − (ai + 1) + 1)w + 1
w

⌉

= (Sj(l) − 1) − (ai + 1) + 2
= (aj + l + x) − ai by (1)
> x + 1 since aj ≥ ai and l > 1 . ut

Continuing with the proof of Lemma 1, let X =
⋃

r≤τ≤t X(τ) ∪ {pj}. By
Lemma 2 and the fact that l > 1, the (t − r + 1)w + 1 packets in X crossed link
Pj(l − 1) before time step t. Thus, at least one packet p ∈ X must have crossed
link Pj(l − 1) before time step r − 1. Since p crossed link Pj(l) during a time
step greater than r − 1, p must have been delayed at the tail of link Pj(l) by w
packets crossing link Pj(l) during time step r − 1. This set of packets must be
X(r − 1). But, by definition, X(r − 1) contains strictly less than w packets. ut
Lemma 3. MP guarantees that Cj ≤ aj + dj + dµe − 1, for all j.

We now use Lemmas 1 and 3 to bound the competitive ratios from above.

Lemma 4. The competitive ratio of each of LIS and MP is at most 2 − 1
∆ on

networks with in-degree one.

778 J.T. Havill

Proof. We consider only LIS. The proof for MP is very similar. Let pj denote
the last packet to complete in the schedule constructed by LIS. By Lemma 1,
we know that Cj ≤ aj + dj + dµje − 1. On the other hand, we know that the
optimal makespan is at least ∆. Therefore, the competitive ratio of LIS is at
most (aj + dj + dµje − 1)/∆ ≤ (δ + dµe − 1)/∆ ≤ 2 − 1/∆. ut

We conclude by bounding the competitive ratios from below.

Lemma 5. The competitive ratio of each of LIS and MP is at least 2 − 1
∆ on

networks with in-degree one.

Proof. Let w = 1, k = n − 1, and pj = (0, j, 0), for all 1 ≤ j ≤ k. Note that
δ = n − 1 and µ = µ∗ = n − 1 since all packets must cross link (0, 1). LIS
and MP schedule the packets in this instance in order, so that the last packet
arrives at node n − 1 at time (n − 2) + (n − 1) = 2n − 3. On the other hand,
an optimal algorithm will schedule the packets in reverse order, achieving a
makespan of n − 1. Thus, the competitive ratio of both algorithms is at least
(2n − 3)/(n − 1) = 2 − 1/(n − 1) = 2 − 1/∆. ut

2.2 Ring Networks

We define Ring1 to be the ring algorithm that routes each packet on its shortest
path and schedules packets with either LIS or MP. We prove that the competitive
ratio of Ring1 is between 2.5 and 3−1/∆. For the special case where all packets
originate at the same node, we can show that the algorithm is 2 competitive.
(We will omit the proof of this theorem to conserve space.)

We first prove the general upper bound. Notice that every simple path on a
full duplex ring is contained in one of two disjoint simplex rings. We will call the
simplex ring with links pointing clockwise the right ring and the simplex ring
with links pointing counter-clockwise the left ring. Let A = {j : Pj = P ∗

j } and
B = {j : Pj 6= P ∗

j }. Furthermore, partition A into Al and Ar where Al is the sub-
set of indices in A of packets which the online algorithm routes in the left ring and
Ar is the subset of indices in A of packets which the online algorithm routes in
the right ring. Similarly, partition B into Bl and Br. Therefore, Ring1 routes the
packets with indices in Al ∪ Bl in the left ring and the optimal algorithm routes
the packets with indices in Al ∪ Br in the left ring. A symmetric property holds
for the right ring. For a set of requests S, let µS = maxe∈E |{pj ∈ S : e ∈ Pj}| /w.
µ∗

S is defined analogously for the optimal route assignment.

Lemma 6. µBl
≤ µ∗

Bl
and µBr

≤ µ∗
Br

.

Proof. We will show that µBr
≤ µ∗

Br
. The argument for Bl is symmetric. Let

(i, (i+1) mod n) denote a link that satisfies the definition of µBr
. Let S ⊆ Br be

the subset of requests that are assigned to (i, (i + 1) mod n) in the algorithm’s
route assignment. So µBr

= |S|/w. Now partition the nodes of the ring into
two sets: let X = {ι : ι = (i + dn/2e + 1) mod n, (i + dn/2e + 2) mod n, . . . , i}
and let Y = {ι : ι = (i + 1) mod n, (i + 2) mod n, . . . , (i + dn/2e) mod n}. No-
tice that the source of every request in S is in X and the destination of every
request in S is in Y , since the requests are following shortest paths in the right

Online Packet Routing on Linear Arrays and Rings 779

ji aji α(j, i) n
2 − j lji (sji, tji) pji aji α(j, i) n

2 − j lji (sji, tji)
11 0 3 3 3 (0, 3) 31 2 1 1 4 (2, 6)
12 0 2 3 3 (0, 3) 32 2 1 1 3 (2, 5)
13 0 — — — (0, 4) 33 2 — — — (2, 6)
14 0 — — — (0, 4) 34 2 — — — (2, 6)
21 1 2 2 3 (1, 4) 41 3 1 0 4 (3, 7)
22 1 1 2 2 (1, 3) 42 3 1 0 4 (3, 7)
23 1 — — — (1, 5) 43 3 — — — (3, 7)
24 1 — — — (1, 5) 44 3 — — — (3, 7)

Fig. 1. A small lower bound instance with n = 8.

ring. Therefore, in the optimal route assignment, since all the requests in S are
sent in the opposite direction, every request in S must be assigned to the link
((i + dn/2e + 1) mod n, (i + dn/2e) mod n). Thus, µ∗

Br
≥ |S|/w = µBr

. ut
Lemma 7. µ ≤ 2µ∗.
Proof. The congestion incurred by Ring1 is µ ≤ max {µAl

+ µBl
, µAr

+ µBr
}.

Without loss of generality, suppose µAl
+ µBl

≥ µAr + µBr . Then, by Lemma 6,
µ ≤ µAl

+ µBl
≤ µAl

+ µ∗
Bl

≤ 2µ∗. ut
Theorem 2. Ring1 is 3 − 1

∆ competitive on a full duplex ring.
Proof. Let pj denote the packet that arrives at its destination last in the online
schedule. Since the schedule on the full duplex ring is equivalent to two disjoint
schedules, each on a simplex ring, we know from Lemmas 1 and 3 that Cj ≤
aj+|Pj |+dµe−1 ≤ maxi {ai + |P ∗

i |}+dµe−1 ≤ δ+2dµ∗e−1 ≤ 3∆−1. The second
inequality follows because packets are assigned to their shortest routes by the
online algorithm. The third inequality follows from Lemma 7 and the definition
of δ. Thus, the competitive ratio of Ring1 is at most (3∆−1)/∆ = 3−1/∆. ut

Finally, we bound the competitive ratio from below by 2.5 as n → ∞.
Theorem 3. The competitive ratio of Ring1 is at least 2.5.
Proof. We define an instance consisting of k = 2n packets pji, where 1 ≤ j ≤ n

2
and 1 ≤ i ≤ 4. First, let α(j, i) = b(n − (j + i) + 1)/3c and let

lji =
{

min {j − i + 2, n/2} , α(j, i) ≥ n/2 − j
α(j, i) + 1, otherwise .

Then, for i = 1, 2, we define pji = (j − 1, j + lji − 1, j − 1), and for i = 3, 4,
we define pji = (j − 1, j + n/2, j − 1). In general, Ring1 constructs a schedule
with makespan (5/2)n−1 for this instance and there is always a better schedule
with makespan n. For arbitrarily large values of n, the instance demonstrates a
lower bound of 5/2 for Ring1. For example, consider the instance in Fig. 1 with
n = 8. The schedule created by Ring1, displayed in Fig. 2, has makespan 19.
However, a better schedule, also displayed in Fig. 2, has makespan 8. ut

As stated above, we can show that the algorithm is sometimes 2 competitive.
Theorem 4. If all packets have the same arrival time and source, then any
greedy algorithm that uses shortest paths is 2 competitive on a full duplex ring.

780 J.T. Havill

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,0)
1 p11
2 p12 p11
3 p13 p12 p11
4 p14 p13 p12 p41
5 p14 p13 p42 p41
6 p21 p14 p13 p42 p41
7 p22 p21 p14 p42 p41
8 p23 p22 p21 p42
9 p24 p23 p43
10 p24 p23 p43
11 p31 p24 p23 p43
12 p32 p31 p24 p43
13 p33 p32 p31
14 p34 p33 p32 p31
15 p34 p33
16 p44 p34 p33
17 p44 p34
18 p44
19 p44

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,0) (0,7) (7,6) (6,5) (5,4) (4,3) (3,2) (2,1) (1,0)
1 p11 p13
2 p12 p21 p14 p13 p23
3 p22 p31 p23 p14 p13 p33 p24
4 p11 p32 p41 p24 p23 p14 p13 p43 p34 p33
5 p12 p21 p42 p41 p33 p24 p23 p14 p44 p43 p34
6 p22 p31 p42 p41 p34 p33 p24 p44 p43
7 p11 p32 p31 p42 p41 p43 p34 p44
8 p12 p21 p32 p31 p42 p44

Fig. 2. Ring1’s schedule for the instance in Fig. 1 (top) and a better schedule (bottom).

3 Scheduling with FF

In this section, we generalize for the online case a result of Kaufmann and Sibeyn
[5] by showing that scheduling with FF is optimal on linear arrays. We also show
that the algorithm which combines FF with shortest path routing on rings is 2
competitive and optimal among all deterministic online algorithms that always
send a packet on its shortest path if it is shorter than some constant fraction
of n. This class of algorithms includes all of those of which we are aware in the
literature, including the online algorithm of Sibeyn [11].

3.1 Linear Array Networks

We will say that a packet p will ideally arrive at node v at time t if t = aj +
|v − sj |. Let N(S, v, t) = |{pj ∈ S : v ∈ Pj and aj + |v − sj | = t}|, the number
of packets in a set S that would ideally arrive at node v at time t. Also, let
N≥(S, v, t) =

∑∞
τ=t N(S, v, τ) and T (S, v) = max{t : N(S, v, t) > 0)}. When S

is clear from the context, we will let N(v, t) = N(S, v, t), N≥(v, t) = N≥(S, v, t),

Online Packet Routing on Linear Arrays and Rings 781

and Tv = T (S, v). We first improve our trivial lower bound for scheduling on a
linear array. We then show that FF achieves this bound and is therefore optimal.

Theorem 5. Any scheduling algorithm constructs a schedule with makespan at
least maxv, t≤Tv

{dN≥(v, t)/we + t} − 1 on a linear array.

Proof. Consider an arbitrary node v. During each time unit in {1, 2, . . . , Tv}, at
most w packets will reach node v. For any time unit t ≤ Tv, if there are more
than (Tv − t + 1)w packets that would ideally reach v at time t or greater then
they could not all have reached v by time Tv. Rather, N≥(v, t) − (Tv − t + 1)w
packets must reach v after time Tv. Since this is true for any v and any t ≤ Tv,
the time at which the final packet reaches its destination must be at least

max
v

{

Tv + max
t≤Tv

⌈
N≥(v, t) − (Tv − t + 1)w

w

⌉}

= max
v,t≤Tv

{⌈
N≥(v, t)

w

⌉

+ t

}

− 1.

ut
Theorem 6. The makespan of a schedule constructed by FF on a linear array
is equal to maxv, t≤Tv {dN≥(v, t)/we + t} − 1.

Proof. By the previous theorem, the lower bound holds. To prove the upper
bound, consider an arbitrary node v and let tmax satisfy

⌈
N≥(v, tmax)

w

⌉

+ tmax − 1 = max
t≤Tv

{⌈
N≥(v, t)

w

⌉

+ t

}

− 1 . (2)

The following inequalities follow from this definition:

tmax−1∑

τ=t

N(v, τ) ≤ (tmax − t)w, for all t ∈ {1, 2, . . . , tmax − 1} (3)

t∑

τ=tmax

N(v, τ) ≥ (t − tmax + 1)w, for all t ∈ {tmax, tmax + 1, . . . , Tv} (4)

If (3) were not true, then a smaller value of tmax would satisfy (2). If (4) were
not true, then a larger value of tmax would satisfy (2).

We first show that, by the definition of tmax and (3), the packets counted
in

∑tmax−1
τ=1 N(v, τ) will arrive at node v by time unit tmax − 1. Notice that we

can safely ignore any packets not counted in N(v, t), for any t, since packets
that will pass through node v will have priority over those that do not. If at
most w packets would ideally arrive at node v at some time t, then they will
all arrive at node v at their ideal time since no other packets will delay them.
Now consider a group of p > w packets that all want to arrive at node v at some
time t ∈ {1, 2, . . . , tmax − 1}. By (3), for each such group, there must be at least
p − w additional available slots between t + 1 and tmax − 1, inclusive, at which
no packets would ideally arrive. Therefore, each of these p packets can arrive at
node v at a unique time step at most tmax − 1.

782 J.T. Havill

Next we show that the remaining packets, those that would ideally arrive at v
after time tmax−1, will all arrive at v by time tmax−1+dN≥(v, tmax)/we. Notice
that, by (4), we can adjust the release time of each of these packets so that it will
arrive at v no earlier than in the original schedule, and at a unique time step in
{tmax, tmax + 1, . . . , tmax − 1 + dN≥(v, tmax)/we}. Note that the packets cannot
finish any earlier with this modification in any schedule. Therefore, all packets
that travel through v arrive there by time step dN≥(v, tmax)/we + tmax − 1 and
the makespan of the schedule is at most maxv,t≤Tv

{dN≥(v, t)/we + t} − 1. ut
This result reduces to that of Kaufmann and Sibeyn [5] if all aj=0 and w=1:

max
v,t≤Tv

{N≥(v, t)+t}−1 = max
v,t≤v

{h(v−t, v)+t}−1 = max
u<v

{h(u, v)+(v−u)}−1 .

3.2 Ring Networks

Let Ring2 be the ring algorithm that sends each packet on its shortest path and
schedules packets with FF. We show that Ring2 has a tight competitive ratio of
2 and that this is better than any algorithm that routes a packet on its shortest
path if it is shorter than a constant fraction of the ring size.

Theorem 7. The competitive ratio of Ring2 is at most 2 on a ring.

Proof. Let Sl denote the set of packets routed in the left ring by Ring2. Without
loss of generality, suppose a packet in Sl has the latest completion time. Then
CFF = maxv,t≤Tv{dN≥(Sl, v, t)/we + t} − 1. Let vmax, tmax ≤ Tvmax be values
that satisfy CFF . We consider two cases (henceforth omitting Sl from notation):
Case 1: dN≥(vmax, tmax)/we ≤ tmax + 1.
In this case, CFF = dN≥(vmax, tmax)/we + tmax − 1 ≤ 2tmax ≤ 2Tvmax ≤ 2C∗.
Case 2: dN(vmax, tmax)/we > tmax + 1.
For contradiction, suppose there exists an instance such that CFF /C∗ > 2.
Case 2a: If the optimal schedule directs X ≤ N(vmax, tmax) − 1 of the pack-
ets that are counted in N(vmax, tmax) to the right then we know that C∗ ≥
d(N(vmax, tmax)−X)/we+tmax−1. Since C∗ < (dN(vmax, tmax)/we+tmax−1)/2
by assumption, this means that X > (dN(vmax, tmax)/we + tmax − 1)/2. (No-
tice that this is valid since, by assumption, (dN(vmax, tmax)/we + tmax − 1)/2 <
dN(vmax, tmax)/we − 1.) But, since all of the packets in X must traverse the
edge ((v + dn/2e) mod n, (v + dn/2e − 1) mod n) in the right ring in the optimal
schedule, it must be the case that C∗ ≥ X > (dN(vmax, tmax)/we + tmax − 1)/2
in the right ring. But this implies that CFF /C∗ < 2, a contradiction.
Case 2b: If the optimal schedule directs all of the packets that are counted in
N(vmax, tmax) to the right then we know that C∗ ≥ dN(vmax, tmax)/we in the
right ring in the optimal schedule. This also implies a contradiction:

CFF

C∗ ≤ dN(vmax, tmax)/we + tmax − 1
dN(vmax, tmax)/we < 1 +

tmax − 1
tmax + 1

< 2 . ut

Online Packet Routing on Linear Arrays and Rings 783

Theorem 8. The competitive ratio of any routing algorithm is at least 2 − ε,
for arbitrarily small positive ε, if it always assigns a request to its shortest path
if the shortest path has length at most βn, for any β ∈ (0, 1/2].

Proof. Let w = 1. Consider a sequence of k ≥ (1 − 2β)n packets (0, bβnc, 0).
The algorithm will assign all these requests to their shortest path, resulting in a
schedule with makespan at least bβnc+k−1. On the other hand, a better schedule
assigns dαke packets to the shortest path and b(1−α)kc packets to the long path,
where α = 1/2 + (1 − 2β)n/(2k). By Lemma 1, a LIS schedule on these routes
will have makespan max {bβnc + dαke − 1, (n − bβnc) + b(1 − α)kc − 1} ≤ (n+
k)/2. Therefore, the makespan of an optimal schedule will be at most (n + k)/2,
and the competitive ratio for this instance is at least 2 ((bβnc + k − 1) /(n + k)),
which approaches 2 for an arbitrarily large value of k. ut
Theorem 9. The competitive ratio of Ring2 is exactly 2 on a ring and Ring2
is optimal among algorithms which always assign a packet to its shortest path if
the shortest path has length at most βn, for any β ∈ (0, 1/2].

3.3 Other Objective Functions

The consideration of other objective functions such as maximum flow time
(maxj(Cj − aj)) and total flow time (

∑
j(Cj − aj)) is an important direction

for future research. Here we observe that FF is not optimal for these objective
functions on linear arrays.

Observation 10. FF is not optimal with respect to total flow time (or total
completion time) on a linear array.

Proof. Consider the following instance with n = 3 and w = 1: p0 = (0, 1, 0),
p1 = (0, 2, 0), and p3 = (1, 2, 1). FF will assign p1 to (0, 1) during step 1, p1 and
p2 to (1, 2) during steps 2 and 3, and p0 to (0, 1) during step 2, giving a total
flow time of 6 and total completion time of 7. On the other hand, LIS will assign
p0 to (0, 1) during step 1, p1 to (0, 1) and (1, 2) during steps 2 and 3, and p2 to
(1, 2) during step 2, giving a total flow time 5 and total completion time 6. ut
Observation 11. The competitive ratio of FF is arbitrarily poor with respect to
maximum flow time on a linear array.

Proof. Consider the following instance on a 2 node linear array with w = 1:
p0 = (0, 1, 0) and pj = (0, 1, j − 1) for j = {1, 2, . . . , k − 1}. FF may schedule
the packets in the following order: p1, p2, . . . , pk, p0. The flow time of p0 is k in
this case, while the optimal maximum flow time is 2. ut

4 Conclusions

We have studied how to route and schedule online packet instances on linear
arrays and rings. We bounded the delay of two simple scheduling algorithms
(LIS and MP) and proved that each has a competitive ratio of 2−1/∆ on linear
arrays. We also generalized for the online case a previous result by showing that

784 J.T. Havill

FF is optimal on linear arrays. We used these results to analyze the corresponding
online algorithms that route packets on their shortest paths on rings. We showed
that the ring algorithm that schedules with LIS or MP has a competitive ratio
between 2.5 and 3 − 1/∆, and the ring algorithm that schedules with FF has a
tight competitive ratio of 2. The latter is optimal in the class of “memoryless”
algorithms that always send a packet on its shortest path if its length is less
than some constant fraction of the ring size. This class of algorithms includes
all of which we are aware in the literature. In order to do better, a deterministic
online algorithm would need to examine the network state and history, and
assign a route and schedule accordingly. The investigation of such algorithms is
an interesting area for future research. The study of other objective functions
is also an important research direction. Since FF is not optimal with respect to
maximum or total flow time, a study of other algorithms is required for these
objectives. In addition, it would be interesting to extend this analysis to routing
and scheduling on meshes and tori, and networks with arbitrary capacities.

References

[1] M. Adler, A. L. Rosenberg, R. K. Sitaraman, and W. Unger. Scheduling time-
constrained communication in linear networks. In Proc. ACM Symp. on Parallel
Algorithms and Architectures, pages 269–278, 1998.

[2] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Ad-
versarial queuing theory. In Proc. ACM Symp. on Theory of Computing, pages
376–385, 1996.

[3] I. Cidon, S. Kutten, Y. Mansour, and D. Peleg. Greedy packet scheduling. SIAM
Journal on Computing, 24(1):148–157, 1995.

[4] M. Kaufmann and J. F. Sibeyn. Deterministic routing on circular arrays. In Proc.
IEEE Symp. on Parallel and Distributed Processing, pages 376–383, 1992.

[5] M. Kaufmann and J. F. Sibeyn. Randomized multipacket routing an sorting on
meshes. Algorithmica, 17:224–244, 1997.

[6] K.-S. Lui and S. Zaks. Scheduling in synchronous networks and the greedy algo-
rithm. In Proc. Int. Workshop on Distributed Algorithms, pages 66–80, 1997.

[7] F. Makedon and A. Symvonis. Optimal algorithms for multipacket routing prob-
lems on rings. Journal of Parallel and Distributed Computing, 22(1):37–43, 1994.

[8] Y. Mansour and B. Patt-Shamir. Greedy packet scheduling on shortest paths.
Journal of Algorithms, 14(3):449–465, 1993.

[9] W. Mao and R. Simha. Routing and scheduling file transfers in packet-switched
networks. Journal of Computing and Information, 1(1):559–574, 1994.

[10] P. I. Rivera-Vega, R. Varadarajan, and S. B. Navathe. Scheduling data redistri-
bution in distributed databases. In Proc. IEEE Int. Conf. on Data Engineering,
pages 166–173, 1990.

[11] J. F. Sibeyn. Deterministic routing and sorting on rings. In Proc. IEEE Int.
Parallel Processing Symp., pages 406–410, 1994.

[12] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proc. ACM Symp. on Theory of Computing, pages 263–277, 1981.

Faster Gossiping on Butterflies?

Jop F. Sibeyn

Computing Science Department, Ume̊a University, Sweden
http://www.cs.umu.se/˜jopsi/

Abstract. Gossiping has been considered intensively for butterflies and
“regular” butterflies (which have no wrap-around connections). In the
telephone communication model, for a butterfly of order k, the best
previous gossiping algorithms require 21/2 · k and 3 · k communication
rounds, respectively. By new asymptotic methods we break through these
bounds, proving new bounds of 21/4 · k + o(k) and 21/2 · k + o(k).

1 Introduction

Gossiping. Collective communication operations frequently occur in parallel
computing, and their performance often determines the overall running time of
an application. One of the fundamental communication problems is gossiping
(also called total exchange or all-to-all non-personalized communication). Gos-
siping is the problem in which every processing unit, PU, wants to send the
same packet to every other PU. Said differently, initially each of the N PUs
contains an amount of data of size h, and finally all PUs know the complete
data set of size h · N . Gossiping is used in all applications in which the PUs
operate autonomously for a while, and then must exchange all gathered data to
update their databases. Many aspects of the problem have been investigated for
all kinds of interconnections networks [1,2,3,4,7,10,13].

Networks. We are considering butterflies and, lacking a better name, regular
butterflies, illustrated in Figure 1. Each of them forms a parametrized class of
networks. The k-th network is indicated by OBFk (ordinary butterfly) and RBFk
(regular butterfly), respectively. OBFk has k ·2k nodes, all of degree 4; and RBFk
has (k + 1) · 2k nodes, which are of degree 2 and 4.

Ordinary butterflies are much considered networks because of their low-
degree, regularity, small diameter and excellent routing properties. The RBFk
are less considered, but they are very important in the context of this paper,
because the gossiping on OBFk will be explained in terms of routing on RBFk.

Communication Models. In the telegraph model a PU can be involved in
only one communication operation: either receiving or sending, but not both.
In the telephone model, a PU can communicate with only one of its neighbors
at a time, but it can both send and receive during this communication. In this
? Most of the work on this paper has been performed during an appointment at and

a visit to the Max-Planck-Institut für Informatik in Saarbrücken, Germany.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 785–796, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

786 J.F. Sibeyn

RBF_3 OBF_3

3,2

2,7

3,3 3,4 3,5 3,6 3,7

0,1

3,4 3,6 3,7

2,5 2,6 2,7

1,4 1,5 1,7 1,8

0,4 0,5 0,6 0,7

0,0

1,0

2,0

3,0

0,2 0,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

0,1

2,4

3,5

0,1

0,70,60,50,40,30,20,1

2,72,62,52,42,32,22,1

1,81,71,51,41,31,21,1

0,70,60,50,40,30,2

0,0

2,0

1,0

0,0

1,0

2,0

3,0

0,2 0,3 0,4 0,5 0,6 0,7

1,1 1,2 1,3 1,4 1,5 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1

0,0

0,0

1,0

2,0

0,2 0,3

1,1 1,2 1,3

2,1 2,2 2,3

0,1

1,4

0,4

2,4

0,5

1,5

2,5 2,6

1,7

0,6 0,7

1,8

Fig. 1. RBF3 and OBF3. Two equivalent representations are given. In this paper, we
will mostly refer to the lower one. In the upper representation of OBF3, the top and
bottom rows are to be identified.

paper we assume the telephone model, though it is easy to see that the same
results can be obtained for the telegraph model as well (because they are based
on the complexity of a certain broadcasting problem, which, of course, works
under the assumptions of the telegraph model). As usual, we work under the
unit-cost assumption, which means that communicating PUs can exchange an
arbitrary amount of data in a single communication round.

Previous Work. The best theoretical results for gossiping in the telephone
model on ordinary butterflies were given in [8]: OBFk are given lower and upper
bounds of 1.742 · k and 21/2 · k, respectively. RBFk is not considered, but clearly
one needs at least 2 · k communication rounds, because of the diameter of the
network, and the algorithm for OBFk can be modified to run in 3 · k rounds. So,
for the butterflies, there remains a considerable gap between the upper and lower
bounds, and here one may hope to improve the leading constants. Experimental
results are given in [12,5,6,11]. For k ≤ 12 it is shown that most of the upper
bounds in [8] are not sharp. However, though for de Bruijn and shuffle-exchange
networks it appears that even the leading constant in the theoretical number of
rounds can be improved, no such trend is discernible for butterflies.

Faster Gossiping on Butterflies 787

New Results. The goal of this paper is to reduce the gap between upper
and lower on the time consumption for gossiping on RBFk and OBFk as far as
possible. As we have no ideas leading to improved lower bounds, we are trying to
construct algorithms for gossiping on RBFk and OBFk with a time consumption
of c ·k + o(k) for the smallest possible constant c. We succeed in reducing c from
3 to 21/2 and from 21/2 to 21/4, respectively.

2 Gossiping on Column-Based Networks

The considered networks, can be thought to consist of a set of mutually disjoint
columns (linear or circular arrays) of the same length covering all nodes, that
are connected by the other connections. We refer to networks of this type as
column-based. Because the columns all have the same size, the nodes can be
divided in rows: subsets of the nodes consisting of one node from each column.
Such a subdivision is not unique, but for a given subdivision in columns the
structure of the network mostly allows only a single sensible one. The alternative
representations for the ordinary and the regular butterfly networks shows that
networks may be perceived in more than one way as column based. For the
general idea these differences are not important. Throughout this paper k gives
the number of nodes per column, that is the number of rows, numbered from 0
to k − 1. For such a network we define an operation that is half-way between a
broadcast and a gossip:

Definition 1 row-gossip(i, j) is the operation of spreading the information ini-
tially stored in all PUs of row i to each single PUs of row j. A row-gossip is
row-restricted if during each of the rounds operations are performed in O(1)
consecutive rows only. Furthermore we require that the set of rows in which a
row-restricted row-gossip is active progresses by one row after a constant num-
ber of rounds. The number of changes of running direction and running speed is
bounded by a constant.

The notions of progress, running direction and running speed are defined with
respect to the fixed numbering of the rows. For example, the running speed is
the reciprocal of the number of rounds before the maximum (minimum) of the
indices of the rows in which operations are performed increases (decreases) by
one.

The requirement of the number of turns and the evolution of the set of rows
in which a row-gossip is active is no limitation: it does not make sense to let a
row-gossip hang around in a limited set of rows. Once all connections have been
used, no further gain of information can be made there. Using this definition,
we can prove the following strong result which considerably simplifies the task
of designing gossiping algorithms:

Theorem 1 On a column-based network with k rows, if row-restricted
row-gossip(i, j) can be performed in T rounds for all i and j, then gossiping
can be performed in T + o(k).

788 J.F. Sibeyn

Proof: In each column, x of the nodes are designated as bus stops. The value of
x will be specified later. The bus stops are regularly interspaced with distance
k/x in between. For example, one might take all nodes in the rows l · k/x, for
0 ≤ l < x.

√
x consecutive bus stops in the same column are grouped together in

a zone. The bus stops are numbered with double indices (i1, i2), 0 ≤ i1, i2 <
√

x.
i1 giving the zone and i2 the number within its zone. The algorithm consists of
three phases:

1. Route all packets to all bus stops within their zones.
2. For all 0 ≤ i1, i2 <

√
x, perform row-gossip((i1, i2), (i2, i1)).

3. Spread the information from the bus stops to all PUs within their zones.

In a different context, a similar algorithm has been used in [9]. Phase 1 and
phase 3 take at most k/

√
x steps each: these operations can be performed by

gossiping in the linear subarrays with k/
√

x PUs each. Phase 2 in principle takes
T rounds, as long as the most time consuming row-gossip, but we still must take
care of possible conflicts between the operations of various row-gossips. When
two row-gossips are active in overlapping rows, we give priority to the one moving
towards the rows with higher indices. If two row-gossips running in the same
direction are conflicting, then the slower one is delayed. Because our assumption
that the number of changes of direction and speed is constant a row-gossip
is delayed by any other row gossip for at most a constant number of rounds.
The total number of row gossips equals x, so, the total incurred delay is O(x).
Choosing x = k2/3, the total time for the three rounds becomes T +O(k2/3).

An important aspect here is that the gossiping time is only stated up to
lower-order terms. In routing on meshes and the like this is a common way of
specifying results, but in the theory on gossiping one mostly finds either precise
results, like b5/2 · kc + 1, or very unspecific results like O(k). As in the area of
gossiping on regular networks the main open questions are about the value of
the leading constants, the later type of results is not appropriate, whereas the
first type of results may be too hard to establish.

and
RBF

OBF BA

B A

A

A

B

B

A B

BA

Fig. 2. Braiding on RBF and OBF. Initially, the sets of information A and B are each
available in only one of the lower PUs. After the two routing operations these are
available in both of the upper PUs.

We need some more vocabulary. By walking we mean the operation of for-
warding information using only the edges of the columns. So, while walking

Faster Gossiping on Butterflies 789

information spreads up- or downwards one row per round. The other operation
is called braiding. It consists of two routing rounds, the first using connections
between the columns, the second using connections within the columns. While
braiding, the information progresses up- or downwards one row every two routing
operations while spreading between the columns as well. This operation is illus-
trated in Figure 2. In the following Tgos(RBFk) denotes the number of rounds
for gossiping on RBFk. Tgos(OBFk) is defined analogously.

Lemma 1 Tgos(RBFk) ≤ 3 · k + o(k), Tgos(OBFk) ≤ 21/2 · k + o(k).

Proof: On RBFk we proceed similarly, only here there are no “wrap-around”
connections. Here the goals is to do at most k walking. We refer to the represen-
tation of RBFk with 2 · k + 2 rows as in Figure 1 on the right. Without loss of
generality we may assume that i lies in the upper half, that is, we assume i ≤ k.
We distinguish two main cases according to whether i < j or not. If i < j then
we start by braiding for 2 · k + O(1) in the direction of increasing row indices.
After this, the information walks to row j. If j < i + k, then the total time
consumption is 3 · k + i − k + O(1), if j > i + k, then it is k + j − i + O(1). If
j < i, then the initial information walks to row k, then braids until it reaches
row 0 and then walks back to row j. This takes 3 · k + j − i rounds in total. The
proof for OBFk is similar.

3 Reduction of the Problem

The results in Lemma 1, which are not new, are not matching a lower bound. In
[8], it is shown that gossiping on OBFk asymptotically requires at least 1.7396 ·k
rounds. For RBFk, the diameter of 2 · k gives a lower bound. In both cases there
is a considerable gap with the results actually obtained.

Consider the gossiping schedules for OBFk and RBFk: the row-gossips on
which they are based, are compositions of walking and braiding phases. Because
braiding in a given row has the same effect as braiding in the corresponding row
in the other half of the network, we will not distinguish these operations. Under
this identification, if row-gossip(i, j) requires T = 2 · k + x rounds, we can say
that it uses all k rows once for braiding, and in addition it uses x of them also
for walking. This can be viewed as performing row-gossip(0, 2 · x + 1) on RBFx.
Refining this argument, we can prove

Lemma 2 If row-gossip(0, 2·x+1) can be performed on RBFx in (2+δ)·x+o(x)
rounds for all x, then Tgos(RBFk) ≤ (2 + δ) · k + o(k), Tgos(OBFk) ≤ (2 + δ/2) ·
k + o(k).

Proof: In Theorem 1 we have shown that, except for lower-order terms, gossiping
costs the same as the most expensive row-gossip. Let T (x) denote the time for
row-gossip(0, 2 · x + 1). For row-gossiping operations that are performed as a
combination of walking through x rows and braiding through k rows, the cost
can be written as 2 · (k − x) + T (x). Here 2 · (k − x) gives the time of braiding in

790 J.F. Sibeyn

k−x rows, while T (x) gives the time for the remaining braiding and the walking.
If T (x) can be estimated on (2 + δ) · x + o(x), substitution gives that the time
for row-gossip is bounded by

2 · (k − x) + (2 + δ) · x + o(x) = 2 · k + δ · x.

In our above row-gossiping schedules the maximum value of x equals k and k/2
for RBFk and OBFk, respectively. Substitution gives the results.

This lemma allows us to focus from the very general gossiping problem on
one specific row-gossiping instance, which we will try to perform more efficiently
in the following. To simplify even further, we will be working with a slightly
different network in the following: RBF′

k is obtained by gluing two copies of
RBFk upside-down together. It has 2 ·k + 2 rows and 2k columns. RBF′

k is more
regular, but clearly anything that can be done on RBF′

k can also be done on
RBFk. This regularity facilitates proving results like the following:

Lemma 3 If row-gossip(0, 2 ·k+1) on RBF′
k can be performed in t rounds, then

row-gossip(0, 2 · c · k + 1) can be performed in c · t rounds on RBF′
c·k.

Proof: The proof goes by induction. The case c = 1 is given. So, assume that
row-gossip(0, 2·(c−1)·k+1) can be performed in (c−1)·t rounds on RBF′

(c−1)·k.
Every column can be indexed by a pair (i, j), where i gives the k most important
bits of the index and j the (c − 1) · k least important bits. A PU is indicated
by giving its row and column. Now we show that an information starting in an
arbitrary PU (0, (i, j)) of row 0 reaches an arbitrary PU (2 · c · k + 1, (i′, j′))
of row 2 · c · k + 1. It is essential that the lowest and highest rows only work
on the least important bits, and that the central rows only work on the most
important bits. In the lowest (c − 1) · k rows the information travels as it would
do in RBF′

(c−1)·k, when it would have to go from column j to column j′. It thus
reaches some PU ((c−1)·k, (i, j′′)). Then it performs the operations that it would
perform in RBF′

k, when traveling from i to i′. Doing this, the information reaches
some PU ((c+1)··k+1, (i′, j′′)). From there it continues to PU (2·c·k+1, (i′, j′))
as it would do in the upper half of RBF′

(c−1)·k.

4 Coherent Row-Broadcasting

A row-broadcasting schedule for a column-based network is called coherent, if
all operations that are performed during any given round in any given row use
the “same” connections. In the case of RBFk, this means that all packets with a
given delay should use in a given round either straight or cross connections but
not both. In general, coherent row broadcasting can only be defined if in every
row the connections of the PUs can be allocated to classes so that all connections
in a class can be used at the same time without causing conflicts.

Lemma 4 If coherent row-broadcasting can be performed in t rounds, then also
row-gossiping can be performed in t rounds.

Faster Gossiping on Butterflies 791

Proof: One row broadcasting scheme is started from each of the PUs in the row
of origin. If in any given step more than one information must be forwarded from
a given PU, then apparently these data have the same delay. Thus, by definition,
they want to use the same connection, and can be combined.

4.1 First Results

An example of a coherent row-broadcasting schedule is given in Figure 3. It
spreads the information in RBF′

5 from the lower-left PU to all 32 PUs at the top
in 13 rounds.

Lemma 5 Tgos(RBFk) ≤ 23/5 · k + o(k), Tgos(OBFk) ≤ 23/10 · k + o(k).

Proof: According to Lemma 4, 32 of the coherent row-broadcasting schedules of
Figure 3 can be combined to obtain row-gossip(0, 2 · k + 1) on RBF′

5. According
to Lemma 3, c of these schedules can be combined to perform row-gossip(0, 2 ·
k + 1) on RBF′

5·c in 13 · c rounds. For k not a multiple of 5, we just add a few
walking or braiding operations to complete the row-gossiping. Thus, for all k,
row-gossip(0, 2 · k + 1) can be performed on RBF′

k in 13/5 · k + O(1) rounds.
This schedule is so that at any given time packets from a given row-gossip are
active in only three rows at a time. In that case, Theorem 1 and Lemma 2 give
the result.

Notice that this result is perfectly general, though we have only given a schedule
for RBF′

5.

4.2 Towards 21
2 · k

We think that an important achievement of this paper is showing that asymp-
totically Tgos(OBFk) < 21/2 · k. This was a long standing results, and one might
have believed it to be tight. Nevertheless we also aim at establishing the smallest
possible leading constants. So, we should come with bigger schedules, which at
a certain point can no longer be found by puzzling and which cannot be verified
by checking a picture.

A coherent row-broadcasting schedule allowing for d1 delay in the lower half
of the network and d2 delay in the upper half can be represented by giving
(d1 + 1) + (d2 + 1) numbers of k bits each: the wave vectors. They indicate the
column in which a packet starting in column 0 would end when it would exclu-
sively use the by 0, . . . , d1 rounds delayed wave for the lower half or the 0, . . . , d2
delayed wave for the upper half. For example, the schedule in Figure 3 can be
represented as ((0, 31, 0), (0, 21)). This concise representation is an important ad-
ditional advantage of working with coherent schedules. The wave vectors for the
lower half are denoted wi, 0 ≤ i ≤ d1, those for the upper half w′

i, 0 ≤ i ≤ d2. The
regular structure of the network guarantees that if ((w0, . . . , wd1), (w′

0, . . . , w
′
d2

))
is a schedule, than so is ((w′

0, . . . , w
′
d2

), (w0, . . . , wd1)). It also guarantees that if
there are schedules at all, then there is also a schedule with w0 = w′

0 = 0.

792 J.F. Sibeyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4

3

2

1

0

0

1

2

3

4

Fig. 3. Coherent row-broadcasting on RBF0
5 in 13 rounds. Indicated are the used con-

nections. The thickest lines give the packets that are not delayed. The intermediate
lines, give packets that are delayed once. The thinnest lines, only occurring in the lower
half, indicate packets that are delayed twice. Thus, the lower half takes 7 and the upper
half 6 rounds.

To obtain even better gossiping results, we have to investigate schedules
for row-gossiping on RBFk for k > 5. In order to speed up this process
and to allow for exhaustive search, we have written the program described
in Section 5. It shows that for k = 4 a coherent row-broadcast can reach at
most 13 nodes with a schedule of 10 rounds. It also shows that for k = 5
there are many more schedules requiring 13 rounds (many of them related).
For k = 6 there are no coherent schedules of length 15. Using such sched-
ules at most 55 of the 64 columns can be reached. More generally, our pro-
gram, after many improvements, has found schedules requiring b5 · k/2c + 1
rounds, for all k ≤ 15, and nothing better. For k = 15, one of the solutions is
((0, 32767, 0, 32767, 0), (0, 27483, 17846, 32461, 24)). Just as in Lemma 5, this can
be used to prove that gossiping on RBFk can be performed in 38/15 · k + o(k)
rounds. 38/15 = 2.533, so we already have come close to our main result:

Theorem 2 If coherent row-broadcasting on RBF′
k can be performed in b5 ·

k/2c + 1 rounds for all k, then Tgos(RBFk) ≤ 21/2 · k + o(k), Tgos(OBFk) ≤
21/4 · k + o(k).

Proof: If Tgos(RBF’l) = b5 · l/2c + 1, for any constant l, the previous lemmas
immediately give Tgos(RBFk) = 5/2 ·k+c ·k/l, for a small constant c ≥ 1. So, for

Faster Gossiping on Butterflies 793

obtaining the desired result, we should take l non-constant. We must be careful
though, because this violates the assumption that the row-gossiping is active in
only a constant number of rows. The best idea is to construct row-gossip(0, 2 ·
k + 2) from coherent row-broadcasting operations each spanning k1/4 rows (see
Lemma 3). This results in a schedule of length 21/2 · k + O(k3/4), which is active
in at most k1/4 rows at a time. If we choose the bus stops to lie k1/2 apart with
k1/4 of them in each zone (see the proof of Theorem 1 for details), then the
conflicts between the schedules result in at most another O(k3/4) delay.

4.3 Completing the Argument

In the following, the schedule for coherent row-broadcasting on RBF′
k will be

denoted Sk. Its (d1 + 1) + (d2 + 1) wave vectors are given in binary. Sk is written
down as a matrix with a special format. For example,

S1 =

0
0
1

 , S3 =

1 0 1
0 0 0
0 0 0
1 1 1

 , S5 =

1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

.

Here the lower rows give the movements in the lower half of RBF′
k and the upper

rows the movements in the upper half. In each half the vectors have increasing
delay away from the middle. There are two transitions to distinguish:

From k = 4 · l + 1 to k′ = 4 · l + 3. The existing rows are extended on the right
with twice the number they are ending on. So,

(· · · 0) −→ (· · · 0 0 0),
(· · · 1) −→ (· · · 1 1 1).

In addition, one new row is added to the upper half: (1 0 1 · · · 0 1 0) for
k′ = 8 · m + 3 and (0 1 0 · · · 1 0 1) for k′ = 8 · m + 7. Applying these rules, we
can derive S7 from S5:

S5 =

1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

−→ S7 =

0 1 0 1 0 1 0

1 0 1 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 0 0 0 0

.

From k = 4 · l + 3 to k′ = 4 · l + 5. All existing rows are extended on the left
with the same two numbers they so far were starting with:

(0 0 · · ·) −→ (0 0 0 0 · · ·),

794 J.F. Sibeyn

(0 1 · · ·) −→ (0 1 0 1 · · ·),
(1 0 · · ·) −→ (1 0 1 0 · · ·),
(1 1 · · ·) −→ (1 1 1 1 · · ·).

In addition, one new row is added to the lower half: (1 1 · · · 1 1) for k′ = 8·m+1
and (0 0 · · · 0 0) for k′ = 8 · m + 5. Applying these rules, we can derive S9:

S7 =

0 1 0 1 0 1 0
1 0 1 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 0 0 0 0

−→ S9 =

0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

.

The computer has tested the Sk for all k ≤ 23. For networks of this size
(RBF′

23 has 46 · 223 nodes) one could never find schedules by trying.

Lemma 6 For all odd k, Sk gives a coherent row-broadcasting schedule for
RBF′

k

Proof: Clearly Sk is coherent. The proof that Sk is also a row-broadcasting
schedule goes by induction. For k ≤ 5, this has been checked. So, we may assume
Sk and Sk−2 are row-broadcasting schedules, when we are proving this for Sk′ ,
for an odd value k′ = k + 2 ≥ 7.

We consider the transition from k = 4 · l +1 to k′ = 4 · l +3. In order to make
the argument more concrete, we assume that k′ = 8 · m + 7 but, flipping zeroes
and ones, the other case follows immediately. Let d = l + 1. Then we have delay
vectors w0, . . . , wd and w′

0, . . . , w
′
d, each of length k′. We are mainly interested

in w0, w1, w
′
d−2, w

′
d−1 and w′

d. Thus, essentially our situation looks like

w′
d 1 0

w′
d−1 1 1

w′
d−2 0 0

w0 0 0
w1 1 1

We will use that inside this block we find back Sk. Starting with 0 0 (the least
significant bits of w0), we can continue with the operations of Sk, and finish with
either 1 1 (the least significant bits of w′

d−1) or 1 0 (the least significant bits of
w′
d). This shows that all nodes with least significant bits 1 0 or 1 1 are reached.

How about the nodes with least significant bits 0 0? These can be reached by
starting with 0 0 (the least significant bits of w0), and ending with 0 0 (the least

Faster Gossiping on Butterflies 795

significant bits of w′
d−2), not using w′

d−1 and w′
d, or by starting with 0 1 (bit 0

of w0 and bit 1 of w1), not using w0, and ending with 1 0 (the least significant
bits of w′

d). Neither of these two schedules reaches all nodes of RBF′
k, but, by

splitting up further, it can be shown that the union of what is reached by each
of them is the whole set. The nodes whose least significant bits are 0 1 can be
reached by starting with 0 0 and ending with 0 1 (bit 1 of w′

d−2 and bit 0 of
w′
d−1), not using w′

d−1 and w′
d, or by starting with 1 1, not using w0, and ending

with 1 0 (the least significant bits of w′
d). This is the same situation as before.

The transition from k = 4 · l + 3 to k′ = 4 · l + 5 is analyzed analogously.

5 Program

We started with a program that was performing trivial exhaustive search within
a specified range of values. This program, was useful for finding schedules up to
k = 7. Because the problem grows extremely fast with k (the number of nodes
to process for every solution grows exponentially, and the solution space grows
even faster), only a considerably better approach can bring us further. We have
introduced the following refinements, each of them allowing us to solve problems
for k larger by two.

– Most promising first: for each of the wave vectors, all possible values where
sorted according to the number of nodes that they allowed to reach, and
then processed in this order.

– Testing only ((0, n−1, 0, . . .), (0, ∗, ∗, . . .)): we discovered soon that it was no
limitation to fix all wave vectors in the lower half and the first in the upper
half. This gives a strong reduction of the search space.

– Specifying the number of different bits: by imposing that two consecutive
wave vectors should be the same in not more than a specified number of
bits, the search space was reduced even further.

– Setting thresholds: by imposing that after performing the wave vectors
w′

0, . . . , w
′
d2−1 in the upper half at least a certain (rather large) fraction

of the nodes has to be reached, the search could be limited to a tree with
degree less than 100.

– Bit parallelism: by using the bits of integers to represent sets and by fully
exploiting bit-parallel operations, the memory consumption was minimized
and the operations became much faster.

Without this program we would never have discovered the general structure
presented in Section 4.3. The final version is available at
http://www.cs.umu.se/∼jopsi/dprog/schedule.c.

6 Conclusion and Further Research

We have shown how to solve gossiping on RBFk in 5/2 · k + o(k). This result is
based on a reduction of gossiping to row-gossiping, which in turn was solved by
overlapping shifted copies of a coherent row-broadcasting schedule. We see two
further directions of research:

796 J.F. Sibeyn

– It appears (but we are sure only for small k) that coherent row-broadcasting
cannot be performed in less than 5/2 · k rounds, but this does not exclude
that row-gossiping might be performed faster.

– The algorithms are not practical because of the lower-order terms. However,
we think that clever puzzling will reveal that all operations can be fit together
so that no delays arise due to conflicts.

Acknowledgement. Michal Šoch has been reading and commenting parts of
this paper. The comments of several ICALP referees were also helpful.

References

1. Bermond, J.-C., P. Fraigniaud, ‘Broadcasting and Gossiping in de Bruijn Net-
works,’ SIAM Journal on Computing, 23(1), pp. 212–225, 1994.

2. Delmas, O., S. Perennes, ‘Circuit-Switched Gossiping in 3-Dimensional Torus Net-
works,’ Proc. 2nd Euro-Par Conference, LNCS 1123, pp. 370–373, Springer-Verlag,
1996.

3. Fertin, G., ‘Trade-Offs for Odd Gossiping,’ Proc. 6th Colloquium on Structural
Information & Communication Complexity, Proceedings in Informatics 5, pp. 137–
151, Carleton Scientific, 1999.

4. Fraigniaud, P., J.G. Peters, ‘Minimum Linear Gossip Graphs and Maximal Linear
(∆, k)-Gossip Graphs,’ Techn. Rep. CMPT TR 94-06, Simon Fraser University,
Burnaby, B.C., 1994. Available at
http://fas.sfu.ca/pub/cs/techreports/1994/.

5. Fraigniaud, P., S. Vial, ‘Approximation Algorithms for Broadcasting and Gossip-
ing,’ Journal of Parallel and Distributed Computing, 43(1), pp. 47–55, 1997.

6. Fraigniaud, P., S. Vial, ‘Comparison of Heuristics for One-to-All and All-to-All
Communication in Partial Meshes,’ Parallel Processing Letters, 9(1), pp. 9–20,
1999.

7. Gvozdjak, P., J.G. Peters, ‘Gossiping in Inclined LEO Satellite Networks,’ Proc.
6th Colloquium on Structural Information and Communication Complexity, Pro-
ceedings in Informatics 5, pp. 166–180, Carleton Scientific, 1999.

8. Hromkovič, J., R. Klasing, B. Monien, R. Peine, ‘Dissemination of Information
in Interconnection Networks,’ Combinatorial Network Theory, D.-Z. Du, D.F. Hsu
(eds.), pp. 125–212, Kluwer Academic Publishers, 1996.

9. M. Kaufmann, R. Raman, J.F. Sibeyn, ‘Randomized Routing on Meshes with
Buses,’ Algorithmica, 18, pp. 417–444, 1997.

10. Labahn, R., I. Warnke, ‘Quick Gossiping by Telegraphs,’ Discrete Mathematics,
126, pp. 421–424, North-Holland, 1994.

11. Beier, R., J.F. Sibeyn, ‘A Powerful Heuristic for Telephone Gossiping,’ Proc. 7th
Colloquium on Structural Information and Communication Complexity, pp. 17–35,
Proceedings in Informatics 7, Carleton Scientific, 2000.

12. Scheuermann, P., G. Wu, ‘Heuristic Algorithms for Broadcasting in Point-to-Point
Computer Networks,’ IEEE Transactions on Computers, C-33(9), 1984.

13. Šoch, M., P. Tvrd́ık, ‘Optimal Gossip in Store-and-Forward Noncombining 2-D
Tori,’ Proc. 3rd International Euro-Par Conference, LNCS 1300, pp. 234–241,
Springer-Verlag, 1997.

Realizability and Verification of MSC Graphs

Rajeev Alur1,2, Kousha Etessami2, and Mihalis Yannakakis2

1 Dept. of Computer and Info. Science, U. of Pennsylvania
2 Bell Labs, Lucent Technologies

{alur,kousha,mihalis}@research.bell-labs.com

Abstract. Scenario-based specifications such as message sequence
charts (MSC) offer an intuitive and visual way of describing design re-
quirements. MSC-graphs allow convenient expression of multiple scenar-
ios, and can be viewed as an early model of the system that can be
subjected to a variety of analyses. Problems such as LTL model checking
are known to be decidable for the class of bounded MSC-graphs.
Our first set of results concerns checking realizability of bounded MSC-
graphs. An MSC-graph is realizable if there is a distributed implementa-
tion that generates precisely the behaviors in the graph. There are two
notions of realizability, weak and safe, depending on whether or not we
require the implementation to be deadlock-free. It is known that for a set
of MSCs, weak realizability is coNP-complete while safe realizability has
a polynomial-time solution. We establish that for bounded MSC-graphs,
weak realizability is, surprisingly, undecidable, while safe is in Expspace.
Our second set of results concerns verification of MSC-graphs. While
checking properties of a graph G, besides verifying all the scenarios in
the set L(G) of MSCs specified by G, it is desirable to verify all the
scenarios in the set Lw(G)—the closure of G, that contains the im-
plied scenarios that any distributed implementation of G must include.
For checking whether a given MSC M is a possible behavior, checking
M ∈ L(G) is NP-complete, but checking M ∈ Lw(G) has a quadratic
solution. For temporal logic specifications, considering the closure makes
the verification problem harder: while checking LTL properties of L(G)
is Pspace-complete and checking local properties has polynomial-time
solutions, even for boolean combinations of local properties of Lw(G),
verifying acyclic graphs is coNP-complete and verifying bounded graphs
is undecidable.

1 Introduction

Message Sequence Charts (MSCs) are a commonly used visual notation for de-
scribing message exchanges between concurrent processes. They have become
popular among software engineers for early requirements specification. Recently
MSCs have been standardized by ITU [12], and incorporated in modern software
engineering notations such as UML [5]. In the simplest form, an MSC depicts
the desired exchange of messages, and corresponds to a single (partial-order) ex-
ecution of the system. In recent years, a variety of features have been introduced
so that a designer can specify multiple scenarios conveniently. In particular,

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 797–808, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

798 R. Alur, K. Etessami, and M. Yannakakis

MSC-graphs allow MSCs to be combined using operations such as choice, con-
catenation, and repetition. MSC-graphs can be viewed as an early model of the
system that can be subjected to formal analysis. This has motivated the develop-
ment of algorithms for a variety of analyses including detecting race conditions
and timing conflicts [2], pattern matching [9], detecting non-local choice [6], and
model checking [3], and tools such as uBET [8] and MESA [4].

An MSC-graph consists of a graph G whose nodes are labeled by MSCs, and
G is viewed as defining the set L(G) of all MSCs obtained by concatenating
the MSCs that appear along any (directed) finite path from the designated start
node of G. It is worth noting that the traditional high-level model for concurrent
systems has been communicating state machines. Both communicating state ma-
chines and MSC-graphs can be viewed as specifying sets of behaviors, but the
two offer dual views; the former is a parallel composition of sequential machines,
while the latter is a sequential composition of concurrent executions. The com-
plexity of a variety of verification questions in the communicating-state-machines
model has been well understood: typically the problems are undecidable, and we
must assume a bound on the sizes of message-buffers to obtain decidability re-
sults. Recent results indicate that verification problems about MSC-graphs are
also undecidable in general as a process can send potentially unbounded num-
ber of messages yet to be received [9,3]. The requirement for decidability, for
problems such as LTL model checking, seems to be boundedness: in a bounded
MSC-graph, in every cycle, for every pair of active processes p and q, there is a
sequence of communications from p to q and back, ensuring that all the active
processes stay roughly synchronized, thereby bounding the number of pending
messages [3,4]. The boundedness property of an MSC-graph can be checked in
time exponential in the number of processes [3]. In this paper, we study a variety
of analysis problems for bounded MSC-graphs.

The first analysis question studied in this paper concerns a form of consis-
tency, called realizability, of specifications given as an MSC-graph. As observed
in [1], a set of MSCs can potentially imply other, distinct, MSCs whose com-
munication pattern must be exhibited by any concurrent system that realizes
the given MSCs. An MSC-graph G is said to be realizable if there exists a dis-
tributed implementation whose behaviors are precisely the ones specified by G.
Unspecified, but implied, behaviors can be indicative of logical errors, and can be
revealed by checking realizability. We prove that checking this form of realizabil-
ity is, surprisingly, undecidable for bounded MSC-graphs by a reduction from
the post correspondence problem. Intuitively, this is because, while a bounded
graph ensures boundedness of buffers in the scenarios specified in the graph, it
does not ensure boundedness of buffers in its distributed implementation where
different processes can follow different paths in the graph.

We study a second form of realizability, called safe realizability, where the
distributed implementation must be deadlock-free. Safe realizability is a stronger
notion of realizability, and corresponds to inferring partial global behaviors from
local views of specified MSCs. For a finite set of MSCs, checking weak realiz-
ability is coNP-complete, while checking safe realizability has a polynomial-time
solution [1]. For bounded MSC-graphs, we show that checking safe realizability,
unlike the weaker version, is decidable. We establish an upper bound of Ex-

Realizability and Verification of MSC Graphs 799

pspace. We show the problem is Pspace-hard, but matching the lower and
upper bounds remains an open problem.

For the purpose of verification of an MSC-graph G, due to the gap between
an MSC-graph and its implementation, besides L(G), we also consider Lw(G),
the weak-closure of G, containing all MSCs implied by MSCs in G, as a possible
semantics. As we will see, a verification question can have different answers and
different complexities depending upon this choice of semantics.

Our first verification problem concerns testing whether a given scenario M
is a possible behavior of a given MSC-graph G. This is relevant in identifying
if a new scenario is already present in the existing specification, and also for
detecting bugs if M specifies an undesired scenario. We show that the problem
of verifying whether M ∈ L(G) is NP-complete in general, but can be solved in
polynomial-time if the number of processes is bounded. We establish that testing
whether M is in the closure of L(G) can be solved in quadratic time. This shows
that it is easier to determine whether an MSC exists in the closure than in the
originally given set, and furthermore, the questions about the implementation
of G can sometimes be verified without constructing it.

Finally, we consider the model checking problem, where the model is given by
an MSC graph G. When the semantics of G is L(G), and the specification is given
by an automaton accepting linearizations corresponding to “bad” behaviors, the
problem is undecidable in general and Pspace-complete for bounded graphs [3].
If the specification is given by “local” properties that do not distinguish be-
tween different linearizations of the same MSC, model checking can be solved in
polynomial-time [10]. In this paper, we show that under the closure-semantics,
the model checking questions become harder: for an acyclic graph (or even a set
of MSCs) the problem is coNP-complete, and for bounded graphs the problem
is undecidable, even for simple linearization-invariant local specifications.

2 MSCs and MSC Graphs

We start by recalling the definition of message sequence charts. Our definition
captures the essence of the ITU standard MSC’96, and is analogous to the defini-
tions of labeled MSCs given in [2,3]. Let P = {P1, . . . , Pn} be a set of processes,
and Σ be a message alphabet. We write [n] for {1, . . . , n}. We use the label
send(i,j,a) to denote the event “process Pi sends the message a to process Pj .”
Similarly, receive(i,j,a) denotes the event “process Pj receives the message a
from process Pi.” Define the set ΣS = {send(i, j, a) | i, j ∈ [n] & a ∈ Σ} of send
labels, the set ΣR = {receive(i, j, a) | i, j ∈ [n] & a ∈ Σ} of receive labels, and
Σ = ΣS ∪ ΣR as the set of event labels. A Σ-labeled MSC M over processes P
is given by:

1. a set E of events which is partitioned into a set S of “send” events and a set
R of “receive” events;

2. a mapping p : E 7→ [n] that maps each event to a process on which it occurs;
3. a bijective mapping f : S 7→ R between send and receive events, matching

each send with its corresponding receive;

800 R. Alur, K. Etessami, and M. Yannakakis

4. a mapping l : E 7→ Σ which labels each event such that l(S) ⊆ ΣS and
l(R) ⊆ ΣR, and furthermore for consistency of labels, for all s ∈ S, if l(s) =
send(i, j, a) then p(s) = i and l(f(s)) = receive(i, j, a) and p(f(s)) = j;

5. for each i ∈ [n], a total order ≤i on the events of process Pi, that is, on the
elements of p−1(i), such that the transitive closure of the relation

≤ .= ∪i∈[n] ≤i ∪ {(s, f(s)) | s ∈ S}

is a partial order on E.

We require our MSCs to satisfy an additional non-degeneracy condition: there is
no reversal of the order in which two identical messages sent by some process Pi

are received by another process Pj . Observe that the information in such MSCs
can be captured by a word over Σ that corresponds to the sequence of labels of
a linearization consistent with the partial order ≤. To be precise, a word w over
Σ is well-formed if all receive events have matching sends; and is complete if all
send events have matching receives. Then, a word w over the alphabet Σ is a
linearization of an MSC iff it is well-formed and complete (see [1]).

A natural way to structure multiple scenarios is to employ graphs whose
nodes are MSCs. Formally, an MSC-graph G consists of a set V of vertices,
a binary relation → over V , an initial vertex vI , a terminal vertex vT , and a
labeling function µ that maps each vertex v to an MSC. The paths that start at
the initial vertex and end at the terminal vertex represent the finite executions of
the system modeled by the MSC-graph. To formally associate a set of MSCs with
the MSC-graph G, we first have to define a concatenation operation on MSCs.
Concatenation M · M ′ corresponds to a natural process-by-process pasting of
the two MSCs M and M ′ together (see [3] for a formal definition). Then, we
can associate an MSC with each path by concatenating MSCs corresponding
to individual vertices. The language L(G) of the graph is then all MSCs of the
form µ(v0) · µ(v1) · · ·µ(vn), where v0v1 . . . vn is an accepting path in G. Since
MSCs are uniquely characterized by their linearizations, we will also use L(G)
to denote the set of linearizations of the MSCs in it.

In general, the set L(G) is not regular. The problematic case is when there
is a cycle in the graph such that some process sends a message at some vertex
in the cycle, but does not receive any message at any vertex in the cycle. For
example, consider the MSC-graph with a single node with a self-loop, where the
MSC associated with the node consists of a single message edge. The class of
bounded MSCs avoids this problem. Given an MSC-graph G and a subset U
of its vertices, define the communication graph HU of U as follows: the set of
vertices of HU is the set P of all the processes, and there is an arc from process
p to process q if p sends a message to q in the MSC µ(v) for some v ∈ U . For
a set U of vertices, we denote by PU the set of processes that send or receive a
message in the MSC of some vertex in U , and call them the active processes of
the set U . We call an MSC-graph bounded if for every cycle ρ of G, the subgraph
of the communication graph Hρ induced by the set Pρ of active processes of the
cycle is strongly connected. In other words, communication graph Hρ on all the
processes consists of one nontrivial strongly connected component and isolated
nodes corresponding to processes that are inactive throughout the cycle. In [3],

Realizability and Verification of MSC Graphs 801

a

a

b

b

p1 p2 p3 p4

MSC1

p1 p2 p3 p4

a

a

b

b

MSC2

a

p1 p2 p3 p4

a

b

b

M’

Fig. 1. Weak Inference

it is shown that if G is bounded, the set of linearizations of all the MSCs in L(G)
is regular, and can be generated by a nondeterministic automaton whose size is
exponential in the size of G. The converse of the question, namely, characterizing
regular languages using MSC graphs, is studied in [7].

3 Realizability

3.1 Weak Realizability

Consider the two MSCs MSC1 and MSC2 shown in Figure 1. Any distributed
implementation that exhibits these two behaviors must also exhibit the behavior
depicted by M ′. This is because, as far as each process can locally tell, the
scenario is proceeding according to one of the two given scenarios. Consequently,
we say that the set of MSCs containing MSC1 and MSC2 (weakly) implies M ′ [1].

Formally, for an MSC M and a process Pi, let M |i denote the sequence of
events belonging to the process Pi in M . Then, a set L of MSCs weakly implies
an MSC M iff for all i ∈ [n], there exists an MSC Mi ∈ L such that M |i = Mi|i.
The weak closure Lw of a set L of MSCs contains all the MSCs L weakly implies,
and the set L is weakly realizable iff L = Lw. The notion of weak realizability
was introduced in [1] in the context of the underlying communicating state ma-
chines that would realize the communication patterns specified by given MSCs.
In particular, we had shown that L is weakly realizable iff there exist automata
Ai, one per process Pi, asynchronously communicating with one another over
FIFO buffers, such that the global product of these automata exhibits precisely
the behaviors in L.

The notions defined above naturally extend to MSC-graphs. The MSC-graph
G is said to be weakly realizable if the set L(G) of MSCs is. Thus, a weakly re-
alizable graph already contains all the implied scenarios. We show that checking
weak realizability is undecidable for bounded graphs.

Theorem 1. Given a bounded MSC graph G, checking if G is weakly realizable
is undecidable.

Proof. The proof is a reduction from the Post Correspondence Problem (PCP).
The PCP is as follows: given a collection of pairs 〈(v1, w1), (v2, w2), . . . , (vr, wr)〉,
where vi, wi ∈ Σ∗, for some fixed finite alphabet Σ, with designated initial pair
(v1, w1), determine whether there is a sequence of indices i2, . . . , im, such that

802 R. Alur, K. Etessami, and M. Yannakakis

v1vi2 . . . vim
= w1wi2 . . . wim

(1)

By examining the standard proof of undecidability for the PCP from the Turing
machine halting problem, one can see that the constructed PCP instance has
the property that if there is a solution then there is one where the one string is
always a prefix of the other. In particular, the following version, call it OneSid-
edPCP, remains undecidable: determine whether there is a sequence of indices
i2 . . . im, such that equality 1 holds, and furthermore, for all j ≤ m, the string
w1wi2 . . . wij

is a prefix of the string v1vi2 . . . vij
(that is, the right string never

overtakes the left one). We will reformulate OneSidedPCP slightly further to
suit our purposes. Let Relaxed PCP (RPCP) be the following problem: given
{(v1, w1), (v2, w2), . . . , (vr, wr)}, determine whether there are indices i1, . . . , im
such that xi1 . . . xim

= yi1 . . . yim
, where xij

, yij
∈ {vij

, wij
}, for some index il

xil
6= yil

, and for all j ≤ m, yi1 . . . yij is a prefix of xi1 . . . xij . The proof that
RPCP is undecidable is omitted due to lack of space.

Now we reduce RPCP to weak realizability. Given a finite set L of MSCs, let
L∗ denote the MSC graph that consists of the complete graph with |L| vertices
one per MSC in the set L, dummy initial and terminal vertices vI , vT with empty
MSC’s, and edges from vI to all vertices of L and from those to vT . Thus, an
MSC of this graph is simply a concatenation of MSC’s from the set L. In the
sequel, we say that a process p synchronously sends a message m to process q,
if p sends m to q immediately followed by q sending the message m back to p.
In figures, such messages will be depicted by double arrows.

Given an instance ∆ = {(v1, w1), . . . , (vm, wm)} of RPCP, we build a set
L of MSCs over 4 processes as follows. For a string u, let ul denote the l’th
character of the string. For each pair (vi, wi) we build two MSCs M0

i and M1
i ,

which are depicted in Figure 2. Thus in M0
i , process 1 sends synchronously

(i, 0) to process 2 then sends the index i to process 4, and then process 4 sends
synchronously (i, 0) to process 3. After that, process 2 synchronously sends the
sequence of characters of vi to process 3 (note we assume c is the length of vi and
d the length of wi in the figure), M1

i is similar. Observe that the communication
graph of each of these MSCs is strongly connected and involves all the processes,
and hence, the MSC graph L∗ is bounded.

Claim. ∆ ∈ RPCP iff L∗ is not weakly realizable.
ut

v

c

2

P4 P4

v

2 3

i

i

1
i

v

P

d

(i,0)
i

(i,0)

(i,1)
i

(i,1)

i

P2 3

w i
2

w

PP1 P1

w 1
i

P

Fig. 2. MSCs M0
i and M1

i

Realizability and Verification of MSC Graphs 803

1 1

P1 P2

MSC3

P1 P2

MSC4

2 2 1

P1 P2

MSC5

2

Fig. 3. Safe realizability

3.2 Safe Realizability

As a motivation for safe realizability, consider the MSCs in Figure 3. In MSC3,
both processes send each other the value 1, while in MSC4, both processes send
each other the value 2, and thus, they agree in both cases. From these two,
we should be able to infer a partial scenario, depicted in MSC5, in which the
two processes start by sending each other conflicting values, and the scenario
is then completed in some way. However, the set containing only MSC3 and
MSC4 is weakly realizable. A closer examination reveals that the distributed
implementation of these two scenarios can potentially deadlock when one process
decides to send the message 1 while the other decides to send the message 2. We
need a stronger version of implication closure.

Safe realizability detects such problems by considering partial MSCs, or
equivalently, prefixes of linearizations. Let pref (L) denote the set of prefixes
of the MSCs or words in L. Then, a set L of MSCs safely implies a well-formed
word w (i.e. a partial MSC) iff for all i ∈ [n], there exists a word vi ∈ pref (L)
such that w|i = vi|i. The set L is safely realizable iff pref (L) contains all the
words safely implied by L. As shown in [1], L is safely realizable iff there ex-
ist automata Ai, one per process Pi, asynchronously communicating with one
another over FIFO buffers, such that the global product of these automata is
deadlock-free and exhibits precisely the behaviors in L.

The MSC-graph G is said to be safely realizable if the set L(G) of MSCs is.
For a finite set of MSCs, it is known that weak realizability is coNP-complete
while safe realizability has polynomial-time solution. For bounded graphs, even
though weak realizability is undecidable, checking safe realizability is decidable.
In bounded graphs, if we consider the behaviors corresponding to the paths
in the graphs, a process cannot be far ahead of its communication partner,
thus keeping the buffer size bounded. While checking safe realizability, when
we consider the possible interactions among local behaviors (i.e. projections) of
different processes, if the communication buffer between any pair of processes
exceeds this bound, we can immediately flag an error. In contrast, while checking
weak realizability, even when the buffer size exceeds the bound, we need to
check if there is a “complete” MSC that can extend this partial behavior. We
establish an Expspace upper bound, as well as Pspace-hardness, for checking
safe realizability, but its precise complexity class remains an open problem.

Theorem 2. Checking safe realizability of a bounded MSC-graph is in Ex-
pspace.

804 R. Alur, K. Etessami, and M. Yannakakis

Proof. We know that L(G) is definable by an exponential sized automaton A
each of whose states can be encoded in polynomial space. Likewise, we can build
a concurrent product A′ = ΠiAi, where the Ai are the local automata formed
by the projection of G onto process i, and then determinized and minimized. If
L(G) is safely realizable, then we know that A′ is such a realization. Moreover,
since G is bounded, there is a polynomial bound (actually, linear in the number
of vertices of G) that we can place on the lengths of queues in A′ such that
if ever the queue length is exceeded we will know that the partial MSC which
exceeded the bound is not a prefix of an MSC in L(G). Thus, we first check to see
whether there is an execution of A′ in which the buffer bound is exceeded. This
can be done in Pspace by guessing a bad path. If there is such an execution,
we halt and report that L(G) is not realizable. Thus we assume that A′ enforces
the polynomial bound on the buffers. We can then “build” the complement
automaton Ā for L(G) (we don’t actually build Ā, but compute its states using
the subset construction as we need them). We then need to know whether L(A′)∩
L(Ā) is empty or not. If it is, then A′ realizes L(G). If not, then L(G) is not
safely realizable. Since each state of Ā requires exponential size to encode, we
can determine whether L(A′) ∩ L(Ā) is nonempty in Expspace by guessing an
accepting path in each automaton. ut

Theorem 3. Checking safe realizability of a bounded MSC-graph is Pspace-
hard.

Proof. We reduce the Pspace-complete problem of determining whether a given
NFA, A, accepts Σ∗, to checking safe realizability. Assume A = 〈Q, Σ, δ, q0, l, F 〉
is Σ-labeled on states rather than on transitions, i.e., l : Q 7→ Σ, and δ ⊆ Q×Q.
Let Σ = {a1, . . . , ak} and Q = {q1, . . . , qn}. We build from A an MSC graph
G, which will have nodes (Q′ = {q′

1, . . . , q
′
n}) ∪ {start , left , right} ∪ (V =

{va1 , . . . , vak
}). The edges between vertices in Q′ will be identical to the transi-

tion relation δ over Q, and every node q′ ∈ Q′ is labeled by an MSC with one
synchronous (acknowledged) message from process P1 to P2, where the content
of the message is l(q). The vertices V will form a complete subgraph and va ∈ V
is labeled by an MSC where P1 sends a (synchronously) to P2. The start node
start is labeled with the empty MSC. It has edges to both the left and right
nodes. The node left is labeled by an MSC where P3 sends the (synchronous)
message “left” to P2 and the (synchronous) message “go” to P1. The node right
is labeled by an MSC where P3 sends the (synch) message “right” to P2 and
the (synch) message “go” to P1. The right node has an edge to the initial state
q′
0 ∈ Q′. The left node has edges to all vertices in V . The target nodes of G are

all nodes of V as well as those nodes q′ ∈ Q′ such that q ∈ F . The claim is that
L(G) is safely realizable iff L(A) = Σ∗. ut

4 Verification

Now we turn our attention to the verification problem where the system to be
verified is described by an MSC-graph G. We will consider two semantics for

Realizability and Verification of MSC Graphs 805

the verification problem, the set L(G) of all the MSCs specified by G, and the
set Lw(G) of all the MSCs in the weak closure. First suppose the specification
is given by an automaton A accepting linearizations corresponding to “bad”
behaviors. If the semantics of an MSC-graph G is L(G), then the verification
problem, namely, checking emptiness of L(G) ∩ L(A), is undecidable in general
and Pspace-complete for bounded graphs [1]. As our results will indicate, when
the semantics of G is Lw(G), the verification problem is undecidable even for
bounded graphs. Since MSCs specify partially ordered executions, we proceed
to consider partial-order specifications.

4.1 MSC Membership

Given MSC graph G and given an MSC M , we wish to know (1) is M ∈ L(G)?
and (2) is M ∈ Lw(G)? There are at least two reasons to consider this problem.
First, M may specify an undesirable scenario, so a positive answer to any of
these two questions imply existence of a bug. Second, M may specify a desired
behavior, and answering these questions can help avoid redundancy.

As discussed earlier we can equate an MSC over k processes with a “well-
formed” k-tuple 〈s1, . . . , sk〉 of strings si, where si indicates the linearly ordered
sequence of messages sent and received by process i.

First we consider the question of checking if a given MSC M belongs to
L(G). There are two cases to this question depending on whether the number
of processes k in the MSCs is fixed or not. We observe that for a fixed number
of processes, k, the question can be answered in time O(n2k), and we show that
for an arbitrary number of processes the question is NP-complete. Boundedness
is not relevant to these results.

Theorem 4. Given an MSC-graph G and an MSC M over k processes, there
is an algorithm that decides in O(n2k) time whether M ∈ L(G), where n is the
size of the input (G, M).

Proof. Let M = 〈s1, . . . , sk〉. Let si[j, j′] denote, for 0 ≤ j ≤ j′ ≤ |si| the
substring of si starting at position j and ending at position j′. Since k is fixed, we
can build, by dynamic programming, a 2k-dimensional array of boolean values
K, where K[d1, . . . , dk, d′

1, . . . , d
′
k], is true for 0 ≤ di ≤ d′

i ≤ |si|, whenever
〈s1[d1, d

′
1], . . . , sk[dk, d′

k]〉 ∈ L(G). K can easily be computed in time O(n2k).
Thus, M ∈ L(G) iff K[0, . . . , 0, |s1|, . . . , |sk|] is true. ut

Next we show NP-completeness for the membership problem. The proof is
very similar to the proof given by [9] for “template matching” in MSC graphs,
but because template matching offers more flexibility than finding a given MSC,
we need a reduction from a slightly different NP-complete problem.

Theorem 5. Given an MSC-graph G and an MSC M , it is NP-complete to
determine if M ∈ L(G), even when G is a complete graph, or when G is an
acyclic graph.

Proof. The problem is contained in NP because we can guess a path in G and
easily verify that the path generates M .

806 R. Alur, K. Etessami, and M. Yannakakis

To show NP-hardness, we provide a reduction from the NP-complete prob-
lem ONE-IN-THREE-3-SAT [11]: given a 3-CNF formula ϕ, is there a satisfying
assignment to the variables such that each clause of ϕ gets exactly one literal as-
signed true. From a 3CNF formula ϕ = C1 ∧ . . .∧Cm, over variables x1, . . . , xn,
we define an MSC graph G and an MSC M over 2m + 2n processes. The un-
derlying graph of G is a complete graph, and M does not depend on ϕ. For
each clause Cj , we have two processes Pj,1 and Pj,2, and for each variable xi,
we have two processes Qi,1 and Qi,2. The complete graph G has 2n vertices
V = {vi, wi | i ∈ [n]}, where n is the number of variables in ϕ. All vertices of
G are initial vertices. For each i we label vi by an MSC Mxi

in which there is
a one message (labeled, say, a) from process Pj,1 to Pj,2 precisely when variable
xi appears positively in Cj . In addition, there is a message a sent from Qi,1 to
Qi,2 in Mxi

. Likewise, wi is labeled by an MSC Mx̄i
, which does the opposite of

Mvi
: there is one message labeled a from process Pj,1 to Pj,2 when variable xi

appears negatively. Again, in addition, the message a is sent from Qi,1 to Qi,2.
Finally, we define M , which does not depend on ϕ. In M , for each j, there is

one a-message sent from Pj,1 to Pj,2, and for each i there is an a-message sent
from Qi,1 to Qi,2. It is not difficult to see that M ∈ L(G) iff there is a satisfying
assignment to ϕ that sets precisely one literal in each clause to true. ut

Now we consider the membership question for weak-closure semantics: is
M ∈ Lw(G)? This problem turns out to be much easier:

Theorem 6. Given an MSC-graph G and an MSC M , there is an algorithm
that in time O(|G||M |) determines whether M ∈ Lw(G).

Proof. Suppose G and M = 〈s1, . . . , sk〉 are defined over k processes. For each
process i, let Gi be the “projection” of G onto the events of process i: Gi is
like G, but each vertex v in Gi is labeled with the projection onto process i of
the MSC labeling vj in G. Gi can be viewed as an ordinary automaton over the
alphabet of events belonging to process i. Then M ∈ Lw(G) iff si ∈ Gi for each
i. Building Gi’s can be done in linear time, and checking whether si ∈ Gi can be
done in time O(|Gi||si|), for each i ∈ [k]. Thus, the total time is O(|G||M |). ut

4.2 Checking Local Properties

Given G, we want to know whether Lw(G) satisfies a property ϕ. A property
ϕ is linearization independent if it holds for one linearization of an MSC iff
it holds for all. A property ϕ of MSCs is said to be local if it (syntactically)
only describes events on one process. Boolean combinations of local properties
are clearly linearization independent. It is known that checking linearization
independent properties of L(G) can be done in polynomial-time [10]. However,
the following theorems shows that we cannot hope to find efficient model checking
algorithms for Lw(G).

Theorem 7. There are local properties ϕ1 and ϕ2 such that for a finite MSC
set L, it is coNP-complete to determine if every MSC in Lw satisfies ϕ1 ∨ ϕ2.

Proof. The membership in co-NP is obvious. The hardness proof is a reduction
from 3SAT. Let Γ = 〈C1, . . . , Cm〉 be the clauses of the 3SAT formula, ordered

Realizability and Verification of MSC Graphs 807

in some arbitrary way, and let x1, . . . , xn be its variables. We will add new
variables y and z1, . . . , zm. Our new ordered list of clauses will be ∆ = 〈y ∨
¬z1, y∨¬z2, . . . , y∨¬zm, C1∨z1, C2∨z2, . . . , Cm∨zm〉. Clearly, Γ has a satisfying
assignment iff ∆ has a satisfying assignment with y = 0. Let ∆|k1 denote the first
k clauses in the list ∆. Notice that for every clause Ci and for every assignment
to variables occurring in Ci, there is a satisfying assignment of ∆|i+m−1

1 which
agrees with that assignment.

Now we are ready to describe our MSC set, and our properties ϕ1 and ϕ2.
The MSC set will consist of one process for every variable and every clause in ∆.
In addition, there will be an extra process called Pf , which will serve to tabulate
whether the formula has been satisfied or not. There will be one MSC, Mt based
on the “trivial” satisfying assignment to Γ , namely Py will send true to every
clause that contains it, in their lexicographical order. Likewise, the Pzi

’s will
send true to every clause that contains zi, respectively. The xi variables, can
either send true or false to their clauses, it doesn’t matter here. Each clause
process PC′ , after receiving its truth assignment in messages (which it reads
in the lexicographical order of the variables), then receives a message from its
predecessor clause (if there is one) which either indicates that the prior clauses
have all been satisfied or not. If the prior clauses have been satisfied, and if
C ′ itself has also been satisfied, then C ′ propagates the “satisfied” message to
the next clause in the ordered list. Otherwise, it propagates “not satisfied”. The
last clause C ′′ propagates this message to Pf , which does nothing other than to
receive it. Clearly, for the assignment on which Mt is based, Pf will receive a
satisfied message.

Next, for each clause Ci ∨ zi, and for each satisfying assignment ρ to the
variables in Ci ∨ zi (there are only a constant number of these, since Ci is a
3CNF clause), we will add a new MSC MCi,ρ which mimics the same thing as
above, only the assignment to the variables is one consistent with both ρ and the
assignment mentioned above which satisfies Γ |i+m−1

1 . Finally, we add another
MSC My, whose only purpose is to exhibit one MSC such that the “assignment”
to y is false.

Our set L of MSCs contains Mt, My and the MSCs MCi,ρ. Consider an
MSC M ∈ Lw. If Pf receives a “satisfied” message, then we can construct a
satisfying assignment for ∆ from M . Moreover, if Py sends false’s in M , then
we can construct a satisfying assignment which assigns y = 0, i.e., a satisfying
assingment to Γ . We claim that the converse holds as well, i.e., if there is such
a satisfying assignment, then there will be an M weakly-implied by L where Py

sends false (call this ¬ϕ1) and Pf receives “satisfied” (call this ¬ϕ2). ut
It follows that checking whether every MSC in Lw(G), for an acyclic MSC-

graph G, satisfies a boolean combination of local properties is coNP-complete.

Theorem 8. There is a boolean combination ϕ of local properties, such that
given a bounded MSC-graph G, it is undecidable to check if every MSC in Lw(G)
satisfies ϕ.

Proof. The proof uses precisely the same complete MSC graphs given in the
proof of Theorem 1, which reduce an instance of RPCP to checking whether

808 R. Alur, K. Etessami, and M. Yannakakis

L(G) = Lw(G). Note that in that setting there is an implied but unspecified
MSC (and thus a solution to the RPCP) if and only if every message sent by
process P1 to P2 is of the form (i, 0), while every message sent by P3 to P4 is of
the form (i, 1), or vice versa. ut

Acknowledgements. This research was partially supported by NSF Career
award CCR97-34115, NSF award CCR99-70925, and Sloan Faculty Fellowship.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In Proc. of 22nd Int. Conf. on Software Engineering, 2000.

[2] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence charts.
Software Concepts and Tools, 17(2):70–77, 1996.

[3] R. Alur and M. Yannakakis. Model checking of message sequence charts. In
Concurrency Theory, Tenth Intl. Conference, LNCS 1664, pages 114–129, 1999.

[4] H. Ben-Abdallah and S. Leue. MESA: Support for scenario-based design of con-
current systems. In Proc. 4th TACAS, LNCS 1384, pages 118–135, 1998.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User Guide.
Addison Wesley, 1997.

[6] H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and
non-local choice in message sequence charts. In Proc. 2nd TACAS, 1997.

[7] J. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. On message
sequence graphs and finitely generated regular MSC languages. In Proc. 27th
ICALP, LNCS 1853, pp. 675–686, 2000.

[8] G.J. Holzmann, D.A. Peled, and M.H. Redberg. Design tools for for requirements
engineering. Lucent Bell Labs Technical Journal, 2(1):86–95, 1997.

[9] A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts.
In Foundations of Software Science and Computation Structures, 1998.

[10] D. Peled. Specification and verification of message sequence charts. In Proc. IFIP
FORTE/PSTV, 2000.

[11] T.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM
Symp. on Theory of Computing, pages 216–226, 1978.

[12] ITU-T recommendation Z.120. Message Sequence Charts (MSC’96), 1996.

Reasoning about Sequential and Branching
Behaviours of Message Sequence Graphs

P. Madhusudan

Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, India.
madhu@imsc.ernet.in

Abstract. We study the model-checking problem of message-sequence
graphs (MSGs). In the sequential setting, we consider the set of message-
sequence charts (MSCs) represented by an MSG and tackle specifications
given in monadic second-order logic. We show that this problem, without
any restrictions on the MSGs, is decidable. We then turn to branching
behaviours of MSGs, define a notion of an unfolding of an MSG, and
show that the model-checking problem on unfoldings is also decidable.
Our results are stronger and imply that, over an appropriate universe,
satisfiability and synthesis of MSCs and MSGs, respectively, are decid-
able.

1 Introduction

Message sequence charts (MSC) are a popular visual formalism used to de-
scribe design requirements of concurrent message-passing systems [16,10]. They
are used to describe behaviours of systems in early models of system design. An
MSC describes a single partially-ordered execution of the system and a collection
of these diagrams formalize the set of possible scenarios exhibited by a model.
These diagrams are usually used in the design of distributed telecommunica-
tion protocols and are also known as timing-sequence diagrams or message-flow
diagrams [16].

Message sequence graphs (MSGs), also known as MSC-graphs, are a conve-
nient mechanism to specify an infinite collection of MSCs. These graphs basically
have a finite set of atomic MSCs and the MSG defines some (regular) ways to
combine them using concatenation, choice, and repetition. As a model of con-
current systems they are interesting as they exhibit a sequential composition of
parallel behaviours, as opposed to most other models which are parallel compo-
sitions of sequential machines.

Since MSCs and MSGs have a formal semantics, they are amenable to anal-
ysis. The issue of model-checking MSCs and MSCs defined by an MSG has been
an area of active study in recent years [1,11,14,13,2,9]. Automated verification
of MSGs could enable engineers to check whether the design requirements have
been met and whether it describes the set of desirable (or undesirable) behaviours
correctly.

Alur and Yannakakis [2] give a detailed account of the model-checking prob-
lem for MSGs and the corresponding complexity involved. They consider the

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 809–820, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

810 P. Madhusudan

problem of deciding whether the linearizations of events of all MSCs defined
by an MSG satisfy some linear-time property. As they show, the problem is
undecidable even if the specification of good behaviours is given by a determin-
istic finite automaton. Consequently, in [2] the authors consider a syntactically
identifiable sub-class of MSGs called bounded MSGs, for which they prove that
the linearizations form a regular set of sequences, and thereby solve the model-
checking problem for this class.

In [7,9], the authors define a notion of regular MSC-languages which are
recognizable by distributed communicating finite-state devices and study their
properties. The global device is forced to be finite-state by constraining channels
to have a bounded capacity. However, this class of languages are not contained
in, nor contain, the class of languages defined by MSGs [8]. It is also shown that
bounded MSGs define only regular MSC-languages and hence it follows from
their results that one can decide specifications written in MSO on such bounded
MSGs.

In this paper, the main point of departure from previous work is to com-
pletely ignore linearizations of events of an MSC and instead work directly on
the graphical (visual) description of the charts. The main result we show is that
the problem of deciding whether the set of all MSCs defined by an MSG satisfy
a property given as a MSO formula is decidable. The solution does not assume
any restriction on the atomic MSCs— they can exhibit non-FIFO behaviour, the
messages can have labels, processes can have local actions, etc. Also, the MSGs
are not restricted in any way— they can be unbounded in the sense of [2].

In the second half of our paper, we show how to handle branching-time
behaviours of MSGs. We define the notion of an unfolding of an MSG which
we believe is useful to reason about its behaviours, and then show that this
infinite graph has a decidable monadic theory. This then enables the verification
of properties such as asking whether every (finite) MSC defined by a given MSG
is always extendable to another defined by the MSG, which satisfies a property
expressed in MSO.

Our results are in fact are stronger. Let us fix any finite set of atomic fi-
nite MSCs and consider the universe of all MSCs generated by this set using
concatenation. Then we show that a restricted form of satisfiability— whether
there is an MSC which is formed using the atomic MSCs which satisfies a given
formula— is decidable. We also show that the problem of synthesis of MSGs—
whether there is an MSG whose unfolding satisfies a given specification— is
decidable.

Our results and the simplicity of the concepts in our proofs suggest that
structural logics are perhaps more amenable to reasoning about MSCs than
logics which specify properties of the linearizations of an MSC. Logics such as
monadic second-order logic, or an adaptation of the logic LTrL [19], or localised
logics such as mLTL [15] can all be seen as structural logics which when defined
over MSCs appropriately will be decidable.

Turning to the theoretical interest of our results, the study of infinite graphs
which have a decidable monadic theory is an interesting area of research [5,

Reasoning about Sequential and Branching Behaviours 811

20,18]. Our results exhibit a class of infinite graphs, which arise naturally in
the study of concurrent systems, that do have a decidable monadic theory. A
careful reader will note that our proofs do not assume much about MSCs and
the results can be extended to the setting where we work with any set of atomic
finite n-boundaried graphs. Also, our results are stronger as we show that we
can work over an infinite universe of infinite graphs and the monadic second-
order formulas describe only “regular” subsets of this class. We can hence answer
questions like whether there is a graph in such a class which satisfies a property
given in MSO.

In the next section we introduce our problem setting and deal with the se-
quential behaviours of MSGs in Section 3. In Section 4 we define the notion of
an unfolding of an MSG and show how we can reason about it. Due to space
restrictions we provide only the main ideas— more details can be found in [12].

2 Preliminaries

A message sequence chart (MSC) is a diagram which depicts a single partially-
ordered execution of a distributed message-passing system. For example, consider
the MSC depicted on the left-hand side of Figure 1. It consists of four processes—
a customer c, a manager m, a database server d and a security checker s. The
MSC depicts a particular scenario where the customer requests for data with
his identity. Though the customer sends the request first followed by the id, the
messages get delivered in reverse order. After receiving the id, the manager sends
it to the security checker for verification. It also sends the request to the database.
After receiving messages from them, the manager serves the customer with the
data. Note that the security process has a local action where it checks the id.
The MSC represents one partially-ordered behaviour of the way the messages
were sent and received— some events are ordered while others, like m receiving
the request and s receiving the id, are not.

m

m

m

m

m

m

c

c

d

s

req

chk_id

m sdc

ok

data

req

id

data

id

req

id

data

ok

data

req

chk_id

id

Fig. 1. An MSC and its associated graph

812 P. Madhusudan

We work with MSCs by considering them as labelled directed graphs. For ex-
ample, Figure 1 illustrates an MSC and the corresponding graph representation
for it. The graph representing the MSC has vertices at points where the events
take place, and edges denote messages as well as local actions. A vertex with an
outgoing message edge is to be viewed as the action of sending a message, while
the vertex at the other end is seen as the point where the message is received.
The vertices of each process p are connected in the natural way according to the
local linear flow of time, and these edges are labelled by a special symbol 3p

(denoted by dotted lines).
Let us now define MSCs formally. Let us fix a finite set of processes P and

let p, q, r range over P. Let us also fix a finite set of local actions Γl and a set
of messages Γm. For each p ∈ P, let us also have a next-state symbol 3p and let
Γn = {3p | p ∈ P}. We fix all these for the rest of the paper and assume that all
these sets are pairwise disjoint. Let Γ = Γl ∪Γm ∪Γn. In the above example, P =
{c,m, d, s}, Γm = {id , req , data, ok}, Γl = {chk id}, Γn = {3c,3m,3d,3s}.

Let us fix some notations on directed graphs. A directed graph G over a finite
label-set L is a tuple (V,E) where V is a set of vertices and E ⊆ V × L × V .
By v

l−→v′ we mean (v, l, v′) ∈ E. For a set L′ ⊆ L and v ∈ V , we denote by
outL′(v) the set of all vertices such that there is an L′-labelled edge from v to
it— i.e. outL′(v) = {v′ ∈ V | ∃l ∈ L′ : (v, l, v′) ∈ E}. Similarly, inL′(v) denotes
the set of vertices which have an L′-labelled edge to v.

For a linear-order ≤ on a finite set S, let <· denote the covering relation for
≤: for any x, y ∈ S, x<· y iff (x ≤ y and ∀z ∈ S, if x ≤ z ≤ y, then z = x or
z = y). Also, for any n ∈ N, let [n] denote the set {1, . . . , n}.

Definition 1. A message sequence chart (MSC) is a tuple ({Vp}p∈P , E) where,
if V =

⋃
p∈P Vp, then:

– V is finite
– E ⊆ [

⋃
p∈P(Vp × (Γl ∪ Γn) × Vp)] ∪ [

⋃
p,q∈P,p 6=q(Vp × Γm × Vq)]

– For each p ∈ P, there is a linear-order ≤p on Vp such that ∀v, v′ ∈ Vp :

(v<· v′ iff ∃l ∈ Γl ∪ Γn : v l−→v′).
– outΓl∪Γn

(v) is a singleton set.
– For each v ∈ V , one of the three sets outΓl

(v), outΓm
(v) and inΓm

(v) is a
singleton set and the other two are empty.

– G = (V,E) is acyclic. ut
The second condition demands that the edges within a process be labelled

by local actions or next-state symbols while edges between different processes
are labelled using the message alphabet. The next two conditions demand that
the events of each local process are totally ordered and are connected in this
order using exactly one edge. We also demand that at each point, exactly one
of the following happen: a message is received, a message is sent, or there is a
local action. We finally require the events to be partially ordered.

Though we do not require it, for technical ease let us assume that each
Vp is nonempty. For an MSC m and a process p ∈ P, the linear order on Vp

satisfying the condition above is clearly unique, and we denote this by ≤p. Let

Reasoning about Sequential and Branching Behaviours 813

the minimum vertex of Vp in m under this ordering be denoted by firstm
p and

the maximum vertex by lastm
p . We identify an MSC with its equivalence class

with respect to isomorphism— i.e. two graphs will represent the same MSC if
they are isomorphic.

Concatenation of two MSCs is done by (asynchronously) concatenating the
individual process evolutions of the MSCs. For example, Figure 2 illustrates the
concatenation of two MSCs. Formally,

Definition 2. Let m1 = ({Up}p∈P , E1) and m2 = ({Vp}p∈P , E2). Let Up and
Vp be disjoint sets (if they are not, relabel vertices to make them disjoint). The
concatenation of m1 and m2, denoted by m1 ·m2 is the MSC ({Wp}p∈P , E) where
Wp = Up ∪ Vp and E = E1 ∪ E2 ∪ {(lastm1

p ,3p,firstm2
p) | p ∈ P}. ut

Note that concatenation is associative.
We now fix notations for talking about finite-automata. A deterministic

finite-state automaton (DFA) A is a structure (Σ,Q, qin, δ, F), where Σ is a finite
alphabet, Q is a finite set of states, qin ∈ Q is the initial state, δ : Q × Σ → Q
is the transition function and F ⊆ Q is the set of final states. The transi-
tion function δ can be extended to a function δ′ : Q × Σ∗ → Q by defining
δ′(q, a) = δ(q, a) and δ′(q, x · a) = δ(δ′(q, x), a). We say that A accepts a word
x ∈ Σ∗ if δ′(qin, x) ∈ F . The language of A, denoted by L(A) is the set of strings
it accepts.

Message sequence graphs are a convenient mechanism to define a collection
of MSCs. We use a slightly different but equivalent terminology than usually
found in the literature.

Definition 3. A message sequence graph (MSG) is a structure M =
(Σ,A,M, h) where Σ is a finite alphabet, A is a finite automaton on Σ, M
is a finite collection of MSCs over P and h : Σ → M is a bijection that identi-
fies an MSC in M for each symbol in Σ. ut

We specify properties of MSCs as well as other directed graphs using monadic
second-order logic (MSO). Let Π be any finite alphabet. Then the monadic
second-order logic over directed graphs with edge labels from Π is defined as
follows: let there be an infinite number of first-order variables {x, y, z, . . .} and
second-order variables {X,Y, Z, . . .}. The set of MSO formulas is the smallest
set containing:

– The atomic formulas of the kind x ∈ X and x
l−→y where l ∈ Π.

– The formulas ϕ ∨ ψ, ¬ϕ, ∃xϕ(x) and ∃Xϕ(X), where ϕ and ψ are MSO
formulas.
ϕ(x) (ϕ(X)) denotes a formula with free variable x (X).

Let G = (V,E) be a (finite or infinite) graph where E ⊆ V × Π × V and
let ϕ be a formula. An interpretation for ϕ is a function I which assigns to
each free first-order variable of ϕ a vertex in V and assigns to each free second-
order variable of ϕ a subset of V . The semantics of a formula being true under
an interpretation I is the usual one. A sentence is a formula ϕ without free

814 P. Madhusudan

variables. For a sentence ϕ and a graph G, we say G satisfies ϕ if ϕ is true in G
and we denote this by G |= ϕ.

In the proofs, we work with a different set of formulas that is as expressive,
but which has no formulas with first-order variables (as done in [18]). This
restricted syntax has atomic formulas X ⊆ Y , Singleton(X) and X l−→Y . Other
formulas are ϕ∨ψ, ¬ϕ and ∃Xϕ(X). It is easy to see that this syntax is exactly
as expressive as the original one.

3 Sequential Behaviours of MSGs

Let us fix an MSG M = (Σ,A,M, h) for the rest of this section. An MSC m
is generated by M if there is a string x ∈ Σ∗ accepted by A such that the
concatenation of the MSCs in x is m.

Formally, for x = a0a1 . . . an ∈ Σ∗, let mscM,h(x) = h(a0) · h(a1) . . . h(an).
When M and h are clear from context, we denote mscM,h(x) by msc(x). The
MSC-language of M is L(M) = {msc(x) | x ∈ L(A)}. We say that M generates
m if m ∈ L(M).

The sequential model-checking problem for MSGs is then the following: Given
an MSO sentence ϕ over directed graphs labelled by Γ and an MSG M, do all
the MSCs generated by M satisfy ϕ?

MSO is an expressive mechanism to state the required structural properties
of MSCs. For example, we can state in the context of the example in Figure 1
that if the manager sends the data, then there must be a corresponding confir-
mation of id from the security checker. It can also express a variety of safety and
liveness conditions (like “if p sends a request, then it eventually gets an acknowl-
edgement”, “if the messages are delivered in FIFO fashion, then a property ϕ
holds”, etc.).

The main lemma we use to prove that the above problem is decidable is to
show that for any property ϕ, the strings x ∈ Σ∗ such that mscM,h(x) |= ϕ
form a regular subset of Σ∗. The proof follows the structure of Thomas’ adap-
tation of the proof by Büchi [3] and Elgot [6] that classes of languages defined
by monadic second-order formulas over finite strings correspond to the class of
regular languages (see [17,18]). This proof works by inductively associating with
every formula ϕ(X1, . . . , Xk) an automaton Aϕ over words that encode interpre-
tations of the variables over the structure and accept the word iff the structure,
under the interpretation, satisfies ϕ.

Let ϕ be a MSO formula over MSCs. The idea is to augment the alphabet
Σ to get a new alphabet which has letters of the form (a, I), where a ∈ Σ. Let
x be a finite string over this alphabet, say x = (a0, I0), . . . (an, In). The MSC
we are working on now is m = mscM,h(a0 . . . an). The second component of the
alphabet will define an interpretation of the free variables of ϕ over the MSC
m. The idea is that Ij will encode an interpretation of the variables over the
MSC h(aj), for each j ∈ {0, . . . , n}. Together, the Ij ’s will define a complete
interpretation of the variables over the graph m.

Reasoning about Sequential and Branching Behaviours 815

We then follow the automata-theoretic approach to show inductively that for
every formula ϕ, there is an automaton over a suitable alphabet which accepts
a word iff the MSC defined by the word, under the interpretation of the free
variables of ϕ over this MSC, satisfies the formula ϕ.

Now, let ϕ have k free (second-order) variables. For a letter a ∈ Σ, we require
a way to encode all interpretations of the k variables over the MSC h(a). Let h(a)
have r vertices. Then a 0-1 matrix Z with k rows and r columns can represent
any such interpretation: the jth vertex of h(a) (according to some fixed ordering)
belongs to the ith variable iff the entry in Z on the ith row and jth column is 1.

Let us fix some notations for matrices. For any k, r ∈ N, let Sk×r denote the
set of all 0-1 matrices with k-rows and r-columns. For Z ∈ Sk×r, we denote by
Z[i, j] (i ∈ [k], j ∈ [r]), the element at the ith row and jth column in Z.

Lemma 1. Let ϕ be an MSO property on directed graphs with edge labels from
Γ . Let M be a finite set of MSCs, Σ be a finite alphabet and let h : Σ → M be
a bijection. Let LΣ,M,h

ϕ = {x ∈ Σ∗ | mscM,h(x) |= ϕ}. Then LΣ,M,h
ϕ is a regular

subset of Σ∗. Moreover, one can effectively construct a finite-state automaton
accepting LΣ,M,h

ϕ .

Proof: For each MSC m = ({Vp}p∈P , E) ∈ M , let s(m) denote the number of
vertices in m, i.e. |V |, where V =

⋃
p∈P Vp. Also fix some ordering on V .

For any k ∈ N, let Σk = {(a, Z) | a ∈ Σ,Z ∈ Sk×s(h(a))}. A letter (a, Z) ∈ Σk

defines an interpretation of k variables on subsets of vertices of h(a): a vertex u
of the MSC h(a) is in Xi iff u is the jth element of m and Z[i, j] = 1.

A string x = (a0, Z0) . . . (an, Zn) ∈ Σ∗
k encodes an interpretation of the k

variables on the MSC h(a0) · h(a1) . . . h(an)— this is given by taking the union
of the individual interpretations. The claim we prove now is:
Claim For each MSO formula ϕ(X1, . . . Xk) there is a deterministic finite-state
automaton Aϕ over the alphabet Σk which accepts a string x iff the MSC defined
by x, under the interpretation defined by x, satisfies ϕ.
Proof of Claim We show the claim by induction on the structure of ϕ. It is
easy to see that the atomic formulas X ⊆ Y and Singleton(X) can be checked by
an automaton. For the atomic formula X l−→Y where l ∈ Γ , the automaton first
checks whether the interpretations for X and Y are singleton sets and rejects
the word if it is not. Let X be interpreted as {u} and Y as {v}. If u and v belong
to the same atomic MSC h(a) for some (a, Z) in the input sequence, then clearly
u

l−→v iff u
l−→v in h(a). The automaton can decide this by a table-lookup and

accept or reject the word accordingly.
We are left with the case where u and v belong to different atomic MSCs. If

l ∈ Γl ∪ Γm, then the automaton rejects. Otherwise let l = 3p. It checks now
whether u and v belong to consecutive atomic MSCs m,m′ in the input, and
whether u is lastm

p and v is firstm′
p . If so, it accepts the word and otherwise

rejects it.
The other formulas are easy to tackle— disjunction, negation and existential

quantification are handled by using the fact that DFAs are effectively closed
under union, complement and projection. End of claim

816 P. Madhusudan

From the Claim, it is clear that for any sentence ϕ, we can construct an automa-
ton over Σ∗ such that the automaton accepts a word x iff mscM,h(x) |= ϕ. ut
We can now solve the model-checking problem for MSGs:

Theorem 1. Given an MSG M and an MSO formula ϕ over MSCs, the prob-
lem of checking whether all MSCs generated by M satisfy ϕ is decidable.

Proof: Let the MSG be M = (Σ,A,M, h). Construct using Lemma 1, an
automaton accepting LΣ,M,h

¬ϕ . This language consists of all sequences x ∈ Σ∗

such that msc(x) 6|= ϕ. Take its intersection with A. Clearly, the intersection is
empty iff all the MSCs generated by M satisfy ϕ. ut

Another consequence of Lemma 1 is that we can solve a related satisfiability
problem:

Theorem 2. Let M be a finite set of MSCs and ϕ be an MSO formula over
MSCs. Then the problem of finding whether there is an MSC m, which can be
expressed as a concatenation of MSCs in M , such that m satisfies ϕ, is decidable.

Proof: Take an alphabet Σ, with |Σ| = |M |, take a 1-1 function h : Σ → M ,
and construct, using Lemma 1, an automaton accepting the language LΣ,M,h

ϕ .
Clearly, there is an MSC m formed using MSCs in M which satisfies ϕ iff
LΣ,M,h

ϕ 6= ∅. ut
Observe that all the above results can be adapted to infinite concatenations

as well. We can easily extend Definition 2 to define infinite concatenations of
finite atomic MSCs in the natural way. We can extend the notion of an MSG
such that the automaton provided accepts regular ω-languages over Σ. Then
Lemma 1 smoothly extends to MSO formulas over infinite MSCs generated by the
finite collection of finite atomic MSCs in the MSG. All we need to do is to work
over nondeterministic Büchi automata [4,17,18] and use the property that the
languages these automata accept are effectively closed under union, complement
and projection. The analogous model-checking and satisfiability theorems for
infinite MSCs will hold as well. Such an extension will facilitate formulating
liveness properties of the system.

4 Branching Behaviours of MSGs

In this section, our main goal is to define the unfolding of an MSG and show
that its MSO theory is decidable. However, as in the previous section, we prove a
stronger theorem which says that the set of all unfoldings which satisfy a formula
is regular. Let us prove this lemma before we tackle MSGs.

Fix D ∈ N and a finite alphabet Σ. A Σ-labelled D-ary tree is a tuple (T, ρ)
where T is the graph G = (VT , ET) where VT = [D]∗, ET = {(x, x · d) | x ∈
VT , d ∈ [D]} and ρ : [D]+ → Σ. (Note that the root is not labelled). Let M be
a finite collection of (finite) MSCs and h : Σ → M be a bijection.

Definition 4 (Wrap of an MSC). Let a ∈ Σ, m = h(a) = ({Vp}p∈P , E).
Then the wrap of m is the graph Gw = (Vw, Ew) where Vw = (

⋃
p∈P Vp)∪{fa, la}

and Ew = E ∪ {(fa, ∗a,firstm
p), (lastm

p , ∗a, la) | p ∈ P}. ut

Reasoning about Sequential and Branching Behaviours 817

Note that the wrap of an MSC is just the MSC with two extra vertices, one
of which is connected to the first nodes of the MSC and the last nodes of the
MSC are connected to the other. Now we associate with any Σ-labelled D-ary
tree (T, ρ), the graph obtained by replacing each vertex u of T by the wrap of
h(ρ(u)).

Definition 5. Let (T, ρ) be a Σ-labelled D-ary tree with T = ([D]∗, ET). Then
the graph associated with (T, ρ) is the graph G = (V,E) where V = {〈u, v〉 | u ∈
[D]+ and v is a vertex in wrap(h(ρ(u)))} ∪ {r} and
E = {(〈u, v〉, l, 〈u, v′〉) | v l−→v′ in wrap(h(ρ(u)))} ∪

{(〈u, la〉, ∗, 〈u′, fb〉) | u → u′ in T and ρ(u) = a, ρ(u′) = b} ∪
{(r, ∗, 〈i, fa〉) | i ∈ [D], ρ(i) = a}. ut

Let Π = Γ ∪ {∗a | a ∈ Σ} ∪ {∗}. We now work with MSO formulas over
graphs labelled over Π. Consider such a formula ϕ. We show now that the set
of Σ-labelled D-ary trees T such that the graph represented by T satisfies ϕ, is
a regular tree-language (of Σ-labelled infinite trees).

The idea behind the proof is exactly the same as in the sequential setting. We
extend the alphabet so that each symbol can now encode an interpretation of
variables over the (wrap of the) MSC at the node. Then, we can show that with
every formula ϕ(X1, . . . , Xk), one can associate a parity tree automaton which
accepts a tree iff the graph associated with the tree along with the interpretation
of X1, . . . , Xk coded in it, satisfies ϕ. (We do not define parity tree automata as
we will not give proofs here— see [17,18] for details.) We then have:

Lemma 2. Let ϕ be an MSO property on directed-graphs with edge-labels from
Π. Let D ∈ N, M be a finite set of MSCs, Σ be a finite alphabet and let h :
Σ → M be a bijection. Let LΣ,M,h

ϕ be the set of all Σ-labelled D-ary trees
(T, ρ) such that the graph associated with it satisfies ϕ. Then LΣ,M,h

ϕ is a regular
tree-language. Moreover, one can effectively construct a finite-state parity tree-
automaton accepting LΣ,M,h

ϕ . ut
We do not give the proof here as the ideas are exactly the same as in the se-
quential case and the rest is only detail.

Let us now turn to MSGs. An MSG in this section will be a tuple M =
(Σ,TS ,M, h) where Σ, M and h are as before and where TS is a (finite)
transition system (Q, qin, δ) where Q is a finite set of states, qin ∈ Q is the
initial state and δ ⊆ Q × Σ × Q. Let us define the successor function as
succ(q) = {(a, q′) | (q, a, q′) ∈ δ} for each q ∈ Q. For technical simplicity,
let us assume that the number of successors for each state is the same— let
∀q ∈ Q : |succ(q)| = D, for some D ∈ N. Let us also order the successors of each
state and let succ(q)[i] denote the ith successor of q, where i ∈ [D].

Fix an MSG M = (Σ,TS ,M, h) for the rest of this section. The (Σ × Q)-
unfolding of M is the (Σ × Q)-labelled D-ary tree (T, ρ) where T = (VT , ET)
and ρ is the unique labelling which satisfies:
– ρ(i) = succ(qin)[i], for every i ∈ [D]
– If ρ(x) = q, then ρ(x · i) = succ(q)[i], for every i ∈ [D], x ∈ VT .

818 P. Madhusudan

The Σ-unfolding of M is obtained by projecting the labels of the above tree
to the first component. Now the unfolding of the MSG M is the graph associated
with the Σ-unfolding of M. 1

q

q

rp q

q

q

m1

p q r

p q r

m2

grant

ok

chk

req p q r

m1 m2

ok

chk

req

grant

Fig. 2. Concatenation of MSCs

For example, for Σ = {a, b, c} with h(a) = m1 and h(b) = m2, where m1 and
m2 are the MSCs depicted in Figure 2, Figure 3 illustrates a transition system,
part of its Σ-unfolding and the corresponding unfolding of the MSG.

Note that the notion of an unfolding does not imply that we have synchronous
concatenation of MSCs. Indeed, as in the previous section, we can in the specifi-
cation dynamically interpret the edges required for asynchronous concatenation
and MSO formulas can then reason about the MSCs thus generated. The reason
we use the above definition is to enable us to clearly describe the points at which
the branching of behaviours takes place.

We can now show that the branching-time model-checking problem for MSGs
is decidable:

Theorem 3. Let M be an MSG and let ϕ be a MSO property on graphs labelled
over Π. Then the problem of checking whether the unfolding of M satisfies ϕ is
decidable.

Proof: First construct, using Lemma 2, a parity tree-automaton Aϕ that ac-
cepts exactly the Σ-labelled D-ary trees such that the associated graph satisfies
ϕ. Now, TS can be converted to a tree automaton AM accepting the language
consisting of a single tree which is the Σ-unfolding of M. Now, clearly, there is
a tree accepted by both Aϕ and AM iff the unfolding of M satisfies ϕ. ut

We can now show that various branching-time properties of MSGs, like one
saying that every finite MSC generated by the MSG is extendable to another
generated by the MSG which satisfies a property ϕ on MSCs, is decidable. We can
also prove an associated synthesis problem, which is an analogue of Theorem 2:
1 Note that the unfolding of the MSG is independent of the way the successors of

states of TS were ordered.

Reasoning about Sequential and Branching Behaviours 819

b

a

a

a

q

a

a

a

q

a

q

a

b

a

a

a

b

a

b

bb

*

*

*

*
* *

*
*

* * *

*

*

*

*

*

*

S -Unfolding

*

*

chk

req

chk

req

grant

ok

**

TS

Unfolding

a

a

a

b

c

b

*

c a

Fig. 3. A transition system, the Σ-unfolding and the unfolding

Theorem 4. Let M be a finite set of MSCs, Σ be a finite set, h : Σ → M be a
bijection, D ∈ N and ϕ be an MSO formula over Π. Then the problem of finding
whether there is an MSG M = (Σ,TS ,M, h) of branching degree at most D
such that the unfolding of M satisfies ϕ, is decidable.2

Proof: Construct, using Lemma 2, a tree automaton accepting the language
LΣ,M,h

ϕ . Clearly, there is an unfolding formed using MSCs in M and respecting
h which satisfies ϕ iff LΣ,M,h

ϕ 6= ∅. If the language is nonempty, we can use a
regular run accepted by the automaton and construct a finite-state MSG whose
unfolding satisfies ϕ. ut

This theorem can be used to synthesize MSGs which satisfy a property ϕ.
The new edges added in the wrap constructions allow the formula to express
properties of nondeterminism which can for example arise due to the fact that
the environment is uncontrollable.

Acknowledgement. I would like to thank Wolfgang Thomas, who introduced
me to decidable MSO theories of graphs beyond trees, and Meenakshi, for intro-
ducing me to MSCs and helping me understand the related literature.
2 We need not even require D to be given— however the proof of this is out of the

scope of this paper.

820 P. Madhusudan

References

1. R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence charts.
In Software Concepts and Tools, volume 17(2), pages 70–77, 1996.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc.
CONCUR ’99, volume 1664 of LNCS. Springer-Verlag, 1999.

3. J. R. Büchi. Weak second-order arithmetic and finite automata. In Z. Math. Logik
Grundl. Math., volume 6, pages 66–92, 1960.

4. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12, Stanford, 1962.
Stanford University Press.

5. D. Caucal. On infinite transition graphs having a decidable monadic theory. In
Proc. 23rd ICALP, volume 1099 of LNCS, pages 194–205. Springer-Verlag, 1996.

6. C.C. Elgot. Decision problems of finite automata and related arithmetics. In Trans.
Amer. Math. Soc., volume 98, pages 21–52, 1961.

7. J.G. Henriksen, M. Mukund, Narayan Kumar, and P.S. Thiagarajan. Towards a
theory of regular MSC languages. BRICS Report RS-99-52, Department of Com-
puter Science, Aarhus University, Denmark, 1999.

8. J.G. Henriksen, M. Mukund, Narayan Kumar, and P.S. Thiagarajan. On message
sequence graphs and finitely generated regular MSC languages. In Proc. ICALP
’00, volume 1853 of LNCS. Springer-Verlag, 2000.

9. J.G. Henriksen, M. Mukund, Narayan Kumar, and P.S. Thiagarajan. Regular
collections of Message Sequence Charts. In Proc. MFCS ’00, LNCS. Springer-
Verlag, 2000.

10. ITU-TS Recommendation Z.120. Message sequence chart (MSC). ITU-TS, 1997.
11. V. Levin and D. Peled. Verification of message sequence charts via template match-

ing. In Proc. TAPSOFT ’97, volume 1214 of LNCS, pages 652–666. Springer-
Verlag, 1997.

12. P. Madhusudan. Reasoning about Sequential and Branching properties of Message
Sequence Graphs Technical Report IMSC/2001/04/22, Institute of Mathematical
Sciences, Chennai, India, 2001.

13. A. Muscholl and D. Peled. Message sequence charts and decision problems on
Mazurkiewicz traces. In Proc. MFCS ’99, volume 1672 of LNCS, pages 81–91.
Springer-Verlag, 1999.

14. A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts.
In Proc. FOSSACS ’98, volume 1378 of LNCS, pages 226–242. Springer-Verlag,
1998.

15. B. Meenakshi and R. Ramanujam. Reasoning about message passing in finite state
environments. In Proc. ICALP ’00, LNCS. Springer-Verlag, 2000.

16. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence
charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28,
1996.

17. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, pages 165–191, 1990.

18. W. Thomas. Languages, automata, and logic. Handbook of Formal Language
Theory, III:389–455, 1997.

19. P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time tempo-
ral logic for Mazurkiewicz traces. In Proc. 12th IEEE Conf. on Logic in Computer
Science, LNCS. Springer-Verlag, 1997.

20. I. Walukiewicz. Monadic second order logic on tree-like structures. In Proc. STACS
’96, volume 1046 of LNCS. Springer-Verlag, 1996.

A Set-Theoretic Framework
for Assume-Guarantee Reasoning

Patrick Maier

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

maier@mpi-sb.mpg.de

Abstract. We present a circular assume-guarantee rule in an abstract
setting (of sets over a partially-ordered domain). The rule has a math-
ematically concise side condition. Now, in order to prove an assume-
guarantee rule in a concrete setting, all we need to do is to is to in-
stantiate the abstract setting and check the side condition; i.e., we need
not redo the notorious circularity argument again. We use this frame-
work to prove a new assume-guarantee rule for Kripke structures. That
rule generalizes existing assume-guarantee rules for other settings such
as Reactive Modules or Mealy machines.

1 Introduction

Compositional verification tries to use the modular structure of large systems
and specifications to decompose intractable verification tasks into a bunch of
smaller, hopefully tractable ones. After having verified the smaller subtasks, one
needs a proof rule justifying that verification of these subtasks in fact implies
correctness of the complete system w.r.t. the complete specification. Essentially,
there are three different kinds of such proof rules, which are applicable in different
situations.

Let us consider two systems S1 and S2 as sets via a set-theoretic semantics,
and let us assume that the composition of S1 and S2 amounts to the intersec-
tion S1 ∩ S2. Similarly, let us view two properties P1 and P2 as sets and their
conjunction as intersection P1 ∩P2. Our goal is to verify that S1 ∩S2 is a subset
of P1 ∩ P2, meaning that the system S1 ∩ S2 satisfies the property P1 ∩ P2.

If we are able to verify the subtasks S1 ⊆ P1 and S2 ⊆ P2, we can achieve
our goal using the purely compositional proof rule (1).

S1 ⊆ P1 S2 ⊆ P2

S1 ∩ S2 ⊆ P1 ∩ P2
(1)

However, it may be the case that S2 does not satisfy P2 because S2 assumes
its environment S1 to behave in a certain way – for instance, at some moment
in time, S2 expects some shared integer variable to have a positive value – and
shows unspecified behavior if these assumptions are wrong. If the specification
P1 implies the assumptions of S2 about the behavior of S1, i.e., if P1∩S2 satisfies

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 821–834, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

822 P. Maier

P2, then we can use the hierarchical proof rule (2) to complete our verification
task.

S1 ⊆ P1 P1 ∩ S2 ⊆ P2

S1 ∩ S2 ⊆ P1 ∩ P2
(2)

Even worse, S1 also might have to be constrained by assumptions on its environ-
ment S2 in order to satisfy its specification P1. So we could end up in a situation
where we can verify the subtasks P2 ∩ S1 ⊆ P1 and P1 ∩ S2 ⊆ P2, and we would
need a proof rule like (3) to justify that S1 ∩ S2 really satisfies P1 ∩ P2.

P2 ∩ S1 ⊆ P1 P1 ∩ S2 ⊆ P2

S1 ∩ S2 ⊆ P1 ∩ P2
(3)

This rule states that the composition of the systems S1 and S2 guarantees the
conjunction of the properties P1 and P2, provided that S1 guarantees P1 if P2
is assumed, whereas S2 guarantees P2 if P1 is assumed. Thus in both subtasks,
the guaranteed property relies on the other one as an assumption, hence such
rules are named circular assume-guarantee rules.

While rules like (1) and (2) simply follow from monotonicity of intersection
and therefore are valid in every context where there is a set-theoretic semantics
that treats composition as intersection, this is not the case for circular rules.
Set-theoretically, rule (3) is only valid if we weaken its conclusion to S1 ∩ S2 ⊆
P1∩P2∪P̄1∩P̄2 where P̄1 and P̄2 are the complements of P1 and P2, respectively.

However, circular assume-guarantee rules in the style of (3) have been pro-
posed for various modeling formalisms, for instance Reactive Modules [3]. These
formalisms augment the unstructured set-theoretic semantics of systems and
properties with additional structure, thus providing ways to break the circular-
ity in the assumptions by an inductive argument. The induction itself relies on
a special ‘small-step semantics’, for example the partial traces of Reactive Mod-
ules, which is usually introduced solely for the purpose of proving the assume-
guarantee rule.

We pursue a different approach. Starting from a particularly simple modeling
formalism – downward-closed subsets of a poset – we prove a generic circular
assume-guarantee rule that is valid if a concise side condition is true. This rule is
useful as a pattern from which rules in more complex formalisms can be derived.
To derive a new rule in a particular formalism, one just has to instantiate the
generic rule to the semantics of the target formalism and prove that the side
condition holds. Thus, one need not prove a circularity-breaking induction any
more, as the circularity of the assumptions has been factored out into the generic
rule.

Besides simplifying the derivation of new circular rules, there are at least two
reasons in favor of our approach. First, the proofs become a lot clearer. For prov-
ing the generic assume-guarantee rule, we work with a very simple formalism.
More complicated semantics only play a role when instantiating the framework
to other formalisms, which amounts to proving that the target formalism meets
a small number of well-expressed requirements. Thus, there is a clear separation
between the proof rule as a general principle and the verifier’s modeling formal-
ism as a means to express this principle in a form which makes it applicable to
real verification tasks.

A Set-Theoretic Framework for Assume-Guarantee Reasoning 823

Second, our framework provides some insight into what conditions must hold
generally of modeling formalisms in order to allow circular assume-guarantee
reasoning and what restrictions could safely be dropped. This should help in de-
signing modeling formalisms that deliberately support circular assume-guarantee
reasoning.

2 The Framework

In this section, we work in the abstract setting of subsets of a partially ordered
universe and prove our generic assume-guarantee rule for set inclusion.

Behaviors and Chains. We fix a partially ordered universe (B,�) with bottom
ε. Elements b, b′ ∈ B are called behaviors, and b � b′ intuitively means that the
behavior b can evolve into b′. A set B ⊆ B is downward-closed if for all b ∈ B
and b′ ∈ B, b′ � b implies b′ ∈ B. A set B′ ⊆ B is the downward-closure of
B ⊆ B if B′ is the least downward-closed superset of B.

Specifically to describe the evolution of behaviors, we introduce ascending
sequences of behaviors that continuously reveal more information. We call a
sequence (bi)i∈N of behaviors in B a chain if it ascends from the bottom and
converges to some limit in B. More precisely, (bi)i∈N is a chain, if b0 = ε, bi � bi+1
for all i ∈ N, and the least upper bound b ∈ B of the set {bi | i ∈ N} exists.1
This unique behavior b is called the limit of the chain (bi)i∈N, and it is denoted
by lim(bi)i∈N.

Extension. Given a chain (bi)i∈N and two sets B1, B2 ⊆ B, we say that B1 and
B2 extend along (bi)i∈N if bi+1 is contained in at least one of them whenever bi has
been contained in both, i.e., if for all i ∈ N, bi ∈ B1 ∩B2 implies bi+1 ∈ B1 ∪B2.
For instance, the sets B1 = {ε, b, b′} and B2 = {ε, b} extend along the chain
(bi)i∈N with b0 = ε, b1 = b, b2 = b3 = . . . = b′.

Closedness. Given a chain (bi)i∈N and a set B ⊆ B, we say that B is closed
w.r.t. (bi)i∈N if the limit of (bi)i∈N lies in B whenever each element bi lies in B,
i.e., if lim(bi)i∈N ∈ B is implied by ∀i ∈ N bi ∈ B. For example, B is closed
w.r.t. (bi)i∈N if the set {bi | i ∈ N} is finite.

Assume-Guarantee Rule. The stage is set for our main theorem, which jus-
tifies the circular assume-guarantee proof rule for non-empty downward-closed
subsets of B. Non-emptiness just rules out pathological cases. If one thinks
of these sets as properties (named P1, P2) and systems (named S1, S2) then
downward-closure is a natural requirement, too. A system exhibiting a particu-
lar behavior b should also exhibit all the ‘earlier’ behaviors b′ � b.

1 We do not call (bi)i2N a chain, if in B the least upper bound of {bi | i ∈ N} does not
exist.

824 P. Maier

Theorem 1 Let P1, P2, S1, S2 be non-empty downward-closed subsets of a par-
tially ordered universe (B,�) with bottom ε. Then the rule

P2 ∩ S1 ⊆ P1 P1 ∩ S2 ⊆ P2

S1 ∩ S2 ⊆ P1 ∩ P2
(4)

holds if for every b ∈ B there exists a chain (bi)i∈N converging to b, such that

1. P1 and P2 extend along (bi)i∈N, and
2. P1 and P2 both are closed w.r.t. (bi)i∈N.

Proof. To prove rule (4), we assume that its premises hold and choose b ∈ S1∩S2
arbitrary. Then there is a chain (bi)i∈N converging to b such that conditions 1
and 2 hold. By induction on i, we show that bi ∈ P1 ∩ P2 for all i ∈ N.

– i = 0. Then by definition of chains bi = ε. As P1 and P2 are non-empty and
downward-closed, the bottom ε is contained in both, hence bi ∈ P1 ∩ P2.

– i > 0. Then by induction hypothesis, bi−1 ∈ P1 ∩ P2, hence by extension
(condition 1), bi ∈ P1 ∪ P2. We have to distinguish two cases.
First, assume bi ∈ P1. The limit of (bi)i∈N, b, is contained in S2 by choice,
and as S2 is downward-closed, bi ∈ S2 as well. Therefore, bi ∈ P1 ∩ S2, and
by the second premise of rule (4), bi ∈ P2. Hence, bi ∈ P1 ∩ P2.
Second, assume bi ∈ P2. The proof that this implies bi ∈ P1 ∩ P2 is a
completely symmetric variant of the first case.

This ends the inductive proof that bi ∈ P1 ∩ P2 for all i ∈ N. By closedness
(condition 2), the limit b of (bi)i∈N is contained in both, P1 and P2, hence
b ∈ P1 ∩ P2. As b ∈ S1 ∩ S2 has been chosen arbitrary, the conclusion of rule (4)
holds. ut
Two remarks on this theorem are due. First, the conclusion of rule (4) is vacu-
ously true if S1 ∩ S2 = ∅, so non-emptiness of S1 and S2 is not strictly required.
Second, the side condition could be weakened to ‘for every b ∈ S1 ∩ S2’ instead
of ‘for every b ∈ B’. However, that would contradict the spirit of compositional
reasoning, which seeks to avoid the unmanageable system composition S1 ∩ S2
in premises and side conditions.

Instantiations. To instantiate the framework to a particular modeling formal-
ism, one must provide an ordered universe with bottom, and semantics that
map systems and properties to non-empty downward-closed sets. Then one has
to prove that these semantics entail the side condition of Theorem 1. Typically,
this requires to restrict to certain pairs of properties, i.e., one must find a crite-
rion that filters pairs of properties which extend along sufficiently many chains
and are closed w.r.t. these chains. Usually, closedness is not the problem, as many
properties (e.g., all safety properties) are trivially closed w.r.t. every chain. Thus,
if the criterion holds for a pair of properties, it has to ensure that every behavior
is the limit of some chain along which this pair extends. Following this recipe,
one can derive a rule, whose side condition is a criterion ensuring extension and
which is expressed in terms of the semantics of the modeling formalism.

A Set-Theoretic Framework for Assume-Guarantee Reasoning 825

3 Instantiation to Moore Machines

To exemplify how to instantiate our framework to a concrete setting, we ex-
amine the setting where both, systems and properties are presented in a simple
synchronous formalism, namely Moore machines (cf. [5]). Thus, we derive a well-
known assume-guarantee rule for Moore machines under trace semantics.

Notation. We fix a finite non-empty set of variables X and a (possibly infinite)
non-empty domain of values D. By a =

(x1 ... xn

d1 ... dn

)
we denote the partial map

from X to D whose domain dom(a) is {x1, . . . , xn} and which maps every xi to
di. We call a a partial label. The set of partial labels Σ is ordered by �, where
a � a′ if dom(a) ⊆ dom(a′) and a(x) = a′(x) for all x ∈ dom(a). The undefined
map ⊥ is the bottom of Σ. The maximal elements of Σ, the total maps, form
the set of labels Σt.

Given a1, a2 ∈ Σ with common upper bound in Σ, their sum a1 ⊕ a2 is their
least upper bound in Σ. Given a ∈ Σ and X ⊆ X , the restriction a|X is the
partial label a′ � a with dom(a′) = dom(a) ∩ X.

We write a finite word w ∈ Σ∗ as a finite sequence w = a1 . . . an, ai ∈ Σ;
we write w = ε for the empty word. The set Σ∗ is ordered by the lexicographic
extension of �, which we also denote by �.

Moore Machines. A Moore machine M is a six-tuple (I, O, S, Sι, δ, ρ), where
I ⊆ X and O ⊆ X are disjoint sets of input resp. output variables, S is the
(possibly infinite) state space, Sι ⊆ S are the initial states, δ : S × Σt|I → 2S

is the transition function and ρ : S → Σt|O the output function. M must be
non-blocking, i.e., Sι 6= ∅ and δ(s, a) 6= ∅ for all s ∈ S and all a ∈ Σt|I .

Let M1 = (I1, O1, S1, S
ι
1, δ1, ρ1) and M2 = (I2, O2, S2, S

ι
2, δ2, ρ2) be Moore

machines. We call M1 and M2 compatible if their sets of output variables O1 and
O2 are disjoint. In this case, we can form the (synchronous) product M1 ‖ M2
of M1 and M2 by ‘connecting’ inputs of M1 to outputs of M2 and vice versa;
formally M1 ‖ M2 =

(
(I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, S1 × S2, S

ι
1 × Sι

2, δ, ρ
)
, where

δ
(
(s1, s2), a

)
= δ1

(
s1, (a ⊕ ρ2(s2))|I1

)× δ2
(
s2, (a ⊕ ρ1(s1))|I2

)
and

ρ
(
(s1, s2)

)
= ρ1(s1) ⊕ ρ2(s2).

Clearly, M1 ‖ M2 is non-blocking, hence a Moore machine. For the remainder
of this section, we assume the set of variables X to be {x, y} and consider only
products M1 ‖ M2 where I1 = {x} = O2 and I2 = {y} = O1; these restrictions
avoid some technicalities, yet all results continue to hold for the general case.

Trace Semantics. Let M = (I, O, S, Sι, δ, ρ) be a Moore machine. We call
a word w = a1 . . . an ∈ Σ∗

t a trace of M if there exists a run of w in M ,
i.e., if there exists a sequence (s1, . . . , sn) of states in S such that s1 ∈ Sι,
si+1 ∈ δ(si, ai|I) for all i < n, and ai|O = ρ(si) for all i ≤ n; note that the null
sequence () is a run of ε in M . The trace language JMK is the set of all traces
of M . It is easy to see that the trace semantics maps products to intersections,
i.e., JM1 ‖ M2K = JM1K ∩ JM2K for compatible Moore machines M1 and M2.

826 P. Maier

To instantiate our framework to Moore machines, we could now choose
(Σ∗

t ,�) as our ordered universe of behaviors. Then the trace semantics maps
Moore machines to non-empty downward-closed subsets of Σ∗

t . Besides, every
subset of Σ∗

t is trivially closed w.r.t. every chain, since {wi | i ∈ N} is finite for
every chain (wi)i∈N in Σ∗

t . Unfortunately, we cannot instantiate the framework
in such a straightforward way, as the following example shows that extension
does not hold.

Example 1 Let M1 and M2 be ‘crosswired’ latches, i.e., the input of M1 is the
output of M2 and vice versa. Formally, M1 =

({x}, {y},D,D, δ1, ρ1
)

is a Moore
machine, where δ1

(
s, (x

d)
)

= {d} and ρ1(s) = (y
s), and M2 is a copy of M1 with

x and y swapped. All traces of M1 are of the form
(x y

d1 d0

) (x y
d2 d1

) · · · (x y
dn dn−1

)
,

whereas all traces of M2 are of the form
(x y

d0 d1

) (x y
d1 d2

) · · · (x y
dn−1 dn

)
. As a coun-

terexample for extension, take w =
(x y

d0 d0

) (x y
d1 d1

) ∈ Σ∗
t for some d0 6= d1, and

let (wi)i∈N be a chain converging to w. There is a minimal i ∈ N such that
wi+1 = w, so either wi = ε or wi =

(x y
d0 d0

)
. In any case, wi ∈ JM1K ∩ JM2K but

wi+1 /∈ JM1K ∪ JM2K, hence JM1K and JM2K do not extend along (wi)i∈N.
To summarize, the trace semantics is too coarse to instantiate our assume-

guarantee framework, because it can force a common trace of M1 and M2 –
here

(x y
d0 d0

)
– to evolve in a single indivisible step into a trace of neither – here(x y

d0 d0

) (x y
d1 d1

)
. Therefore, we need a more fine-grained semantics with smaller

indivisible steps such that no joint trace of M1 and M2 can evolve into a trace
of neither in a single indivisible step.

Partial Trace Semantics. Let Σsuff = {a ∈ Σ | x ∈ dom(a)} be those partial
labels whose domain is either {x} or {x, y}. We define our universe of behaviors
B as the set of partial words {ε} ∪ Σ∗

t Σsuff, which is ordered by �.
For every chain (wi)i∈N, the set {wi | i ∈ N} is contained in the downward-

closure of {lim(wi)i∈N}, which is finite. Therefore, closedness is trivial in (B,�).

Proposition 1 Let B ⊆ B, and let (wi)i∈N be a chain. Then B is closed w.r.t.
(wi)i∈N.

The set of partial traces LMM of a Moore machine M is the downward-closure of
JMK in (B,�). The partial trace semantics L·M is similar to the trace semantics
J·K as far as inclusion and product are concerned.2

Proposition 2 Let M1, M2 be Moore machines. Then JM1K ⊆ JM2K iff LM1M ⊆
LM2M.

Proposition 3 LM1 ‖ M2M = LM1M ∩ LM2M for compatible Moore machines M1,
M2.

2 Proofs which are omitted here due to space limitations, can be found in [8].

A Set-Theoretic Framework for Assume-Guarantee Reasoning 827

Extension. The main difference between the trace semantics J·K and the partial
trace semantics L·M is that the former does not support extension whereas the
latter does. We say that w′ ∈ B is an immediate successor of w ∈ B if w � w′

and there is no w′′ ∈ B such that w � w′′
� w′. Given two compatible Moore

machines M1 and M2, we can prove that immediate successors satisfy the one-
step extension criterion, i.e., if w′ ∈ B is an immediate successor of w ∈ B
then w ∈ LM1M ∩ LM2M implies w′ ∈ LM1M ∪ LM2M. Now, for every w ∈ B,
we can construct a chain (wi)i∈N such that the set {wi | i ∈ N} equals the
downward-closure of {w}, hence wi+1 is an immediate successor of wi for all
i ∈ N. Therefore, (wi)i∈N is a chain along which LM1M and LM2M do extend.

Proposition 4 Let M1, M2 be compatible Moore machines, and let w ∈ B.
Then there exists a chain (wi)i∈N with limit w such that LM1M and LM2M extend
along (wi)i∈N.

Example 1 (contd.) To illustrate how the partial trace semantics supports
extension, again look at w =

(x y
d0 d0

) (x y
d1 d1

)
for d0 6= d1. Take the chain (wi)i∈N

with w0 = ε, w1 = (x
d0), w2 =

(x y
d0 d0

)
, w3 =

(x y
d0 d0

)
(x

d1), w4 = w5 = . . . =(x y
d0 d0

) (x y
d1 d1

)
. For i < 3, wi is a partial trace of both M1 and M2, for i = 3, wi

is a partial trace of M1 only, and for i > 3, wi is partial trace of neither. Hence
for all i ∈ N, wi ∈ LM1M ∩ LM2M implies wi+1 ∈ LM1M ∪ LM2M.

Assume-Guarantee Rule. Now, we have an ordered universe (B,�) with
bottom ε, and a semantics L·M that maps systems and properties (both given as
Moore machines) to non-empty downward-closed sets. Furthermore, the above
propositions on extension and closedness entail the side condition of Theorem 1.
This lets us derive an assume-guarantee rule for the partial trace semantics of
Moore machines.

Theorem 2 Let P1, P2, S1, S2 be Moore machines such that P1 and P2 are
compatible. Then rule (5) is sound.

LP2M ∩ LS1M ⊆ LP1M LP1M ∩ LS2M ⊆ LP2M

LS1M ∩ LS2M ⊆ LP1M ∩ LP2M
(5)

Proof. Assume that P1 and P2 are compatible. To prove (5) to be an instance
of our generic rule (4) from Theorem 1, we have to check that theorem’s side
condition. Indeed that condition is met, as for every w ∈ B, by Proposition 4
there exists a chain (wi)i∈N converging to w such that

1. LP1M and LP2M extend along (wi)i∈N, and
2. by Proposition 1, both, LP1M and LP2M are closed w.r.t. this chain (wi)i∈N. ut

The above assume-guarantee rule is hardly applicable for verification, for usually,
systems and properties are not specified w.r.t. the partial trace semantics L·M but
w.r.t. the coarser trace semantics J·K. Fortunately, the two semantics are related
closely, so that as a corollary, we can derive an assume-guarantee rule for the
trace semantics J·K.

828 P. Maier

Corollary 1 Let P1, P2, S1, S2 be Moore machines such that P1 and P2, P1
and S2, S1 and P2 as well as S1 and S2 all are compatible. Then rule (6) is
sound.

JP2 ‖ S1K ⊆ JP1K JP1 ‖ S2K ⊆ JP2K

JS1 ‖ S2K ⊆ JP1 ‖ P2K
(6)

Proof. We assume all required compatibilities, and we assume the premises of
rule (6) to hold. By Propositions 2 and 3, the first premise is equivalent to
LP2M ∩ LS1M ⊆ LP1M. Likewise, the second premise is equivalent to LP1M ∩ LS2M ⊆
LP2M. So by Theorem 2, we infer LS1M∩LS2M ⊆ LP1M∩LP2M. Again by Propositions
3 (twice) and 2, this is equivalent to the conclusion of rule (6). ut

4 Instantiation to Kripke Structures

Kripke structures equipped with a synchronous product are a powerful and math-
ematically elegant formalism for modeling synchronous computation. Besides,
they provide a straightforward method to deal with shared memory in a syn-
chronous formalism, which we are going to demonstrate by means of an example.
We instantiate our framework to the setting where both, systems and proper-
ties are presented as first-order Kripke structures; thus, we derive a new circular
assume-guarantee rule for Kripke structures under trace semantics. The instanti-
ation proceeds essentially along the same lines than the one for Moore machines;
recall the notation of the previous section.

Kripke Structures. A (Kripke) structure K = (S, ι, δ, ρ) is a vertex-labeled
directed graph with vertices S, source vertex ι, edges δ and labeling ρ. More
precisely, the state space S is a (possibly infinite) set containing the initial state
ι. The transition function δ : S → 2S maps states to sets of successor states,
and the labeling function ρ : S → Σt maps states to labels. By convention, all
Kripke structures label their initial state with the same label ρ(ι).3 We call K
non-blocking if δ(s) 6= ∅ for every state s which is reachable in K, where s is
reachable in K if s ∈ δn({ι}) for some n ∈ N.

Let K1 = (S1, ι1, δ1, ρ1) and K2 = (S2, ι1, δ2, ρ2) be structures. Their (syn-
chronous) product K1 ‖ K2 is defined as (S, ι, δ, ρ), where

S = {(s1, s2) ∈ S1 × S2 | ρ1(s1) = ρ2(s2)},

ι = (ι1, ι2),

δ
(
(s1, s2)

)
= {(s′

1, s
′
2) ∈ S | s′

1 ∈ δ1(s1), s′
2 ∈ δ2(s2)}, and

ρ
(
(s1, s2)

)
= ρ1(s1) = ρ2(s2).

Clearly, K1 ‖K2 is a Kripke structure. Note that the product K1 ‖K2 of any two
Kripke structures K1 and K2 is defined, unlike the product of Moore machines.
However, K1 ‖ K2 need not be non-blocking, not even if both components are.
3 Semantically, the labeling of the initial state is irrelevant; this convention just facil-

itates the definition of the product.

A Set-Theoretic Framework for Assume-Guarantee Reasoning 829

Producer

• q0 = q∃i ∈ N q0 = q.i

Consumer

• ∃i ∈ N q = i.q0q0 = q

Fig. 1. Asynchronous producer-consumer protocol; q ∈ N
� denotes the content of the

shared FIFO-buffer before, q0 after a transition

Producer P = (SP , ιP , δP , ρP) where Consumer C = (SC , ιC , δC , ρC) where
SP = SC = Σt,
ιP = ιC = (p q

0 ε),
ρP (s) = ρC(s) = s,

δP (s) = {s0 | s0(p) 6= 0 ∨ (
s0(p) = 0 ∧ (s0(q) = s(q) ∨ ∃i ∈ N s0(q) = s(q).i)

)},
δC(s) = {s0 | s0(p) 6= 1 ∨ (

s0(p) = 1 ∧ (s0(q) = s(q) ∨ ∃i ∈ N s(q) = i.s0(q))
)}.

Fig. 2. Synchronous implementation of the producer-consumer protocol using Kripke
structures, where variables X = {p, q}, domain D = Dp ∪ Dq with Dp = {0, 1} and
Dq = N

�, and alphabet Σt = {a : X → D | a(p) ∈ Dp, a(q) ∈ Dq}

Example 2 To illustrate Kripke structures, we encode the simple producer-
consumer protocol depicted in figure 1. The processes communicate over a shared
FIFO-buffer q, to which the producer may enqueue a number or stutter, whereas
the consumer may dequeue a number if q is non-empty, or stutter. This protocol
works perfectly in an asynchronous setting, which prevents simultaneous updates
of the shared buffer q.

In a synchronous setting, Kripke structures admit write-shared variables,
i.e., variables may be updated by several processes — but not simultaneously.
Therefore, we can directly encode asynchronous protocols like the above, if we
can prevent simultaneous updates of shared variables. For that we introduce a
new shared variable p reflecting whether the producer P or the consumer C is
the currently active process. If the value of p becomes 0 (1) then P (C) executes
and may update q while C (P) does not access q. Figure 2 presents the structures
P and C in detail. Note that there is no such straightforward encoding of the
above protocol into Moore or Mealy machines as these formalisms do not not
admit write-shared variables.

Trace Semantics. Let K = (S, ι, δ, ρ) be a structure. A word w = a1 . . . an ∈
Σ∗

t is a trace of K if there exists a run of w in M , i.e., if there exists a sequence
(s1, . . . , sn) of states in S such that s1 ∈ δ(ι), si+1 ∈ δ(si) for all i < n, and
ai = ρ(si) for all i ≤ n. The trace language JKK is the set of all traces of K. Note
that JKK 6= ∅ because the null sequence () is a run of ε in K. As expected, the
trace semantics maps products to intersections, i.e., JK1 ‖ K2K = JK1K ∩ JK2K
for all structures K1 and K2.

Partial Trace Semantics. As is the case for Moore machines, the trace se-
mantics J·K is too coarse to instantiate our assume-guarantee framework. We
need a more fine-grained partial trace semantics L·M whose indivisible steps are

830 P. Maier

small enough to support extension. Its definition is essentially the same as in the
previous section, only the construction of Σsuff is more involved.

We fix a function next : Σ \ Σt → X that maps (truly) partial labels to
variables such that next(a) /∈ dom(a). This function induces a set Σsuff of partial
labels – quasi the closure of the undefined label ⊥ under next(·) – which is defined
as the least set containing ⊥ and being closed under the rule that for all a ∈ Σ,
if a ∈ Σsuff \ Σt then

{
a′ ∈ Σ | a � a′, dom(a′) = dom(a) ∪ {next(a)}} ⊆ Σsuff.

We define our universe of behaviors B as the set of partial words {ε} ∪ Σ∗
t Σsuff,

ordered by �. Like in the previous section, closedness is trivial in (B,�).

Proposition 5 Let B ⊆ B, and let (wi)i∈N be a chain. Then B is closed w.r.t.
(wi)i∈N.

The set of partial traces LKM of a structure K is the downward-closure of JKK
in (B,�). Note that implicitly, LKM depends on our choice for the next(·) func-
tion. Like before, the trace semantics J·K and the partial trace semantics L·M are
equivalent w.r.t. inclusion.

Proposition 6 Let K1 and K2 be structures. Then JK1K ⊆ JK2K iff LK1M ⊆
LK2M.

Labeling Games. For Moore machines, the partial trace semantics maps a
product to an intersection, whenever this product is defined. For Kripke struc-
tures K1 and K2, the product is always defined, yet LK1 ‖ K2M may be truly
contained in LK1M∩ LK2M. We present a game which illuminates the origin of the
next(·) function and leads to a sufficient criterion ensuring that the partial trace
semantics maps products to intersections.

Let K1‖K2 = (S, ι, δ, ρ) be the product of two structures K1 and K2. Given a
state (s1, s2) ∈ S, we want to determine a labeling ρ

(
(s′

1, s
′
2)
)

of some successor
state (s′

1, s
′
2) ∈ δ

(
(s1, s2)

)
by playing a challenge-response game over n rounds,

where n is the cardinality of X . In round i, the challenger C picks a yet undefined
variable xi ∈ X , to which the responder R assigns a value di ∈ D. In the end,(x1 ... xn

d1 ... dn

) ∈ Σt is a label, and R wins this labeling game if δ
(
(s1, s2)

)
= ∅ or if

there exists some (s′
1, s

′
2) ∈ δ

(
(s1, s2)

)
with ρ

(
(s′

1, s
′
2)
)

=
(x1 ... xn

d1 ... dn

)
, otherwise

C wins. Obviously, strategies for C correspond to next(·) functions and vice
versa, so the next(·) function which determines our universe B, also induces a
one-player labeling game for R.

Given a structure K = (S, ι, δ, ρ) and a partial label a ∈ Σ, we define the
a-filtered transition function δa : S → 2S by δa(s) = {s′ ∈ δ(s) | a � ρ(s′)}, i.e.,
δa filters transitions to states whose labeling is consistent with a. We say that
a′ ∈ Σ is an immediate successor of a ∈ Σ if a � a′ and there is no a′′ ∈ Σ such
that a � a′′

� a′. Two structures K1 = (S1, ι1, δ1, ρ1) and K2 = (S2, ι2, δ2, ρ2)
are compatible (w.r.t. next(·)) if for every reachable state (s1, s2) in K1 ‖K2 and
every a ∈ Σsuff \ Σt,

– δa
1 (s1) 6= ∅ implies that δa′

1 (s1) 6= ∅ for all immediate successors a′ of a, or
– δa

2 (s2) 6= ∅ implies that δa′
2 (s2) 6= ∅ for all immediate successors a′ of a.

A Set-Theoretic Framework for Assume-Guarantee Reasoning 831

In this case, for every reachable state (s1, s2) in K1 ‖ K2, there exists a winning
strategy for R in the one-player labeling game. The existence of such a stat-
egy allows to prove that the product of compatible non-blocking structures is
non-blocking, and moreover, that the partial trace semantics maps products of
compatible structures to intersections.

Proposition 7 Let K1 and K2 be structures. Then LK1 ‖ K2M ⊆ LK1M ∩ LK2M,
and LK1 ‖ K2M = LK1M ∩ LK2M if K1 and K2 are compatible.

Example 2 (contd.) To show that compatible structures exist, we check that
P and C are compatible. First note that the state space of P ‖ C equals {(s, s) |
s ∈ Σt}, and that this full state space is reachable in P ‖ C. Choose the next(·)
function that maps ⊥ to p. Then the compatibility condition holds for all states
(s, s) of P ‖C and all partial labels a ∈ Σsuff\Σt, because if a = ⊥ or a = (p

1) then
δa′
P (s) 6= ∅ for all immediate successors a′ of a, and if a = (p

0) then δa′
C (s) 6= ∅ for

all immediate successors a′ of a. Note that compatibility depends on our choice
for the next(·) function, e.g., P and C would not be compatible if we chose the
next(·) function which maps ⊥ to q.

Extension. Given two compatible non-blocking structures K1 and K2, we can
prove that immediate successors in B satisfy the one-step extension criterion,
just as in the previous section. Likewise, for every w ∈ B, we can construct a
chain (wi)i∈N converging to w such that wi+1 is an immediate successor of wi

for all i ∈ N. Therefore, we get the same proposition as for Moore machines.

Proposition 8 Let K1, K2 be compatible non-blocking structures, and let w ∈
B. Then there exists a chain (wi)i∈N with limit w such that LK1M and LK2M extend
along (wi)i∈N.

Assume-Guarantee Rule. Now, Propositions 5, 6, 7, 8 for Kripke structures
essentially correspond to Propositions 1, 2, 3, 4 for Moore machines, respectively.
By replaying the proof of Theorem 2, we get a rule for the partial trace semantics
L·M, from which our new assume-guarantee rule for the trace semantics J·K of
Kripke structures follows.

Theorem 3 Let P1, P2, S1, S2 be Kripke structures such that P1 and P2 are
compatible and non-blocking. Then rule (7) is sound.

LP2M ∩ LS1M ⊆ LP1M LP1M ∩ LS2M ⊆ LP2M

LS1M ∩ LS2M ⊆ LP1M ∩ LP2M
(7)

Corollary 2 Let P1, P2, S1, S2 be Kripke structures such that P1 and P2, P1
and S2 as well as S1 and P2 all are compatible (w.r.t. the same next(·) function),
and P1 and P2 are non-blocking. Then rule (8) is sound.

JP2 ‖ S1K ⊆ JP1K JP1 ‖ S2K ⊆ JP2K

JS1 ‖ S2K ⊆ JP1 ‖ P2K
(8)

832 P. Maier

Proof. We assume the premises of the corollary. By Propositions 6 and 7, the
premises of rule (8) are equivalent to LP2M∩ LS1M ⊆ LP1M resp. LP1M∩ LS2M ⊆ LP2M.
Hence, Theorem 3 implies LS1M ∩ LS2M ⊆ LP1M ∩ LP2M, which by Proposition 7
(twice) implies LS1 ‖ S2M ⊆ LS1M ∩ LS2M ⊆ LP1M ∩ LP2M = LP1 ‖ P2M. By Proposi-
tion 6, this is equivalent to the conclusion of rule (8). ut

5 Encoding of Mealy Machines into Kripke Structures

Mealy machines are a popular extension of Moore machines where the output
function may depend on both, the current state and input. This section briefly
sketches how Mealy machines can be encoded into Kripke structures so as to
prove that our assume-guarantee rule for Kripke structures generalizes the known
rules for Mealy machines.

Mealy Machines. We define Mealy machines with explicit dependencies in the
spirit of [3], i.e., a Mealy machine M is a seven-tuple (I, O, S, Sι, δ, ρ,B) where
I, O, S, Sι and δ are as for Moore machines, ρ : S × Σt|I → Σt|O is the output
function, and the dependencies B ⊆ X × X are a strict partial order. M must
be non-blocking, and B must be complete, meaning that y 6B x implies that the
current value of y never depends on the current value of x; formally, if y 6B x for
some y ∈ O and x ∈ I, then for all s ∈ S and all a, a′ ∈ Σt|I , a|I\{x} = a′|I\{x}
implies ρ(s, a)|{y} = ρ(s, a′)|{y}.

By JMK we denote the set of traces of M , where a word w = a1 . . . an ∈ Σ∗
t

is a trace of M if there exists a sequence (s1, . . . , sn) of states in S such that
s1 ∈ Sι, si+1 ∈ δ(si, ai|I) for all i < n, and ai|O = ρ(si, ai|I) for all i ≤ n.

Care must be taken to avoid circular dependencies when defining the product.
We call two Mealy machines M1 = (I1, O1, . . . ,B1) and M2 = (I2, O2, . . . ,B2)
compatible if O1 and O2 are disjoint, and (B1∪B2)+, the transitive closure of B1
and B2, is a strict partial order. In this case, the product M1‖M2 = (I, O, . . . ,B),
where O = O1 ∪ O2, I = (I1 ∪ I2) \ O and B = (B1 ∪ B2)+, is defined and a
Mealy machine. Further details of the product construction are not interesting
for our purpose, it suffices to know that JM1 ‖ M2K = JM1K ∩ JM2K.

Encoding. We encode the Mealy machine M into K(M) = (S̄, ῑ, δ̄, ρ̄), where

S̄ = {ῑ}] {(s, a) ∈ S × Σt | ρ(s, a|I) = a|O},

δ̄(ῑ) = (Sι × Σt) ∩ S̄,

δ̄
(
(s, a)

)
=
(
δ(s, a|I) × Σt

) ∩ S̄, and

ρ̄
(
(s, a)

)
= a.

Obviously, K(M) is a non-blocking Kripke structure, and JK(M)K = JMK. Fur-
thermore, given two compatible Mealy machines M1 and M2, the Kripke struc-
tures K(M1) and K(M2) are compatible. More precisely, K(M1) and K(M2)
are compatible w.r.t. every next(·) function which meets the requirement that
for all a ∈ Σ \ Σt, next(a) is minimal in X \ dom(a) w.r.t. the dependencies
B of M1 ‖ M2. As a consequence, our encoding distributes over products, i.e.,
JK(M1 ‖ M2)K = JK(M1) ‖ K(M2)K for all compatible Mealy machines M1 and
M2.

A Set-Theoretic Framework for Assume-Guarantee Reasoning 833

Assume-Guarantee Rule. By specializing our assume-guarantee rule for
Kripke structures to Mealy machines, we get essentially the rule [3] presents
for Reactive Modules.

Theorem 4 Let P1, P2, S1, S2 be Mealy machines such that P1 and P2, P1 and
S2, S1 and P2 as well as S1 and S2 all are compatible, and the dependencies
BP1,P2 of P1 ‖ P2 are contained in the dependencies BS1,S2 of S1 ‖ S2. Then
rule (9) is sound.

JP2 ‖ S1K ⊆ JP1K JP1 ‖ S2K ⊆ JP2K

JS1 ‖ S2K ⊆ JP1 ‖ P2K
(9)

Proof. We assume the premises of the theorem. Via our encoding into Kripke
structures, the premises of rule (9) are equivalent to JK(P2) ‖ K(S1)K ⊆ JK(P1)K
resp. JK(P1) ‖ K(S2)K ⊆ JK(P2)K. As BP1,P2 ⊆ BS1,S2 implies that the de-
pendencies BP1,S2 of P1 ‖ S2 resp. BS1,P2 of S1 ‖ P2 are also contained in
BS1,S2 , we can choose a next(·) function according to BS1,S2 as described above,
and obtain that K(P1) and K(P2), K(P1) and K(S2) as well as K(S1) and
K(P2) all are compatible w.r.t. that next(·) function. Hence, Corollary 2 yields
JK(S1) ‖ K(S2)K ⊆ JK(P1) ‖ K(P2)K, which is equivalent to the conclusion of
rule (9) via our encoding. ut
The side condition of Proposition 5 in [3] seems to impose fewer restrictions on
the machines than our above theorem; in particular, that proposition does not
require the inclusion BP1,P2 ⊆ BS1,S2 to hold a priori. However, this inclusion
follows from the conclusion of that proposition, so the rule in [3] is not stronger
than ours.

6 Conclusion and Future Work

We have presented a circular assume-guarantee rule for a particularly simple
modeling formalism, namely downward-closed sets. This simplicity allows a con-
cise inductive proof of the rule, unobscured by technical details of the formalism.
Yet, the formalism is so general that our rule can serve as a pattern for assume-
guarantee rules in a variety of more complex formalisms. To derive a rule in
some particular formalism, it suffices to provide a downward-closed semantics
that meets the requirements expressed in the side condition of our generic rule
— no need to cope with circular assumptions any more.

Various circular assume-guarantee rules have been proposed for Moore- and
Mealy-like formalisms that model systems as transition graphs, for instance L-
processes [7], Reactive Modules [3] and Mealy machines [9]. Typically, these
formalisms are based on trace containment. By instantiating our framework to
Kripke structures, we have derived a new trace-based assume-guarantee rule,
which generalizes the rules for trace-based Mealy-like formalisms. It remains to
be investigated whether our framework can also be instantiated to formalisms
based on tree containment, for instance [5]. Instantiations to process algebras
would be interesting, too; in particular, we would like to explain the rather
involved rule for CCS in [12].

834 P. Maier

Assume-guarantee rules are also known for logical formalisms where systems
are modeled by logical formulae, e.g., [1] provides a rule for Lamport’s TLA and
[6] one for LTL. Closest in spirit to our work may be [2] where general logical
assume-guarantee rules are derived which embed the circularity-breaking side
condition into non-classical logics. In contrast, the goal of our framework is to
make this side condition explicit.

The original motivation for this work is the development of an assume-
guarantee rule for model checking in a constraint-based setting [4,11]. Our rule
for Kripke structures is applicable in this setting, yet checking its side condi-
tion, in particular compatibility, may require the examination of infinite state
spaces. In a model checking tool, we would like these checks to be performed ‘be-
hind the scenes’, hence we are looking for constraint-based methods to enhance
termination of compatibility checks.

Acknowledgment. The author wishes to thank Witold Charatonik, Andreas
Podelski, Sriram K. Rajamani and Jean-Marc Talbot for helpful discussions and
comments.

References

1. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, 1995.

2. Mart́ın Abadi and Gordon D. Plotkin. A logical view of composition. Theoretical
Computer Science, 114(1):3–30, 1993.

3. Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proc. 11th Annual
Symposium On Logic In Computer Science, pages 207–218, 1996.

4. Giorgio Delzanno and Andreas Podelski. Model checking in clp. In TACAS’99:
Tools and Algorithms for the Construction and Analysis of Systems, Springer LNCS
1579, pages 223–239, 1999.

5. Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. An
assume-guarantee rule for checking simulation. In FMCAD’98 : Formal methods
in computer-aided design, Springer LNCS 1522, pages 421–432, 1998.

6. Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifications in linear-
time temporal logic. Theoretical Computer Science, 167(1–2):47–72, 1996.

7. Robert P. Kurshan. Computer-aided verification of coordinating processes. Prince-
ton University Press, 1994.

8. Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. Tech-
nical Report MPI-I-2001-2-002, Max-Planck-Institut für Informatik, 2001.

9. K. L. McMillan. A compositional rule for hardware design refinement. In CAV’97
: Computer aided verification, Springer LNCS 1254, pages 207–218, 1997.

10. Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

11. Andreas Podelski. Model checking as constraint solving. In SAS 2000 : Static
Analysis, Springer LNCS 1824, pages 22–37, 2000.

12. Sriram K. Rajamani and Jakob Rehof. A behavioral module system for the π-
calculus. In SAS’01 : Static Analysis, 2001. To appear.

Foundations for Circular Compositional
Reasoning

Mahesh Viswanathan1 and Ramesh Viswanathan2

1 DIMACS & Telcordia Technologies,
Piscataway NJ 08854, USA

maheshv@dimacs.rutgers.edu
2 Bell Laboratories, Holmdel NJ 07733, USA

rv@research.bell-labs.com

Abstract. Compositional proofs about systems of many components
require circular reasoning principles in which properties of other com-
ponents need to be assumed in proving the properties of each individ-
ual component. A number of such circular assume-guarantee rules have
been proposed for different concurrency models and different forms of
property specifications. In this paper, we provide a framework that uni-
fies and extends these results. We define an assume-guarantee semantics
for properties expressible as least or greatest fixed points, and a cir-
cular compositional rule that is sound with respect to this semantics.
We demonstrate the utility of this general rule by applying it to trace
semantics with linear temporal logic specifications, and trace tree seman-
tics with automata refinement specifications. For traces, we derive a new
assume-guarantee rule for the “weakly until” operator of linear temporal
logic and show that previously proposed assume-guarantee rules can be
seen as special instances of our rule. For trace trees, we derive a rule for
parallel composition of Moore machines, and show that the rule of [7] is
a special instance thus yielding an alternate proof of the results in [7].

1 Introduction

Program verification is concerned with determining whether a formal model of
a system satisfies certain correctness properties. The most popular algorithmic
technique, model checking, systematically steps through the global states of the
system while checking various properties at each stage. However, such a method
runs into the well-known problem of state-space explosion which severely limits
the size of analyzable systems.

The classical solution to this problem is to verify systems compositionally or
hierarchically in which suitable properties of individual components of a system
are verified in isolation, and these “local” properties are then combined to prove
the correctness of the system as a whole. For a system P = P1||P2, a rule that
supports such compositional reasoning might take the form that if P1 satisfies
property ϕ1 and P2 satisfies ϕ2, then P satisfies ϕ1 ∧ ϕ2. While this form of
reasoning is sound for various specification languages and concurrency models,

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 835–847, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

836 M. Viswanathan and R. Viswanathan

it is often not helpful. This is because, in many cases, although the global system
P may satisfy the property ϕ1 ∧ ϕ2, the decomposed proof obligations of P1
and P2 satisfying ϕ1 and ϕ2 may not necessarily hold. Typically, a component
P1 does not satisfy ϕ1 “unconditionally” (i.e., when composed with arbitrary
components) but only when composed with another component that behaves
like P2.

In the assumption-guarantee paradigm [15] (also referred to as rely-guarantee
and assumption-commitment in the literature), each component of a system is
specified in terms of assumptions it makes about its environment (or other com-
ponents), and properties it guarantees about its behavior, provided the assump-
tions hold. Using ϕ . ψ to syntactically denote the property that under the as-
sumptions ϕ, the property ψ is guaranteed, a circular compositional rule that one
would like for the system P = P1||P2 would be that if P1 satisfies the property
ϕ2 . ϕ1 and P2 satisfies the property ϕ1 . ϕ2 then P satisfies ϕ1 ∧ ϕ2. However,
because of the circularity of each component making assumptions about the other
component’s yet-to-be proven guarantees, such rules are hard to construct and
are in fact sound only for some special classes of properties. For example, such a
rule is clearly not propositionally valid if we interpret assumption-guarantee to be
propositional implication. That such a circular argument is indeed sound under
some conditions, was first observed by Misra and Chandy [13], and later formal-
ized by Abadi and Lamport [1,2]. Subsequently, circular compositional rules have
been proposed for a variety of computational models. Traces and safety prop-
erties are considered in [13,8,1,2,14,10,6,9,3,4,11,5], and more recently, McMil-
lan [12] has obtained a circular reasoning principle for certain liveness properties.
This approach for traces has been extended to trace trees in which specifications
are given via some form of automata-refinement [3,4,7]. Henzinger, Qadeer, Ra-
jamani, and Tasiran [7] present such an assumption/guarantee rule for Moore
machines with synchronous parallel composition. Liveness requirements can be
specified in terms of additional Streett fairness conditions imposed on Moore
and Mealy machines.

In this paper, we present a common unifying framework and reasoning rule
which encompasses previously proposed circular composition rules and which
can be applied to derive circular composition rules for more expressive classes
of properties than have previously been considered. Our starting point is the well
known observation that many important properties, including safety and live-
ness properties, can be formulated as least or greatest fixed points of appropriate
functions. We therefore define a semantics for assume-guarantee specifications
in which the assumptions and guarantees are least or greatest fixed points. We
then formulate a rule for composing such local assume-guarantee specifications
to derive a global assume-guarantee specification that is sound with respect to
this semantics. Our assume-guarantee semantics and rule are formulated and
proved sound in a general setting which requires limited assumptions about the
semantics of processes or the form of specifications We next show how this gen-
eral rule can be fruitfully applied to some specific contexts. First, we consider the
setting where semantics for processes are defined as traces and specifications as

Foundations for Circular Compositional Reasoning 837

linear temporal logic formulas. Here, we derive, from our general framework, an
assume-guarantee rule for the “weakly until” temporal logic operator, and show
that it generalizes the most powerful rule previously known in this setting [12].
The second setting we consider is that of Moore machines interpreted in a se-
mantic space consisting of labelled trace trees. We derive an assume-guarantee
rule for synchronous parallel composition of Moore machines, and show that
this rule subsumes the strongest known circular rule for Moore machines, that
of [7]. Together, the two settings demonstrate that our general theorem unifies
and can be applied to disparate process semantics and disparate specification
formulations.

The rest of the paper is organized as follows. In Section 2, we present our
semantics for assumption/guarantee specifications for fixed point properties, and
general rules for composing such specifications. Section 3 applies these rules to
traces and linear temporal logic, and Section 4 develops the results for Moore
machines. We make concluding remarks in Section 5.

2 Assume-Guarantee Rule for Fixed Points

2.1 Preliminaries and Notation

Let C be a set; intuitively, C represents the semantic space of all valid computa-
tions (such as traces or trees). Thus, the semantics of a program or automaton P,
written [[P]], will be a subset of C. However, the framework and rule we present
in this section will require no assumptions on the structure of computations and
we therefore leave the elements of C uninterpreted. We use σ, σ1, . . . to range
over computations, i.e., σ, σ1, . . . ∈ C and a specification S ⊆ C. A computation
σ satisfies a specification S, written σ |= S, if and only if σ ∈ S, and a program
P satisfies a specification S, P |= S, if and only if ∀σ ∈ [[P]]. σ |= S.

We are interested in properties that are recursive or fixed point specifications.
Writing P(C) to denote the power set of C, let F : P(C)→P(C) be a monotonic
operator with respect to the subset ordering, ⊆, on P(C). By the Tarski-Knaster
theorem [17], F has both greatest and least fixed points. We will use ν(F) to
denote the greatest fixed point of F , µ(F) for its least fixed point, and meta-
variables ρ, ρ1, . . . to stand for either µ or ν so that ρ(F) will denote one of the
two fixed points of F . The Tarski-Knaster construction approximates the fixed
points through repeated iterations of F whose limit yields the desired fixed point.
Let ω = {0, 1, 2, . . .} be the set of all natural numbers; the k’th approximation
of the fixed point ρ(F), which we denote [ρ(F)]k, is defined by induction:

[µ(F)]0 = ∅ [ν(F)]0 = C
[µ(F)]k+1 = F ([µ(F)]k) [ν(F)]k+1 = F ([ν(F)]k)
[µ(F)]ω =

⋃
k∈ω [µ(F)]k [ν(F)]ω =

⋂
k∈ω [ν(F)]k

Depending on the cardinality of S, this process of constructing progressively
better approximations needs to be continued for transfinite ordinals before it
stabilizes to the fixed point. However, all applications considered in this paper

838 M. Viswanathan and R. Viswanathan

converge to their fixed points within ordinal ω; we say that a fixed point spec-
ification ρ(F) (where ρ is µ or ν) is ω-convergent if F ([ρ(F)]ω) = [ρ(F)]ω. For
example, if F is ω-continuous, i.e., for any ω-increasing chain {Si | i ∈ ω} with
Si ⊆ Si+1 for all i, we have that F (∪iSi) = ∪iF (Si), then µ(F) is ω-convergent.
Similarly, if F is ω-cocontinuous, then ν(F) is ω-convergent. Thus, ω-continuity
and ω-cocontinuity provide sufficient checks for ω-convergence of µ(F) and ν(F)
respectively.

2.2 Semantics of Assume-Guarantee Specifications

We are now ready to define the semantics for assume-guarantee specifications,
which we syntactically denote by ρ(A) . ρ′(G), whose informal reading is that
the guarantee specification ρ′(G) is satisfied whenever the assumption specifica-
tion ρ(A) is satisfied. Classically, in the context of safety properties, it has been
interpreted to require the guarantee to be satisfied upto time instant k+1 when-
ever the assumption is satisfied upto time instant k. Our definition is motivated
by this classical notion with the key insight being that the k’th approximation
provides the suitable analogue of “upto time instant k” . Further, to allow the
weakest condition necessary for the guarantee to be satisfied when it is a least
fixed point, we generalize the condition on the guarantee specification requiring
it to be satisfied at any future approximation (rather than the immediately next
one).

Definition 1 (Assume-Guarantee Semantics).

σ |= ρ(A) . ρ′(G) iff ∀k ≥ 0. σ |= [ρ(A)]k ⇒ ∃k′ > k. σ |= [ρ′(G)]k
′

An immediate consequence of our assume-guarantee semantics is that it gen-
eralizes propositional implication.

Proposition 1. Suppose that the fixed point specification ρ′(G) is ω-convergent.
Then the following rule is sound

σ |= ρ(A) . ρ′(G)
σ |= ρ(A) ⇒ σ |= ρ′(G)

(Imp .)

When the consequent of an assume-guarantee specification is a greatest fixed
point, then our general definition reduces to the more familiar classical notion.
When the consequent is a least fixed point, then our semantics places no stronger
requirements than that the least fixed point be satisfied.

Proposition 2. 1. σ |= ρ(A) . ν(G) iff ∀k ≥ 0. σ |= [ρ(A)]k⇒σ |= [ν(G)]k+1

2. σ |= ρ(A) . µ(G) iff ∀k ≥ 0. (σ |= [ρ(A)]k ⇒ ∃k′ ≥ 0. σ |= [µ(G)]k
′
)

Foundations for Circular Compositional Reasoning 839

2.3 Composing Assume-Guarantee Specifications

In this section, we describe inference rules for composing assume-guarantee spec-
ifications. We first present general rules that are applicable to arbitrary assume-
guarantee specifications without making any assumptions about the form of fixed
points. We next specialize these general rules to derive more powerful rules that
are applicable when the assumption is a greatest fixed point.

General Fixed Points. The general semantic rule prescribes conditions un-
der which it is sound to compose two local behaviors, σ1 |= ρ(A1) . ρ′(G1) and
σ2 |= ρ(A1) . ρ′(G2) to derive the behavior of the global system σ |= ρ(A) . ρ′(G)
(in typical applications of the rule, σ will be the parallel composition of σ1 and
σ2). The conditions can be intuitively read as follows: (1a), (1b) If the global
assumption is satisfied currently and one of the local guarantees is satisfied
eventually, then the other local assumption is satisfied eventually. (2) If the lo-
cal guarantees hold then the global guarantee holds eventually. (3) If the global
assumption is satisfied then one of the local guarantees holds eventually. Condi-
tions (1a), (1b) allow each local guarantee to be used circularly in satisfying the
other’s local assumptions, and Condition (3) breaks this circularity to ensure
soundness.

Theorem 1 (Semantic Rule for General Fixed Points). The following
rule, (Comp ρ . ρ′), is sound:

σ1 |= ρ(A1) . ρ′(G1) σ2 |= ρ(A2) . ρ′(G2)

(1a) ∀k, k′ ≥ k. σ |= [ρ(A)]k ∧ σ2 |= [ρ′(G2)]k
′ ⇒ ∃k′′ ≥ k. σ1 |= [ρ(A1)]k

′′

(1b) ∀k, k′ ≥ k. σ |= [ρ(A)]k ∧ σ1 |= [ρ′(G1)]k
′ ⇒ ∃k′′ ≥ k. σ2 |= [ρ(A2)]k

′′

(2) ∀k. σ1 |= [ρ′(G1)]k ∧ σ2 |= [ρ′(G2)]k ⇒ ∃k′ ≥ k. σ |= [ρ′(G)]k
′

(3) ∀k. σ |= [ρ(A)]k ⇒ ∃k′ ≥ k. σ1 |= [ρ′(G1)]k
′ ∨ σ2 |= [ρ′(G2)]k

′

σ |= ρ(A) . ρ′(G)

Observe that, the Rule (Comp ρ . ρ′) requires that the assumptions in the
assume-guarantee specifications of σ1, σ2, and σ be the same form of fixed point
(ρ) and similarly for the guarantees. However, certain variations are sound —
we formally allow them using a subsumption rule, for which we first define a
subtyping relation.

Definition 2. For monotonic operators F,G : P(C)→P(C), we say that F lG
iff for all S ⊆ C we have that F (S) ⊆ G(S). We say that a fixed point spec-
ification ρ′(F ′) is a subtype of another fixed point specification ρ(F), written
ρ′(F ′)<: ρ(F), if and only if the following conditions hold:

(1) Either ρ′ = µ and ρ = ν, or ρ′ = ρ
(2) F ′

l F .

840 M. Viswanathan and R. Viswanathan

Theorem 2 (Subsumption). The following rule is sound:

σ |= ρ1(A) . ρ2(G) ρ′
1(A′)<: ρ1(A) ρ2(G)<: ρ′

2(G′)
σ |= ρ′

1(A′) . ρ′
2(G′)

(Sub .)

Now, given two local assumption-guarantee specifications in which the forms
of the fixed points in the assumptions (or guarantees) do not match, we can
use Rule (Sub .) on one or both of them to transform to a form in which the
corresponding fixed points match and Rule (Comp ρ . ρ′) is applicable. Having
derived the global behavior, a further use of subsumption allows one to change
the form of the fixed point in the assumption or guarantee (but only in a manner
consistent with subtyping).

Greatest Fixed Point Assumptions. The true payoff of the general infer-
ence rules established in Section 2.3 occurs when the assumption specifications
are greatest fixed points. In particular, we can support truly circular reasoning
without having to explicitly break the circularity (through establishing Condi-
tion (3)). To this end, we first prove the following lemma.

Lemma 1. Suppose that σi |= ν(Ai) . ρ(Gi) for i = 1, 2 and that

∀k, k′ ≥ k.σ |= [ν(A)]k ∧ σ1 |= [ρ(G1)]k
′ ∧ σ2 |= [ρ(G2)]k

′ ⇒
σ1 |= [ν(A1)]k ∧ σ2 |= [ν(A2)]k

Then we have that for any k,

σ |= [ν(A)]k ⇒ ∃k′ ≥ k. σ1 |= [ρ(G1)]k
′ ∧ σ2 |= [ρ(G2)]k

′

Lemma 1 is established by induction on k, and the induction step makes crucial
use of the fact that in our semantics of assumption guarantee-semantics we
require the guarantee to hold at a strictly greater approximation. It therefore
illustrates the precise origin of the condition k′ > k (rather than k′ ≥ k) in
Definition 1.

Using Lemma 1, we can instantiate Rule (Comp ρ . ρ′) to derive a stronger
rule, (Comp ν . ν), for greatest fixed points. First, the stronger rule does not
require Condition (3) to be established. Second, in establishing the local as-
sumptions (Conditions (1a) and (1b)), we are now allowed to assume both local
guarantees and that they hold currently (rather than eventually). Rule (Conj ν)
is a further application of (Comp ν . ν), which illustrates the circular reasoning
supported by Rule (Comp ν . ν) more clearly.

Corollary 1 (Semantic Rule for Greatest Fixed Points). The following
rules, (Comp ν . ρ) and (Conj ν), are sound:

σ1 |= ν(A1) . ν(G1) σ2 |= ν(A2) . ν(G2)

(1) ∀k. σ |= [ν(A)]k ∧ σ1 |= [ν(G1)]k ∧ σ2 |= [ν(G2)]k ⇒
σ1 |= [ν(A1)]k ∧ σ2 |= [ν(A2)]k

(2) ∀k.σ1 |= [ν(G1)]k ∧ σ2 |= [ν(G2)]k⇒σ |= [ν(G)]k

σ |= ν(A) . ν(G)

Foundations for Circular Compositional Reasoning 841

σ |= ν(F1) . ρ(F2) σ |= ν(F2) . ρ(F1)
σ |= ρ(F1) ∧ σ |= ρ(F2)

(Conj ν)

Rule (Conj ν) illustrates the importance of the distinction between . and
propositional implication. Had we interpreted . to be propositional implication,
the rule would not have been sound.

In many applications, specifications are most easily described through mutual
recursion and we conclude this section by briefly addressing this. Suppose that
F0, . . . , Fn−1 : P(C)n→P(C) are monotonic operators. We write ρi(F0, . . . , Fn−1)
to denote the i’th solution, where as usual, ρ can be µ or ν. The defining property
of these solutions is that

ρi(F0, . . . , Fn−1) = Fi(ρ0(F0, . . . , Fn−1), . . . , ρn−1(F0, . . . , Fn−1))

We define the k’th approximation of such mutually dependent fixed point spec-
ifications as follows:

[ρi(F0, . . . , Fn−1)]0 =
{∅ if ρ = µ

C if ρ = ν

[ρi(F0, . . . , Fn−1)]k+1 = Fi([ρ0(F0, . . . , Fn−1)]k, . . . , [ρn−1(F0, . . . , Fn−1)]k)

Having defined the k’th approximations, assume-guarantee specifications in-
volving mutually dependent fixed points are interpreted as in Definition 1. The
semantic rule (Comp ρ . ρ′) is then sound. The semantic rule (Comp ν . ν) is
sound when both assumptions and guarantees are of the form νi.

3 Assumption-Guarantee for Traces Semantics

In this section, we consider the framework of linear time temporal logic and
traces. Using our general assume-guarantee semantics, we obtain the definition
of assume-guarantee specifications for traces, and then derive composition rules
for linear time temporal logic. In particular, we derive a circular reasoning prin-
ciple for “weak until” specifications which are a generalization of properties
defined using the “always” modality. Finally, we show that the reasoning prin-
ciple proposed in [12] is a special case of our rule for until properties.

We take the semantic space of computations C to be the set of functions σ :
ω→P(Prop), where Prop is a set of propositions. In other words, computations
are viewed as infinite sequences of subsets of propositions. For a computation σ,
we use σi to denote its i’th element σ(i). The suffix of a computation starting at
the i’th position will be denoted as σ|i; so σ|i(k) = σ(i + k). Following [16,1,2,
9,11,12], we do not define a syntactic computational model such as a process or
automaton; instead a program will simply be a collection of computations. It is
often convenient to express such a process as a linear temporal logic property.

A formula in temporal logic is described by the following BNF grammar.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ◦ ϕ | ϕ U ϕ | ϕ UW ϕ

842 M. Viswanathan and R. Viswanathan

where p ∈ Prop is a proposition. Apart from classical conjunction and dis-
junction, the logic includes the modal connectives “next” (◦), “until” (U), and
“weak-until” (UW). Formally, we define a set of computations [[ϕ]] such that
σ |= ϕ if and only if σ ∈ [[ϕ]].

[[p]] = {σ | p ∈ σ0} [[¬p]] = {σ | p 6∈ σ0}
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[◦ ϕ]] = {σ | σ|1 ∈ [[ϕ]]}
[[ϕ U ψ]] = µ(F [[[ϕ]], [[ψ]]]) [[ϕ UW ψ]] = ν(F [[[ϕ]], [[ψ]]])

where F [S1, S2] is the following monotonic operator:

F [S1, S2](S) = {σ | σ ∈ S2 or (σ ∈ S1 and σ|1 ∈ S)}

As usual, 3 ϕ (eventually ϕ) is equivalent to (true U ϕ), and 2 ϕ (always
ϕ) is equivalent to (ϕ UW false).

Example 1. [Assume-Guarantee Semantics for Safety] Consider the prop-
erty 2 p, where p is a proposition. As seen above, 2 p = ν(F) for the operator,

F (S) = {σ | p ∈ σ0 and σ|1 ∈ S}

Now σ ∈ [ν(F)]k if and only if p ∈ σi for every 0 ≤ i ≤ k − 1. Hence for an
assume-guarantee specification S = 2 p .2 q (where q is also a proposition), a
computation σ satisfies S if and only if q ∈ σ0 and if p ∈ σi, for i ≤ k − 1, then
q ∈ σj , for j ≤ k.

The above discussion can be generalized to any safety property. Consider
formulas 2 ϕ and 2 ψ, where ϕ and ψ are past time properties. A computation
σ |= 2 ϕ .2 ψ if and only if σ0 satisfies ψ and if any prefix σ0.σ1 . . . σk−1 of
σ satisfies ϕ then σ0.σ1 . . . σk−1.σk satisfies ψ. Thus, for safety properties our
definition for assume-guarantee coincides with the classical definition in [1].

We apply Rule (Comp ν . ν) to derive a rule for specifications whose outer-
most connective is UW. Theorem 3, stated below, highlights the pay-off when
the general rule (Comp ν . ν) is instantiated for a specific computational frame-
work: premises about computations and arbitary fixed point approximations are
instead replaced by logical tautologies in Rule (Comp UW .UW).

Theorem 3. The following rule, (Comp UW .UW), is sound. 1

σ |= (ϕ1
1 UW ϕ1

2) . (ψ1
1 UW ψ1

2) σ |= (ϕ2
1 UW ϕ2

2) . (ψ2
1 UW ψ2

2)

(1a) (ϕ1 ∧ ψ1
1 ∧ ψ2

1) |= (ϕ1
1 ∧ ϕ2

1) (1b) (ϕ2 ∧ ψ1
2 ∧ ψ2

2) |= (ϕ1
2 ∧ ϕ2

2)

(2a) (ψ1
1 ∧ ψ2

1) |= ψ1 (2b) (ψ1
2 ∧ ψ2

2) |= ψ2

σ |= (ϕ1 UW ϕ2) . (ψ1 UW ψ2)

1 Recall, ϕ |= ψ iff for every σ, σ |= ϕ implies σ |= ψ.

Foundations for Circular Compositional Reasoning 843

McMillan’s rule for liveness. McMillan [12] presents a rule for reasoning about
2 ϕ properties. His rule says that if a computation satisfies a collection of spe-
cially constructed until properties built up from formulas in some set P , then the
computation satisfies 2 ϕ for every ϕ ∈ P . We make the key observation that
any computation satisfying the until properties in McMillan’s theorem also sat-
isfies an assumption-guarantee specification of 2 ϕ formulas. More precisely, we
show that if σ |= ¬(ϕ U ψ) then σ |= 2 ϕ .2 (¬ψ). Since properties of the form
2 ϕ are a special class of weak until specifications, the soundness of McMillan’s
rule then follows by repeated applications of Rule (Comp UW .UW).

Theorem 4. Given a set P of formulas, a well founded order ≺ on P , and
for all ϕ ∈ P , sets Θϕ ⊆ ∆ϕ ⊆ P , such that ψ ∈ Θϕ implies ψ ≺ ϕ. If
σ |= ¬(∆ϕ U (Θϕ ∧ ¬ϕ)), for all ϕ ∈ P , then σ |= 2 ϕ, for all ϕ ∈ P .

4 Assume-Guarantee for Tree Semantics

In this section, we consider a semantic setting of trace trees with Moore machines
defining our programming model. We derive a composition rule, (Comp Moore),
for Moore machines with synchronous parallel composition and show how the
rule for simulation preorder in [7] is a special instance of (Comp Moore). For
details on the advantages of trace-trees and using automata-refinement specifi-
cations, we refer the reader to [7]. Finally, we note that while our results are
developed for Moore machine, they apply as well to other non-blocking, finitely
non-deterministic, receptive models such as Reactive Modules [4], where parallel
composition corresponds to logical conjunction.

4.1 Moore Machines and Their Semantics

Preliminaries. A (rooted) tree is a set τ ⊆ ω∗ such that if xn ∈ τ , for x ∈ ω∗ and
n ∈ ω, then x ∈ τ and xm ∈ τ for all 0 ≤ m ≤ n. The elements of τ represent
nodes: the empty string ε is the root, and for each node x, the nodes of the form
xn, for n ∈ ω, are the children of x. The edges of the tree are pairs 〈x, xn〉,
where x, xn ∈ τ . The number of children of a node x is degree of the node, and
it is denoted by deg(x). A tree τ is finitely branching if for every x ∈ τ , deg(x)
is finite. A tree τ is finite if the set τ is finite; otherwise τ is said to be infinite.
The set of finite branching, infinite trees is denoted by Tω

f . A node x ∈ τ is said
to be at depth |x|, where |x| denotes the length of string x. For a tree τ , the
subtree rooted at x ∈ τ , is the tree τ |x = {i | xi ∈ τ}.

Given sets A and B, an 〈A,B〉-labeled tree is a triple τ̂ = 〈τ, λ, δ〉, where τ
is a tree, λ : τ→A is a labeling function that that maps each node of the tree
to an element of A, and δ : τ × ω→B is a function that labels each edge 〈x, xn〉
in τ with δ(x, n) ∈ B. Given a labeled tree τ̂ , the labeled tree rooted at x is
τ̂ |x = 〈τ |x, λ′, δ′〉, where λ′(y) = λ(xy), and δ′(y, n) = δ(xy, n).

Definition 3. A Moore machine is a tuple P = 〈S, s0, I, O, L,R〉 where, S is
the set of states, s0 ∈ S is the initial state, I is the set of input propositions, O

844 M. Viswanathan and R. Viswanathan

is the set of output propositions disjoint from I, L : S→P(O) is a function that
labels each state with the set of output propositions true in that state, and R ⊆
S×P(I)×S is the transition relation. We write R(s, i, t) instead of (s, i, t) ∈ R.

In what follows we only consider Moore machines that are non-blocking and
finitely nondeterministic. We denote the parallel composition of machines P and
Q by P ||Q, and write P �s Q to denote that a machine Q simulates machine P .
The definitions of non-blocking, finitely nondeterminitic, parallel composition,
and simulation are as in [7].

Semantic Space. We will define the semantics of a Moore machine in terms of
labeled, finitely branching infinite trees. A run tree of a machine P is a 〈S,P(I)〉-
labeled tree 〈τ, λ, δ〉, such that τ ∈ Tω

f , λ(ε) = s0, and for every edge 〈x, xn〉 of τ
we have R(λ(x), δ(x, n), λ(xn)). Note that since our machines are non-blocking,
every machine has at least one run tree. A trace tree 〈τ̂ , 〈O, I〉〉 ∈ C of P is a
〈P(O),P(I)〉-labeled tree τ̂ = 〈τ, λ, δ〉 such that there is a run tree Tr = 〈τ, λ′, δ〉
such that for all x ∈ τ , λ(x) = L(λ′(x)). The semantics of a machine P , denoted
by [[P]], is the collection of all trace trees of P .

An alphabet 〈O, I〉 is said to refine another alphabet 〈O′, I ′〉 (denoted as
〈O, I〉 � 〈O′, I ′〉) if O′ ⊆ O and I ′ ⊆ (I ∪ O). Consider 〈O, I〉 � 〈O′, I ′〉 and a
computation σ = 〈〈τ, λ, δ〉, 〈O, I〉〉. The projection of σ onto 〈O′, I ′〉 is [σ]〈O′,I′〉 =
〈〈τ, λ′, δ′〉, 〈O′, I ′〉〉, where for all x ∈ τ , λ′(x) = λ(x) ∩ O′, and for every edge
〈x, xn〉 of τ , δ′(x, n) = (δ(x, n) ∪ λ(x)) ∩ I ′.

Under suitable projections, parallel composition of Moore machines corre-
sponds to the “intersection” of the set of trace trees for the component machines,
while simulation corresponds to trace tree containment. This is formally stated
and proved in Propositions 1 and 2 in [7].

4.2 Assume-Guarantee for Moore Machines

We will now present a compositional reasoning principle for Moore machines
that allows one to compose specifications that contain both safety and liveness
constraints. As we shall later show, this rule is more general than previous com-
position rules for Moore machines.

We will call a set T ⊆ C projection closed if for any σ ∈ C, with alphabet
〈O, I〉, σ ∈ T if and only if for σ′ such that [σ′]〈O,I〉 = σ, σ′ ∈ T . In other words,
a set is projection closed if it contains the projections of all of its elements
and in addition, contains the computations whose projections are in the set. An
operator F : C→C is projection preserving if for any projection closed set T ,
F (T) is also projection closed.

Theorem 5. For Moore machines P1 and P2 such that P1||P2 exists, and pro-
jection preserving operators F and G, the following rule is sound.

P1 |= ν(F) . ρ(G) P2 |= ν(G) . ρ(F)
P1||P2 |= ρ(F) ∧ ρ(G)

(Comp Moore)

Foundations for Circular Compositional Reasoning 845

Theorem 5 illustrates how our general compositional rules can be applied to a
specific computational model to obtain circular reasoning principles. Conditions
(1) and (2) in the general rule (Comp ν . ν) can be seen as describing the
relationship between the composition of computations and assume-guarantee
specifications. They are, therefore, often eliminated when a specific model is
considered.

4.3 Compositional Reasoning for Simulation

We now show how the simulation pre-order rule of [7] can be derived from
(Comp Moore). We begin by defining a natural generalization of projection,
which we call observational equivalence. The formal relationship between obser-
vational equivalence and projection is captured in Proposition 3.

Definition 4. Trace trees σ = 〈〈τ, λ, δ〉, 〈O, I〉〉 and σ′ = 〈〈τ, λ′, δ′〉, 〈O′, I ′〉〉
are said to be observationally equivalent, written σ ≈ σ′, if and only if for every
x ∈ τ and edge 〈x, xn〉 in τ , the following two conditions hold:

(1) λ(x) ∩O′ = λ′(x) ∩O, and
(2) (δ(x, n) ∪ λ(x)) ∩ (O′ ∪ I ′) = (δ′(x, n) ∪ λ′(x)) ∩ (O ∪ I).

If conditions (1) and (2) hold only for nodes x ∈ τ such that |x| < k then we
say σ and σ′ are observationally equivalent upto depth k, denoted by σ ≈<k σ

′.

Proposition 3. Let σ = 〈〈τ, λ, δ〉, 〈O, I〉〉, σ′ = 〈〈τ, λ′, δ′〉, 〈O′, I ′〉〉, and σ′′ =
〈〈τ, λ′′, δ′′〉, 〈O′′, I ′′〉〉 be trace trees.

1. If 〈O, I〉 � 〈O′, I ′〉 then σ ≈ σ′ iff [σ]〈O′,I′〉 = σ′.
2. σ′ ≈ σ′′ iff there is some σ such that σ′ = [σ]〈O′,I′〉 and σ′′ = [σ]〈O′′,I′′〉.

To apply our general assumption-guarantee rule, we recast simulation as a
fixed-point definition.

Definition 5. Consider machine P = 〈S, s0, I, O, L,R〉, with S =
{s0, s1, . . . sn}. For sets Z0, . . . , Zn ⊆ C, define Fi(Z0, . . . , Zn) to be the set of
all computations σ = 〈τ̂ , 〈O′, I ′〉〉 such that for all i ∈ τ̂ , we have a j ≤ n with
the following conditions holding: (1) σ|i ∈ Zj, (2) λ(ε) ∩ O = L(si) ∩ O′, and
(3) (δ(ε, i) ∪ λ(ε)) ∩ (O ∪ I) = (k ∪ L(si)) ∩ (O′ ∪ I ′), where R(si, k, sj). The
specification Φ(P) is defined to be ν0(F0, . . . , Fn).

In Definition 5, each Fi constructs trace trees that are observationally equivalent
to computations that start in state si of machine P . Since simulation corresponds
to trace tree containment, the mutually recursive fixed point Φ(P) captures the
class of all machines Q such that Q �s P . These intuitions are captured in the
following proposition and corollary.

Proposition 4. σ |= [Φ(P)]k iff for some σ′ ∈ [[P]], σ ≈<k σ
′.

846 M. Viswanathan and R. Viswanathan

Corollary 2. 1. σ |= Φ(P) iff for some σ′ ∈ [[P]], σ ≈ σ′.
2. If P ′ �s P then P ′ |= Φ(P).

Having defined the fixed point specification Φ(P), the final step is to character-
ize the relationship between parallel composition and our assumption-guarantee
semantics. Indeed, subject to some technical conditions on the alphabets of the
machines, P ||Q �s P

′ can be recast as P |= Φ(Q) . Φ(P ′).

Lemma 2. Consider machines P,Q, and P ′ with alphabets 〈OP , IP 〉, 〈OQ, IQ〉,
and 〈OP ′ , IP ′〉 respectively such that P ||Q exists. Furthermore, let OP ′ ⊆ OP
and IP ′ ⊆ (OP ∪ IP) ∪ (OQ ∪ IQ). Then P ||Q �s P

′ iff P |= Φ(Q) . Φ(P ′).

Lemma 2 follows from Proposition 4 and Corollary 2 which establish the rela-
tionship between approximations of Φ(P) and the simulation relation �s; the
proof also relies on the machines being non-blocking to “extend” any correct
finite trace tree. Theorem 6 of [7] now immediately follows from Lemma 2 by
application of rule (Comp Moore).

Theorem 6 ([7]). Consider Moore machines P,Q, P ′, Q′ such that P ||Q and
P ′||Q′ exist. Suppose that P ||Q′ �s P

′ and P ′||Q �s Q
′. Furthermore, assume

that every input of P ′||Q′ is either an input or output of P ||Q. Then P ||Q �s

P ′||Q′.

5 Conclusion

In this paper, we have proposed a semantics for assume-guarantee specifications
of the form ρ(A) . ρ′(G) where ρ, ρ′ are the least or greatest fixed point op-
erators, and sound rules for composing such specifications. A salient feature
of our semantics and these rules is that they provide a common formulation
for both least and greatest fixed points and arbitrary combinations of them in
assumption-guarantee specifications. Using these general rules, we have derived
the first formulation of assume-guarantee rules for linear temporal logic formulas
ϕ UW ψ, and a formulation of assume-guarantee rules for Moore machine with
a trace-tree semantics.

The general rule also allows us to show that the previously proposed rules of
[12,7] can be derived as special instances. It has been well-known that assume-
guarantee rules are not propositionally valid and their soundness requires non-
propositional reasoning in some guise. In our proofs of the results of [12,7], it is
worth noting that once it was shown that the premises of their rules can be cast
as satisfaction of assume-guarantee properties with respect to our semantics,
the conclusions of their rules followed only by application of our rules (Imp .),
(Comp ν . ν), and (Sub .) without requiring any non-propositional reasoning
such as induction. In this sense, the three rules can be seen as a precise, uniform,
and concise distillation of the non-propositional content of the soundness of
any assume-guarantee reasoning principle. It is therefore our hope that a logic
consisting of these three reasoning rules together with those of propositional
logic would yield a powerful general logic for supporting circular compositional
reasoning.

Foundations for Circular Compositional Reasoning 847

References

1. M. Abadi, and L. Lamport. Composing Specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, 1993.

2. M. Abadi, and L. Lamport. Conjoining Specifications. ACM Transactions on
Programming Languages and Systems, 17(3):507–534, 1995.

3. R. Alur, and T. A. Henzinger. Local liveness for compositional modeling of fair
reactive systems. In Proceedings of the Conference on Computer-Aided Verification,
pages 166–179, 1995.

4. R. Alur, and T. A. Henzinger. Reactive Modules. In Proceedings of the IEEE
Symposium on Logic in Computer Science, pages 207–218, 1996.

5. A. Cau, and P. Collette. Parallel composition of assumption-commitment specifi-
cations: A unifying approach for shared variable and distributed message passing
concurrency. Acta Informatica, 33:153–176, 1996.

6. O. Grumberg, and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994. Ear-
lier version in Proceedings of CONCUR 91: Concurrency Theory, 1991.

7. T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran. An assume-guarantee
rule for checking simulation. In FMCAD 98: Formal Methods in Computer-aided
Design, pages 421–432, 1998.

8. C. B. Jones. Tentative steps towards a development method for infering programs.
ACM Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

9. B. Jonsson, and Y. -K. Tsay. Assumption/guarantee specifications in linear-time
temporal logic. Theoretical Computer Science, 167:47–72, 1996

10. R. P. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton
University Press, 1994.

11. K. McMillan. A compositional rule for hardware design refinement. In Proceedings
of the Conference on Computer-Aided Verification, pages 24–35, 1997.

12. K. McMillan. Circular compositional reasoning about liveness. In CHARME 99:
Correct Hardware Design and Verification, pages 342–345, 1999.

13. J. Misra, and K. M. Chandy. Proofs of network processes. IEEE Transactions on
Software Engineering, SE-7(4):417–426, 1981.

14. P. K. Pandya, and M. Joseph. P-A logic — A compositional proof system for
distributed programs. Distributed Computing, 5:37–54, 1991.

15. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models of Concurrent Systems, pages 123–144, 1984.

16. E. W. Stark. A proof technique for rely-guarantee properties In Proceedings of the
Conference on the Foundations of Software Technology and Theoretical Computer
Science, pages 369–391, 1985.

17. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

A PTAS for Minimizing Weighted Completion
Time on Uniformly Related Machines

(Extended Abstract)

Chandra Chekuri1 and Sanjeev Khanna2

1 Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974.
chekuri@research.bell-labs.com.

2 Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104.
sanjeev@cis.upenn.edu. Supported in part by an

Alfred P. Sloan Research Fellowship.

Abstract. We consider the well known problem of scheduling jobs
with release dates to minimize their average weighted completion time.
When multiple machines are available, the machine environment may
range from identical machines (the processing time required by a job is
invariant across the machines) at one end of the spectrum to unrelated
machines (the processing time required by a job on each machine is
specified by an arbitrary vector) at the other end. While the problem is
strongly NP-hard even in the case of a single machine, constant factor
approximation algorithms are known for even the most general machine
environment of unrelated machines. Recently a PTAS was discovered
for the case of identical parallel machines [1]. In contrast, the problem
is MAX SNP-hard for unrelated machines [11]. An important open
problem was to determine the approximability of the intermediate case
of uniformly related machines where each machine has a speed and it
takes p/s time to process a job of size p on a machine with speed s.
We resolve the complexity of this problem by obtaining a PTAS. This
improves the earlier known approximation ratio of (2 + ε).

Keywords: Polynomial time approximation scheme; average completion
time; scheduling; uniformly related machines; weighted completion time.

1 Introduction

Scheduling to minimize average weighted completion time is one of the most
well studied class of problems in scheduling theory. In this paper we concen-
trate on the following variant. We are given a set of n jobs where each job j
has a processing time pj , a weight wj , and a release date rj before which it
cannot be scheduled. The goal is to schedule the jobs on a set of m machines
non-preemptively with the objective of minimizing

∑
j wjCj where Cj is the com-

pletion time of j in the schedule. The specific machine environment we consider
in this paper is the uniformly related case. Machine i has a speed si and it takes
pj/si time for machine i to process job j. In the α |β | γ scheduling notation in-
troduced by Graham et al. [7] this problem is denoted by Q|rj |

∑
j wjCj . Using

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 848–861, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A PTAS for Minimizing Weighted Completion Time 849

some non-trivial extensions to the ideas introduced in [1] we obtain a polynomial
time approximation scheme (PTAS) for this problem. Our ideas also extend to
the preemptive case Q|rj , pmtn|∑j wjCj but we omit the details of that result
in this extended abstract.

Most variants of scheduling to minimize average completion time are strongly
NP-hard including preemptive problems [12]. Polynomial time solvable cases in-
clude P ||∑j Cj , 1||∑j wjCj , and R||∑j Cj . In the last few years considerable
progress has been made in understanding the approximability of many of these
NP-hard problems. Constant and logarithmic ratio approximations were found
for several variants: diverse machine environments (one, parallel, unrelated) and
with a variety of constraints on the jobs (release dates, precedence constraints,
delays) [14,8,3,5,6,13]. See [8,1] for more details on the history of these devel-
opments. Hoogeven et al. [11] obtained MAX SNP-hardness for some problems,
especially those that had precedence constraints on jobs and/or involved unre-
lated machines. These results led to some conjectures regarding the approxima-
bility of variants with only release dates on the jobs. In particular, the problem
1|rj |

∑
j wjCj was conjectured to have a PTAS, and P |rj |

∑
j wjCj was conjec-

tured not to have a PTAS (the problem R|rj |
∑

j WjCj was shown to be MAX
SNP-hard in [11]). Most of the ideas that led to constant factor approximation
algorithms did not seem to lead to the design of approximation schemes. They
were based on either preemptive relaxations or linear programming relaxations
that had integrality gaps. Skutella and Woeginger [16] obtained a PTAS for the
problem P ||∑j wjCj using some ideas from Alon et al. [2]. The basic idea in
[16] was to group jobs based on similar values of wj/pj and then finding good
schedules for each group separately. The schedules for the different groups could
be combined together on the same machine using Smith’s rule since there are no
release dates. These ideas do not have a straight forward extension when jobs
have release dates, especially in a multiple machine environment. More recently
substantial progress was made in [1] where PTASs were obtained for scheduling
jobs with release dates on single, identical parallel machines, and a constant
number of unrelated machines both with and without preemptions allowed.

The above mentioned results improved our understanding of the approxima-
bility of scheduling with release dates by showing that problems admitting a
PTAS (identical parallel and constant number of unrelated) were sufficiently
close to the case that is MAX SNP-hard (unrelated machines). An open prob-
lem that remained was to determine the approximability of the related machine
case, a strong generalization of the identical machine problem, and an important
special case of the unrelated machine problem. In this paper we obtain a PTAS
for this case, improving the earlier known ratio of (2 + ε) [15].

Techniques and Relation to Previous Work: Scheduling on related machines gen-
eralizes the case of identical parallel machines in a natural way. Not surprisingly,
we use as our starting point a dynamic programming framework presented in [1].
Informally speaking, the framework requires three key problems to be solved: (i)
how to maintain polynomial size description of jobs that remain to be scheduled
at any given time, (ii) a polynomial size description of how machines interact
as one proceeds from one instant of time to the next, and (iii) a polynomial-

850 C. Chekuri and S. Khanna

time algorithm for (1 + ε)-approximating the special case where we have only a
constant number of distinct release dates. Unfortunately, the ideas used for solv-
ing these problems in the identical machines case do not generalize easily to the
case of related machines. The main contribution of this paper is the development
of the substantial new technical machinery required to obtain a PTAS for our
problem. In what follows we give a brief overview of the difficulties involved in
moving from the identical machine to the related machine case. In the identical
machine case we could separate jobs into large and small based on their size.
A critical part of the earlier approximation schemes was that at any point in
time there are only O(1) distinct large job sizes to consider. This allowed for
explicit maintenance of certain parameters associated with each large job size
class (such as how many are left, how many to schedule etc.) in time and space
mO(1). The small jobs are easy to handle using a greedy approach. At a high level
the main difference in the related machine case is in the possibility of having up
to Ω(log m) geometrically spaced speeds (we show how to reduce an arbitrary
instance to such a restricted instance). The fastest machine could be m times
faster than the slowest one. Because of the different speeds, jobs cannot be clas-
sified as large and small in an absolute manner. Thus, at any time instant, there
could be up to Ω(log m) job sizes that could potentially be executed as large.
The dynamic programming framework of [1] gives a running time of mΘ(log m).
Each of the three key steps in the framework has this dependence on the number
of speeds.

To get around these difficulties we use two approaches. First, we show the
existence of approximate schedules with weaker requirements than previously
known. In particular, we give a procedure to preprocess the input in such a way
that there is an approximate schedule in which every job finishes by O(1) times
its release date.

Second, we use more sophisticated enumeration and dynamic programming
techniques. We mention two main ideas in this context. We use an approxi-
mate guessing tool from the recent work on the multiple knapsack problem [4]
that allows, under certain conditions, to reduce an enumeration that would take
Ω(mlog m) time if done naively to O(poly(m)) time. One of the components in
[1] is an approximation scheme for the special case where the number of release
dates is a fixed constant. This component is substantially more complicated in
the related machines case. In this regard, the differences are akin to the differ-
ences in the approximation schemes for minimizing makespan (without release
dates) on identical machines [9] and on related machines [10]. In particular, we
use ideas from [10] which requires dynamic programming across machines with
different speeds.

In this extended abstract we concentrate on getting the central ideas across
and we omit formal proofs and several technical details in the interest of clar-
ity and conciseness. We focus here only on the non-preemptive case. Various
dependencies on ε have not been optimized.

A PTAS for Minimizing Weighted Completion Time 851

2 Preliminaries

We first discuss some general techniques and lemmas that apply throughout our
paper. We aim to transform any input into one with simple structure. Some
of these transformations will be similar to those in [1] but some are new to
the related machine case. A key shifting transformation is considerably more
involved in its implementation and proof of correctness. We sequence several
transformations of the input problem. Each transformation potentially increases
the objective function value by 1+O(ε), so we can perform a constant number of
them while still staying within 1 + O(ε) of the original optimum. Using notation
consistent with [1] we say that a transformation produces 1+O(ε) loss. To argue
that a transformation does not produce more than a 1 + O(ε) loss we typically
take an optimal schedule and show how a near optimal schedule exists with the
properties desired after the transformation. We go over two such ideas since we
will be using them repeatedly. The first is ordering certain subsets of jobs by
the ratio wj/pj (Smith’s ratio). This is motivated by Smith’s optimal algorithm
for scheduling on a single machine when jobs are all released at the same time
[17]. When we have many jobs that are released at the same time we will be able
to show that there are approximate schedules that use this order in selecting
the jobs for execution. The second transformation is time stretching. It is best
understood by mapping time t to (1 + ε)t. Consider a single machine schedule
where we map the completion time of each job according to the above mapping.
This will worsen the schedule value by only a (1 + ε) factor. However, since
the processing times of the jobs remain the same, this leaves extra “space” in
the schedule which we exploit to schedule other jobs. This allows us to obtain
schedules with nicer structure while losing only a 1 + O(ε) factor. After the
preprocessing of the input we use a dynamic programming framework to find
a schedule with a special structure that is guaranteed to be within a 1 + O(ε)
factor of the optimum.

Notation: For simplicity we will assume throughout the paper that 1/ε is inte-
gral. We use Cj and Sj to denote the completion time and start time respectively
of job j, and opt to denote the weighted completion time of an optimal schedule.
The number of jobs and machines is denoted by n and m respectively. We denote
the speed of a machine i by si and assume w.l.o.g. that s1 ≥ s2 ≥ . . . ≥ sm.

2.1 Input Transformations

We start with some transformations that are generalizations of those in [1]. We
then introduce several new ones that are crucial for the related machines case.

Geometric Rounding: Our first simplification creates a well-structured set of
possible processing times, release dates, and machine speeds.

Lemma 1. With (1+ε) loss, we can assume that processing times, release dates,
and machine speeds are integer powers of 1 + ε.

For an arbitrary integer x, we define Rx := (1 + ε)x. As a result of Lemma 1
we can assume that all release dates are of the form Rx for some integer x.

852 C. Chekuri and S. Khanna

We partition the time interval (0,∞) into disjoint intervals of the form Ix :=
[Rx, Rx+1). We will use Ix to refer to both the interval and the size (Rx+1 −Rx)
of the interval. We will often use the fact that Ix = εRx, i. e., the length of an
interval is ε times its start time. Observe that the notion of time is independent
of the machine speeds.

Large and Small Jobs: As in [1] we classify jobs as small and large. Jobs are small
if their processing time is sufficiently small relative to the interval in which they
run. Large jobs are those that take up a substantial portion of the interval.
Note that this definition is both a function of the job size and the interval. A
difficulty with related machines is that a job in an interval could be small or
large depending on the machine on which it is processed. Therefore we say that
a job is large or small by qualifying with the speed we have in mind. To be more
precise we say that a job pj is small with respect to an interval Ix for speed
s` if pj/s` ≤ ε3Ix, otherwise it is large. We will often simply say that a job pj

is scheduled as small to indicate that it will be scheduled in some interval Ix

on some machine with speed s` so that pj/s` ≤ ε3Ix. Similarly for large jobs.
The following lemma states that a job is not arbitrarily large relative to its start
time.

Lemma 2. With 1 + ε loss, we can enforce Sj ≥ εpj/sk(j) for all jobs j where
k(j) is the machine on which j is processed.

Crossing Jobs: While most jobs run completely inside one interval, some jobs
cross over multiple intervals, creating complexity we would like to avoid. The
next two lemmas simplify this problem: we can assume that no job crosses too
many intervals, and we can assume there are no small crossing jobs at all.

Lemma 3. With 1 + ε loss we can ensure that every job crosses at most s :=
dlog1+ε(1 + 1

ε)e intervals.

Lemma 4. With 1 + ε loss we can restrict attention to schedules in which no
small job crosses an interval.

Lemma 5. With 1 + ε loss we can restrict attention to schedules in which each
job that is scheduled as large starts at one of 1/ε4 equi-spaced instants within
any interval.

O(log m) Speed Classes. It is easy to see that rounding the speeds to powers
of (1 + ε) results only in an 1 +O(ε) loss. However, this can still leave m distinct
speeds. We reduce the number of distinct speeds to O(log m) as follows. Intuition
suggests that machines much slower than the fastest machine can be ignored,
with little loss in the schedule value. We formalize this intuition below. Let
s1 ≥ s2 ≥ . . . sm be the speeds of the machines. We can assume that m > 1/ε3

for otherwise we can use the algorithm in [1] to obtain a PTAS.

Lemma 6. With (1+ε) loss we can ignore machines with speed less than ε
ms1/ε3 .

A PTAS for Minimizing Weighted Completion Time 853

Proof Sketch. Consider an optimal schedule S and let k(j) be the machine on
which job j is executed in S. Let Ai =

∑
k(j)=i wjCj be the contribution of

machine i to the schedule value. Let ` be such that A` = min2≤i≤1/ε3 Ai. We
obtain a new schedule as follows. We remove the jobs allocated to M` and execute
them on M1 in a delayed fashion. By time stretching on M1 it is clear that
we can execute the jobs of M` with no more than a 1/ε2 factor delay. Since
A` ≤ ε3 · opt this does not effect the schedule by more than a (1 + ε) factor.
We schedule the jobs allocated on all the slow machines (the ones with speed
smaller than s1/ε3 · ε

m) and assign them to M`. We do this as follows. All the
jobs that start in each of the slow machines in the interval Ix are scheduled in
the interval Ix on M`. It is easy to see that all the jobs will complete on M`

within the same interval Ix and hence their completion times are affected by no
more than a (1 + ε) factor.

Following Lemma 1 and Lemma 6 we can assume that our instance has
O(log m/ε) distinct speeds. We group machines with the same speed and refer
to the group as a speed class. Let K be the exact number of classes we have
with the implicit understanding that K = O(log m). For 1 ≤ i ≤ K, let Mi

denote the machines in the ith speed class. Let mi = |Mi| denote the number
of machines in Mi and let si denote the common speed of machines in Mi. We
assume w.l.o.g. that s1 > s2 > . . . > sK .

Generating Extra Machines. We describe another technique that allows us
to simplify things. The lemma below shows that any schedule can be transformed
into a 1 + O(ε)-approximate schedule where we use only a (1 − ε)-fraction of the
machines from any sufficiently large machine class. Note that a similar lemma
does not hold for minimizing makespan. We will assume from here on that we are
working with this reduced allocation of machines. The remaining extra machines
would be useful in a key step for implementing the dynamic programming.

Lemma 7. Given m machine instance of identical parallel machines where m >
1/ε3 there is a 1 + O(ε)-approximate schedule on m(1 − ε3) machines.

The proof of the above lemma uses a similar line of reasoning as in the proof
of Lemma 6.

Shifting. Our next goal is to show that we can preprocess the input instance
I in such a way that we can guarantee a schedule in which every job will be
completed within a constant number of intervals from its release. We accomplish
this by selectively retaining only a fraction of the jobs released in each interval
and shifting the rest to later intervals. This basic idea plays a crucial role in
obtaining the PTAS for the parallel machine case P |rj |

∑
j wjCJ [1]. A brief

description of the procedure in [1] follows. Jobs released in an interval Ix are
either small or fall in to one of O(1) large size classes. Small jobs are ordered in
non-increasing order according to the ratio wj/pj and large jobs are ordered in
each size class in decreasing order of their weights. In each class the number of
jobs retained is restricted by the volume that could be processed in the interval
Ix. The rest are shifted to the next interval. Since the number of classes is O(1)

854 C. Chekuri and S. Khanna

the total volume of jobs released at Rx in the modified instance is O(1) times the
volume of Ix. By time shifting one can show that there exists an approximate
schedule in which all the jobs at Ix could be finished within O(1) intervals after
Rx. This enables locality in dynamic programming.

There is no simple generalization of the above ideas to the related machine
case because the notion of small and large jobs is now relative to the machine
speed. The number of distinct job sizes that can be executed as large in an
interval could be Ω(log m) and we cannot afford to have a volume of jobs released
at Ix that is Ω(log m) times the processing capability of the machines in Ix. We
design a new procedure below that essentially retains the property concerning
the volume. The proof that this procedure results in only an 1 + O(ε) loss is
however more involved. We describe the shifting procedure formally below.

Let Jx be the set of jobs released at Rx. For each speed class i from K down
to 1 the following process is done.

– Let T i
x and Hi

x be the small and large jobs with respect to speed si released
at Rx that are still to be processed.

– The number of distinct size classes in Hi
x is O(1/ε2). In each size class we

pick jobs in order of non-increasing weights until the sum of processing times
of jobs picked just exceeds misiIx/ε2 or we run out of jobs.

– We pick jobs in T i
x in non-increasing wj/pj ratio until the processing time

of the jobs picked just exceeds misiIx or we run out of jobs.
– We remove the jobs picked from T i

x and Hi
x from Jx.

Jobs that are not picked in any speed class are shifted to the next interval. We
repeat this process with each successive interval. Let I ′ be the modified instance
obtained after the shifting process above and for each x let J ′

x be the set of jobs
released at Rx in I ′.

Lemma 8. For any given rounded job size s let as
x(S) and bs

x(S) denote the
number of jobs of size s started in Ix as small and large respectively in an optimal
schedule S. There exists a 1 + O(ε)-approximate schedule S′ such that for each
s and x either as

x(S′) < 1
ε2 bs

x(S′) or bs
x(S′) = 0.

Proof. Consider an optimal schedule S. Suppose as
x(S) > 1

ε2 bs
x(S) for some size

s and interval x. We create a modified schedule S′ as follows. We take all the
bs
x(S) jobs executed as large and execute them as small within the same interval

Ix by scheduling them on faster machines. Since the number of jobs executed
as small, as

x(S), is much larger that those executed as large, we claim that this
can be accomplished by stretching the interval by only a (1 + ε) factor. In the
modified schedule bs

x(S′) = 0. This can be done simultaneously for all s and x
which do not satisfy the lemma and no interval stretches by more than a 1 + ε
factor. The schedule S′ is a 1 + O(ε)-approximation to S.

Lemma 9. For the modified instance I ′ obtained from I by the shifting procedure

1. opt(I ′) ≤ (1 + O(ε))opt(I).
2. There exists a (1 + O(ε))-approximate schedule for I ′ in which all jobs in Jx

are finished by Rx+O(log(1/ε)/ε).

A PTAS for Minimizing Weighted Completion Time 855

Proof Sketch. We prove (2) first. Let J i
x be the set of jobs picked by the shifting

procedure in speed class i, 1 ≤ i ≤ K at Rx. We note that all jobs in J i
x can

be executed by machines of speed class i in time O(Ix). This implies that p(J i
x)

will be small relative to interval Ix+O(log(1/ε)/ε) because of the geometrically
increasing property of interval sizes. Therefore time stretching any arbitrary but
fixed optimal schedule allows us to create the required space to execute all the
jobs in J i

x by then.
Now we prove (1). We observe that the shifting procedure does the following.

For each size class s that can be executed as large in Ix the procedure picks the
ns

x/ε2 jobs in non-increasing weight order from Jx where ns
x is the maximum

number of jobs that can executed as large of size class s in Ix. From Lemma 8
there exists a (1 + O(ε))-approximate schedule in which the jobs executed as
large in Ix of size s are contained in the set we pick. The small jobs that are
executed in Ix can be treated as fractional jobs and this enables us to pick them
in a greedy fashion in non-increasing order of wj/pj and we pick enough jobs
to fill up the volume of Ix. The proof of the near optimality of greedily picking
small jobs is similar to that of the parallel machine case in [1] and we omit the
details in this version.

2.2 Overview of Dynamic Programming Framework

We give a brief overview of the dynamic programming framework from [1].
The idea is to divide the time horizon into a sequence of blocks, say B1,B2, ...,

each containing a constant number (depending on ε) of intervals dates, and then
do a dynamic programming over these blocks by treating each block as a unit.
There is interaction between blocks since jobs from an earlier block can cross
into the current block. We choose the number of intervals in each block to be
sufficiently large so that no job crosses an entire block. From Lemma 3 we con-
clude that O(1/ε2) intervals per block suffice. In other words jobs that start
in Bi finishes no later than Bi+1. A frontier describes the potential ways that
jobs in one block finish in the next. An incoming frontier for a block Bi speci-
fies for each machine the time at which the crossing job from Bi−1 finishes on
that machine. Let F denote the possible set of frontiers between blocks. The
dynamic programming table maintains entries of the form O(i, F, U): the mini-
mum weighted completion time achievable by starting the set U of jobs in block
Bi while leaving a frontier of F ∈ F for block Bi+1. Given all the table entries
for some i, the values for i + 1 can be computed as follows. Let C(i, F1, F2, V)
be the minimum weighted completion time achievable by scheduling the set of
jobs V in block Bi, with F1 as the incoming frontier from block Bi−1 and F2 as
the outgoing frontier to block Bi+1. We obtain the following equation.

O(i + 1, F, U) = min
F ′2F,V �U

(
O(i, F 0, V) + C(i + 1, F 0, F, U − V)

)

856 C. Chekuri and S. Khanna

3 Implementing the Dynamic Programming Framework

Broadly speaking, we need to solve three problems for using the dynamic pro-
gramming framework described in the preceding section. First, we need a mecha-
nism to compactly describing for any block Bi, the set of jobs that were released
prior to Bi and have already been scheduled. Second, we need to ensure that
the number of distinct frontiers in F is polynomial for any block Bi. Finally,
given a set of jobs to be scheduled within a block, we should be able to find
a (1 + ε)-approximate schedule. A basic theme underlying our implementation
of these steps is to relax the requirements slightly. In the parallel machine case
we could enumerate the set of jobs U that are released in Bi and started in Bi

itself. This was done by separating out the small and large jobs. Since there
were only O(1) large job sizes in each Bi this was relatively easy. Now we have
Ω(K) large job sizes. We would have to enumerate mΩ(K) possibilities. To get
around this difficulty we use a global scheme that is inspired by the recent work
on the multiple knapsack problem [4]. We will be able to figure out most of the
important jobs using the above scheme in polynomial time and we show this
approximate enumeration suffices. A similar situation arises in enumerating the
frontiers. Here we use a different idea based on Lemma 7. Finally, another dif-
ficult part is the problem of scheduling jobs in a fixed number of intervals. The
approach we adopt is some what akin to the approach taken by Hochbaum and
Shmoys [10] to obtain a PTAS for the makespan problem on related machines.
The basic idea is to do dynamic programming across the speed classes going
from the slowest speed class to the fastest. The advantage of this approach is
the following. Any fixed size class is large for only O(1) consecutive speed classes
because of the geometrically increasing speeds. This implies that while we are
doing the dynamic programming the number of size classes for which we have to
maintain detailed information (in terms of the exact number of jobs remaining
etc) is only O(1) as opposed to Ω(K) if we tried to solve the problem all at once.
The many subtle details that we need to make all these ideas work are explained
in the remainder of this section.

In what follows, we assume each block consists of α = O(1/ε2) intervals, the
precise constant is of not much importance.

3.1 Compact Description of Remaining Jobs

We start by observing that by Lemma 9 and our choice of block size, there exists
a (1+ε)-approximate schedule such that all jobs released in a block Bi are always
scheduled by the end of the block Bi+1. In fact we will be able to schedule all
jobs released in Bi by the end of Bi+1 irrespective of how many of them have
been executed in Bi itself. We will restrict our attention to only such schedules.
Thus, to compactly describe the set of jobs that remain from Bi, we need only
describe a mechanism for compact representation of the set of jobs chosen to be
scheduled within Bi. However, due to the non-uniform nature of machine speeds,
this process turns out to be more involved than the identical machine case. In
particular, we rely on some ideas from the recent approximation scheme for the
multiple knapsack problem [4]. We show that there exists a (1 + ε)-approximate

A PTAS for Minimizing Weighted Completion Time 857

schedule that needs to enumerate over only a polynomial number of distinct
possibilities for sets of jobs chosen for scheduling within a block Bi. We will use
the following elementary fact from [4]:

Proposition 1. Let h = O(log m). Then the number of h-tuples 〈k1, k2, ..., kh〉
such that ki ∈ [0...h] and

∑
ki ≤ h is mO(1).

We can now describe our scheme for enumerating the job subsets. For each
interval Ij ∈ Bi we separately enumerate the jobs that are released at Ij and
will be scheduled in Bi. Since the number of intervals in each block is a constant
depending only on ε, we concentrate on a single interval. Let Xl be the set of
all jobs released in Ij that are large for the slowest speed and let Xs be the
remaining jobs. We focus here on the enumeration of the set Xl and later sketch
the idea for the set Xs. Let w be the total weight of jobs in Xl. As a result of our
shifting procedure, total number of jobs in Xl can be bounded by m2f(1/ε) for
some suitably large function f . We use this fact to ignore from our consideration
all jobs in Xl whose weight is less than δ(ε) · w/m2 where δ is a suitably smaller
than 1/f(1/ε) — we will schedule these jobs in Bi+1 and by our choice of δ, their
completion time can be amortized to an ε fraction of the weighted completion
of other jobs in Xl. Once we eliminate these jobs from consideration, there are
only O(log m) distinct weights for the remaining jobs in Xl.

1. For interval Ij ∈ Bi we first specify Wj the total weight of jobs in Xl that will
be scheduled in Bi. We specify this weight in multiples of δ(ε) · w/m2 by an
integer ` such that 0 ≤ ` ≤ m2/δ(ε). The set of jobs that are lost due to the
downward rounding are scheduled in Bi+1 and as above the increase in the
schedule value can be bounded. The number of choices for ` is polynomial
in m.

2. For a given Wj (specified by the integer `), we specify a partition of Wj into
h = O(log m) classes one for each of the distinct large size classes. Since an
exact partition would require quasi-polynomial possibilities, we need to do
this step approximately. We specify an approximation to an exact partition
of the form 〈W 1

j , W 2
j , ..., Wh

j 〉 by guessing an integer vector 〈k1, k2, ..., kh〉
such that kl(δ(ε) ·Wj/h) ≤ W l

j < (kl +1)(δ(ε) ·Wj/h). By Proposition 1, the
number of tuples enumerated above is bounded by mO(1) for any fixed ε > 0.
The error introduced by this approximate under-guessing can be bounded
by δ(ε) · Wj over all h size classes. Since all jobs released in Bi are always
scheduled by the end of the block Bi+1, the cost of the schedule as a result
of the under-guessing above increases by at most a factor of 1 + O(ε).

3. Finally, for each size class of jobs released in Ij , we greedily pick the smallest
number of jobs whose cumulative weight exceeds the weight guessed above.

For jobs in Xs, we order them by wj/pj and guess the fraction of them that
will be scheduled with a precision of δ(ε)/m2, and using similar reasoning as
above, conclude that we do not incur more than a 1 + ε loss.

In summary we showed that by restricting the choice to important jobs based
on weights we need to consider only a polynomial number of sets as candidates
for jobs scheduled within a block.

858 C. Chekuri and S. Khanna

3.2 Frontiers

A frontier describes the set of jobs that are crossing over from a block Bi to the
next block Bi+1. By Lemma 4, we know that only a job that is scheduled as large
can participate in a frontier, and by Lemma 5 we know that there are only 1/ε4

distinct time instants in any interval by which a job scheduled as large starts or
ends. Further the number of distinct job sizes that can execute as large in a block
is O(1/ε4). Hence a crossing job on a large machine can be specified by the size
and the time instant it starts in the interval. Let q = O(1/ε8) denote the total
number of such distinct frontiers for any machine. In order to describe the over
all frontier, we need to specify this information for each machine. Consequently,
we can describe the frontier by a vector 〈m11, m12, ..., m1q, m21,, mKq〉 where
mij denotes the number of machines in the speed class Ci that have a job finishing
at the jth distinct instant in block Bi+1. Clearly, an exact enumeration would
require considering quasi-polynomial number of possibilities. We now argue that
in order to obtain a (1 + ε)-approximation it suffices to work with a polynomial-
sized set F of frontiers. With any vector of the above form, we associate a vector
〈l11, l12, ..., l1q, l21,, lKq〉 in F where lij = mij if mi ≤ 1/ε3, and otherwise,
(lij − 1)(ε11mi) < mij < lij(ε11mi). Clearly, there are only O(1/ε11K) = mO(1)

such vectors to be considered. However, the above approximation of an exact
frontier description over-allocates machines for large machine classes, and thus
would necessitate extra machines. The total number of extra machines needed
by any large speed class is bounded by ε11 · q · mi which is at most ε3 · mi. We
allocate these extra machines by using Lemma 7 which allowed us to keep aside
an ε3 · mi machines for each speed class of size at least 1/ε3.

3.3 Scheduling Jobs within a Block

We now describe a (1 + ε)-approximate implementation of the procedure
C(i, F1, F2, Z). Recall that C(i, F1, F2, Z) is the procedure that computes the
best schedule for a set of jobs Z that are to be scheduled in block Bi with
incoming and outgoing frontiers specified by F1 and F2.

In what follows, it will be useful to assume that F j
1 and F j

2 denote the com-
ponents of F1 and F2 that correspond to the jth speed class Mj . Our scheduling
procedure is based on a dynamic programming across the classes; we move from
the slowest class to the fastest class and treat each class as a unit. In [1] a
procedure was given to schedule on a single speed class. The basic idea was to
enumerate large job placements and schedule the small jobs greedily in the space
left by the large jobs. Enumerating the large job placements was relatively easy
because there were only O(1) sizes that were large in each block. We do not know
how to efficiently enumerating all large job placements with K speed classes in
polynomial time, hence we resort to doing dynamic programming across classes.
When considering a current class we would like to know the jobs that are al-
ready scheduled in the preceding classes. The main difficulty in implementing
the dynamic program is to maintain a compact description of this information.
To achieve this we use the notion of template schedules.

A PTAS for Minimizing Weighted Completion Time 859

Template Schedules: A template schedule at a machine class Mj provides infor-
mation about the jobs that remain to be scheduled along with some “coarse”
information constraining how these jobs may be scheduled. It is this additional
scheduling information that implicitly encodes information concerning weights
of the remaining jobs. Specifically, a template schedule at a machine class Mj

specifies scheduling information for all jobs that are eligible to be scheduled as
large on a machine in Mj , as well as global information concerning the volume
of jobs that must be scheduled as small on machines in Mj−1 through M1. We
describe these two aspects next.

Let L(j) denote the set of job sizes that can be scheduled as large at the jth
machine class, and let ZL(j) denote the job set Z restricted to the sizes in L(j).
At the jth speed class we consider all possible extensions of template schedules
for the (j−1)th machine class so as to incorporate scheduling information for the
jobs in the set Q = ZL(j) \ ZL(j−1). A template schedule specifies the following
information for each size class in Q.

– The number of jobs that are executed as large and the number that are
executed as small.

– For those executed as small, the number that will be executed in each interval
of Bi.

– For those executed as large, the number that will be executed for each pos-
sible placement in each of the speed classes where that size can be executed
as large. We note that this information includes speed classes greater than
j, that is classes that have already been processed.

Lemma 10. The template schedule information is polynomial size for each size
class in the set Q.

Proof Sketch. For any fixed size class the number of speed classes on which
it can be scheduled as large is O(log(1/ε)/ε) since the speeds are increasing
geometrically. Further the number of distinct start times of large jobs in each
class is also fixed for fixed ε, following Lemma 5. Hence specifying the numbers
is polynomial.

At each class Mj the number of job sizes in Q is O(1/ε2), hence the total
information for all sizes in Q is still polynomial. Observe that template sched-
ules do not maintain any explicit information about the weight of the jobs that
remain. However, this information is implicit and can be recovered as follows.
Consider the scheduling at a machine class Mj that receives the template sched-
ules for all job sizes that can be scheduled as large on a machine in Mj . Fix one
such size class, say pk, and let at denote the number of jobs of size pk that are
required to start at the tth starting time in block Bi on a machine in Mj . Since
a template schedule completely determines the finishing times of all jobs of size
pk, it is straightforward to determine the weights associated with each one of
the at jobs (we resolve all ties in some fixed canonical manner).

The idea of template schedule as described so far allows us to identify the
jobs that are to be scheduled as large at any machine class. However, we need
additional information to determine what jobs are available to be scheduled as
small at any machine class. We do this by maintaining a vector of the form

860 C. Chekuri and S. Khanna

〈V1, ..., Vα〉 such that Vl specifies the total volume of the small jobs that must
be scheduled in the lth interval of the block Bi in classes Mj−1 through M1.

Lemma 11. The template schedule information for small jobs is of poly size.

Proof Sketch. We claim that the precision needed for each Vi is O(ε5/m2). As-
sume without loss of generality that sK = 1 and hence s1 = O(m). Consider
the smallest large job in the block and let s be its size. From our assumption
that sK = 1, s is at least ε3 times the smallest interval in Bi. We claim that the
volume can be maintained in multiples of ε2 times s. This is because the size of
each job in the block can be approximated to within a (1+ε) factor by multiples
of the above quantity. Coupled with the fact that the total volume that can be
executed in the block is O(m2) the lemma follows.

Dynamic Programming with Template Schedules. We maintain a table T (j, X, Y)
where j ranges over machine speed classes and X and Y are template schedules
for Mj and Mj−1 respectively. T (j, X, Y) stores the best weighted completion
time that is consistent with X and Y . Note that by knowing X and Y the job
set that is to be scheduled in Mj is determined. Given X and Y computing
T (j, X, Y) involves the following.

– Checking for consistency between X and Y .
– Checking the feasibility of scheduling the jobs in Mj implied by X and Y .

Note that the template schedules implicitly determine the best weighted com-
pletion times. We briefly describe the feasibility computation below.

Scheduling Jobs within a Machine Class: For any machine class Mj , once we
know the position of jobs to be scheduled as large, as well as the volume of jobs
to be scheduled as small in each one of the α intervals, it is relatively easy to
determine whether or not there exists a feasible schedule (with 1+ ε loss) that is
consistent with this specification and the in-coming and out-going frontiers F j

1
and F j

2 .

Theorem 1. There is a PTAS for the problem Q|rj |
∑

j wjCj.

References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M.
Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation Schemes for
Minimizing Average Weighted Completion Time with Release Dates. FOCS ’99.

2. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. Journal of Scheduling, 1:55–66, 1998.

3. S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein.
Improved scheduling algorithms for minsum criteria. ICALP ’96.

4. C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. SODA
’00.

5. C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques
for average completion time scheduling. SODA ’97.

A PTAS for Minimizing Weighted Completion Time 861

6. M. X. Goemans. Improved approximation algorithms for scheduling with release
dates. SODA ’97.

7. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math., 5:287–326, 1979.

8. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize
average completion time: Offline and online algorithms. Math. of OR, 513–44, ’97.

9. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. JACM, 34:144–162, 1987.

10. D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: using the dual approximation approach. SIAM
Journal on Computing, 17:539–551, 1988.

11. J. A. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results
for scheduling problems with minsum criteria. IPCO ’98.

12. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

13. A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. IPCO ’98.

14. C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the
presence of release dates. Mathematical Programming B, 82:199–223, 1998.

15. A. S. Schulz and M. Skutella. Scheduling–LPs bear probabilities: Randomized
approximations for min–sum criteria. ESA ’97.

16. M. Skutella and G. J. Woeginger. A PTAS for minimizing the weighted sum of
job completion times on parallel machines. STOC ’99.

17. W. E. Smith. Various optimizers for single-stage production. Naval Res. Logist.
Quart., 3:59–66, 1956.

The Buffer Minimization Problem for
Multiprocessor Scheduling with Conflicts

Marek Chrobak1, János Csirik2, Csanád Imreh2, John Noga3, Jǐŕı Sgall4, and
Gerhard J. Woeginger3

1 Dept. of Computer Science, University of California, Riverside, CA 92521, USA,
marek@cs.ucr.edu

2 József Attila University, Department of Computer Science, Árpád tér 2, H-6720
Szeged, Hungary, csirik,cimreh@inf.u-szeged.hu

3 TU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria,
gwoegi,noga@opt.math.tu-graz.ac.at

4 Mathematical Inst., AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic,
sgall@math.cas.cz

Abstract. We consider the problem of scheduling a sequence of tasks
in a multi-processor system with conflicts. Conflicting processors cannot
process tasks at the same time. At certain times new tasks arrive in
the system, where each task specifies the amount of work (processing
time) added to each processor’s workload. Each processor stores this
workload in its input buffer. Our objective is to schedule task execution,
obeying the conflict constraints, and minimizing the maximum buffer size
of all processors. In the off-line case, we prove that, unless P = NP, the
problem does not have a polynomial-time algorithm with a polynomial
approximation ratio. In the on-line case, we provide the following results:
(i) a competitive algorithm for general graphs, (ii) tight bounds on the
competitive ratios for cliques and complete k-partite graphs, and (iii) a
(∆/2 + 1)-competitive algorithm for trees, where ∆ is the diameter. We
also provide some results for small graphs with up to 4 vertices.

1 Introduction

We consider the problem of scheduling a sequence of tasks in a multi-processor
system with conflicts. The term “conflict” refers to a situation where two or more
processors share common resources that can only be accessed by one processor
at any given time, e.g. specialized human operators, equipment (say, a printer
or a phone line), materials, etc. Conflicting processors cannot process tasks at
the same time. In other words, at any moment in time only a non-conflicting
set of processors can be run simultaneously. At certain times new tasks arrive
in the system, where each task specifies the amount of work (processing time)
added to each processor’s workload. Each processor stores this workload in its
input buffer. Our objective is to schedule task execution, obeying the conflict
constraints, and minimizing the maximum buffer size of all processors.

We model the multi-processor system as an undirected graph G = (V, E),
where V is the set of processors and the edges in E represent conflicts. The

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 862–874, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Buffer Minimization Problem for Multiprocessor Scheduling 863

instance of the problem consists of a task sequence and a sequence of task arrival
times. The sequence of task arrival times, denoted t̄ = t1, . . . , tm, is a non-
decreasing sequence of real numbers. The task that arrives at time tk is given
by a task vector τ k = (τk1 , . . . , τkn) of non-negative real numbers, and the whole
task sequence τ 1, ..., τm is denoted by τ̄ .

The state of the system at any time is fully described by the load vector
z = (z1, z2, . . . , zn), where zi denotes the amount of work stored in the input
buffer of processor i. Upon the arrival of task τ k, the state changes to z + τ k.
In-between task arrivals, the processors execute the work stored in their buffers.
At any time, an independent set of vertices I can be chosen for processing. If a
processor i executes for σ time units during which no task arrives, it decreases
its load from zi to max {zi − σ, 0}.

A schedule is described by a sequence of independent sets Ij , 0 = 1, . . . , m−1
and an increasing sequence of times θ0 = 0, θ1, . . . , θm. During the time interval
[θj , θj+1), the set of running processors is Ij . The load vector at any time is
computed according to the rules above. A schedule is feasible for a given instance
if θm > tk and the load vector at time θm is the zero vector (i.e., all requests are
processed). The buffer size of a schedule is the maximum of any coordinate in
any load vector over all times. A schedule is called a B-schedule if it is feasible
and its buffer size is at most B.

The buffer minimization problem can be now formulated as follows: given an
instance 〈G, t̄, τ̄ 〉, where G is the conflict graph and t̄, τ̄ are the sequences of
task arrival times and task vectors, find a B-schedule for 〈G, t̄, τ̄ 〉 with minimum
buffer size B.

On-line buffer minimization. An on-line algorithm processes the workload
from the buffers without knowledge of future tasks. In round k it learns the task
vector τ k and determines a schedule that is identical with the current one at all
times up to tk and is feasible in case no further task arrives. This schedule is
executed until the next task arrives, and then the process is repeated.

We evaluate on-line algorithms by comparing their buffer size to that of an
optimal off-line algorithm. An on-line algorithm is c-competitive for a graph G
if, for any task sequence that has a B-schedule, it constructs a feasible schedule
with buffer size at most cB. The competitive ratio of G, denoted buf(G), is the
infimum over all c for which there is a c-competitive on-line algorithm on G.

We also consider a slightly weaker definition, where the optimal size of buffers
is fixed in advance. Without loss of generality, B = 1. We say that an on-line
algorithm is weakly c-competitive for G if, for any task sequence that has a 1-
schedule, it constructs a feasible schedule with buffer size at most c. The weak
competitive ratio of G, denoted buf−(G), is the infimum of all c for which there
is a weak c-competitive on-line algorithm on G. Using the doubling technique
to estimate the buffer size, it is quite easy to show that, for any graph G, the
competitive ratio buf(G) is at most 4 times the weak competitive ratio buf−(G).

Some algorithms are easier to describe if we allow them to process a convex
combination of independent sets rather than a single set. For example, instead

864 M. Chrobak et al.

of rapidly switching between two conflicting processors, we can run each of them
at half speed. This generalization does not change the competitive ratio.

Our results. We introduce the buffer minimization problem as a model for
studying various scheduling problems with conflicts. We believe that our model
faithfully captures essential properties of scheduling multiprocessing systems
over long periods of time. Other objectives in multiprocessor scheduling include
fairness, load balancing and makespan minimization. Schedules that minimize
the buffer size also typically perform well with respect to these other measures.

Off-line buffer minimization is closely related to fractional graph coloring. In
fact, in Section 2, we show that it is even harder, namely that it has no polyno-
mial time approximation algorithm with worst case guarantee that is polynomi-
ally bounded in the number n of processors, unless P = NP.

For the on-line case, we provide the following results:
(i) For every graph G, its competitive ratio buf(G) is finite (Section 3).
(ii) The clique Kn has competitive ratio buf(Kn) = buf−(Kn) = Hn where
Hn =

∑n
i=1 1/i is the nth harmonic number. For any complete bipartite graph

Km,n, buf(Km,n) = buf−(Km,n) = 2. Further for complete k-partite graphs the
competitive ratio is between Hk and Hk−1 + 1 (Section 4). These upper bounds
are achieved by a simple greedy algorithm.
(iii) For trees we show that their competitive ratio is at most ∆/2 + 1, where ∆
is the tree diameter (Section 5).
(iv) Finally, we provide bounds on the competitive ratios for graphs with up to
four vertices (Section 6). All these ratios are between 1.5 and 2.5.

Previous work. The general concept of conflicts is not new in scheduling;
in fact, one could argue that the whole area of scheduling is about resolving
various types of conflicts for access to limited resources. In the classical literature
on scheduling, conflicts are modeled by precedence relations between jobs and
machine environments.

A model similar to ours was studied by Irani and Leung [3,2]. They also intro-
duce a conflict graph, but in their work this graph represents conflicts between
individual jobs (not processors), and the objective is to minimize makespan.
They show that even for paths the competitive ratio is Ω(n). They also provide
algorithms that are competitive for general graphs under some assumptions on
the job arrival probabilities.

Similar problems to ours were also studied in relation to resource allocation in
distributed systems, where the conflict graphs is often referred to as the resource
graph [9]. For example, Bar-Noy et al [4] investigate resource allocation problems
with the objective to minimize the average response time, and they provide some
hardness and approximation results. The problems studied in [4] (see also [8]
and the references in [4]) differ from ours in that they are one-shot resource
allocation problems, while in our scenario we have a stream of tasks arriving
over time. Our objective function is different as well. Finally, unlike in [4], where
the allocation problems reduce to various color sum problems for graphs, the
buffer minimization turns out to be closely related to fractional graph coloring.

The Buffer Minimization Problem for Multiprocessor Scheduling 865

Notation. States, or load vectors, will be denoted z, y, etc, possibly with super-
scripts. States of an on-line algorithm will be typically denoted by a. G = (V, E)
denotes an undirected graph with n vertices. We will use the convention that
V = {1, 2, . . . , n}. By N(v) we denote the set of neighbors of a vertex v in G.
Given any non-negative vector w = (w1, . . . , wn), and a vertex set X ⊆ V , we
introduce the following notation:

ΣXw =
∑

i∈X
wi and maxXw = max

i∈X
wi

For any real number x, we define [x]+ = max {0, x}, and for a vector x =
(x1, . . . , xn) let [x]+ = ([x1]+, . . . , [xn]+). For two n-dimensional vectors x and
y, we write x ≤ y to denote that x is component-wise less than or equal to y.

2 Buffer Minimization and Fractional Chromatic Number

We now exploit the relationship between the fractional chromatic number and
the buffer size to show that the minimum buffer size is hard to approximate.

As usual, the chromatic number of a graph G is denoted by χ(G), and its
clique number by ω(G). Consider a weight vector w indexed by the vertices of
V , with wj ≥ 0 denoting the weight of vertex j ∈ V . The weighted fractional
chromatic number χf (G, w) is the optimal objective value of the following linear
program, where we use I to denote independent sets in G:

χf (G, w) = min
∑
I xI

s.t.
∑
I3j xI = wj for j ∈ V

xI ≥ 0 for each I

(1)

If w = 1 (the vector of all 1’s) and if the variables xI are restricted to integral
values, then the optimal solution of the resulting integer program is just the
ordinary chromatic number χ(G): Every independent set I with xI = 1 forms a
color class, the n equations in (1) enforce that every vertex is contained in some
color class, and the objective is to use the minimum number of color classes.

The fractional chromatic number χf (G) equals χf (G,1). The chromatic num-
ber and the fractional chromatic number are closely related; see [1]. For instance,
the chromatic number χ(G) is at most log |V | times χf (G).

The connection between the buffer scheduling problem and the fractional
chromatic number is as follows: Suppose that G is the conflict graph, and that
the current load vector is w. Then the minimum time needed to empty all
the buffers (without any new tasks arriving) equals χf (G, w). The variables xI
indicate the amount of time for which I should be run in this schedule.

Using this connection and amplifying the hardness of coloring over time, we
show that the minimum buffer size cannot be efficiently approximated. Thus we
should not hope that simple greedy-type (on-line or off-line) algorithms will have
good worst case ratios on all graphs.

866 M. Chrobak et al.

Theorem 2.1. For any c > 0, the buffer minimization problem cannot be ap-
proximated within an O(nc) factor in polynomial time, unless P = NP.
Proof. We use the following theorem of Lund and Yannakakis [6]: There is a
c > 0 for which the fractional chromatic number χf (G) of an n-vertex graph
G cannot be approximated within an O(nc) factor in polynomial time, unless
P = NP. (Stronger results are known for coloring, but using them would not
improve the theorem.)

Suppose that there exists a polynomial-time approximation algorithm A for
buffer minimization with worst case guarantee anc. We can use A to design a
polynomial-time decision procedure D for the following problem: Given a graph
G = (V, E) and a positive integer F , decide whether F < χf (G) or χf (G) ≤ 2F
(when F < χf (G) ≤ 2F then both answers are correct outputs). By repeatedly
calling D for G and the values Fj = 2j , we can sandwich χf (G) in polynomial
time between two consecutive powers of two. This would yield a polynomial time
2-approximation algorithm for computing the fractional chromatic number, and
then the result of Lund and Yannakakis [6] would imply P = NP.

How do we design this procedure D? We construct a special instance of the
buffer minimization problem on G. At every time jF , for j = 0, 1, 2, . . . , anc+1,
a task 1 arrives. The size of the task sequence t̄, τ̄ is polynomially bounded in
the size of G. We feed this instance 〈G, t̄, τ̄ 〉 into A. Denote by BA the buffer size
computed by A. If BA ≤ anc, return “χf (G) ≤ 2F”, else return “χf (G) > F”.

To justify the correctness of D, suppose first BA ≤ anc. The total work
assigned to each node is anc+1, and right after the last task arrives at time
Fanc+1 the workload in all buffers of A is at most anc. Thus in time Fanc+1 each
node processed work at least anc+1 −anc. Therefore χf (G) ≤ Fanc+1/(anc+1 −
anc) ≤ 2F (without loss of generality, we assume n ≥ 2).

On the other hand, if BA > anc then the optimal buffer size is greater than 1.
Thus it is not possible to process the workload 1 in time F , and thus χf (G) > F .

3 The Online Problem for Arbitrary Conflict Graphs

Let G = (V, E) be an arbitrary but fixed conflict graph. In this section we show
that buf(G) < ∞. The main idea is the following. Since an on-line algorithm
does not know the current state of the off-line algorithm, it tries to choose states
that would be good for every possible state of the off-line algorithm.

For two states z and z′, define π(z,z′) = χf (G, [z − z′]+), that is, π(z,z′)
is the minimum processing time needed to reach a state z′′ ≤ z′ from z. A state
y is called off-line feasible at time t, if there exists an off-line 1-schedule for all
the requests seen till time t which is in state y at time t. A state z is called
α-universal at time t if, for any off-line feasible state y at time t, π(z,y) ≤ α. In
other words, from an α-universal state we can reach any possible off-line feasible
state within α time units. An algorithm is α-universal if at each point in time
its state is α-universal. From the definition of α-universality we immediately get
the following lemma.
Lemma 3.1. Any α-universal on-line algorithm is weakly (α + 1)-competitive.

The Buffer Minimization Problem for Multiprocessor Scheduling 867

A linear programming lemma. Let I range over the independent sets of
G. We formulate a linear program with the following intended meaning of the
variables: The vector a is a state of the on-line algorithm. In the proof we think
of a as the vertex weights for which we seek an optimal fractional coloring. For
any feasible solution, the variables xI define a fractional coloring of (G, a). The
variables uI describe a change of this coloring that gives a fractional coloring of
(G, a − ε) in which the number of colors decreases by δ. Finally, d is a crucial
parameter which says that if a color was used heavily in the original coloring, it is
also used in the modified coloring. All variables except the uI are non-negative.

Let W be the set of all tuples (a,x, ε, δ, d, u) satisfying the following linear
constraints:

0 ≤
∑

I3j
xI = aj for each j ∈ V

0 ≤
∑

I3j
uI = εj ≤ 1 for each j ∈ V

0 ≤
∑

I

uI = δ ≤ χf (G,1)

[u]+I ≤ xI and [u]+I ≤ d for each I

The key step in the proof is to show that it is never necessary to use large
values of d. This implies that if we have a coloring for the current weights and
change the weights a little, we can also bound the change in the coloring. In the
next lemma we give show that such a bound exists.

Lemma 3.2. Define f(a,x, ε, δ) = min {d | (∃u)(a,x, ε, δ, d, u) ∈ W}. There
exists a constant D such that the function f is upper bounded by D on all points
where it is defined (i.e., finite).

Proof. The set of tuples (a,x, ε, δ, d) such that (a,x, ε, δ, d, u) ∈ W for some
u is a polytope, since this is simply a projection of W . Thus function f , being
a value of a linear program, is piecewise linear on its domain. Moreover, its
domain consists of a finite number of regions in which f is linear. Consequently,
it is sufficient to verify that f is bounded on any infinite feasible ray (halfline)
in variables (w,x, ε, δ).

Since feasible values of ε and δ are bounded, they are also bounded along
any feasible ray. Since a and x are non-negative, they must be non-decreasing
along any feasible ray.

Now take any two points (w,x, ε, δ) and (w′,x′, ε′, δ′) on the same feasible
ray, so that the second one is farther away from the origin of the ray. This
means that ε′ = ε, δ′ = δ, a′ ≥ a, and x′ ≥ x. Let (a,x, ε, δ, d, u) ∈ W and
(a′,x′, ε, δ, d′,u′) ∈ W be the corresponding feasible vectors with the minimal
values of d and d′. We claim that (a′,x′, ε, δ, d, u) ∈ W as well. We have x′

I−uI ≥
xI − uI ≥ 0 by the feasibility of the first vector. All the other constraints follow
directly by the feasibility of one of the two vectors. By minimality of d′, we

868 M. Chrobak et al.

have d′ ≤ d. Consequently, along any infinite ray, the minimal feasible value of
d cannot increase.

The algorithm. Now we define an on-line algorithm as follows. Let α = qD,
where q is the number of independent sets and D is the constant from Lemma 3.2.
Suppose that a is the current state of the algorithm, and let x be an optimal
fractional coloring of a. Process an arbitrary independent set I with xI > D for
time xI −D. If no such set remains and there exists a vertex with non-zero load,
we process any set containing such a vertex.

Theorem 3.3. For any graph G = (V, E), buf(G) is finite.

Proof. We claim that the above algorithm is α-universal. By Lemma 3.1 it then
follows that buf−(G) ≤ α + 1, and using doubling we obtain buf(G) ≤ 4α + 4.

By the definition of the algorithm, if the load vector is non-zero, some non-
trivial set is processed. Thus on any finite request sequence the zero load vector
is eventually achieved and a feasible schedule is generated.

It remains to verify that the algorithm is in an α-universal state at any time.
It is clearly true at time 0. When a task arrives, off-line and on-line loads change
by the same amount. So if the algorithm was in an α-universal state right before
a task arrival, it will also be in an α-universal state afterwards. Thus we only
need to verify that the schedule remains in an α-universal state when processing
an independent set during an interval when no task arrives.

If there is no set with weight larger than D in x, we can reach 0 in time at
most qD = α, thus the current state and any following state (before arrival of
the next task) is trivially α-universal.

The remaining case is when an independent set I with weight wI ≥ D + β
is processed for some time β > 0. Suppose that during this time the algorithm
changes its state from a to a′, while the adversary changes its state from y to
y′. We need to verify that π(a,y) ≤ α implies π(a′,y′) ≤ α.

Trivially, π(a,y′) ≤ π(a,y) + π(y,y′) ≤ α + β. To conclude the proof it is
sufficient to show that there exists an optimal fractional coloring of [a − y′]+

with weight of I at least β. For if we have such a coloring and decrease the
weight of I by β, we obtain a coloring of [a′ − y′]+. Since a′ is obtained from a
by processing I for time β, this coloring of [a′ − y′]+ has weight at most α.

Let ε = a − [a − y′]+, that is εi = min {ai, y
′
i} for each i. Choose u such

that x − u is an optimal fractional coloring of a − ε, and define δ = χf (G, a) −
χf (G, a − ε). Clearly, 0 ≤ ε ≤ 1 and δ ≤ χf (G, ε) ≤ χf (G,1). By inspection of
the linear program, if d is sufficiently large then (a,x, ε,u, δ, d) ∈ W . Lemma 3.2
implies that there are u′ and d′ ≤ D for which (a,x, ε, δ, d′,u′) ∈ W . Then x−u′

is also an optimal fractional coloring of a−ε and xI−u′
I ≥ xI−d′ ≥ xI−D ≥ β.

4 The Online Problem on Complete k-Partite Graphs

At each step, a scheduling algorithm needs to determine an independent set I
of processors that should execute their tasks. Algorithm Greedy determines I
in the most obvious way: it iteratively chooses the processor with highest load,

The Buffer Minimization Problem for Multiprocessor Scheduling 869

and eliminates its neighbors. To define Greedy formally, we need to be a bit
careful, as the time is continuous and ties need to be appropriately resolved.
Denote Greedy’s load vectors by a. We view the computation as being divided
into ε-steps, with ε → 0. At each such ε-step, Greedy determines I as follows:
Start with I = ∅. Iteratively pick v with maximum av, add v to I, and remove
v and its neighbors from G. Stop when G = ∅. Then, for all v ∈ I, decrease av
by ε. Consider a time interval [t, t′] in which no tasks are issued. Divide it into
intervals of length ε. Determine the state of Greedy at time t′, and take its limit
for ε → 0. For complete k-partite graphs this limit is always well-defined. For
such graphs, if there are j color classes that contain a node with maximum buffer
size, then Greedy will process the buffers of all nodes in these color classes at
speed 1/j.

Throughout this section, by a subgraph X we mean the subgraph of G induced
by X. By z we denote an off-line state, and by B the optimal buffer size. Since
Greedy does not depend on B, we can assume that B = 1.

Smooth subgraphs. If X is a vertex set, then denote N(X) =
⋃
v∈X N(v)−X.

We say that X is smooth if all vertices in X have the same neighbors outside X
that is, N(v) − X = N(X) for v ∈ X.

Greedy’s behavior on smooth subgraphs is easy to characterize. Suppose X
is a smooth subgraph with neighborhood L = N(X), and assume that there are
no tasks issued between the current time t and some time t′ > t. If maxXa >
maxLa then, when Greedy chooses its independent set I, it will always pick at
least one vertex from X, namely one that realizes the maximum maxXa, and
it will not include any vertices from L. So maxXa will keep decreasing while
maxLa will stay the same. On the other hand, if maxXa ≤ maxLa, then this
inequality will remain true until time t′, since, by the previous statement, for
any choice of ε-steps, maxXa cannot exceed maxLa by more than ε.

Lemma 4.1. Suppose K ⊆ V is a smooth clique in G with N(K) = L. Then

ΣKa ≤ ΣKz + |K|maxLa. (2)

Proof. That (2) is preserved when tasks are issued is obvious. So consider task ex-
ecution. If maxKa ≤ maxLa then ΣKa ≤ |K|maxKa ≤ |K|maxLa, so (2) holds.
Further, if maxKa = maxLa, then this equality will be preserved throughout
until the next task arrives. If maxKa > maxLa then, at the next infinitesimal
ε-step, the independent set I used by Greedy contains exactly one node from
K and is disjoint with L. Then the left-hand side of (2) decreases by ε and the
right-hand side cannot decrease by more than ε.

Lemma 4.2. Suppose that X ⊆ V is a smooth, complete k-partite subgraph of
G with color classes J1, . . . , Jk and N(X) = L. Then

k∑

i=1

maxJi
[a − z]+ ≤ max { k maxLa , k − 1 } (3)

870 M. Chrobak et al.

Proof. Inequality (3) is preserved when tasks are issued, so it is sufficient to
consider task execution. If maxXa ≤ maxLa, then the left-hand side is at most∑k
i=1 maxJia ≤ k maxXa ≤ k maxLa. Further, if maxXa = maxLa then this

equality will remain true throughout task execution. Suppose now maxXa >
maxLa. In the next ε-step Greedy will use an independent set I such that
I ∩ (X ∪L) = Jj for some Jj that maximizes maxJj

a. We have two sub-cases. If
av ≤ zv for all v ∈ Jj then av ≤ 1 for all v ∈ X. So the jth term on the left-hand
side is 0 and the other terms are at most 1. Overall, the left-hand side is at most
k − 1. Finally, suppose that av > zv for some v ∈ Jj . All positive av ∈ Jj will
decrease by ε, decreasing the left-hand side by ε. There can only be one j′ for
which some zv ∈ Jj′ decreases, increasing the left-hand side by at most ε. So the
left-hand side cannot increase and the right-hand side does not change.

Theorem 4.3. For the complete graph Kn, buf(Kn) = buf−(Kn) = Hn.

Proof. (Lower bound) The adversary strategy consists of phases. Before phase p
starts, the following invariant holds: there is a set X of n−p+ 1 processors such
that zi = 0 for i ∈ X and ΣXa ≥ (n−p+1)(Hn−Hn−p+1). The adversary creates
task 1 for processors i ∈ X and waits for time n − p. The new buffers satisfy
ΣXa′ ≥ ΣXa+(n−p+1)− (n−p) = ΣXa+1. Pick j for which a′

j is minimum
and let X ′ = X − {j}. Then ΣX′a

′ ≥ n−p
n−p+1 (ΣXa + 1) ≥ (n − p)(Hn − Hn−p).

The adversary can zero all zi for i ∈ I ′. Thus the invariant is preserved.
In phase n, the only processor in X will have workload at least ai = Hn − 1

in the buffer, so after adding 1 to processor i, the workload will reach Hn.
(Upper bound) We prove that Greedy is Hn-competitive. Order the processors
so that a1 ≥ a2 ≥ ... ≥ an. By (2), for each j we have

∑
i≤j ai ≤ j+jaj+1, where

for j = n we assume that an+1 = 0. Multiply the jth inequality, for j < n, by
1/j(j + 1), multiply the nth inequality by 1/n, and then add all the inequalities
together. We get a1 ≤ Hn, and the upper bound follows.

Theorem 4.4. If G is a complete k-partite graph then buf(G) ≤ Hk−1 + 1.

Proof. We prove that Greedy is (Hk−1+1)-competitive. Let the color classes of
G be J1, J2, . . . , Jk. Let Ai = maxJi

a, for all i. Reorder the color classes so that
A1 ≥ A2 ≥ ... ≥ Ak. Then, (3) implies that

∑j
i=1 Ai ≤ max {jAj+1, j − 1} + j

for each j = 1, . . . , k. Pick the smallest l ≤ k for which lAl+1 ≤ l − 1. For
j = 1, . . . , l − 1, multiply the jth inequality by 1/j(j + 1), multiply the lth
inequality by 1/l, and then add the first l inequalities together. We get

l−1∑

j=1

1
j

j∑

i=1

Ai −
l−1∑

j=1

1
j + 1

j∑

i=1

Ai +
1
l

l∑

i=1

Ai ≤
l−1∑

j=1

1
j + 1

Aj+1 + Hl−1 + 1,

which yields A1 ≤ Hl−1 + 1 ≤ Hk−1 + 1, and the theorem follows.

Our analysis of Greedy in Theorem 4.4 is tight. For the lower bound, we use
a complete graph with one edge missing, say G = Kk+1 −{(1, n)}. Suppose that
we have a configuration a = (α, β, β, . . . , β) and z = 0, where α ≤ β ≤ 1 − 1/k.

The Buffer Minimization Problem for Multiprocessor Scheduling 871

Initially, α = β = 0. Create task (0, 1, 1, . . . , 1), process for time k − 1, then
create task (1, 0, 1, . . . , 1), and process for time k. The adversary can zero all his
buffers. At the end Greedy will be in configuration (β′, α′, β′, . . . , β′), where
α′ = β − (1 − 1/k)(1 − 1/k − β), β′ = β + (1 − 1/k − β)/k. Note that α′ ≤ β′ ≤
1 − 1/k. We can now repeat the process with the nodes 1 and n switched. Thus
in the limit, β will converge to 1 − 1/k. Then we can use the strategy for Kk to
increase the buffers size to Hk + 1 − 1/k = Hk−1 + 1.

The next theorem shows that the upper bound achieved by Greedy on
complete k-partite graphs is tight within a small additive factor. Note that as a
special case of this lower bound, we obtain that buf−(P3) ≥ 2. The proof involves
a somewhat tedious adversary argument, and is omitted in this abstract.

Theorem 4.5. Consider a complete k-partite graph G in which µ of the in-
dependent sets in the k-partition consist of a single vertex, whereas the re-
maining k − µ independent sets all have at least two vertices. If µ = 0, then
buf−(G) ≥ Hk−1 + 1. If µ ≥ 1, then buf−(G) ≥ Hk−1 + (k − µ)/(k − 1).

5 The Online Problem on Trees

In this section we prove that the strong competitive ratio for trees of diameter
∆ is at most 1 + ∆/2. In particular, buf(Pn) ≤ (n + 1)/2.

Let G = (V, E) be a graph and A an on-line algorithm for an induced sub-
graph H of G. The greedy extension of A, denoted GE(A) is an algorithm for G
that works like this: if A processes a set I at a given step, then GE(A) chooses
greedily (that is, choosing nodes with largest buffers) a maximal independent
set J ⊆ V − I − N(I), and processes I ∪ J .

For certain graphs G and its subgraphs H, we can estimate the relationship
between the competitive ratios of A and GE(A).

Lemma 5.1. Suppose that G is constructed from H by adding a number of new
vertices of degree 1, each connected by a new edge to some vertex in H. Then
buf(G) ≤ buf(H) + 1 and buf−(G) ≤ buf−(H) + 1.

Proof. Let A be c-competitive on H (the proof for weak competitiveness is the
same). Let B be GE(A). We can assume the buffer size is B = 1, since B does
not use the information about the off-line buffer size, unless A does so.

By the definition of B, its behavior on H is exactly the same as that of A.
In particular, the buffer size of any vertex of H is at most c at any time.

Consider v ∈ G − H, and let w be its unique neighbor in H. Let a and z be
the states of B and the optimal off-line algorithm, respectively. We claim that
the following invariant holds at all times:

av + aw ≤ zv + zw + c − 1. (4)

This inequality must be true whenever av = 0, since otherwise, by putting load
1 − zw at w we would contradict the c-competitiveness of A on G. If a new task
arrives, both sides of (4) increase by the same amount, thus the inequality is

872 M. Chrobak et al.

preserved. If some independent set is processed for time ε while av > 0, then the
left-hand side of (4) decreases by ε, by the definition of the algorithm B, and
the right-hand side cannot decrease by more than ε. Thus (4) is preserved. Since
zv, zw ≤ 1, we obtain av ≤ av + aw ≤ zv + zw + c − 1 ≤ c + 1.

Theorem 5.2. For any tree T with diameter ∆, buf(T) ≤ 1 + ∆/2. In partic-
ular, buf(Pn) ≤ (n + 1)/2.

Proof. By iteratively adding leaves, in ∆ steps we can obtain any tree with
diameter 2∆ from K1, and any tree with diameter 2∆ + 1 from K2. The bound
follows by iterating the lemma and noting that buf(K1) = 1 and buf(K2) = 1.5.

Note that Theorem 5.2 gives another 2-competitive algorithm for P3: If there
is any load on the middle vertex, run this vertex, otherwise run the two endpoints.

6 The Online Problem on Small Graphs

In this section we discuss competitive ratios of the ten connected graphs with up
to four vertices. By Theorem 4.3, the complete graphs K1, K2, K3, and K4 have
competitive ratios 1, 3

2 , 11
6 , and 25

12 , respectively. By Theorems 4.4 and 4.5, the
complete bipartite graphs K1,2 (= P3), K1,3, and K2,2 (= C4) have competitive
ratio 2. All these bounds are attained by algorithm Greedy. The corresponding
weak competitive ratios are the same. Thus for all these graphs the problem is
completely solved.

�
�

�

�
�

�

�
�

�@
@

@

@
@

@

@
@

@

s s
s s

s s
s s

s1 s4
s2 s3

s1 s4
s 2 s3

s s
s s

s3
s4s1

s2ss
ss

s ssss
K1 K2 K1,2 = P3 K3 P4

K1,3 K2,2 = C4 K3+e K4−e K4

Fig. 1. The connected graphs with at most four vertices.

The three remaining graphs are the path P4, the triangle plus an edge K3+e,
and “diamond graph” K4−e, see Figure 1. Since all these graphs contain P3,
their weak competitive ratio is at least 2. For these graphs, we can prove the
following bounds (the proofs will appear in the full version of the paper):

2 ≤ buf−(P4) ≤ buf(P4) ≤ 5
2

13
6 ≤ buf−(K3+e) ≤ buf(K3+e) ≤ 5

2

2 = buf−(K4−e) ≤ buf(K4−e) ≤ 5
2

The Buffer Minimization Problem for Multiprocessor Scheduling 873

7 Final Comments

The main open problem is to establish tighter bounds on the competitive ratios
for general graphs. The first step may be to either give a polynomial upper bound
or a super-logarithmic lower bound, if any of these is possible.

For trees, we were unable to prove any lower bound better than 2. We suspect
that there may be an algorithm for paths, and possibly for trees as well, with a
constant competitive ratio (independent of n).

All algorithms we presented in the paper are memoryless, that is, they don’t
keep track of the past history. The behavior of such an algorithm depends only on
its current buffer loads. We believe that algorithms that use information about
possible adversary configurations can achieve better competitive ratios. Using
the history, for any B, we can compute all possible adversary configurations
that can be reached with buffer size up to B. However, the question of how to
represent and use this information appears itself to be a difficult problem (in
fact, we proved that maintaining this information is NP-hard). Perhaps, instead
of keeping track of the whole history, it is sufficient to maintain only some lower
bounds on the buffer sizes. It is quite easy to define lower bounds using complete
subgraphs, for example.

A natural starting point for the above investigations would be to analyze
the competitive ratios for small graphs, and for P4 in particular. We made some
progress in this direction, but many questions remain open. A complete analysis
of small graphs would give good insight into the problem and may provide new
ideas for the general case.

Acknowledgements. This research was partially supported by: NSF grant
CR-9988360, grant A1019901 of GA AV ČR, postdoctoral grant 201/97/P038
of GA ČR, project LN00A056 of MŠMT ČR, START program Y43-MAT of
the Austrian Ministry of Science, and a fellowship of the Pál Erdős Institute
Budapest.

References

1. M. Grötschel, L. Lovász, and A. Schrijver [1981]. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica 1, 169–197.

2. S. Irani and V. Leung [1997]. Probabilistic analysis for scheduling with conflicts,
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
286–295.

3. S. Irani and V. Leung [1996]. Scheduling with conflicts, and applications to
traffic signal control, Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, 85–94.

4. A. Bar-Noy, M. Bellare, M.M. Halldórsson, H. Shachnai and T. Tamir
[1998]. On chromatic sums and distributed resource allocation. Information and
Computation 140, 183–202.

5. A. Bar-Noy and G. Kortsarz [1998]. Minimum color sum of bipartite graphs,
Journal of Algorithms 28, 339-365.

874 M. Chrobak et al.

6. C. Lund and M. Yannakakis [1994]. On the hardness of approximating mini-
mization problems. Journal of the ACM 41, 960–981.

7. R. Motwani, S. Philips and E. Torng [1994]. Non-clairvoyant scheduling, The-
oretical Computer Science 130, 17–47.

8. E. Kubicka and A.J. Schwenk [1989]. An introduction to chromatic sums, Proc.
ACM Computer Science Conference, 39–45.

9. N.A. Lynch [1996]. Distributed Algorithms. Morgan Kauffman Publishers, San
Francisco, California, 1996.

On Minimizing Average Weighted Completion
Time of Multiprocessor Tasks with Release

Dates?

Aleksei V. Fishkin, Klaus Jansen1, and Lorant Porkolab2

1 Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24 098 Kiel, Germany,

{avf,kj}@informatik.uni-kiel.de
2 Applied Decision Analysis, PricewaterhouseCoopers, 1 Embankment Place, London

WC2N 6RH, United Kingdom, lorant.porkolab@uk.pwcglobal.com

Abstract. We consider the problem of scheduling n independent multi-
processor tasks with release dates on a fixed number of processors, where
the objective is to compute a non-preemptive schedule minimizing the
average weighted completion time. For each task, in addition to its pro-
cessing time and release date, there is given a prespecified, dedicated
subset of processors which are required to process the task simultane-
ously. We propose here a polynomial-time approximation scheme for the
problem, making substantial improvement on previous results and fol-
lowing the recent developments [1,2,15] on approximation schemes for
scheduling problems with the average weighted completion time objec-
tive.

1 Introduction

In the traditional theory of scheduling, each task is processed by only one pro-
cessor at a time. However, new theoretical approaches have emerged to model
scheduling on parallel architectures. One of these is scheduling multiprocessor
tasks, see e.g. [9,12].

In this paper we consider the problem of scheduling dedicated tasks with
release dates on a set of processors in order to minimize the average weighted
completion time, denoted as P |fixj , rj |

∑
wjCj . Formally, we are given a set of

n tasks T = {0, 1, . . . , n − 1} and a set of m processors M = {1, 2, . . . , m}. Each
task j ∈ T has a processing time pj , a release date rj , a positive weight wj and
a prespecified processor subset τj ⊆ M , called the type of j. Processing of each
task can start only after its release date and once started must be completed
without interruption. Each processor can work on at most one task at a time,
each task must be processed simultaneously by all processors of τj . The objective
is to minimize the average weighted completion time

∑
wjCj , where Cj denotes

the completion time of task j.
? Supported in part by DFG - Graduiertenkolleg “Effiziente Algorithmen und

Mehrskalenmethoden” and by EU project APPOL “Approximation and On-line Al-
gorithms”, IST-1999-14084

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 875–886, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

876 A.V. Fishkin, K. Jansen, and L. Porkolab

Previous results: The first polynomial-time approximation scheme (PTAS)
for a strongly NP-hard scheduling problem minimizing the average weighted
completion time was given for scheduling jobs with no release dates on identical
parallel machines P ||∑wjCj [15]. Then recently it was proved in [1] that there
are polynomial-time approximation schemes for many different variants of classi-
cal scheduling problems with release dates and average weighted completion time
objective. These include scheduling on identical parallel machines P |rj |

∑
wjCj

or on a fixed number of unrelated machines Rm|rj |
∑

wjCj with and without
preemptions, but exclude models for multiprocessor tasks.

In the multiprocessor setting, variants of the problem have been studied,
but the previous research has mainly focused on the objectives of minimizing
the makespan Cmax = maxn−1

j=0 Cj and the sum of completion times
∑

Cj . Re-
garding the worst-case time complexity, it is known that P3|fixj |Cmax [14] is
strongly NP-hard. Problem P |fixj |

∑
Cj was first studied in [14] and shown to

be strongly NP-hard even when all tasks have unit execution times. If the num-
ber of processors m is fixed, then the problem Pm|fixj , pj = 1|∑Cj (with unit
execution times) becomes polynomial-time solvable [6] even if the tasks have re-
lease dates. The negative result was strengthened in [7], where the authors proved
that already problem P2|fixj |

∑
Cj is strongly NP-hard. Contrasting this with

the fact that for identical parallel machines only the general problem P ||∑Cj

is strongly NP-hard, while Pm||∑Cj is just weakly NP-hard, indicates that
computing optimal and/or approximate schedules for dedicated tasks is likely to
be much harder than the corresponding (classical) non-multiprocessor variants.
However, there are PTASs for both Pm|fixj |Cmax [3] and Pm|fixj |

∑
Cj [2].

The above results are, in some sense, the strongest possible ones someone can
expect. First, it shows the existence of a PTAS for a problem with fixed parame-
ter m that cannot have a fully PTAS [11]. Second, following the ideas in [14] and
by using the results [4,5,10] one can prove that both P |fixj , pj = 1|Cmax and
P |fixj , pj = 1|∑Cj cannot be approximated within a factor of m

1
2 −ε, neither

for some ε > 0, unless P=NP; nor for any ε > 0, unless NP=ZPP. Hence, not
only the above results cannot be extended or generalized for the general vari-
ant where m is not fixed, but even substantially weaker approximation results
cannot be expected.

New results: By combining various ideas from [1,2,3,8,13], we provide here a
generalization of several results and obtain a PTAS for Pm|fixj , rj |

∑
wjCj .

In order to be able to cope with multiprocessor tasks, we refine some recent
sophisticated approximation techniques for the average completion time objec-
tive. These include the interval time-partitioning technique developed in [8,13]
and, the techniques of geometric rounding and time stretching presented in [1].
We also employ a well known idea of transformations – simplify instances and
schedules with some loss in the objective. We make adjustments of release dates
and processing times classifying the tasks as huge and tiny. In our approach, we
also apply some recent makespan minimization tools from [3] to schedule tasks
within single intervals. For handling tiny tasks, we use a linear programming
formulation along with some rounding, and observe that in some near optimal

On Minimizing Average Weighted Completion Time of Multiprocessor Tasks 877

schedule tiny tasks of the same type can be scheduled by Smith’s rule [16]. Then,
by using the task delaying technique presented in [1], we introduce special com-
pact instances in which there is only a constant number of tasks at any release
date. In order to use use dynamic programming which integrates all the pre-
vious components, we introduce block-superblock structure and show that any
task can be scheduled within only a constant number of intervals after release.
This requires the creation of a sequence of gaps in the schedule, where all proces-
sors are idle for a certain period of time. The obtained PTAS is a combination
of the instance transformations and the dynamic programming algorithm.

By an appropriate combination of these ideas and a careful analysis of the
algorithms, we prove the following result.

Theorem 1. There is PTAS for Pm|fixj , rj |
∑

wjCj that computes for any
fixed m and ε > 0 accuracy, (1 + ε)-approximate solutions in O(n log n) time.

The paper is organized as follows: In Section 2, we introduce some notations,
give definitions, and describe several transformations (that can provide simplifi-
cations of instances, schedules and the objective function). In addition, we show
some useful properties of these transformations. In Section 3, we adopt the PTAS
for Pm|fixj |Cmax [3] and discuss some consequences. Finally, in Section 4, we
present a dynamic programming framework. However, due to space limitation,
here we omit many technical details leaving them to the full version of the paper.

2 Preliminaries

A schedule σ is given by a starting time Sj for each task j ∈ T . Then, the
value Cj := Sj + pj is the completion time of task j in σ. The average weighted
completion time for σ is equal to Cw(σ) :=

∑
wjCj . We write σ(I) to denote a

feasible schedule σ with respect to instance I. A schedule σopt(I) is called opti-
mal if Cw(σopt(I)) = OPT (I), where OPT (I) is the minimal average weighted
completion time for I.

Given a schedule σ, a schedule σ′ is called an ε-schedule of σ if
Cw(σ′)/Cw(σ) ≤ 1 + Kε, where K is some constant. We say that one can
transform with 1 + O(ε) loss and in polynomial time an instance I into in-
stance I ′, if the following holds: I ′ is obtained from I in p(|I|) operations
for some polynomial p(.), any feasible schedule of I ′ is also feasible of I and,
OPT (I ′)/OPT (I) ≤ 1+Kε, where K is a constant. Note that the superposition
of two instance transformations is also an instance transformation of the above
form. Our approach is as follows. We always aim to find ε-schedules satisfying
some simplifying properties. For a given instance I and a fixed accuracy ε > 0,
we perform several instance transformations such that for the final instance there
exists an ε-schedule which is amenable to a fast dynamic programming proce-
dure. Formally, we will show below that with 1+O(ε) loss, I can be transformed
in O(n log n) time into I ′ such that one can find in O(n) time an ε-schedule of an
optimal schedule σopt(I ′). Clearly, this suffices to obtain a PTAS for our original
problem.

878 A.V. Fishkin, K. Jansen, and L. Porkolab

For any fixed accuracy ε > 0, we assume w.l.o.g. that log1+ε(1+ 1
ε) and 1

ε are
integral, and that ε ≤ 1/(m + 1)m+2. We partition the time interval (0,∞) into
disjoint intervals Ix of the form [Rx, Rx+1), where Rx = (1 + ε)x and x ∈ ZZ.
Notation Ix will also be used to refer to the length εRx of the interval, thus
Ix = Rx+1 − Rx = εRx and Ix+1 = (1 + ε)Ix.

For an instance I and task j ∈ T , let x(j) be the index for which rj ∈ Ix(j).
Accordingly, Ix(j) is called the release interval of j, and it is said that j is
released in Ix(j). Then, a task j is called huge if pj ≥ ε2Ix(j)/q∗, and tiny if
pj < ε2Ix(j)/q∗, where the parameter q∗ = q∗(m, ε) > 1 is specified later in
Section 3. For a schedule σ, let y(j) ≤ z(j) be those indices for which Sj ∈ Iy(j)
and Cj ∈ Iz(j), respectively. Then, a task j is called crossing if z(j) − y(j) ≥ 1,
and non-crossing if y(j) = z(j).

For simplicity, we will use the following notations throughout the paper. Let
2M be the set of all tasks types. For a task set X ⊆ T , p(X) :=

∑
Tj∈X pj is

the total processing time of the tasks in X , and X τ is the set consisting of the
tasks in X of type τ ∈ 2M . To indicate that X is associated with a particular
instance I, we use notation X (I). We will denote the sets of huge and tiny tasks
by HT and T T , respectively. Furthermore, we will also use refinements of these
notations, where T T x and HT x will stand for the sets of tiny and huge tasks,
respectively, that are released in interval Ix.

Proposition 1. For any instance I, one can replace, with at most 1 + ε loss,
the original objective function

∑
wjCj by

∑
wjRz(j).

We assume now that σ is given, and describe some modifications of it, called
techniques, each of which is leading to a new feasible schedule σ′ with some
useful properties:
Stretching: Set S′

j = (1 + ε)Cj −pj for each task j ∈ T . This generates εpj idle
time on τj .
Rearranging: Set S′

j for each task j ∈ T such that a new schedule σ′ is feasible
and z′(j) = z(j), i.e. tasks are rescheduled preserving C ′

j ∈ Iz(j). This gives us
the ability to rearrange tasks inside intervals.
Shifting∗: Set S′

j = Sj − Ry(j) + Ry(j)+1 for each task j ∈ T , i.e. in σ′ we have
y′(j) = y(j)+1, and hence the distance between Sj and the beginning of interval
Iy(j) is preserved. This generates ε(Rz(j) −Ry(j)) additional idle time on τj after
the end of j.
Shifting∗∗: Set S′

j = Sj − Rz(j) + Rz(j)+1 for each task j, i.e. z′(j) = z(j) + 1,
and hence the distance between Cj and the end of interval Iz(j) is preserved.
This generates ε(Rz(j) − Ry(j)) additional idle time on τj before the start of j.

Proposition 2. If a schedule σ′ is obtained from a feasible schedule σ by stretch-
ing, rearranging, or both types of shifting then σ′ is an ε-schedule of σ.

By using the above techniques we prove the following two lemmas that will
be used throughout the paper.

Lemma 1. For any feasible schedule σ there is an ε-schedule σ′ of σ such that
the following holds in σ′: each task j starts not earlier than εpj and crosses at
most a constant number s∗(ε) := log1+ε(1 + 1

ε) of intervals; each task j with

On Minimizing Average Weighted Completion Time of Multiprocessor Tasks 879

pj ≤ ε2Iy′(j) is non-crossing; each crossing task j starts at one of the points
Ry′(j) + iε2Iy′(j), where i ∈ {0, 1, . . . , 1

ε2 − 1}.

Lemma 2. With 1 + O(ε) loss one can transform in O(n) time an instance I
into instance I ′ such that for each task j ∈ T the following holds in I ′: processing
time p′

j is equal to an integer power of 1 + ε and is bounded by 1/ε3 times the
length Ix′(j) of release interval; release date r′

j is equal to the left boundary Rx′(j)
of release interval. Furthermore, in I ′ the quotients p′

j/w′
j are different for all

tasks in T .

Corollary 1. For any instance I, one needs to consider at most n/ε7 relevant
intervals.

Proof. By Lemma 2, pj ≤ Ix(j)/ε3 for each task j. Suppose that all tasks are
delayed by 1/ε6 intervals after release. Then, by Lemma 1 any task j has to be
non-crossing in Ix, x ≥ x(j)+ 1

ε6 . Thus, to schedule such tasks one needs at most
n additional intervals. Hence, the schedule takes at most n + n

ε6 ≤ n/ε7 relevant
intervals. ut

3 Scheduling within Single Intervals

In the first part of this section, we consider the problem of scheduling in a single
interval Ix. More precisely, we present an algorithm that schedules non-crossing
tasks with respect to a known schedule for the crossing tasks. In order to achieve
this, we generalize the PTAS for Pm|fixj |Cmax [3]. Since this part involves some
lengthy technical details, we omit them here (due to space limitation) giving only
a general description of the algorithm. However, based on some features of the
algorithm, we define the value of parameter q∗ = q∗(m, ε) for tiny tasks, and
consider the algorithm as a subroutine of the rearranging technique. After that,
we show that tiny tasks are all small corresponding to intervals and can be
scheduled by Smith’s rule [16]. In the last part of this section, we show how an
instance of our problem can be transformed into a compact instance in which at
any release date there can only be a constant number of tasks.

3.1 Long and Short Tasks, Snapshots, and Relative Schedules

Let σ(I) be a feasible schedule for instance I. For an interval Ix of σ, the following
sets of tasks (running in Ix) are defined: set Wx of non-crossing tasks and set
Kx of crossing tasks. Suppose that we have applied shifting∗∗ to σ and obtained
σ′(I). Assume w.l.o.g. that the tasks of Wx and Kx run in the interval Ix+1.
Then, in the new schedule σ′ there is at least εIx idle time on the processors,
between the tasks of Wx and the outgoing tasks of Kx or between the tasks of
Wx and the end of interval Rx+2.(For illustration, see Figure 1.)

Now, the goal is to find a feasible schedule of Wx inside interval Ix+1 with
respect to the schedule of Kx in σ′(I). This can be done as follows. First, we put
the kx(m, ε) longest non-crossing tasks of Wx into set Lx, and the rest into Sx.

880 A.V. Fishkin, K. Jansen, and L. Porkolab

Fig. 1. Interval Ix+1 in σ0(I)

Accordingly, we call the tasks of Lx long and the tasks of Sx short. Then, let
Jx := Lx ∪Kx be the set of long and crossing tasks. We say that two tasks k and
` are compatible, if τk ∩ τ` = ∅. A snapshot of Jx is a set of compatible tasks of
Jx. A relative schedule of Jx is a sequence of snapshots of Jx such that each task
j ∈ Jx occurs in a subsequence of consecutive snapshots and any two consecutive
snapshots are different. Roughly speaking, each relative schedule corresponds to
an order of processing of the long and crossing tasks. Furthermore, to any any
given non-preemptive schedule of Jx, one can associate a relative schedule in a
natural way by looking at every instant where a task of Jx starts and ends, and
writing the set of tasks of Jx being processed right after that transition. Then,
one can see that the number of snapshots in a relative schedule and the number
of different relative schedules of Jx are bounded by constants depending only on
m and the number kx(m, ε) of long tasks in Lx.

For a relative schedule of Jx, assuming that the short tasks of Sx can be
preempted, one can formulate the linear program which finds the minimum
makespan schedule of Sx ∪ Jx where the tasks of Jx are scheduled with re-
spect to the relative schedule and the tasks of Sx are scheduled in the preemp-
tive greedy manner on the free snapshot processors. Furthermore, this schedule
can be turned to a non-preemptive one by accommodating the preempted short
tasks of Sx inside the snapshots. One needs only to increase the corresponding
snapshot lengths by small amounts (see Figure 2).

t0 tg + εtotal

Kx

Lx

Kx

Lx

Lx

Lx

Lx

Lx Kx

Fig. 2. Deducing a schedule

On Minimizing Average Weighted Completion Time of Multiprocessor Tasks 881

Then, the total enlargement εtotal in the final non-preemptive schedule can
be estimated by the total processing time of qkx(m, ε) longest tasks of Sx, where
q := 3mB(m) and B(m) ≤ m! is the mth Bell number. Hence, it is possible to
select kx(m, ε) such that εtotal is kept small enough [3].
Lemma 3. For any interval Ix, there is a number kx(m, ε) with 1 ≤ kx ≤
(1+q)

m
ε2 such that the total processing time pkx +. . .+p(q+1)kx−1 of the qkx(m, ε)

longest tasks of Sx is less than ε2Ix, where q := 3mB(m) ≤ (m + 1)m+2.
Using the above result, one can state the final algorithm which finds a feasible

schedule of Wx inside the interval Ix+1 with respect to the schedule of Kx in
σ′(I) as follows: Step 1. Compute the set Lx by finding kx(m, ε); Step 2. List
all possible feasible relative schedules of Jx and for each such relative schedule
deduce the corresponding non-preemptive schedules of Sx ∪Jx; Step 3. Output
the schedule with the smallest makespan.

3.2 Tiny versus Short

Here we define q∗(m, ε) := ((m + 1)m+2 + 1)
m
ε2 +1. By Lemma 1 assume that any

tiny task is non-crossing in σ(I). Then, let Yx ⊆ Wx be the corresponding set
of tiny tasks that are non-crossing in Ix. Then, the following holds:

Lemma 4. The number kx of long tasks in Lx is not larger than the number
of non-crossing tasks in Ix with pj ≥ ε2Ix

q∗ . Hence, all tiny tasks are short, i.e.
Yx ⊆ Sx.

Proof. First, assume that the number of tasks (scheduled completely in Ix) with
length ≥ ε2Ix

q∗ is larger than (1 + q)
m
ε2 . In this case, the number of huge tasks in

interval Ix is more than (1 + q)
m
ε2 . By Lemma 3, there exists a kx ≤ (1 + q)

m
ε2

such that pkx
+ . . . + p(q+1)kx−1 ≤ ε2Ix. Then, kx is less than the number of

non-crossing huge tasks in Ix.
Assume now that the number of tasks with length ≥ ε2Ix

q∗ is at most (1+q)
m
ε2 .

In this case, we set kx equal to the number of tasks with length ≥ ε2Ix

q∗ . By the
bound on εtotal, we obtain that the enlargement of the schedule is at most

pkx + . . . + p(q+1)kx−1 ≤ qkxpkx ≤ qkx
ε2Ix

q∗ < ε2Ix,

since qkx < q∗(m, ε) = ((m + 1)m+2 + 1)
m
ε2 +1. This implies also that kx is

bounded by the number of non-crossing huge tasks. ut
By combining the previously obtained results we derive a lemma that allows us
to vary tiny tasks. Again let Yx be the set of tiny tasks in Ix corresponding to
schedule σ(I).

Lemma 5. Let Ỹx be another set of tiny tasks such that for each τ ∈ 2M

p(Yτ
x) = 0 implies p(Ỹτ

x) = 0, and p(Yτ
x) 6= 0 implies either |p(Yτ

x) − p(Ỹτ
x)| ≤

εIx

2m+1 or p(Ỹτ
x)=0. Then, we can generate outputs a feasible schedule of W̃x :=

(Wx \ Yx) ∪ Ỹx inside Ix+1 with respect to the schedule of Kx in σ′(I).

882 A.V. Fishkin, K. Jansen, and L. Porkolab

3.3 Scheduling Tiny Tasks and Compact Instances

Now consider the problem of placing tiny tasks in the schedule. In the following
we restrict ourselves to the case of scheduling tiny tasks of the same type, say τ .
We say that two tiny tasks k, ` ∈ T T τ with pk

wk
< p`

w`
are scheduled by Smith’s

rule in a schedule σ if it holds either z(k) ≤ z(`), or z(`) < x(k). In other words,
if the two tasks are available at the same interval (that means ` is not completed
before k is released), then the task k of smaller value pk/wk is scheduled first
with respect to intervals. Note that the tasks of T T τ

x have to be scheduled in
the order of increasing values pj/wj [16].

Lemma 6. For a feasible schedule σ there is an ε-schedule σ′ such that for any
type τ ∈ 2M the tiny tasks of T T τ are scheduled by Smith’s rule in σ′.

Proof. W.l.o.g. let I1, IL be the first and the last interval in a feasible schedule
σ. By Lemma 1, assume that all the tasks of T T τ are non-crossing in σ and by
Lemma 2 all quotients pj/wj are different. Let Yτ

x be the set of tiny tasks of
type τ that are scheduled in interval Ix and let p(Yτ

x) be the total processing
time of these tasks in Ix. Consider the following LP (τ):

Minimize
∑

j∈T T τ wj

∑L
x=x(j) yj,xRx

s.t. (1)
∑L

x=x(j) yj,x = 1, ∀j ∈ T T τ ,

(2)
∑

j∈T T τ , x(j) ≤ x yj,x pj ≤ p(Yτ
x), ∀Ix,

(3) yj,x ≥ 0, ∀Tj ∈ T T τ , x = x(j), . . . , L.

First, the objective value of the linear program is not larger than the weighted
average completion time for the tiny tasks in σ. In other words, the value
of an optimal fractional solution is a lower bound of the weighted comple-
tion time

∑
j∈T T τ wjCj . Consider an optimal solution (y∗

j,x) of the linear pro-
gram. Suppose that there are two tasks ` and k that are not scheduled by
Smith’s rule. W.l.o.g. we can consider the case when y∗

`,x`
> 0, y∗

k,xk
> 0,

x(k) ≤ x(`) ≤ x` < xk and pk

wk
< p`

w`
.

Then, there exist values z` and zk such that 0 < z` ≤ y∗
`,x`

and 0 < zk ≤ y∗
k,xk

and z`p` = zkpk. Now we exchange parts of the variables:

y′
`,x`

= y∗
`,x`

− z` y′
`,xk

= y∗
`,xk

+ z`

y′
k,xk

= y∗
k,xk

− zk y′
k,x`

= y∗
k,x`

+ zk

and y′
j,x = y∗

j,x for the remaining variables.
The new solution (y′

j,x) is feasible and the objective value
∑

Tj∈T T τ wj
∑L

x=x(j) y′
j,xRx is equal to

∑
Tj∈T T τ wj

∑L
x=x(j) y∗

j,xRx + R`,k, where R`,k =
(Rx`

− Rxk
)(wkzk − z`w`). By zk = z`

p`

pk
, the second factor (wkzk − z`w`) =

z`(wk
p`

pk
− w`). Since pk

wk
< p`

w`
and z` > 0, the second factor is larger than 0.

The inequality x` < xk implies Rx`
< Rxk

and R`,k < 0. In other words, the
new solution (y′

j,x) has a lower objective value and gives us a contradiction.
Now we use some properties of the above linear program. There is an optimal

fractional solution such that for each interval Ix there is at most one tiny task

On Minimizing Average Weighted Completion Time of Multiprocessor Tasks 883

jx of type τ with xj,x ∈ (0, 1) and that is assigned for the first time (one can
apply Smith’s rule in a greedy manner). To turn such a fractional solution into
an integral assignment of tiny tasks to intervals, one needs only to increase the
values p(Yτ

x) by ε2Ix

q∗ . Then, each task jx fits completely into Ix. It is not hard
to see that the results of Lemma 5 can be used. Thus, we apply the shifting∗ to
σ, replace the sets Yτ

x by the sets that correspond to the integral assignments.
The final ε-schedule σ′ is constructed. ut

By using the above Lemma and the ideas from [1] we get:
Lemma 7. With 1 + O(ε) loss and in O(n log n) time, one can transform an
instance I into instance I ′ such that for an interval Ix and a type τ ∈ 2M

the total number of tasks of type τ released at Ix is bounded by a constant, i.e.
|T T (I ′)τ

x ∪ HT (I ′)τ
x| ≤ h∗(m, ε).

4 The Dynamic Programming Algorithm

As we mentioned it above, we will use a dynamic program to compute approxi-
mate solutions for our scheduling problem. To be able to formulate this dynamic
program and show that the algorithm solving it has the desired running time,
we need only one final result:

Lemma 8. For any feasible schedule σ, there is an ε-schedule σ′ of σ such that
in σ′ the tasks released in an interval Ix are scheduled within a constant number
d∗(m, ε) of intervals following Ix.

Proof. First, partition the time line into a sequence of superblocks SB1,SB2, . . .
such that each superblock SBi = {Is(i), . . . , Is′(i)} consists of δ(m, ε) := s′(i) −
s(i) + 1 = 2s∗(ε)

ε consecutive intervals, where s∗(ε) = log1+ε(1 + 1
ε). Next, parti-

tion each superblock SBi into 1/ε blocks Bi,1, . . . ,Bi, 1
ε

such that each block Bi,`,
` = 1, . . . , 1/ε consists of 2s∗(ε) consecutive intervals. For a set A of intervals
and a schedule σ, let W (A, σ) =

∑
Iz(j)∈A wjRz(j) be the total weighted comple-

tion time of the tasks that complete in the intervals of A. Since for a superblock
SBi it holds that W (SBi, σ) =

∑ 1
ε

`=1 W (Bi,`, σ), there is a block Bi,¯̀ such that
W (Bi,¯̀, σ) ≤ εW (SBi, σ).

For simplicity, let b(i) and b′(i) = b(i) + 2s∗(ε) − 1 be the indices of the first
and last intervals of block Bi,¯̀, let also ti := Ib(i)/ε2. Then, we partition the set
Ti := {j ∈ T |Iz(j) ∈ Bi,¯̀} of tasks completing in the intervals of block Bi,¯̀ into
two subsets T −

i and T +
i , where T −

i and T +
i contain tasks with Cj ≤ Rb(i)+ti and

Cj > Rb(i) + ti, respectively. Note that Rb(i) + ti = Rb(i) + Ib(i)

ε2 = Rb(i)(1 + 1
ε) =

Rb(i)+s∗(ε).
Next, we apply shifting∗∗ to σ and obtain σ′. In σ′, the tasks of Ti run in

the intervals Ib(i)+1, . . . , Ib′(i)+1. In addition, in σ′ each task j ∈ T has at least
ε(Rz(j)−Ry(j)) idle time on the processors of τj . Now we construct an ε-schedule
σ′′ of σ′ by rescheduling the tasks of Ti for each superblock SBi as follows:
Reschedule the tasks of T −

i by eliminating all created idle time from Rb(i)+1 up
to Rb(i)+1 + ti (i.e. tasks are shifted backwards); Reschedule the tasks of T +

i by

884 A.V. Fishkin, K. Jansen, and L. Porkolab

eliminating all created idle time from Rb(i)+1 + ti up to Rb′(i)+2 (i.e. tasks are
shifted forward). Thus, the idle times within the intervals Ib(i)+1, . . . , Ib′(i)+1 are
moved to the time point Rb(i)+1 + ti (see Figure 3).

Since in any schedule, tasks start and complete consecutively, and s∗(ε) =
log1+ε(1 + 1

ε), the total idle time for intervals Ib(i)+1, . . . , Ib′(i)+1 in σ′ is at least
∑b′(i)−1

`= b(i) εI` = ε
(
Rb(i)+2s∗(ε) − Rb(i)

) ≥ Ib(i)((1 + 1/ε)2 − 1) ≥ Ib(i)/ε2.

Then, since each task crosses at most s∗(ε) intervals, it is not hard to see that
in σ′′, no task from T−

i crosses the time point t̄i = Rb(i)+1 + ti. To see that no
task from T +

i crosses t̄i, observe that the distance between any task in T −
i and

any task in T +
i , on any machine, has to be at least Ib(i)/ε2. Therefore, since in

σ′′ all tasks from T −
i complete before t̄i = Rb(i)+1 + ti = Rb(i)+1 + Ib(i)

ε2 , no task
is processed on any machine at time t̄i.

Fig. 3. Creating an idle time

Hence we have shown that in σ′′, for each superblock SBi, there exists at
least one time point when all processors are idle. To see that the schedule σ′′

is an ε-schedule of σ′, one has to consider the tasks of T +
i , since only their

completion times can increase dramatically. For each task j ∈ T +
i the following

holds:

C ′′
j ≤ C ′

j + ε(Rb(i)+2s∗(ε)+1 − Rb(i)) = C ′
j + εRb(i)((1 + ε)2s∗(ε)+1 − 1)

= C ′
j + Rb(i)ε

((
1 + 1

ε

)2 (1 + ε) − 1
)

≤ C ′
j + εRb(i)

(
2

(
1 + 1

ε

)2 − 1
)

≤ C ′
j + Rb(i)

(
5 + 2

ε

) ≤ C ′
j + 5Rb(i)

(
1 + 1

ε

)
= C ′

j + 5ti ≤ 6C ′
j .

On Minimizing Average Weighted Completion Time of Multiprocessor Tasks 885

We give now the main ideas how the proof can be completed. By Lemmas 1,7
for any interval Ix the total released work can be estimated by h∗(m,ε)

ε3 Ix. Then

h∗(m, ε)
ε3 Ix =

h∗(m, ε)
ε3(1 + ε)c∗(m,ε) Ix+c∗(m,ε) ≤ ε2

2m+1 Ix+c∗(m,ε),

where c∗(m, ε) is some constant. Hence for any interval Iy, the total work released
earlier than Iy−c∗(m,ε) can be bounded by

∑
x≤y−c∗(m,ε)

h∗(m,ε)
ε3 Ix ≤ ∑

x≤y−c∗(m,ε)
ε2

2m+1 Ix+c∗(m,ε) ≤ ∑
t≥0

ε2Iy

2m+1(1+ε)t

≤ ε2Iy

2m+1

∑
t≥0

1
(1+ε)t ≤ ε(1+ε)Iy

2m+1 ≤ ε
2m Iy.

If there is a gap of all idle processor in an interval Iy of length at least ε
2m Iy,

then all tasks released in intervals Ix, x ≤ y − c∗(m, ε) can be completed in
this gap. Since each superblock consist of 2s∗(ε)/ε intervals, in σ′′ within any
consecutive 4s∗(ε)/ε intervals there is an interval Iy containing such a time point
with idle processors. By using the shifting∗∗ and rearranging techniques, in each
such interval Iy, we create a gap of all idle processors of length at least εIy.
Suppose that some tasks released at an interval Ix are not completed within
d∗(m, ε) := c∗(m, ε) + 4s∗(ε)

ε intervals following Ix. Then, there is a gap of idle
processors within the last 4s∗(ε)

ε consecutive intervals. Hence, we can complete
these tasks in this gap by decreasing their completion times, i.e. by rescheduling
them backwards. The final ε-schedule of σ is constructed. ut

Now we partition the time line into a sequence of blocks D1,D2, . . ., where
each block Di consists of d∗(m, ε) consecutive intervals. By Corollary 1, we have
to consider only O(n) relevant blocks. Furthermore, by Lemmas 7,8 there is at
most a constant number of tasks released in each block, and all of them have to
be completed not later than the end of the next block. To finish the proof of our
main result, the last step is to use dynamic programming with blocks as units.
Here (due to space limitation) we omit the formal description of the dynamic
programming algorithm referring to the full version of our paper.

5 Conclusion

In this paper we have presented a PTAS for Pm|fixj , rj |
∑

wjCj . The approach
we used has the additional benefit that it provides a general framework for de-
signing approximation algorithms for scheduling multiprocessor task with release
dates and the weighted sum of completion time as objective. For instance, by
following the same line of ideas as above (along with some straightforward mod-
ifications) one can also derive a PTAS for the parallel variant of the problem
Pm|sizej , rj |

∑
wjCj . Furthermore, since the described approach seems to be

sufficiently general and powerful, it may also prove to be useful in designing a
PTAS for the general multiprocessor scheduling problem Pm|setj , rj |

∑
wjCj .

886 A.V. Fishkin, K. Jansen, and L. Porkolab

References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Millis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes
for minimizing average weighted completion time with release dates, Proceedings
40th IEEE Symposium on Foundations of Computer Science (1999), 32-43.

2. F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, C. Kenyon, Scheduling to minimize
the average completion time of dedicated tasks, Proceedings 20th Conference on
Foundations of Software Technology and Theoretical Computer Science, LNCS
1974, Springer Verlag (2000), 454-464.

3. A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling indepen-
dent multiprocessor tasks, Proceedings 5th European Symposium on Algorithms,
LNCS 1284, Springer Verlag (1997), 1-12.

4. A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir, On chro-
matic sums and distributed resource allocation, Information and Computation
140 (1998), 183-202.

5. A. Bar-Noy and M. M. Halldórsson and G. Kortsarz and R. Salman and H.
Shachnai, Sum multicoloring of graphs, Proceedings 7th European Symposium on
Algorithms, LNCS 1643, Springer Verlag (1999), 390-401.

6. P. Brucker and A. Krämer, Polynomial algorithms for resource constrained and
multiprocessor task scheduling problems, European Journal of Operational Re-
search 90 (1996), 214-226.

7. X. Cai, C.-Y. Lee, and C.-L. Li, Minimizing total completion time in two-
processor task systems with prespecified processor allocation, Naval Research
Logistics 45 (1998), 231-242.

8. S. Chakrabarti, C. A. Philips, A. S. Schulz, D. B. Shmoys, C. Stein, and J.
Wein, Improved scheduling algorithms for minsum criteria, Proceedings 23rd In-
ternational Colloquium on Automata, Languages and Programming, LNCS 1099,
Springer Verlag (1996), 646-657.

9. M. Drozdowski, Scheduling multiprocessor tasks - an overview, European Journal
on Operations Research, 94 (1996), 215-230.

10. U. Feige and J. Kilian, Zero-knowledge and the chromatic number, in Journal of
Computer and System Science 57(2) (1998), 187-199.

11. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the
theory of NP-completeness, Freeman, San Francisco, CA, 1979.

12. R. L. Graham, E. L. Lawler, J. K. Lenstra, K. Rinnooy Kan, Optimization and
approximation in deterministic scheduling: a survey, Annals of Discrete Mathe-
matics 5 (1979), 287-326.

13. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize
average time: Offline and online algorithm, Mathematics of Operation Research
22 (1997), 513-544.

14. J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman, Complexity of schedul-
ing multiprocessor tasks with prespecified processor allocations, Discrete Applied
Mathematics 55 (1994), 259-272.

15. M. Skutella and G. J. Woeginger, A PTAS for minimizing the weighted sum of
job completion times on parallel machines, Proceedings 31st ACM Symposium on
Theory of Computing (1999), 400-407.

16. W. E. Smith, Various optimizers for single-stage production, Naval Research Lo-
gistic Quarterly 3 (1956), 59-66.

On the Approximability of Average Completion
Time Scheduling under Precedence Constraints

Gerhard J. Woeginger

Institut für Mathematik, TU Graz, Austria

Abstract. We consider the scheduling problem of minimizing the aver-
age weighted job completion time on a single machine under precedence
constraints. We show that this problem with arbitrary job weights, the
special case of the problem where all job weights are one, and several
other special cases of the problem all have the same approximability
threshold with respect to polynomial time approximation algorithms.
Moreover, for the special case of interval order precedence constraints and
for the special case of convex bipartite precedence constraints, we give a
polynomial time approximation algorithm with worst case performance
guarantee arbitrarily close to the golden ratio 1

2 (1 +
√

5) ≈ 1.61803.

1 Introduction

We consider the problem of scheduling n jobs on a single machine. Each job Jj

(j = 1, . . . , n) is specified by its length pj and its weight wj , where pj and wj

are non-negative integers. Each job Jj must be scheduled for pj units of time,
and only one job can be scheduled at any point in time. We only consider non-
preemptive schedules, in which all pj time units of job Jj must be scheduled
consecutively. Precedence constraints are given by a partial order on the jobs;
if Ji precedes Jj in the partial order (denoted by Ji → Jj), then Ji must be
processed before Jj can begin its processing. In this situation, job Ji is called
a predecessor of Jj , and Jj is called a successor of Ji. Our goal is to find a
schedule which minimizes the sum

∑n
j=1 wjCj where Cj is the time at which

job Jj completes in the given schedule. In the standard three-field scheduling
notation (see e.g. Graham, Lawler, Lenstra & Rinnooy Kan [5]) this problem is
denoted by 1 | prec | ∑

wjCj , and the special case where wj ≡ 1 is denoted by
1 | prec | ∑

Cj . Both problems 1 | prec | ∑
wjCj and 1 | prec | ∑

Cj are NP-hard
in the strong sense (Lawler [7]; Lenstra & Rinnooy Kan [8]).

A polynomial time ρ-approximation algorithm is a polynomial time algorithm
that always returns a near-optimal solution with cost at most a factor ρ above
the optimal cost (where ρ > 1 is some fixed real number). The value ρ is called
the worst case performance guarantee of the approximation algorithm. The ap-
proximability threshold of a minimization problem is the infimum of all values ρ
for which the problem possesses a polynomial time ρ-approximation algorithm.

There are several different polynomial time 2-approximation algorithms
known for the problem 1 | prec | ∑

wjCj . Hall, Schulz, Shmoys & Wein [6] give

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 887–897, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

888 G.J. Woeginger

such a 2-approximation algorithm by using linear programming relaxations. Chu-
dak & Hochbaum [2] design another 2-approximation algorithm that is based on
a half integral linear programming relaxation and on a minimum cut computa-
tion in an underlying network. Independently of each other, Margot, Queyranne
& Wang [9] and Chekuri & Motwani [1] provide (identical) extremely sim-
ple, combinatorial polynomial time 2-approximation algorithms. It is an out-
standing open problem to determine the exact approximability threshold of
1 | prec | ∑

wjCj ; see e.g. Schuurman & Woeginger [12]. According to the cur-
rent state of the art, this threshold might be any value between 1 (which would
mean: the problem has a PTAS) and 2 (which would mean: the currently known
approximation algorithms are already best possible).

Interestingly, the special case 1 | prec | ∑
Cj seems to be no easier to approxi-

mate than the general case 1 | prec | ∑
wjCj . The best approximation algorithms

known for 1 | prec | ∑
Cj have performance guarantee 2, i.e., exactly the same

guarantee as for the general case. Every constructive approach that works for
the special case seems to carry over to the general case. In this paper we will
show that the cumulative experiences of the research community with these two
problems are not just a coincidence:

Theorem 1. The approximability thresholds of the following eight special cases
of the scheduling problem 1 | prec | ∑

wjCj all coincide:

(a) The approximability threshold τa of the general problem 1 | prec | ∑
wjCj.

(b) The approximability threshold τb of the special case where wj ≤ n2 and
pj ≤ n2.

(c) The approximability threshold τc of the special case where wj ≡ 1.
(d) The approximability threshold τd of the special case where pj ≡ 1.
(e) The approximability threshold τe of the special case where wj ≡ 1 and pj ∈

{0, 1}.
(f) The approximability threshold τf of the special case where wj ∈ {0, 1} and

pj ≡ 1.
(g) The approximability threshold τg of the special case where every job has

either pj = 0 and wj = 1, or pj = 1 and wj = 0.
(h) The approximability threshold τh of the special case where every job has

either pj = 0 and wj = 1, or pj = 1 and wj = 0, and where the existence
of a precedence constraint Ji → Jj implies that pi = 1 and wi = 0, and that
pj = 0 and wj = 1.

Chekuri & Motwani [1] design instances of the restricted form (h) to show that
the integrality gap of a linear ordering relaxation of Potts [11] is 2. Our The-
orem 1 gives some insight why even these highly restricted special cases yield
worst possible integrality gaps. Hall & al. [6] observe that the integrality gap
of the time-indexed linear programming formulation of Dyer & Wolsey [3] is 2.
One problem with this formulation is that its size is proportional to the overall
job length, which in general is not polynomially bounded in the input size. Hall
& al. [6] find a way around this problem by using an equivalent interval-indexed
formulation. Theorem 1 offers another way around this problem, since it shows

On the Approximability of Average Completion Time Scheduling 889

that the thresholds for problems (a) and (b) are equivalent with respect to ap-
proximation, and in problem (b) the overall job length is polynomially bounded
in the input size.

Our second main result is that for specially structured families of precedence
constraints, one can get an improved performance guarantee that is arbitrarily
close to the golden ratio 1

2 (1 +
√

5).

Theorem 2. Let φ = 1
2 (1+

√
5) ≈ 1.61803 be the positive real root of φ2 = φ+1.

For any ε > 0, there exists a polynomial time (φ+ε)-approximation algorithm for
problem 1 | prec | ∑

wjCj in case (a) the precedence constraints form an interval
order, and in case (b) the precedence constraints form a convex bipartite order.

The paper is organized as follows. In Section 2 we collect several useful defini-
tions and notations, and we also summarize important tools from the literature.
In Section 3 we show that the eight approximability thresholds stated in Theo-
rem 1 are all equal. In Section 4 we first show that a polynomial time algorithm
for a certain auxiliary problem implies a polynomial time (φ+ ε)-approximation
algorithm for 1 | prec | ∑

wjCj . Then we show that for interval orders and for
convex bipartite orders this auxiliary problem indeed can be solved in polynomial
time. This will prove Theorem 2.

2 Definitions, Propositions, and Preliminaries

For any instance I of 1 | prec | ∑
wjCj , we denote its optimal objective value by

Opt(I), and we write p(I) =
∑n

j=1 pj and w(I) =
∑n

j=1 wj . For any subset S
of jobs, let p(S) =

∑
Jj∈S pj and w(S) =

∑
Jj∈S wj . A subset S of jobs is called

an initial set if for every job Jj ∈ S also all the predecessors of Jj are in S.
Goemans & Williamson [4] provide a nice geometric way of looking at

1 | prec | ∑
wjCj via a two-dimensional Gantt chart. The Gantt chart is a big

rectangle with its four corners at (0, 0), (0, w(I)), (p(I), 0), and (p(I), w(I)). The
straight line from corner (0, w(I)) to corner (p(I), 0) is called the diagonal of the
Gantt chart. Each job Jj is represented by a job rectangle of length pj and height
wj . A schedule Jπ(1), Jπ(2), . . . , Jπ(n) is represented by the following placement
of the job rectangles. The rectangle for the first job Jπ(1) is placed such that
its upper left corner lies in (0, w(I)). For j = 2, . . . , n the rectangle for Jπ(i) is
placed such that its upper left corner coincides with the lower right corner of
the rectangle for Jπ(i−1). Clearly, the rectangle for the last job Jπ(n) then has its
lower right corner in (p(I), 0). It can be seen [4] that the total weighted comple-
tion time in the schedule Jπ(1), Jπ(2), . . . , Jπ(n) equals the total area of the job
rectangles plus the total area that lies below these rectangles in the Gantt chart.
This total area (that equals the objective value) will be called the covered area
of the schedule.

Margot, Queyranne & Wang [9] and Chekuri & Motwani [1] show that within
polynomial time, any instance I of 1 | prec | ∑

wjCj can be split into k ≥ 1
subinstances I1, . . . , Ik such that the following two conditions are fulfilled. (i)
In any subinstance Ii all initial sets S satisfy p(S) w(Ii) ≥ p(Ii) w(S). (ii) If

890 G.J. Woeginger

σi (i = 1, . . . , k) is an arbitrary optimal schedule for instance Ii, then putting
the schedules σ1, σ2, . . . , σk in series yields an optimal schedule for the original
instance I. With this, any ρ-approximation algorithm for instances that sat-
isfy condition (i) immediately yields a ρ-approximation algorithm for general
instances; simply compute ρ-approximate solutions for the instances I1, . . . , Ik

and put them in series. Moreover, condition (i) implies that in the Gantt chart
of any feasible schedule for instance Ii, the lower right corners of all job rectan-
gles lie on or above the diagonal of the chart; hence, the covered area of such a
schedule is at least w(Ii) p(Ii)/2.

Proposition 3. (Margot, Queyranne & Wang [9] and Chekuri & Motwani [1])
With respect to approximation algorithms for 1 | prec | ∑

wjCj, we may restrict
ourselves to instances I that satisfy p(S) w(I) ≥ p(I) w(S) for any initial set S.
Such instances I a priori satisfy Opt(I) ≥ w(I) p(I)/2. ut
For any instance I of 1 | prec | ∑

wjCj , we denote by I# the instance that results
from I by replacing every job Jj in I by a new job J#

j with w#
j = pj and p#

j = wj

and by introducing the precedence constraint J#
j → J#

i if and only if Ji → Jj is in
I. In other words, I# results from I by interchanging job weights and lengths and
by reversing the precedence constraints. Instance I# is called the reverse instance
of I. Chudak & Hochbaum [2] observe that in case Jπ(1), Jπ(2), . . . , Jπ(n) is a
feasible schedule for instance I, then J#

π(n), . . . , J
#

π(2), J
#

π(1) is a feasible schedule
for instance I#. It is easily verified that the objective values of these two schedules
are the same.

Proposition 4. (Chudak & Hochbaum [2])
There is a polynomial time computable one-to-one correspondence between fea-
sible solutions of instances I and I# that preserves objective values.

3 Equality of the Eight Approximability Thresholds

In this section we will prove Theorem 1. We start by reducing the general case
(a) to the polynomially bounded case (b). Consider an arbitrary instance I of
1 | prec | ∑

wjCj with n ≥ 16 jobs. To keep the presentation simple, we will write
W for w(I) and P for p(I). By Proposition 3 we may assume without loss of
generality that

Opt(I) ≥ WP/2. (1)

We define another instance I ′ that results from I by scaling the weights: For
every job Jj in I there is a corresponding job J ′

j in instance I ′ with the same
processing time p′

j = pj and with a new weight of

w′
j = max{dwjn

2/W e, 1} ≤ n2. (2)

Note that w′
j ≥ wjn

2/W and that w′
j ≤ wjn

2/W +1. The precedence constraints
in I and I ′ are exactly the same, i.e., J ′

i → J ′
j in I ′ if and only if Ji → Jj in

I. We now assume that for some ρ ≤ 2 we have a ρ-approximate schedule α for

On the Approximability of Average Completion Time Scheduling 891

instance I ′ with objective value A(I ′) ≤ ρOpt(I ′) and with job completion times
C ′

α(1), . . . , C
′
α(n). If we use α as an approximate schedule for the unscaled instance

I with objective value A(I), then corresponding jobs in the two schedules have
the same completion times. This yields

A(I ′) =
n∑

j=1

w′
α(j)C

′
α(j) ≥ n2

W

n∑

j=1

wα(j)C
′
α(j) =

n2

W
A(I). (3)

Next we claim that
Opt(I ′) ≥ n log2 n · P. (4)

Suppose for the sake of contradiction that Opt(I ′) < n log2 n · P . Then the
inequality in (3), the fact that A(I ′) ≤ ρOpt(I ′), and the inequalities ρ ≤ 2 and
n ≥ 16 together yield that

Opt(I) ≤ A(I) ≤ W

n2 A(I ′) ≤ W

n2 ρOpt(I ′) <
W

n2 ρn log2 n · P ≤ WP/2.

(5)
This blatantly contradicts (1) and thus proves (4). Next, we assume without loss
of generality that J1, J2, . . . , Jn is an optimal schedule for instance I with job
completion times C1, . . . , Cn. Then

Opt(I) =
n∑

j=1

wjCj ≥
n∑

j=1

W (w′
j − 1)Cj/n2 =

W

n2

n∑

j=1

w′
jCj −

n∑

j=1

Cj

≥ W

n2 (Opt(I ′) − nP) ≥ W

n2 Opt(I ′) (1 − 1/ log2 n) . (6)

Here we first used that w′
j ≤ wjn

2/W + 1, then that Cj ≤ P , and finally the
inequality in (4). By combining (3), (6), and A(I ′) ≤ ρOpt(I ′) we conclude that

A(I)/Opt(I) ≤ (
W · A(I ′)/n2) /

(
W · Opt(I ′)(1 − 1/ log2 n)/n2)

= A(I ′)/ (Opt(I ′)(1 − 1/ log2 n)) ≤ ρ/(1 − 1/ log2 n). (7)

Lemma 5. Assume that there is a polynomial time ρ-approximation algorithm
A for the special case (b) of 1 | prec | ∑

wjCj where 1 ≤ wj ≤ n2 and 1 ≤ pj ≤ n2

holds for all jobs Jj. Then for every ε > 0 there exists a polynomial time (ρ+ε)-
approximation algorithm for the general problem 1 | prec | ∑

wjCj.

Proof. Consider an arbitrary instance I of 1 | prec | ∑
wjCj with n jobs. If n <

24ρ/ε, then the problem is of constant size and we may solve it in constant time
by complete enumeration. Otherwise, n ≥ 24ρ/ε and ρ/(1 − 1/ log2 n)2 ≤ ρ + ε.
Let I ′ result from I by scaling the job weights as described above; then by (2)
1 ≤ wj ≤ n2 holds for all jobs in I ′. Let I ′# be the reverse instance of I ′; then
1 ≤ pj ≤ n2 holds for all jobs in I ′#. Let I ′#′ result from I ′# by scaling the
job weights as described above; then 1 ≤ wj ≤ n2 and 1 ≤ pj ≤ n2 hold for all

892 G.J. Woeginger

jobs in I ′#′. Note that the three instances I ′, I ′#, and I ′#′ can be determined
in polynomial time.

We apply the polynomial time ρ-approximation algorithm A to instance I ′#′,
and interprete the resulting approximate schedule α′#′ as a schedule for I ′#.
By (7) this yields an approximate schedule α′# for I ′# with objective value
at most ρ/(1 − 1/ log2 n) above Opt(I ′#). By Proposition 4, the approximate
schedule α′# can be translated into an approximate schedule α′ of the same
approximation quality for instance I ′. Finally, we interprete the approximate
schedule α′ as a schedule for I. By applying once again (7), we get that the
resulting approximate objective value for I is at most ρ/(1 − 1/ log2 n)2 ≤ ρ + ε
above Opt(I). This yields the desired polynomial time (ρ + ε)-approximation
algorithm for the general problem 1 | prec | ∑

wjCj . ut
Our next goal is to reduce the polynomially bounded case (b) in Theorem 1 to the
case (c) with unit weights. Consider an arbitrary instance I of 1 | prec | ∑

wjCj

with n jobs where 1 ≤ wj ≤ n2 and 1 ≤ pj ≤ n2 holds for all jobs Jj , exactly
as described in the statement of Lemma 5. We define another instance I+ that
results from I by splitting every job into several new jobs: For every job Jj with
length pj and weight wj in instance I, there are wj corresponding jobs in I+ that
all have weight 1. The first corresponding job K+

j has length pj . The remaining
wj − 1 jobs corresponding to Jj all have length 0; this whole group of wj − 1
jobs is denoted by G+

j . The precedence constraints in I+ are defined as follows.
K+

i → K+
j in I+ if and only if Ji → Jj in I. All jobs in G+

j have the same set
of predecessors: The job K+

j , together with all jobs in I+ that correspond to
predecessors of Jj in I. All jobs in G+

j have the same set of successors: All jobs
in I+ that correspond to successors of Jj in I. This completes the description of
instance I+. Note that I+ only contains O(n3) jobs and that it can be computed
in polynomial time.

In any ‘reasonable’ schedule for I+, all jobs in G+
j will be processed right

after job K+
j and thus will form a contiguous block together with job K+

j . Oth-
erwise, one could decrease the objective value by moving the jobs in G+

j (that all
have length zero) directly after job K+

j . This yields a straightforward one-to-one
correspondence between feasible schedules for I and reasonable feasible sched-
ules for I+: Jobs Jj in a schedule for I may be replaced by their corresponding
blocks K+

j and G+
j , and vice versa. Then in I there is one job of weight wj that

completes at a certain time t, whereas in I+ there are wj corresponding jobs
of weight 1 that all complete at time t. Clearly, this correspondence preserves
objective values, and it also is computable in polynomial time.

Lemma 6. Assume that there is a polynomial time ρ-approximation algorithm
A for the special case (e) of 1 | prec | ∑

wjCj where wj ≡ 1 and pj ∈ {0, 1}. Then
there also exists a polynomial time ρ-approximation algorithm for the special case
(b) of 1 | prec | ∑

wjCj where 1 ≤ wj ≤ n2 and 1 ≤ pj ≤ n2 holds for all jobs.

Proof. Consider an arbitrary instance I of 1 | prec | ∑
wjCj with n jobs where

1 ≤ wj ≤ n2 and 1 ≤ pj ≤ n2 holds. Let I+ result from I by splitting the jobs

On the Approximability of Average Completion Time Scheduling 893

as described above; then wj ≡ 1 in I+. Let I+# be the reverse instance of I+;
then pj ≡ 1 in I+#. Let I+#+ result from I+# by splitting the jobs as described
above; then wj ≡ 1 and pj ∈ {0, 1} in I+#+. Note that I+, I+#, and I+#+ all
have the same optimal objective value and all can be determined in polynomial
time.

We apply the polynomial time ρ-approximation algorithm A to instance
I+#+. We interprete the resulting approximate schedule as a schedule for I+#,
translate it into an approximate schedule for I+ by applying Proposition 4, and
interprete the resulting schedule as an approximate schedule for I. By the above
discussion and by Proposition 4, all these translations do not change the objec-
tive value and thus yield a ρ-approximation for I. ut
Lemma 7. Assume that there is a polynomial time ρ-approximation algorithm
A for the special case (g) of 1 | prec | ∑

wjCj where every job has either pj = 0
and wj = 1, or pj = 1 and wj = 0. Then there also exists a polynomial time ρ-
approximation algorithm for the special case (e) of 1 | prec | ∑

wjCj where wj ≡
1 and pj ∈ {0, 1}.

Proof. Omitted in this extended abstract. ut
Lemma 8. Assume that there is a polynomial time ρ-approximation algorithm
A for the special case (h) of 1 | prec | ∑

wjCj where every job has either pj = 0
and wj = 1, or pj = 1 and wj = 0, and where the existence of a precedence
constraint Ji → Jj implies that pi = 1 and wi = 0, and that pj = 0 and
wj = 1. Then there also exists a polynomial time ρ-approximation algorithm for
the special case (g) of 1 | prec | ∑

wjCj where every job has either pj = 0 and
wj = 1, or pj = 1 and wj = 0.

Proof. Consider an arbitrary instance I of 1 | prec | ∑
wjCj where every job has

either pj = 0 and wj = 1 (such a job will be called a 0-job), or pj = 1 and
wj = 0 (such a job will be called a 1-job). We construct a new instance that
results from I by removing all the precedence constraints (i) between 0-jobs, (ii)
between 1-jobs, and (iii) from 0-jobs to 1-jobs. The resulting instance Ib has
bipartite precedence constraints where the 0-jobs form one class and the 1-jobs
form the other class of the bipartition. Therefore, instance Ib is of the type (h).

We will now prove that every feasible schedule for the bipartite instance Ib

can be transformed into a feasible schedule for the original instance I without
increasing the objective value. Clearly, the statement in the lemma will follow
from this.

Hence, consider a feasible schedule for Ib. Renumber the jobs such that this
schedule processes the jobs in the ordering J1, J2, . . . , Jn with job completion
times C1, C2, . . . , Cn. We interprete this schedule as a schedule for the original
instance I, and we call a pair of jobs Ji and Jj a violated pair, if Ji → Jj in
I and if i > j. Consider a violated pair Ji and Jj with the difference i − j as
small as possible. Consider an intermediate job Jk with j < k < i. If Jk was a
predecessor of Ji in I, then Jk → Ji → Jj , and if Jk was a predecessor of Jj in
I, then Jk → Jj . In either case, the jobs Jk and Jj would form another violated

894 G.J. Woeginger

pair with k − j < i − j. If Jk was a successor of Jj in I, then Ji → Jj → Jk, and
if Jk was a successor of Ji in I, then Ji → Jk. In either case, the jobs Ji and
Jk would form another violated pair with i − k < i − j. Hence, all intermediate
jobs between Jj and Ji are neither predecessors nor successors of Ji and Jj . We
distinguish two cases: (i) Ji is a 0-job. Then we remove Ji from the schedule
and reinsert it immediately before Jj . By moving this 0-job to an earlier point
in time, we will not increase the objective value of the schedule. (ii) Ji is a 1-
job. Since the considered schedule is feasible for Ib, in this case also Jj must
be a 1-job. We remove Jj from the schedule and reinsert it immediately after
Ji. This increases the completion time of Jj from Cj to Ci, and it decreases the
completion time of the i− j jobs Jj+1, . . . , Ji all by 1. Note that i− j ≥ Ci −Cj

since there must be at least Ci−Cj 1-jobs among Jj+1, . . . , Ji. Hence, by moving
Jj we will not increase the objective value of the schedule.

To summarize, in either case we resolve the violated pair Ji and Jj , we do
not create any new violated pairs, and we end up with another feasible schedule
for Ib. By repeating this procedure over and over again, we will eventually get
rid of all violated pairs without ever increasing the objective value. The resulting
schedule will be feasible for the original instance I, exactly as we desired. ut

Proof of Theorem 1. Now let us finally prove our main result. Since problem
(e) is a special case of problem (c), since problem (c) is a special case of problem
(b), and since (b) is a special case of (a), we have

τe ≤ τc ≤ τb ≤ τa.

Lemmas 5 and 6 together yield that τa ≤ τb ≤ τe. Therefore, the above four
approximability thresholds all coincide. Moreover, Lemma 7 yields τg ≥ τe = τa

which together with τa ≥ τg implies τg = τa. Similarly, Lemma 8 yields τh ≥
τg = τa which together with τa ≥ τh implies τh = τa. Finally, the discussion
after Proposition 4 yields τc = τd and τe = τf . ut

4 Nice Precedence Constraints

In this section we will derive a polynomial time (φ + ε)-approximation for
1 | prec | ∑

wjCj for certain ‘nice’ classes of precedence constraints that include
interval orders and convex bipartite orders. This approximation algorithm is
based on exact algorithms for the following auxiliary problem.

Problem: GOOD INITIAL SET
Instance: An instance I of 1 | prec | ∑

wjCj , i.e., a set of precedence constrained
jobs Jj (j = 1, . . . , n) with non-negative integer lengths pj and non-negative
integer weights wj . A real number γ with 0 < γ ≤ 1/2.
Question: Does there exist an initial set T that simultaneously satisfies p(T) ≤
(1/2 + γ)p(I) and (1/2 − γ)w(I) ≤ w(T)?

Theorem 9. Let C be a class of precedence constraints such that the restriction
of the GOOD INITIAL SET problem to precedence constraints from class C is

On the Approximability of Average Completion Time Scheduling 895

solvable in polynomial time. Then for any ε > 0, the restriction of problem
1 | prec | ∑

wjCj to precedence constraints from class C has a polynomial time
(φ + ε)-approximation algorithm.

Proof. Consider an instance I of 1 | prec | ∑
wjCj with precedence constraints

from class C. We will write W short for w(I), and P short for p(I). By Propo-
sition 3 we may assume that p(S) W ≥ w(S) P holds for any initial set S in I,
and that Opt(I) ≥ WP/2. Take an arbitrary real ε with 0 < ε < 1/4 and define
` = d2φ/εe. For this choice of `, the following inequality is satisfied for all γ with
0 < γ ≤ 1/2:

1
2

+ 2(γ − 1
2`

)2 ≥ (
1
2

+ 2γ2) / (1 + ε/φ) (8)

We call the polynomial time algorithm for problem GOOD INITIAL SET on
the inputs I and γk = k/2` for k = 1, 2, . . . , ` until we detect a value γ = γk

that yields a YES-instance. Let T be the corresponding initial set of jobs, and
let U be the set of remaining jobs that are not contained in T . We construct an
approximate solution for the scheduling instance I that first runs all the jobs in
T in any feasible order, and then runs all the jobs in U in any feasible order. We
denote the objective value of this approximate solution by A(I). Clearly, this
approximate solution can be determined in polynomial time.

Now consider the two-dimensional Gantt chart for the approximate schedule
(see the discussion in Section 2). Since p(T) ≤ (1/2+γ)P , all rectangles for jobs
in T lie to the left of the line x = (1/2 + γ)P . Moreover, w(T) ≥ (1/2 − γ)W
implies w(U) ≤ (1/2 + γ)W , and thus all rectangles for jobs in U lie below the
line y = (1/2+γ)W . To summarize, not a single job rectangle protrudes into the
‘forbidden’ region that lies to the right of the line x = (1/2 + γ)P and above the
line y = (1/2+γ)W . Since the area of this forbidden region equals (1/2−γ)2 WP ,
the remaining area in the chart that may contribute to the objective value of
the approximate schedule is at most WP − (1/2 − γ)2 WP . This yields

A(I) ≤ (3/4 + γ − γ2) WP. (9)

Now consider the two-dimensional Gantt chart for an optimal schedule for in-
stance I. Since we assumed by Proposition 3 that p(S) W ≥ w(S) P holds for any
initial set S, in this Gantt chart the whole region below the diagonal must belong
to the covered area. Moreover it can be shown that the covered area in the Gantt
chart must include the rectangular region R that lies to the left of the vertical
line x = (1/2+γ −1/2`)P , and below the horizontal line y = (1/2+γ −1/2`)W .
This yields

Opt(I) ≥ WP/2 + 2(γ − 1/2`)2 WP ≥ (1/2 + 2γ2) WP / (1 + ε/φ). (10)

Here the first inequality follows from the area estimation, and the second in-
equality follows from (8). By combining (9) and (10), we conclude that

A(I)
Opt(I)

≤ (1 + ε/φ)
3/4 + γ − γ2

1/2 + 2γ2 ≤ (1 + ε/φ) φ = φ + ε. (11)

896 G.J. Woeginger

The final inequality follows by elementary calculus: On the interval (0, 1/2],
the function f(γ) = (3/4 + γ − γ2) / (1/2 + 2γ2) takes its maximum value at
γ = 1

2 (
√

5 − 2), and this maximum value equals φ = 1
2 (1 +

√
5). The proof is

complete. ut
An interval order (see e.g. Möhring [10]) on the jobs J1, . . . , Jn is specified

by a set of n intervals I1, . . . , In along the real line. Then Ji → Jj holds if and
only if interval Ii lies completely to the left of interval Ij .

Lemma 10. Consider the subset of instances I of 1 | prec | ∑
wjCj with n jobs

for which wj ≤ n2 and pj ≤ n2 holds for all jobs and for which the precedence
constraints form an interval order. The restriction of the GOOD INITIAL SET
problem to instances (I, γ) where I is from this subset is solvable in polynomial
time.

Proof. Omitted in this extended abstract. ut

Proof of Theorem 2(a). By Theorem 9 and Lemma 10, there exists a polyno-
mial time (φ+ε)-approximation algorithm for the special case of 1 | prec | ∑

wjCj

where wj ≤ n2 and pj ≤ n2 and where the precedence constraints form an in-
terval order. By Lemma 5, this approximability result carries over to the special
case of 1 | prec | ∑

wjCj under interval order precedence constraints with arbi-
trary job lengths and job weights. Lemma 5 can be applied, since its proof only
reverses the precedence constraints, and since the reverse of an interval order is
again an interval order. ut

A bipartite order (see Möhring [10]) on a set of jobs is defined as follows.
The jobs are classified into two types. The minus-jobs J−

1 , . . . , J−
a do not have

any predecessors, and the plus-jobs J+
1 , . . . , J+

b do not have any successors. The
only precedence constraints are of the type J−

i → J+
j , that is from minus-jobs

to plus-jobs. The class of convex bipartite orders forms a proper subset of the
class of general bipartite orders, and it is a proper superset of the class of strong
bipartite orders (see Möhring [10]). A bipartite order is a convex bipartite order
if for every j = 1, . . . , b there exist two indices `(j) and r(j) such that J−

i → J+
j

holds if and only if `(j) ≤ i ≤ r(j). In other words, the predecessor set of every
plus-job forms an interval within the minus-jobs.

Lemma 11. Consider the subset of instances I of 1 | prec | ∑
wjCj with n jobs

for which wj ≤ n2 and pj ≤ n2 holds for all jobs and for which the precedence
constraints form a convex bipartite order. The restriction of the GOOD INI-
TIAL SET problem to instances (I, γ) where I is from this subset is solvable in
polynomial time.

Proof. Omitted in this extended abstract. ut

Proof of Theorem 2(b). The argument is almost identical to the proof of
Theorem 2(a) in the preceding subsection. Theorem 9 and Lemma 11 yield the
existence of a polynomial time (φ + ε)-approximation algorithm for the special

On the Approximability of Average Completion Time Scheduling 897

case where wj ≤ n2 and pj ≤ n2, and Lemma 5 can be used to carry this over to
1 | prec | ∑

wjCj under convex bipartite precedence constraints with arbitrary
job lengths and arbitrary job weights. ut

Acknowledgement. This work has been supported by the START program
Y43-MAT of the Austrian Ministry of Science.

References

1. C. Chekuri and R. Motwani [1999]. Precedence constrained scheduling to min-
imize sum of weighted completion times on a single machine. Discrete Applied
Mathematics 98, 29–38.

2. F. Chudak and D.S. Hochbaum [1999]. A half-integral linear programming relax-
ation for scheduling precedence-constrained jobs on a single machine. Operations
Research Letters 25, 199–204.

3. M.E. Dyer and L.A. Wolsey [1990]. Formulating the single machine sequencing
problem with release dates as a mixed integer program. Discrete Applied Mathe-
matics 26, 255–270.

4. M.X. Goemans and D.P. Williamson [2000]. Two-dimensional Gantt charts
and a scheduling algorithm of Lawler. Siam Journal on Discrete Mathematics 13,
281–294.

5. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan [1979].
Optimization and approximation in deterministic sequencing and scheduling: A
survey. Annals of Discrete Mathematics 5, 287–326.

6. L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein [1997]. Scheduling to
minimize average completion time: Off-line and on-line approximation algorithms.
Mathematics of Operations Research 22, 513–544.

7. E.L. Lawler [1978]. Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Annals of Discrete Mathematics 2, 75–90.

8. J.K. Lenstra and A.H.G. Rinnooy Kan [1978]. Complexity of scheduling under
precedence constraints. Operations Research 26, 22–35.

9. F. Margot, M. Queyranne, and Y. Wang [1997]. Decompositions, network
flows, and a precedence constrained single machine scheduling problem. Report
#2000-29, Department of Mathematics, University of Kentucky, Lexington.

10. R.H. Möhring [1989]. Computationally tractable classes of ordered sets. In: I.
Rival (ed.) Algorithms and Order, Kluwer Academic Publishers, 105–193.

11. C.N. Potts [1980]. An algorithm for the single machine sequencing problem with
precedence constraints. Mathematical Programming Study 13, 78–87.

12. P. Schuurman and G.J. Woeginger [1999]. Polynomial time approximation
algorithms for machine scheduling: Ten open problems. Journal of Scheduling 2,
203–213.

Optimistic Asynchronous Multi-party Contract
Signing with Reduced Number of Rounds

Birgit Baum-Waidner

Entrust Technologies (Switzerland)
birgit.baum@entrust.com

Abstract. Optimistic asynchronous multi-party contract signing pro-
tocols have received attention in recent years as a compromise between
efficient protocols and protocols avoiding a third party as a bottleneck of
security. “Optimistic” roughly means: in case all participants are honest
and receive the messages from the other participants as expected, the
third party is not involved at all. The best solutions known so far ter-
minate within t+ 2 rounds in the optimistic case, for any fixed set of n
signatories and allowing up to t < n dishonest signatories. The protocols
presented here achieve a major improvement compared to the state of
the art: The number of rounds R is reduced from O(t) to O(1) for all
n ≥ 2t + 1, and for n < 2t + 1, R grows remarkably slowly compared
with numbers of rounds in O(t): If t ≈ k

k+1n then R ≈ 2k.1

1 Introduction

A contract signing protocol is a protocol that allows n signatories to sign a
contract text such that, even if up to t, t < n, of them are dishonest, either all
honest signatories obtain a signed contract, or nobody obtains it [3,9].2 Dishonest
signatories can arbitrarily deviate from their protocol (Byzantine model). We
assume an asynchronous network, i.e., there are no upper bounds on network
delays.

Multi-party contract signing has obvious applications in secure electronic
commerce, and is the basis for the solution of many related fairness problems,
like multi-party certified mail [2].

By using a third party, T , that is always honest, the problem can be trivially
solved [19]: T collects a digital signature from each of the n signatories, and
either redistributes the n signatures, or aborts the contract in case not all n
signatures arrive. Security depends fully on T ; therefore most research has been
focused on getting rid of T as trust and performance bottleneck.

Unfortunately, one cannot get rid of T completely: For n = 2 no deterministic
protocol without third party exists [12], and each probabilistic protocol has an
error probability at least linear in the number of rounds [8]. Therefore the goal
is to minimize the involvement of T as much as possible: Optimistic protocols
1 The complete version including the detailed proofs can be found in [1].
2 A precise definition of the asynchronous n-party contract signing problem is given

in Sect. 3.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 898–911, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Optimistic Asynchronous Multi-party Contract Signing 899

depend on a third party T , but in such a way that T is not actively involved in
case all signatories are honest and “patient enough;” only for recovery purposes
T might become active [4,8,17].

Optimistic contract signing protocols have been first described for syn-
chronous networks [3,4,17] which is the stronger and more unrealistic model
but allows protocols to manage within 2 normal phases plus 2 recovery phases,
for any number of signatories and any fault assumption. 2-party protocols for
asynchronous networks have been described in [5,13,18]. The n-party case was
first investigated in [6]. Independently, but subsequently, protocols for the 3-
party and n-party case were proposed in [13] and [14], respectively, requiring
O(n2) rounds for t = n− 1. In [7], an optimistic asynchronous n-party contract
signing protocol was presented requiring t + 2 rounds only, and t + 4 in the
worst case, which is the best result achieved so far and round-optimal in case of
n = t+ 1 (as shown in [14]).

The protocols presented here achieve a significant improvement in case t <
n− 1: The number of rounds, R, in the optimistic case is

R =

2, if n ≥ 2t+ 1;

2b t+1
n−tc + min(2, (t+ 1) mod (n− t)) if t+ 2 < n ≤ 2t;

t+ 1, if n = t+ 2;

t+ 2, if n = t+ 1;

(1)

This means a major improvement compared to the state of the art: R is
reduced from O(t) to O(1) for all n ≥ 2t+1, and for n ≤ 2t, R grows remarkably
slowly compared with numbers of rounds in O(t): If t ≈ k

k+1n then R ≈ 2k.
This enables higher numbers of participants for practical use.

2 Model and Notation

Our model and notation are identical to those in [7]:
Let P1, . . . , Pn denote the signatories, T a third party, and V1, . . . , Vn′ the

potential verifiers of signed contracts. Each party represents a machine that
executes a certain protocol and that serves a specific user (e.g., human being
or another protocol). Parties can receive local inputs from their users (e.g., the
command to sign a certain contract) and can generate certain local outputs for
their users (the result of the protocol, e.g. a message that the contract was signed
successfully).

The signatories Pi and third party T are able to digitally sign messages,
and all parties are able to verify their signatures [15]. The signature on message
m associated with PX (or T) is denoted by signX(m) (or signT (m)). In our
complexity analyses we assume that sign(m) has constant length, independent
of the length of m (e.g., because m is hashed before signing [16]). We abstract
from the error probabilities introduced by cryptographic signature schemes and
assume that signatures are unforgeable (the translation into a cryptographic
model is straightforward).

900 B. Baum-Waidner

Adversary model. We assume that up to t (for a given t < n) of the n
signatories, and for some requirements also T and all verifiers might be dishonest.
Dishonest parties can behave arbitrarily and be coordinated by a single party,
called the adversary. Security properties must always hold for all adversaries.

Network. All messages sent to or from T or any Vi are reliably delivered,
eventually. Messages between any Pi and Pj might never be delivered. We do not
require any particular level of synchronization, nor do we assume that messages
are delivered in order. The decision on which of all sent messages to deliver next
is taken by the adversary. The adversary can read all messages from, and can
insert additional messages into, all channels.

Rounds. In contrast to the “phases” in synchronous networks, the rounds in
asynchronous networks are not synchronized. Each message is sent and received
in the context of a certain round and will usually be based on messages of
previous rounds, or on the local decision no longer to wait for any messages.

All-honest case. This is a special case where we assume that all n signatories
are honest and all messages sent are reliably delivered, eventually.

We make use of a few conventions, in order to simplify presentation:
Local timeouts. If we say that “X waits for certain messages, but can stop

waiting any time” we mean more precisely the following: X accepts a special
input wakeup from its user, for each protocol execution. “Waiting for certain
messages” means that X continues to receive messages but does not proceed in
the protocol run until either the messages have been received as expected, or
wakeup is input.

3 Definitions

Definition 1 (Asynchronous Multi-party Contract Signing). 3 An Asyn-
chronous Multi-Party Contract Signing Scheme (asynchronous MPCS) consists
of two protocols:

– sign[P1, . . . , Pn], for signing a contract with signatories P1, . . . , Pn. sign[]
might involve an additional party, T , in which case we call it an MPCS with
third party.

– verify[Pi, Vj], to allow Pi to show its contract to any verifier, Vj , j ∈
{1, . . . , n′}. verify[] never involves T , i.e., it is always a 2-party protocol
only.

A signatory Pi starts sign[] on its local input (decisioni , tidi , termsi , contri),
decisioni ∈ {sign, reject}.

tidi is a transaction identifier which should be unique for each execution of
sign[]. termsi contains information about the protocol used including the number
and the identities of the participants and of T , their public keys, and the assumed
maximum number t of dishonest signatories. contri is the contract text to be
3 In contrast to [7], we assume that a party not willing to sign might have to be

present in the protocol, as this is the case for the protocols presented in Section 4.
The protocols presented in Section 6 will not need this presence.

Optimistic Asynchronous Multi-party Contract Signing 901

signed. To avoid (unintended or malicious) collisions, we require Pi to refuse
concluding a contract by executing a protocol with the same tidi and termsi as
of one in which Pi is or has already been participating. If necessary, the protocol
might be re-run with a new tidi . This requirement allows protocol executions
with identical tid and different terms to run independently without impacting
each other. For practical reasons, this makes sense because the requirement for
unique tids can be removed.4

Pi may receive a local input (wakeup, tidi , termsi) any time, in order to en-
force progress of sign[].

Upon termination sign[] produces a local output (tidi , termsi , contri , di) for
Pi, with di ∈ {signed, failed}. We will simply say “Pi decides di.”

To show the contract, a signatory Pi may start verify[] with verifier Vj
on Pi’s local input (show, Vj , tidi , termsi , contri). A verifier Vj starts verify[]
on a local input (verify, Pi, tidV , termsV , contrV). Vj may receive a local input
(wakeup, tidV , termsV) any time. Upon termination verify[Pi, Vj] produces a lo-
cal output (tidV , termsV , contrV , dV) with dV ∈ {signed, verify failed} for Vj . We
will simply say “Vj decides dV .” No output is produced for Pi.

Note that the local service interfaces do not show protocol information like
exchanged messages or information proving a valid contract, although that in-
formation is produced by the protocols themselves and serves as the basis for
the outputs. This way also exotic solutions are included, e.g., that a proof of a
contract cannot necessarily be handled as one piece of information but might
require a protocol itself.

The following requirements must be satisfied:

(R1) Correct execution. In the all-honest case, if all signatories start with the
same input (sign, tid , terms, contr), and no signatory receives (wakeup,
tid , terms), then all signatories terminate and decide signed.

(R2) Unforgeability. If an honest Pi never received input (sign,
tid , terms, contr) then no honest Vj that receives input
(verify, Pi′ , tid , terms, contr), for any Pi′ , will decide signed. (Note
that this does not assume an honest T .)

(R3) Verifiability of valid contracts. If an honest Pi decides signed
on input (sign, tid , terms, contr), and later Pi receives in-
put (show, Vj , tid , terms, contr) and honest Vj receives input
(verify, Pi, tid , terms, contr) and does not receive (wakeup, tid , terms)
afterwards then Vj will decide signed.

(R4) No surprises with invalid contracts. If T is honest, and an honest Pi
received input (sign, tid , terms, contr) but decided failed then no honest
verifier Vj receiving (verify, Pi′ , tid , terms, contr), for any Pi′ , will decide
signed.

(R5) Termination of sign[]. If T is honest then each honest Pi that receives
sign and wakeup (for the same tid and terms) will terminate eventually.

(R6) Termination of verify[]. Each honest Vj that receives verify and then
wakeup, for the same tid and terms, and each honest Pi that receives
show will terminate eventually.

4 Different sets of signatories may use the same tid as here terms will be different.

902 B. Baum-Waidner

Definition 2 (Optimistic Protocol). An MPCS with third party T is called
optimistic on agreement if in the all-honest case, if all signatories receive input
(sign, tid , terms, contr) and none receives (wakeup, tid , terms), the protocol
terminates without T ever sending or receiving any messages. It is called op-
timistic on disagreement if in the all-honest case, if some signatories do not
receive input (sign, tid , terms, contr), and none receives (wakeup, tid , terms),
the protocol terminates without T ever sending or receiving any messages. It is
called optimistic if it is optimistic on agreement and on disagreement. We will
call messages “optimistic” if they would appear in the “optimistic case”, i.e., in
a protocol execution where the third party is not needed.

4 Scheme Requiring Presence of Unwilling Parties

The following Scheme 1 solves the multi-party contract signing problem, is op-
timistic on agreement, and terminates in a number of locally defined rounds R
as defined in Eq. 1. It requires the presence and actions of honest parties even if
they do not want to sign the contract. In Section 6 we will remove this disadvan-
tage thereby requiring one additional round. The drastic improvement towards
[7] in the number of rounds results from the rule that T does not always answer
requests “immediately” but has to wait for further requests, if the scheme says
that such would be sent in case the sender is honest.

Ignoring all details, and somewhat simplified, Scheme 1 works as follows:
In Round 1 each signatory that wants to sign the contract starts the protocol

signing its round-1-message and broadcasts it. This message will be interpreted
as an “intent to sign the contract”. In each subsequent round the signatory
tries to collect all signatures from the previous round, countersigns this set of n
signatures, and broadcasts it.5 The result of the R-th round becomes the real
contract. The messages mentioned so far build the “optimistic part”. If some
signatory does not want to sign the contract, it signs a reject (rather than its
round-1-message), sends it to T and stops.6

A signatory that becomes tired of waiting for some signatures in the context
of some round sends the relevant part of information received so far to the honest
T , stops sending further messages, waits for T ’s answer (which will contain
aborted or signed) and stops all actions after receiving the answer. Each answer
from T is final for all honest signatories (even if T does not handle the result as
final yet).

T uses the assumptions that there are at least n − t honest signatories in
total, and that any set of t+1 signatories contains at least one honest signatory.
If T receives a request or a reject from a signatory Pi in the context of some
round r < R, T uses the fact that Pi, if honest, would not send any messages in
the context of a round r′ > r (such messages would be used as dishonesty-proofs
by T). Since, if honest Pi contacted T , all other honest signatories not having
contacted T so far would eventually contact T , too, either sending reject (at
5 The real protocol does this more efficiently, in order to keep the messages short.
6 This protocol requires presence of parties not wanting the contract. Section 6 shows

how to solve this with one additional round only.

Optimistic Asynchronous Multi-party Contract Signing 903

most for r = 1) or because a Round r or r + 1 message is missing (e.g., at the
latest the Round-(r + 1)-message from honest Pi which is never sent). So it is
safe for T to wait for such a number of messages.

In case Pd is dishonest and contacts T pretending missing messages without
justification, it might happen that Pd will never get an answer.

If r is the highest round number in the context of which T received messages,
T will consider possibly honest only those having contacted T for Rounds r − 1
and r.

If T receives a request, it either answers immediately (e.g., if the result is
already final) or waits for further messages as long as it is sure that such will still
come. T sends responses immediately if the result is already, or just becomes,
clear and final: signed as soon as T has proofs that all which were sent an aborted,
if any, are dishonest anyway and T has a Round-r-message with r > 1, seeing
all the “intentions”. aborted becomes final if T has proofs that one among those
which will have been sent an aborted must be honest. In all other cases, after
sufficient messages, T answers the non-final aborted.

Scheme 1 (Scheme Requiring Presence of Unwilling Parties)

Protocol “sign” for honest Pi:7

The protocol is given by the following rules; Pi applies them, repeatedly, until
it stops. Let ci := (tidi , termsi , contri).

The protocol will proceed in locally defined rounds. R is the number of rounds
as defined in Eq. 1 using the parameters n and t given in termsi . Let r := 1 a
local round counter for Pi. It will be increased only by the protocol itself or
stopped by “impatience” expressed through the local service interface – there
are no timeouts within the protocol itself. Let raised exception := false a Boolean
variable indicating whether Pi contacted T or not. Both are initialized before
executing any rule. Any signi(ci, r, prev rnd ok) will mean Pi’s confirmation that
it already received all optimistic messages for ci of the Round r−1 if such exists.
Any Mr,i is the complete vector of such confirmations from all signatories for
the same r and ci, and any signi(Mr−1,i, r, vec ok)) means Pi’s confirmation that
it has successfully collected such a complete vector for the previous round r− 1.
Let M0,i := nil, for all i. From termsi , Pi concludes identities and public keys
of the other signatories and of T . Note that information is needed in clear only
if the recipient, which has to check the signature, does not have or can deviate
the original information before it was signed. This holds for recipient T only. As
usual, we assume implicitly that all messages contain additional implementation
relevant information about the protocol and its execution.

– Rule S0: If decisioni = reject then:

• Pi sends reject i = (ci, i, signi(ci, reject)) to T .
• Pi decides failed and stops.

– Rule S1: If raised exception = false and r = 1 then:
7 These rules are similar to those in [7]. The most significant difference lies in the

protocol for T .

904 B. Baum-Waidner

• Pi sends m1,i := signi(ci, 1, prev rnd ok) to all signatories. We call those
messages optimistic.

• From all received messages of type m1,j , from those signatories, Pi tries
to compile full and consistent vectors
M1,i := (sign1(ci, 1, prev rnd ok), . . . , signn(ci, 1, prev rnd ok)) and
X1,i := M1,i. (NB: here Pi has verified that the sender agrees on ci.)
If this succeeds Pi sets r := 2.

At any time Pi can stop waiting for any missing m1,j (i.e., the user of Pi
might enter wakeup any time), in which case it sets raised exception := true
and sends resolve1,i := (ci, 1, i, signi(m1,i, resolve)) to T .

– Rule S2: If raised exception = false and 2 ≤ r ≤ R then:
• Pi sends mr,i := (signi(Mr−1,i, r, vec ok), signi(ci, r, prev rnd ok)) to all

signatories. We call those messages optimistic.
• From all received messages of type mr,j it tries to compile full and con-

sistent vectors
Mr,i = (sign1(ci, r, prev rnd ok), . . . , signn(ci, r, prev rnd ok))
Xr,i := (sign1(Mr−1,i, r, vec ok), . . . , signn(Mr−1,i, r, vec ok))

If this succeeds and if
r < R then it sets r := r + 1; or if
r = R then it decides signed, sets Ci := (ci,Mr,i), and stops.

At any time Pi can stop waiting for any missing mr,j . In this case Pi sets
raised exception := true and sends
resolver ,i := (ci, r, i, signi(Xr−1,i, resolve), Xr−1,i,Mr−2,i) to T .

– Rule S3: If raised exception = true then:
Pi waits for a message from T (without sending any messages itself).
This can be any of signedr ′,j = (resolver′,j , signT (c, r′, j, signed))
or abortedr ′,j = (c, r′, j, signT (c, r′, j, aborted)).
On receiving one, Pi decides signed in the former or failed in the latter case.
In case it decides signed it sets Ci := signedr ′,j . In both cases, it stops now.

Protocol “sign” for third party T :
We assume T receives a message resolver ,i or rejectr ,i . Let messager ,i be that

message. Let ci be the triple (tid , terms, contri) contained in clear in messager ,i .
Let R be as defined in Eq. 1, according to the parameters n and t as specified
in terms.

If this is the first time T receives a message in the context of this tid and
terms, T initializes Boolean variables Signed := false, IsFinalResult := false,
a String variable TheResult := null, an Integer variable CurrentContextRound
:= 0, and sets ReceivedQuests := ∅, RecogDishonestContact := ∅,
MaybeHonestRejected := ∅, MaybeHonestGotAborted := ∅, and
MaybeHonestUnanswered := ∅.

Signed indicates T ’s currently guessed result, signed (by Signed = true) or
aborted (by Signed = false). IsFinalResult tells if Signed is final or still might
change. (Remark: A Signed = true will always be final, and a Signed = false will
not change unless T has proofs that no honest signatory got any abortedr ′,j .)

If TheResult is the final result in case of IsFinalResult = true.
CurrentContextRound gives the highest number of rounds in the context of which

Optimistic Asynchronous Multi-party Contract Signing 905

T has already received a message. RecogDishonestContact is the set of signato-
ries which have contacted T and were identified by T as dishonest in the mean-
while. ReceivedQuests collects the accepted messages. MaybeHonestRejected is
the set of signatories which sent reject to T in Round 1 and do not be-
long to RecogDishonestContact . MaybeHonestGotAborted is the set of signa-
tories which earlier got from T the response aborted but do not belong to
RecogDishonestContact . MaybeHonestUnanswered is the set of signatories cur-
rently waiting for an answer from T not belonging to RecogDishonestContact .
All those sets of signatories are handled in a way that they will never overlap.

The following sequential steps process a messager ,i , and only one such mes-
sage at a time. As soon as T can stop processing messager ,i according to one of
the steps, the next message can be processed. If more than one arrive, they will
be processed in any order (by performing those sequential steps for each such
message). messager ,i is considered having been sent in the context of Round r,
and of Round r = 1 in case messager ,i = rejectr ,i . Since the model is asyn-
chronous, T might receive messages at any time for any r and not necessarily in
increasing order.

– Step T0a: (T accepts only one message directly from each Pi,
and only from signatories not already identified as dishonest by
T .) If [Pi ∈ MaybeHonestRejected ∪ MaybeHonestGotAborted ∪
MaybeHonestUnanswered ∪ RecogDishonestContact] ∨ [messager ,i does
not look like a syntactically correct message built according to the rules
for Pi (e.g., if Pi does not belong to the signatories specified in terms)],
then messager ,i is ignored for these tid and terms, and processing that
messager ,i is stopped.
Otherwise,
• ReceivedQuests := ReceivedQuests ∪ {messager ,i} and

in case of messager ,i = rejectr ,i
• MaybeHonestRejected := MaybeHonestRejected ∪ {Pi}

in case of messager ,i = resolver ,i
• MaybeHonestUnanswered := MaybeHonestUnanswered ∪ {Pi}
• CurrentContextRound := max(CurrentContextRound , r)

and (in both cases) T performs
– Step T0b: (T tries to conclude dishonesty for as many as possible Pj.

The sets are changed, accordingly.) For all Pj ∈ MaybeHonestRejected ∪
MaybeHonestUnanswered ∪ MaybeHonestGotAborted , and for all messages
messager ′,j in ReceivedQuests (i.e. including the new messager ,i):
If [r′ < CurrentContextRound −1] ∨ [ReceivedQuests contains directly or in-
directly a message messager ′′,j , r′′ > r′ +1] ∨ [contr contained in messager ′,j
is different from any contr ′ already directly or indirectly signed by Pj con-
tained within another message in ReceivedQuests], then
• RecogDishonestContact := RecogDishonestContact ∪ {Pj}
• MaybeHonestRejected := MaybeHonestRejected \ {Pj}
• MaybeHonestGotAborted := MaybeHonestGotAborted \ {Pj}
• MaybeHonestUnanswered := MaybeHonestUnanswered \ {Pj}
• If messager ,i = rejectr ,i : stop here processing messager ,i .

906 B. Baum-Waidner

If Pi ∈ RecogDishonestContact , as a result of Step T0b, then stop processing
messager ,i . Otherwise messager ,i must be a resolver ,i , and T performs the
following:

– Step T1: (If the result was already final then T sends it to all signatories
in MaybeHonestUnanswered.)
If IsFinalResult = true then
• T sends to all Pj ∈ MaybeHonestUnanswered the final result TheResult
• If Signed = false:

MaybeHonestGotAborted :=
MaybeHonestGotAborted ∪ MaybeHonestUnanswered

• MaybeHonestUnanswered := ∅
• T stops processing resolver ,i .

Otherwise T performs
– Step T2a: (If all signatories to which T sent response aborted or from

which T received reject, if any, are proven dishonest and T has proofs in
ReceivedQuests that all signatories wanted the contract, T responds signed
as final result.)
If [MaybeHonestGotAborted ∪ MaybeHonestRejected = ∅]∧ [ReceivedQuests
contains direct or embedded signed messages (except reject) from all n sig-
natories to the ci contained in resolver ,i] then
• IsFinalResult := true
• TheResult := (resolver,i, signT (c, r, i, signed))
• Signed := true
• T sends to all Pj ∈ MaybeHonestUnanswered the final result TheResult
• MaybeHonestUnanswered := ∅
• T stops processing resolver ,i .

Otherwise T performs
– Step T2b: (If aborted is a safe result due to at least one honest signatory

which would have it, then make it final. The proof in [1] shows that
this step can only be applied if r < R.) If](MaybeHonestRejected ∪
MaybeHonestGotAborted ∪ MaybeHonestUnanswered) ≥ t + 1 −
](RecogDishonestContact) then
• IsFinalResult := true (and Signed stays false)
• TheResult := (c, r, i, signT (c, r, i, aborted))
• T sends to all Pj ∈ MaybeHonestUnanswered the final result TheResult
• MaybeHonestGotAborted :=

MaybeHonestGotAborted ∪ MaybeHonestUnanswered
• MaybeHonestUnanswered := ∅
• T stops Processing resolver ,i .

Otherwise T performs
– Step T3: (If T considers possible that at the same time a signatory

in MaybeHonestUnanswered might be honest (e.g., Pi might be honest)
and all those not having sent anything to T might be dishonest (and e.g.
might never send a message to T), then T must answer the current guess
aborted though this result might not necessarily be final for T – while it
will be final for any honest recipient though.) If [](MaybeHonestRejected ∪
MaybeHonestGotAborted
∪MaybeHonestUnanswered) ≥ n− t] then

Optimistic Asynchronous Multi-party Contract Signing 907

• T sends to all Pj ∈ MaybeHonestUnanswered the result
(c, r, j, signT (c, r, j, aborted))

• MaybeHonestGotAborted :=
MaybeHonestGotAborted ∪ MaybeHonestUnanswered

• MaybeHonestUnanswered := ∅
• T stops processing resolver ,i .

Otherwise T performs
– Step T4: (No condition is left allowing T to immediately respond to sig-

natories in MaybeHonestUnanswered. This means those have to wait until
more signatories will ask T . The proof in [1] shows that this will happen in
case MaybeHonestUnanswered actually contains honest signatories.)
• T stops processing resolver ,i .

Protocol “verify”:
If Pi wants to show a signed contract on c to verifier V it sends Ci to V . V

decides signed if it receives a messages Ci from Pi such that

– Rule V1: Ci = (c, (sign1(c,R, prev rnd ok), . . . , signn(c,R, prev rnd ok))), or
– Rule V2: Ci = (resolver ,j , signT (c, r, j, signed)), for some r ≥ 2, and some
j.

and stops. On input wakeup, V outputs verify failed and stops.

Theorem 1 (Security of Scheme 1). Scheme 1 is an asynchronous MPCS
with third party T for any t < n. It is optimistic on agreement and terminates
in R rounds if T is not involved, and in R+ 2 rounds in the worst case, with R
as defined in Eq. 1.

For the detailed proof, see [1]. To show that Requirements R1 - R6 are ful-
filled, it makes use of the rules for the signatories of Scheme 1, and of Lemma 1.

Lemma 1. Consider Protocol “sign” of Scheme 1: When T has, for the first
time in the context of Round R − 1, responded aborted for a resolveR−1,i, then
T has sent aborted to, or received reject from, or can show dishonesty-proofs for,
at least t+ 1 signatories in total.

Lemma 1 is shown in [1], fully using all properties and cases of R in Eq. 1,
depending on n and t. It is especially needed to show that R is sufficiently
high so that T cannot be fooled to answer aborted to a honest signatory having
contacted T in the context of Round R, while another signatory would obtain
the signed contract. The proof uses also the following Lemma 2.

Lemma 2. Consider a protocol execution p such that T , for the first time in
the context of Round R − 1, responded aborted, and T has not sent aborted to,
or received reject from, or can show dishonesty-proofs for, t+ 1 signatories yet.
Then R > 2, and T responded aborted in the context of each round before Round
R− 1. In the context of Round 1, T received messages (resolve or reject) from at
least n−t signatories. In all contexts of any two rounds r and r+1, 1 < r < R−2,
T received resolve from at least n− t signatories each.

908 B. Baum-Waidner

Lemma 2 is shown in [1], using the rules for T (Steps T0 - T4) and for the
signatories (Rules S0 - S3). Here the construction of R depending on n and t,
according to Eq. 1 can be understood as Lemma 2 gives a hint for one of the
most malicious cases significant for determining a sufficiently high R (as done
for Scheme 1). If it was possible that T answered aborted for contexts including
Round R−1, exclusively to dishonest signatories, T could be fooled to answering
aborted to a honest signatory Ph having asked for Round R, while all dishonest
signatories get all optimistic messages needed for their contract but just do
not send one last message to Ph and pretend, towards T , missing messages in
all rounds < R. Thus T could not distinguish this protocol execution from a
crucially different protocol execution where the recipients of T ’s last response,
sent before getting contacted by Ph, are honest and where Ph is dishonest and
thus must not get the contract. Due to Lemma 1, luckily, this case cannot happen
since one of them which got aborted up to context of Round R−1 would be honest
(and thus would not send its optimistic message in Round R.)

To demonstrate that case consider n = 13, t = 9. According to Eq. 1, R = 6.
We show that 5 rounds would not be sufficient: Assume P1, . . . , P9 dishonest
act towards the honest ones like in the optimistic case but do not send one
last Round-R-message to them. T receives requests in the following order: For
Round 1 from P1, . . . , P4, one after the other, now T responds aborted (T3). For
Round 2, a request comes from P5, and T responds aborted immediately as the
condition in T3 still holds. For Round 3, requests come from P6, . . . , P8, and
T responds aborted. T could not answer immediately because it got dishonesty-
proofs for P1, . . . , P4, reducing the left side sets in the equation for T3. For
Round 4, a request comes from P9, and T responds aborted. With 5 rounds only,
the dishonest ones may have the contract, but a honest Ph asking in Round 5
would get aborted, since T has no dishonesty-proof for P9 – it could as well have
been honest, from T ’s point of view, thus Ph could not be sent signed. 6 rounds,
however, are sufficient to prevent this (and also other) attacks.

5 Number of Messages and Rounds

Let Cs and Cb be the costs of a single and a broadcast message, respectively.
In the optimistic case, Protocol “sign” of Scheme 1 runs in R rounds, ac-

cording to Eq. 1. In each round, each signatory broadcasts one message to all
other signatories, resulting in costs of RnCb. In the worst case each signatory
might have one additional message exchange with T , resulting in R + 2 rounds
and costs of RnCb + 2nCs. If one assumes that each broadcast requires n − 1
single messages we end up with costs of (Rn(n − 1) + 2n)Cs = O(Rn2)Cs. All
broadcast messages of Scheme 1 have constant length, all messages sent to or by
T have length O(n); thus we need O(Rn2) bits only.

According to [14] any asynchronous optimistic multi-party contract signing
protocol tolerating t = n − 1 requires a number of rounds at least linear in n.
Our work shows that this lower bound actually only holds for t = n− 1 but not
for smaller t, as – for the first time – better numbers of rounds were found for
this case (e.g., R = 2 for n ≥ 2t+ 1, R = 3 for n = 2t).

Optimistic Asynchronous Multi-party Contract Signing 909

6 Scheme without Presence of Unwilling Parties

Scheme 1 in Section 4 requires all honest parties to be present even if they are not
willing to sign the contract. This section shows how to easily modify Scheme 1 to
overcome this disadvantage, thereby spending one more round in case n− t > 1.
For n − t = 1, Scheme 2 is identical to that in [7], and no additional round is
needed.

The absence of unwilling parties and thus of reject messages implies that
T cannot rely anymore on the fact that in case a signatory Pi asking in the
context of Round 1 is honest, all other honest signatories would send a reject or
a resolve message, too. If honest signatories do not want the contract, they would
have sent messages reject in Scheme 1 but will not send anything in Scheme 2
where messages reject do not exist anymore. Therefore T has to send a response
immediately for each Round-1-message (resolve only) as long as T did not receive
any requests in the context of higher rounds. As soon as the first request in the
context of Round 2 or higher turns up then all parties are proven to be present
since they had caused sending messages mr,i. In this case, the same situation
due to the presence of honest parties is given as in Scheme 1, thus the same
rules can be applied. However, an additional round is needed for Scheme 2 for
the cases n − t > 1 since only from Round 2 on, the same situation is given as
from Round 1 on in Scheme 1.

Scheme 2 (Scheme Without Presence of Unwilling Parties) This
Scheme is identical with Scheme 1 except for the following slight modifications.

– Unwilling signatories do not participate at all, they can simply be absent.
Rule S0 is obsolete as no action is needed in case decisioni = reject, thus no
rejecti will exist.

– The new number of rounds is

R =

3, if n ≥ 2t+ 1;

2b t+1
n−tc

+ min(2, (t+ 1) mod (n− t)) +1
if t+ 2 < n ≤ 2t;

t+ 2, if n ∈ {t+ 1, t+ 2};
(2)

– For T : MaybeHonestReject is always empty. Actions on reject and
MaybeHonestReject are obsolete. Step T3 gets the additional condition
“CurrentContextRound = 1 ∨ ...”, as in this case T has to answer immedi-
ately each single request.

Theorem 2 (Security of Scheme 2). Scheme 1 is an asynchronous MPCS
with third party T for any t < n. It is optimistic on agreement and terminates
in R rounds if T is not involved, and in R+ 2 rounds in the worst case, with R
as defined in Eq. 2. It does not require presence of parties not willing to sign the
contract.

910 B. Baum-Waidner

The proof for this modified protocol is analoguous to the one of Scheme 1 and
therefore ommitted. It makes use of the following Lemmas, replacing Lemma 1
and Lemma 2. (The case n− t = 1 was anyway proven in [7].)

Lemma 3. Consider Protocol “sign” of Scheme 2: When T has, for the first
time in the context of Round R−1, responded aborted for a resolveR−1,i, then T
has sent aborted to, or can show dishonesty-proofs for, at least t+ 1 signatories
in total.

Lemma 4. Consider a protocol execution p such that T , for the first time in the
context of Round R−1, responded aborted, and T has not sent aborted to, or can
show dishonesty-proofs for, t+ 1 signatories yet. Then R > 3, and T responded
aborted in the context of each round before Round R−1. In the context of Rounds
1 and 2 together, T received messages resolve from at least n− t signatories. In
all contexts of any two rounds r and r + 1, 2 < r < R − 2, T received resolve
from at least n− t signatories each.

Scheme 2 can be transformed into an abuse-free asynchronous multi-party con-
tract signing protocol (as defined in [13]), aided by the method presented in [7].
The result is optimistic on agreement and on disagreement and needs only 2
additional rounds and O(n2) additional messages.

7 Conclusion

Asynchronous optimistic multiparty contract signing protocols known so far re-
quired O(t) rounds. In this work, protocols were found reducing the number of
rounds R from O(t) to O(1) for all n ≥ 2t + 1, and for n < 2t + 1, R grows
remarkably slowly compared with numbers of rounds in O(t): If t ≈ k

k+1n then
R ≈ 2k.

To enable absence of honest parties not wanting to sign the contract, at most
one additional round is needed.

Current work is on a proof that R as defined in Eq. 1 is the lower bound
with presence of willing parties, while Eq. 2 is the lower bound without requir-
ing presence, for asynchronous optimistic multiparty contract signing protocols
without error probability (assuming perfectly unforgeable digital signatures).

I would like to thank Michael Waidner for fruitful discussions.

References

1. B. Baum-Waidner: Optimistic Asynchronous Multi-Party Contract Signing with
Reduced Number of Rounds (long version including the detailed proofs); IACR
Cryptology ePrint Archive 2001, May 2001, http://eprint.iacr.org/

2. N. Asokan, B. Baum-Waidner, M. Schunter, M. Waidner: Optimistic Synchronous
Multi-Party Contract Signing; IBM Research Report RZ 3089 (#93135), Zürich,
December 1998.

3. N. Asokan, M. Schunter, M. Waidner: Optimistic Protocols for Multi-Party Fair
Exchange; IBM Research Report RZ 2892, Zürich, November 1996.

Optimistic Asynchronous Multi-party Contract Signing 911

4. N. Asokan, M. Schunter, M. Waidner: Optimistic Protocols for Fair Exchange; 4th
ACM Conf. on Computer and Communications Security, Zürich, April 1997, 6–17.

5. N. Asokan. V. Shoup, M. Waidner: Optimistic Fair Exchange of Digital Signatures;
Eurocrypt ’98, LNCS 1403, Springer-Verlag, Berlin 1998, 591–606.

6. B. Baum-Waidner, M. Waidner: Asynchronous Optimistic Multi-Party Contract
Signing; IBM Research Report RZ3078 (#93124), Zürich, November 1998.

7. B. Baum-Waidner, M. Waidner: Round-optimal and Abuse-free Optimistic Multi-
Party Contract Signing; ICALP 2000, June 00, Geneve.

8. M. Ben-Or, O. Goldreich, S. Micali, R. L. Rivest: A Fair Protocol for Signing
Contracts; IEEE Transactions on Information Theory 36/1 (1990) 40–46.

9. M. Blum: Three Applications of the Oblivious Transfer; Department of Electrical
Engineering and Computer Sciences, University of California at Berkley, September
18, 1981.

10. R. Cramer, V. Shoup: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack; Crypto ’98, LNCS 1462, Springer-Verlag, Berlin
1998, 13–25.

11. D. Dolev, C. Dwork, M. Naor: Non-Malleable Cryptography; 23rd Symposium on
Theory of Computing (STOC) 1991, ACM, New York 1991, 542–552.

12. S. Even, Y. Yacobi: Relations Among Public Key Signature Systems; Technical
Report Nr. 175, Computer Science Department, Technion, Haifa, Israel, 1980.

13. J. Garay, M. Jakobsson, P. MacKenzie: Abuse-free Optimistic Contract Signing;
Crypto ’99, LNCS 1666, Springer-Verlag, Berlin 1999, 449–466.

14. J. Garay, P. MacKenzie: Abuse-free Multi-party Contract Signing; Intern. Symp.
on Distr. Comput. (DISC ’99), LNCS 1693, Springer-Verlag, Berlin 1999, 151–165.

15. S. Goldwasser, S. Micali, R. Rivest: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks; SIAM J. Comput. 17/2 (1988) 281–308.

16. A. Menezes, P. van Oorschot, S. Vanstone: Handbook of Applied Cryptography;
CRC Press, Boca Raton 1997.

17. S. Micali: Certified E-Mail with Invisible Post Offices; 1997 RSA Conference.
18. B. Pfitzmann, M. Schunter, M. Waidner: Optimal Efficiency of Optimistic Contract

Signing; ACM PODC ’98, Puerto Vallarta 1998, 113–122.
19. M. Rabin: Transaction Protection by Beacons; Journal of Computer and System

Sciences 27/ (1983) 256–267.

Information-Theoretic Private Information
Retrieval: A Unified Construction

(Extended Abstract)

Amos Beimel1 and Yuval Ishai2

1 Ben-Gurion University, Israel. beimel@cs.bgu.ac.il.
2 DIMACS and AT&T Labs – Research, USA. yuval@dimacs.rutgers.edu.

Abstract. A Private Information Retrieval (PIR) protocol enables a
user to retrieve a data item from a database while hiding the identity
of the item being retrieved. In a t-private, k-server PIR protocol the
database is replicated among k servers, and the user’s privacy is protected
from any collusion of up to t servers. The main cost-measure of such
protocols is the communication complexity of retrieving a single bit of
data.
This work addresses the information-theoretic setting for PIR, in which
the user’s privacy should be unconditionally protected from collusions
of servers. We present a unified general construction, whose abstract
components can be instantiated to yield both old and new families of PIR
protocols. A main ingredient in the new protocols is a generalization of a
solution by Babai, Kimmel, and Lokam to a communication complexity
problem in the so-called simultaneous messages model.
Our construction strictly improves upon previous constructions and re-
solves some previous anomalies. In particular, we obtain: (1) t-private
k-server PIR protocols with O(n1/b(2k−1)/tc) communication bits, where
n is the database size. For t > 1, this is a substantial asymptotic im-
provement over the previous state of the art; (2) a constant-factor im-
provement in the communication complexity of 1-private PIR, providing
the first improvement to the 2-server case since PIR protocols were in-
troduced; (3) efficient PIR protocols with logarithmic query length. The
latter protocols have applications to the construction of efficient families
of locally decodable codes over large alphabets and to PIR protocols with
reduced work by the servers.

1 Introduction

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data
item of its choice from a database, such that the server storing the database does
not gain information on the identity of the item being retrieved. For example,
an investor might want to know the value of a specific stock without revealing
which stock she is interested in. The problem was introduced by Chor, Goldreich,
Kushilevitz, and Sudan [11], and has since then attracted a considerable amount
of attention. In formalizing the problem, it is convenient to model the database

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 912–926, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Information-Theoretic Private Information Retrieval: A Unified Construction 913

by an n-bit string x, where the user, holding some retrieval index i, wishes to
learn the i-th data bit xi.

A trivial solution to the PIR problem is to send the entire database x the
user. However, while being perfectly private, the communication complexity of
this solution may be prohibitively large. Note that if the privacy constraint is
lifted, the (non-private) retrieval problem can be solved with only dlog2 ne + 1
bits of communication. Thus, the most significant goal of PIR-related research
has been to minimize the communication overhead imposed by the privacy con-
straint. Unfortunately, if the server is not allowed to gain any information about
the identity of the retrieved bit, then the linear communication complexity of the
trivial solution is optimal [11]. To overcome this problem, Chor et al. [11] sug-
gested that the user accesses k replicated copies of the database kept on different
servers, requiring that each individual server gets absolutely no information on
i. PIR in this setting is referred to as information-theoretic PIR.1 This naturally
generalizes to t-private PIR, which keeps i private from any collusion of t servers.

The best 1-private PIR protocols known to date are summarized below: (1)
a 2-server protocol with communication complexity of O(n1/3) bits [11]; (2)
a k-server protocol with O(n1/(2k−1)) communication bits, for any constant k
(Ambainis [1] improving on [11], see also Ishai and Kushilevitz [15]); and (3) an
O(log n)-server protocol with O(log2 n log log n) communication bits ([11], and
implicitly in Beaver and Feigenbaum [4]). For the more general case of t-private
PIR, the best previous bounds were obtained in [15], improving on [11]. To
present these bounds, it is convenient to use the following alternative formulation
of the question:

Given positive integers d and t, what is the least number of servers for
which there exists a t-private PIR protocol with communication com-
plexity O(n1/d)?

In [15] it was shown that k = min (bdt − (d + t − 3)/2c , dt − t + 1 − (d mod 2))
servers are sufficient. If t is fixed and d grows, the number of servers in this
bound is roughly (t − 1

2)d.
No strong general lower bounds on PIR are known. Mann [20] obtained a

constant-factor improvement over the trivial log2 n bound, for any constant k.
In the 2-server case, much stronger lower bounds can be shown under the restric-
tion that the user reconstructs xi by computing the exclusive-or of a constant
number of bits sent by the servers, whose identity may depend on i (Karloff
and Schulman [17]). These results still leave an exponential gap between known
upper bounds and lower bounds. For a list of other PIR-related works the reader
can consult, e.g., [7].

A different approach for reducing the communication complexity of PIR is to
settle for computational privacy, i.e., privacy against computationally bounded
servers. Following a 2-server solution by Chor and Gilboa [10], Kushilevitz and
Ostrovsky [19] showed that in this setting a single server suffices for obtaining
1 The term “information-theoretic PIR” may also refer to protocols which leak a

negligible amount of information on i. However, there is no evidence that such a
relaxation is useful.

914 A. Beimel and Y. Ishai

sublinear communication, assuming a standard number-theoretic intractability
assumption. The most communication efficient single-server PIR protocol to date
is due to Cachin, Micali, and Stadler [9]; its security is based on a new number-
theoretic intractability assumption, and its communication complexity is polyno-
mial in log n and the security parameter. From a practical point of view, single-
server protocols have obvious advantages over multi-server protocols.2 However,
they have some inherent limitations which can only be avoided in a multi-server
setting. For instance, it is impossible for a (sublinear-communication) single-
server PIR protocol to have very short queries (say, O(log n)-bits long) sent
from the user to the server, or very short answers (say, one bit long) sent in
return. These two extreme types of PIR protocols, which can be realized in the
information-theoretic setting, have found different applications (Di-Crescenzo,
Ishai, and Ostrovsky [12], Beimel, Ishai, and Malkin [7]) and therefore serve
as an additional motivation for information-theoretic PIR. A different, coding-
related, motivation is discussed below.

Our results. We present a unified general framework for the construction of
PIR protocols, whose abstract components can be instantiated to meet or beat
all previously known upper bounds. In particular we obtain:

• t-private k-server PIR protocols with communication complexity
O(n1/b(2k−1)/tc). In other words, k > dt/2 is sufficient for the exis-
tence of a t-private k-server PIR protocol with O(n1/d) communication.
For t > 1, this is a substantial asymptotic improvement over the previous
state of the art [15]. For example, for t = 2 the communication complexity
of our protocol is O(n1/(k−1)), while the communication complexity of the
best previous protocol [15] is O(n1/b2k/3c). Our bound is essentially the best
one could hope for without asymptotically improving the bounds for the
1-private case.

• A constant-factor improvement in the communication complexity compared to
the 2-server protocol of [11] and its 1-private k-server generalizations from [1,
15]. In the 2-server case, this provides the first improvement since the problem
was introduced in [11].

• Efficient PIR protocols with logarithmic query length: We construct a t-
private k-server PIR protocol with O(log n) query bits and O(nt/k+ε) answer
bits, for every constant ε > 0. The 1-private protocols from this family were
used in [7] to save computation in PIR via preprocessing, and have interesting
applications, discussed below, to the construction of efficient locally decodable
codes over large alphabets.

It is interesting to note that in contrast to previous PIR protocols, in which
the user can recover xi by reading only a constant number of answer bits (whose
location depends only on i), most instances of our construction require the user
to read all answer bits and remember either the queries or the randomness
used to generate them. It is open whether the previous constructions of [15] (in
2 However, for practical sizes of databases and security parameter, known multi-server

(and even 2-server) protocols are much more efficient in computation and are typi-
cally even more communication-efficient than single-server protocols.

Information-Theoretic Private Information Retrieval: A Unified Construction 915

particular, the t-private protocols for t > 1) can be improved if one insists on
the above “easy reconstruction” feature, which allows the user’s algorithm to be
implemented using logarithmic space.

Locally decodable codes. Information-theoretic PIR protocols have found a
different flavor of application, to the construction of locally decodable codes. A
locally decodable code allows to encode a database x into a string y over an
alphabet Σ, such that even if a large fraction of y is adversarially corrupted,
each bit of x can still be decoded with high probability by probing few (randomly
selected) locations in y. More formally, a code C : {0, 1}n → Σm is said to be
(k, δ, ρ)-locally decodable, if every bit xi of x can be decoded from y = C(x) with
success probability 1/2+ρ by probing k entries of y, even if up to a δ-fraction of
the m entries of y are corrupted. Katz and Trevisan [18] have shown an intimate
relation between such codes and information-theoretic PIR. In particular, any
information-theoretic PIR protocol can be converted into a locally decodable
code with related efficiency by concatenating the answers of all servers on all
possible queries. This motivates the construction of PIR protocols with short
queries.

The short-query instantiations of our PIR construction have an interesting in-
terpretation in terms of locally decodable codes. The main focus in the works [18,
14] has been on the following question. Suppose that ρ, δ are restricted to be
greater than some positive constant. Given a constant number of queries k and
a constant-size (say, binary) alphabet Σ, what is the minimal asymptotic growth
of the code length? Generalizing a PIR lower bound of [20], it is proved in [18]
that for any constant k the code length must be super-linear. For the case of
a linear code with k = 2 (non-adaptive) queries, an exponential lower bound
on m(n) has been obtained by Goldreich and Trevisan [14]. While no super-
polynomial lower bounds are known for the case k > 2, the best known upper
bound (obtained from PIR protocols with a single answer bit per server, see
Section 6) is m(n) = 2O(n1/(k−1)), which is exponential in n. Our construction
answers the following dual question: Suppose that we insist on the code being
efficient, namely of polynomial length. Then, how small can the alphabet Σ
be? More precisely, given a constant k, how small can Σk(n) be such that the
code length m(n) is polynomial and, as before, ρ(n), δ(n) are kept constant?
The short-query variants of our construction imply the following upper bound:
for any constants k ≥ 2 and ε > 0 it suffices to let Σk(n) = {0, 1}β(n), where
β(n) = O(n1/k+ε).

Organization. In Section 2 we give an overview of our unified approach for
constructing PIR protocols. In Section 3 we provide some necessary definitions.
In Section 4 we describe a meta-construction of PIR protocols, in Section 5 we
instantiate one of its crucial ingredients, and in Section 6 we derive new and old
families of PIR protocols as instances of the meta-construction from Section 4.
For lack of space we omitted most of the proofs. These can be found in the full
version of this paper [6].

916 A. Beimel and Y. Ishai

2 Overview of Techniques

At the heart of our constructions is a combination of two techniques.3

Reduction to polynomial evaluation. A first technique is a reduction of the
retrieval problem to the problem of multivariate polynomial evaluation. Specifi-
cally, the retrieval of xi, where the servers hold x and the user holds i, is reduced
to an evaluation of a multivariate polynomial px, held by the servers, on a point
E(i), which the user determines based on i. We refer to E(i) as the encoding of i.
As observed in [5] and, more generally, in [11], the degree of px can be decreased
by increasing the length of the encoding E(i) (i.e., the number of variables in
px). Originating in [4], different variants of this reduction have been implicitly or
explicitly used in virtually every PIR-related construction. Interestingly, encod-
ings realizing the optimal length-degree tradeoff, which were utilized in [11,12] to
obtain special families of PIR protocols with short answer length, could not be
used in protocols optimizing the total communication complexity [11,1,15]. We
remedy this situation in the current work, and consequently get a constant-factor
improvement to the communication complexity even in the 2-server case.

Simultaneous messages protocols for polynomial evaluation. A main in-
gredient in our new protocols is a generalization of a solution by Babai, Kimmel,
and Lokam [3] to a communication complexity problem of computing the gen-
eralized addressing function in the so-called simultaneous messages (SM) model.
Interestingly, this problem was motivated by circuit lower bounds questions,
completely unrelated to privacy or coding. Towards solving their problem, they
consider the following scenario. A degree-d m-variate polynomial p is known to
k players, and k points y1, y2, . . . , yk (each being an m-tuple of field elements)
are distributed among them such that player j knows all points except yj . An
external referee knows all k points yj but does not know p. How efficiently can
the value p(y1 + y2 + . . . + yk) be communicated to the referee if the players are
restricted to simultaneously sending messages to the referee?

A naive solution to the above problem is to have one of the players send an
entire description of p to the referee. Knowing all yj , the referee can then easily
compute the required output. A key observation made in [3] is that it is in fact
possible to do much better. By decomposing p(y1 + y2 + . . .+ yk) into terms and
assigning each term to a player having the least number of unknown values, it
is possible to write p(y1 + . . . + yk) as the sum of k lower degree polynomials in
the inputs, each known to one of the players. More precisely, player j can locally
compute from its inputs a degree-bd/kc polynomial pj with its unknown inputs
as indeterminates, such that p(y1 + . . . + yk) = p1(y1) + p2(y2) + . . . + pk(yk).
Then, by letting player j communicate the (much shorter) description of pj , the
referee can compute the required output. The amount of savings obtained by this
degree reduction technique depends on the values of the parameters m,d, and
k. In [3,2], due to constraints imposed by the specific problem they consider,
the degree-reduction technique is applied with rather inconvenient choices of
parameters. Thus, in their setting the full savings potential of the technique has
3 A restricted use of the same approach has been made in the companion work [7].

Information-Theoretic Private Information Retrieval: A Unified Construction 917

not been realized. It turns out that in the PIR context, where there is more
freedom in the choice of parameters, the full spectrum of possible tradeoffs is
revealed.

It is instructive to look at three useful choices of parameters: (1) If d = 2k−1,
then the degree of each polynomial pj is only b(2k − 1)/kc = 1. When m >> d,
this 2k − 1 savings factor in the degree makes the description size of each pj

roughly the (2k − 1)-th root of the description size of p. (2) If d = k − 1, the
degree of each pj becomes 0, and consequently communicating each pj requires
sending a single field element. (3) Finally, if m >> d and d >> k, then the cost
of communicating pj is roughly the k-th root of that of communicating p. These
three examples, respectively, turn out to imply the existence of k-server PIR
protocols with: (1) both queries and answers of length O(n1/(2k−1)); (2) queries
of length O(n1/(k−1)) and answers of length O(1); (3) queries of length O(log n)
and answers of length O(n1/k+ε), for an arbitrarily small constant ε > 0.

Combining the two techniques. In the case of 1-private PIR, the two tech-
niques can be combined in the following natural way. On input i, the user com-
putes an encoding y = E(i) and the servers compute a degree-d polynomial px

such that xi = px(E(i)). To generate its queries, the user “secret-shares” E(i)
among the servers by first breaking it into otherwise-random vectors y1, . . . , yk

which add up to y, and then sending to each server Sj all vectors except yj .
Using the SM communication protocol described in the previous section, the
servers communicate xi = px(y) to the user.

This simple combination of the two techniques is already sufficient to yield
some of the improved constructions. In the remainder of this work we generalize
and improve the above solution in several different ways. First, we abstract its
crucial components and formulate a generic “meta-construction” in these ab-
stract terms. Second, we instantiate the abstract components to accommodate
more general scenarios, such as t-private PIR. In the full version of this pa-
per [6], we attempt at optimizing the amount of replication in the setting of [3],
i.e., use a more efficient secret-sharing scheme for distributing E(i), while main-
taining the quality of the solution. This motivates various extensions of the SM
communication model, which may be of independent interest.

3 Definitions

Notation. By [k] we denote the set {1, . . . , k}, and by
([k]

t

)
all subsets of [k]

of size t. For a k-tuple v and a set T ⊆ [k], let vT denote the restriction of v
to its T -entries. By Yj for some j we represent a variable, while by the lower
letter yj we represent an assignment to the former variable. By H we denote the
binary entropy function; that is, H(p) = −p log p − (1 − p) log(1 − p), where all
logarithms are taken to the base 2.

Polynomials. Let GF(q) denote the finite field of q elements. By F [Y1, . . . , Ym]
we denote the linear space of all polynomials in the indeterminates Y1, . . . , Ym

over the field F , and by Fd[Y1, . . . , Ym] its subspace consisting of all polynomials
whose total degree is at most d, and whose degree in each indeterminate is at most

918 A. Beimel and Y. Ishai

|F | − 1. (The last restriction guarantees that each polynomial in Fd[Y1, . . . , Ym]
represents a distinct function p : Fm → F .) A natural basis for this linear
space consists of all monic monomials satisfying the above degree restrictions.
The case F = GF(2) will be the most useful in this work. In this case, the
natural basis consists of all products of at most d distinct indeterminates. Hence,
dim(Fd[Y1, . . . , Ym]) =

∑d
w=0

(
m
w

)
for F = GF(2). We denote this dimension by

Λ(m, d) def=
∑d

w=0

(
m
w

)
. We will also be interested in Fd[Y1, . . . , Ym] where |F | > d.

In this case, the dimension of the space is
(
m+d

d

)
.

PIR protocols. We define single-round information-theoretic PIR protocols.
A k-server PIR protocol involves k servers S1, . . . ,Sk, each holding the same
n-bit string x (the database), and a user who wants to retrieve a bit xi of the
database.

Definition 1 (PIR). A k-server PIR protocol P = (R,Q1, . . . ,Qk,A1, . . . ,
Ak, C) consists of a probability distribution R and three types of algorithms:
query algorithms Qj, answering algorithms Aj, and a reconstruction algorithm
C. At the beginning of the protocol, the user picks a random string r from R.
For j = 1, . . . , k, it computes a query qj = Qj(i, r) and sends it to server Sj.
Each server responds with an answer aj = Aj(qj , x). Finally, the user computes
the bit xi by applying the reconstruction algorithm C(i, r, a1, . . . , ak). A protocol
as above is a t-private PIR protocol, if it satisfies: (1) correctness. The user
always correctly computes xi; (2) t-privacy. For every i1, i2 ∈ [n] and T ⊆ [k]
such that |T | = t, the distributions QT (i1,R) and QT (i2,R) are identical.

Linear secret-sharing. A t-private secret-sharing scheme allows a dealer to
distribute a secret s among k players, such that any set of at most t players
learns nothing on s from their joint shares, and any set of at least t + 1 players
can completely recover s from their shares. A secret-sharing scheme is said to
be linear over a field F if s ∈ F , and the share received by each player consists
of one or more linear combinations of the secret and r independently random
field elements (where the same random field elements are used for generating
all shares). A linear secret-sharing scheme is formally defined by a k-tuple L =
(L1, . . . , Lk) such that each Lj is a linear mapping from F × F r to F `j , where
`j is the j-th player’s share length. Finally, given a linear secret-sharing scheme
as above, a vector in Fm will be shared by independently sharing each of its m
entries. We next define two linear secret-sharing schemes that will be useful in
the paper.

Definition 2 (The CNF scheme [16]). This scheme may work over any finite
field (in fact, over any finite group), and proceeds as follows. To t-privately share
a secret s ∈ F :

– Additively share s into
(
k
t

)
shares, each labeled by a different set from

([k]
t

)
;

that is, s =
∑

T∈([k]
t) rT , where the shares rT are otherwise-random field

elements.
– Distribute to each player Pj all shares rT such that j 6∈ T .

Information-Theoretic Private Information Retrieval: A Unified Construction 919

The t-privacy of the above scheme follows from the fact that every t players miss
exactly one additive share rT (namely, the one labeled by their index set) and
every set of t+1 players views all shares. The share vector of each party consists
of

(
k−1

t

)
field elements.

Definition 3 (Shamir’s scheme [21]). Let F = GF(q), where q > k, and let
ω1, . . . , ωk be distinct nonzero elements of F . To t-privately share a secret s ∈ F ,
the dealer chooses t random elements a1, . . . , at, which together with the secret
s define a univariate polynomial p(Y) def= atY

t + at−1Y
t−1 + . . . + a1Y + s, and

sends to the the j-th player the value p(ωj).

4 The Meta-construction

We describe our construction in terms of its abstract general components, and
specify some useful instantiations for each of these components. In Section 5 sev-
eral combinations of these instantiations are used for obtaining different families
of PIR protocols.

Building blocks. There are three parameters common to all of our construc-
tions: (1) a finite field F , (2) a degree parameter d, and (3) an encoding length
parameter m. The database x is always viewed as a vector in Fn. Some variants
of our construction use an additional block length parameter `. All variants of
our construction (as well as previous PIR protocols) can be cast in terms of the
following abstract building blocks:

Linear space of polynomials. Let V ⊆ Fd[Y1, . . . , Ym] be a linear space of
degree-d m-variate polynomials such that dim(V) ≥ n. The three most useful
special cases are:
V1: The space Fd[Y1, . . . , Ym] where F = GF(2); m and d must satisfy
Λ(m, d) ≥ n.
V2: The space Fd[Y1, . . . , Ym] where |F | > d; here, m and d must satisfy(
m+d

d

) ≥ n.
V3: The linear subspace of Fd[Y1, . . . , Ym] such that F = GF(2) and V is
spanned by the following basis of monomials. Let ` be an additional block
length parameter, and let m = `d. We label the m indeterminate by Yg,h, where
g ∈ [d] and h ∈ [`]. The basis of V will include all monic monomials contain-
ing exactly one indeterminate from each block, i.e., all monomials of the form
Y1,h1Y2,h2 · · ·Yd,hd

. Since the number of such monomials is `d, the restriction on
the parameters in this case is `d ≥ n.

Low-degree encoding. A low-degree encoding (with respect to the polynomial
space V) is a mapping E : [n] → Fm satisfying the following requirement: There
exist m-variate polynomials p1, p2, . . . , pn ∈ V such that ∀i, j ∈ [n], pi(E(j))
is 1 if i = j and is 0 otherwise. By elementary linear algebra, dim(V) ≥ n
is a necessary and sufficient condition for the existence of such an encoding.
Given a low-degree encoding E and polynomials p1, p2, . . . , pn as above, we

920 A. Beimel and Y. Ishai

will associate with each database x ∈ Fn the polynomial px ∈ V defined by
px(Y1, . . . , Ym) =

∑n
i=1 xipi. Here x is fixed, and x1, . . . , xn are fixed coefficients

(and not variables). Note that px(E(i)) = xi for every i ∈ [n] and x ∈ Fn. With
each of the above linear spaces we associate a natural low-degree encoding (see
[6] for proofs of validity):4
E1: E(i) is the i-th vector in GF(2)m of Hamming weight at most d.
E2: Let ω0, . . . , ωd be distinct field elements. Then, E(i) is the i-th vector of the
form (ωf1 , . . . , ωfm) such that

∑m
j=1 fj ≤ d.

E3: Let (i1, . . . , id) be the d-digit base-` representation of i (that is, i =
∑d

j=1 ij`
j−1). Then, E(i) is a concatenation of the length-` unit vectors

ei1 , ei2 , . . . , eid
. The validity of this encoding follows by letting pi = Y1,i1 · . . . ·

Yd,id
.

Linear secret-sharing scheme. Denoted by L. We will use either L = CNF
(defined in Definition 2) or L = Shamir (defined in Definition 3). In the full
version of this paper we also utilize a third scheme, which slightly optimizes
CNF.

Simultaneous messages communication protocol (abbreviated SM pro-
tocol). The fourth and most crucial building block is a communication protocol
for the following promise problem, defined by the instantiations of the previous
components V, E, and L. The problem generalizes the scenario described in Sec-
tion 2. The protocol, denoted P , involves a user U and k servers S1, . . . ,Sk.

– User’s inputs: Valid L-shares y1, . . . , yk of a point y ∈ Fm. (That is, the k
vectors yj can be obtained by applying L to each entry of y, and collecting
the shares of each player.) Moreover, it may be useful to rely on the fol-
lowing additional promise: y = E(i) for some i ∈ [n]. Most of the protocols
constructed in this paper do not make use of this additional promise.

– Servers’ inputs: All k servers hold a polynomial p ∈ V . In addition, each Sj

holds the share vector yj .
– Communication pattern: Each server Sj sends a single message to U based

on its inputs p, yj . We let βj denote a bound on the length of the message
sent by Sj .

– Output: U should output p(y).

In Section 5 we will describe our constructions of SM protocols P corresponding
to some choices of the space of polynomials V , the low degree encoding E, and
the linear secret-sharing scheme L.

Putting the pieces together. A 4-tuple (V, E, L, P) instantiating the above
4 primitives defines a PIR protocol PIR(V, E, L, P). The protocol proceeds as
follows.
4 Since the existence of an appropriate encoding is implied by dimension arguments,

the specific encoding being employed will usually not matter. In some cases, however,
the encoding can make a difference. Such a case is discussed in Section 5.

Information-Theoretic Private Information Retrieval: A Unified Construction 921

– U lets y = E(i), and shares y according to L among the k servers. Let yj

denote the vector of shares received by Sj .
– Each server Sj lets p = px, and sends a message to U as specified by protocol

P on inputs (p, yj).
– U reconstructs xi = p(y) by applying the reconstruction function specified

in P to y1, . . . , yk and the k messages it received.

The following lemma summarizes some properties of the above protocol.
Lemma 1. PIR(V, E, L, P) is a t-private k-server PIR protocol, in which the
user sends m`j field elements to each server Sj and receives βj bits from each
server (where `j is the share size defined by L and βj is the length of message
sent by Sj in P).

Note that the only information that a server gets is a share of the encoding
E(i); the t-privacy of the secret sharing scheme ensures that a collusion of t
servers learns nothing on i. For the query complexity, recall that y = E(i) ∈ Fm

and the user shares each of the m coordinates of y independently. Thus, the
share size of server Sj is m`j , where `j is the share size defined by L for sharing
one coordinate (field element).

Some perspective concerning a typical choice of parameters is in place. In
the typical case where k is viewed as a constant, all `j are also constant, and so
the query complexity of PIR(V, E, L, P) is O(m). If d is constant then, for any
of the three vector spaces V1,V2,V3, letting m = O(n1/d) suffices to meet the
dimension requirements. Thus, when both d, k are constants, the length of the
queries in PIR(V, E, L, P) is O(n1/d) and the length of the answers is determined
by P .

In principle, the SM component in our construction could be replaced by a
more general interactive protocol. However, there is yet no evidence that such an
additional interaction may be helpful. Moreover, in defining an interactive vari-
ant of the fourth primitive one would have to take special care that the privacy
requirement is not violated by the interaction. In the current non-interactive
framework, the privacy property is guaranteed by the mere use of a t-private
secret-sharing scheme.

5 Simultaneous Messages Protocols

We next describe SM protocols corresponding to useful combinations of V , E,
and L. These may be viewed as the core of the PIR protocol.

Protocol P1. Protocol P1 will serve as our default protocol. It may be viewed
as a natural generalization of the protocol from [3]. The ingredients of this pro-
tocols are the polynomial space V1 = Fd[Y1, . . . , Ym] where F = GF(2), the
encoding E1 which encodes i as a vector in GF(2)m of weight ≤ d, and the
secret-sharing scheme CNF.

Lemma 2. For V = V1, E = E1, and L = CNF, there exists an SM protocol
P1 with message complexity βj = Λ(m, bdt/kc)

(
k−1
t−1

)bdt/kc
.

922 A. Beimel and Y. Ishai

Proof. Let y =
∑

T yT be an additive sharing of y induced by the CNF shar-
ing, such that the input yj of Sj is (yT)j /∈T . The servers’ goal is to com-
municate p(y) = p(

∑
T yT) to U . Let Y = (YT,b)T∈([k]

t),b∈[m], where each

variable YT,b corresponds to the input bit (yT)b, whose value is known to
all servers Sj such that j 6∈ T . Define a

(
k
t

)
m-variate polynomial q(Y) def=

p(
∑

T∈([k]
t) YT,1, . . . ,

∑
T∈([k]

t) YT,m). Note that q has the same degree as p, and

q((yT)
T∈([k]

t)) = p(y). We consider the explicit representation of q as the sum of
monomials, and argue that for every monomial YT1,b1YT2,b2 . . . YTd′ ,bd′ of degree
d′ ≤ d there exist some j ∈ [k] such that at most bdt/kc variables YT,b with
j ∈ T appear in the monomial: Consider the multi-set T1 ∪ T2 ∪ . . . ∪ Td′ . This
multi-set contains d′t ≤ dt elements, thus there must be some j ∈ [k] that ap-
pears at most bdt/kc times in the multi-set. We partition the monomials of q
to k polynomials q1, . . . , qk such that qj contains only monomials in which the
number of the variables YT,b with j ∈ T is at most bdt/kc. Each monomial of q

is in exactly one polynomial qj , and therefore q(Y) =
∑k

j=1 qj(Y).
We are now ready to describe the protocol P1. Denote by Ȳ j the set

of variables whose values are unknown to the server Sj (that is, Ȳ j =
(YT,b)T∈([k]

t),j∈T,b∈[m]) and by ȳj the corresponding values. Each Sj substi-

tutes the values yj of the variables it knows in qj to obtain a polynomial
q̂j(Ȳ j). The message of server Sj is a description of q̂j . The user, who knows
the assignments to all variables, reconstructs the desired value by computing
∑k

j=1 q̂j(ȳj) = q((yT)
T∈([k]

t)) = p(y).

Message complexity. Recall that q̂j is a degree-bdt/kc multivariate polyno-
mial with m

(
k

t−1

)
variables. By the definition of q, not all monomials are possible:

no monomial contains two variables YT1,b and YT2,b for some b ∈ [m] and T1 6= T2.
Thus, to describe a possible monomial we need, for some w ∈ {0, . . . , bdt/kc},
to choose w indices in [m] and w sets of size t that contain j. Therefore,
the number of possible monomials of q̂j is at most

∑bdt/kc
w=0

(
m
w

)(
k−1
t−1

)w ≤
Λ(m, bdt/kc)

(
k−1
t−1

)bdt/kc
. Since each coefficient is from GF(2), the communica-

tion is as promised. ut

Protocol P2. Protocol P2 is useful for the construction of efficient PIR pro-
tocols with short answers (see Section 6). Unlike protocol P1, which can be
used with any combination of the parameters k, d, t, the applicability of P2 is
restricted to the case k > dt. That is, k = dt + 1 is the minimal sufficient num-
ber of servers. The first part of the following lemma is implicit in [4,5,11] and
a special case of the second part is implicit in [12,13]. The proof of the lemma
appears in the full version of this paper [6].

Lemma 3. For V = V2, E = E2, and L = Shamir, and assuming that k > dt
and |F | > k, there exists an SM protocol P2 in which each server sends a single
field element. Moreover, given the promise that p(y) ∈ F ′ for some subfield F ′

of F , it suffices for each server to send a single element of F ′.

Information-Theoretic Private Information Retrieval: A Unified Construction 923

A special case of interest is when F ′ = GF(2) and F is a sufficiently large
extension field of F ′. In this case, each message in the SM protocol consists of a
single bit.

Protocol P3. Special cases of the protocol P3 are implicit in the 2-server PIR
construction from [11] and its k-server generalization from [15]. A useful feature
of this protocol is that it allows the user to compute his output by probing a
small number of bits from the received messages. We only formulate this protocol
for the 1-private case. Restricted generalizations to t-privacy may be obtained,
using the approach of [15]. However, unlike the previous protocols, we do not
know a “smooth” generalization to t-privacy. A proof of the following Lemma
appears in the full version [6].

Lemma 4. For V = V3, E = E3, and L = CNF, there exists an SM protocol
P3 with message complexity βj = `bd/kc(d

bd/kc
)

such that the user needs to read

only
(

d
bd/kc

)
bits from each message.

6 Families of PIR Protocols

We now derive several explicit families of PIR protocols from the meta-
construction.

Main family. Our main family of PIR protocols uses V1, E1, CNF, and P1.
Protocols from this family yield our main improvements to the known upper
bounds. We start with the general result, which follows from Lemmas 1 and 2,
and then consider some interesting special cases.

Theorem 1. Let m and d be positive integers such that Λ(m, d) ≥ n. Then, for
any k, t such that 1 ≤ t < k, there exists a t-private k-server PIR protocol with
(
k−1

t

)
m query bits and Λ(m, bdt/kc)

(
k−1
t−1

)bdt/kc
answer bits per server.

The total communication is optimized by letting d = b(2k − 1)/tc and m =
Θ(n1/d). Substituting these parameters in Theorem 1 gives the following explicit
bounds.

Corollary 1. For any 1 ≤ t < k there exist:

• A t-private k-server PIR protocol with Ok,t(n1/b(2k−1)/tc) communica-
tion bits; this is a significant asymptotic improvement over the previous
state of the art [15]. More precisely, the communication complexity is
O(k2

t

(
k
t

)
n1/b(2k−1)/tc).

• A 1-private k-server PIR protocol with k2((2k−1)!n)1/(2k−1) +k +k3 = O(k3

n1/(2k−1)) communication bits; this improves the previous best construc-
tion [15] by a constant factor which tends to e as k grows.

• A 1-private 2-server PIR protocol with 4(6n)1/3 + 2 ≈ 7.27n1/3 communica-
tion bits; in comparison, the communication complexity of the best previously
known 2-server protocol [11] is roughly 12n1/3.

924 A. Beimel and Y. Ishai

Another interesting case, discussed and used in [7], is when queries are short,
i.e., of length O(log n); such protocols are obtained by letting d = θm, where
0 ≤ θ ≤ 1/2 is some constant. Substituting m = (1/H(θ) + o(1)) log n and
d = bθmc in Theorem 1, and relying on the facts that limθ→0

H(θt/k)
H(θ) = t/k and

limθ→0
θ

H(θ) = 0, we obtain:
Corollary 2. For any constant integers 1 ≤ t < k and constant ε > 0, there
exists a t-private k-server protocol with O(log n) query bits and O(nt/k+ε) an-
swer bits. More precisely, for any 0 < θ ≤ 1/2 one can obtain query length
(
k−1

t

)
(1/H(θ) + o(1)) log n and answer length n(H(θt/k)+θ t

k log (k−1
t−1))/H(θ)+o(1).

As observed in [18], a 1-private k-server PIR protocol with query length α and
answer length β gives rise to a locally decodable code of length k · 2α over the
alphabet Σ = {0, 1}β : A string x ∈ {0, 1}n is encoded by concatenating the
answers of all servers on all possible queries, where x is viewed as the database.
If α = O(log n), then the code length is polynomial. By substituting t = 1 in
Corollary 2 and applying the above transformation we get:
Corollary 3. For any constant integer k ≥ 2 and constant ε > 0, there exist
positive constants δk, ρk, such that the following holds: There is a family C(n)
of polynomial-length (k, δk, ρk)-locally decodable codes over Σ(n) = {0, 1}β(n),
where β(n) = O(n1/k+ε).

Boolean family. We now derive the construction of the most efficient known
PIR protocols with a single answer bit per server. These are obtained by using
V2, E2, Shamir, and P2. Protocols from this family, utilized in [12,13], optimize
similar protocols from [4,5,11] in which each answer consists of a single element
from a moderately sized field. While the asymptotic communication complexity
of protocols from this family is worse than that of the best unrestricted protocols,
these protocols have found various applications. In particular they imply: (1) the
most efficient constructions of binary locally decodable codes known to date; (2)
very efficient PIR protocols for retrieving large records or “streams” of data; (3)
PIR protocols with an optimal amount of total on-line communication (see [12]);
(4) PIR protocols with poly-logarithmic amount of on-line work by the servers
(see [7]).
Theorem 2 (Implicit in [12]). Let m and d be positive integers such that(
m+d

d

) ≥ n. Then, for any t ≥ 1, there exists a t-private k-server PIR protocol
with k = dt+ 1 servers, dlog(k + 1)em query bits per server, and a single answer
bit per server.

Corollary 4. For any constant d, t ≥ 1 there is a t-private PIR protocol with
k = dt + 1 servers, O(n1/d) query bits, and a single answer bit per server.

Cube family. Our last family of protocols generalizes the 2-server protocol
from [11] and its k-server generalization from [15]. It relies on V3, E3, CNF,
and P3 as building blocks. The communication in these protocols is not optimal,
but they have the advantage of requiring the user to read fewer bits from the
answers. These protocols have the interpretation of utilizing the “combinatorial
cubes” geometry which was first used in [11]. We start with the general result,
and then consider interesting special cases.

Information-Theoretic Private Information Retrieval: A Unified Construction 925

Theorem 3 (Generalizing [11,15]). Let d and ` be positive integers such that
`d ≥ n. Then, for any k ≥ 2 there exists a 1-private k-server PIR protocol with
(k − 1)d` query bits per server and `bd/kc(d

bd/kc
)

answer bits per server, in which

the user needs to read only
(

d
bd/kc

)
bits from each answer.

Corollary 5, which already appears in [11,15], minimizes the total communica-
tion.
Corollary 5 ([11,15]). For any k ≥ 2 there exists a 1-private k-server PIR
protocol with O(k3· n1/(2k−1)) communication bits in which the user reads only
2k − 1 bits from each answer.
As a special case, utilized in [7], we may get protocols with logarithmic query
length.
Corollary 6. For any integer k ≥ 2 and δ < 1, there exists a 1-private
k-server PIR protocol with query length O(k21/δδ log n) and answer length
O(n1/k+H(1/k)δ) in which the user reads only O(nH(1/k)δ) bits from each an-
swer.

Acknowledgments. We thank Eyal Kushilevitz, Tal Malkin, Mike Saks, Yoav
Stahl, and Xiaodong Sun for helpful related discussions.

References

1. A. Ambainis. Upper bound on the communication complexity of private infor-
mation retrieval. In Proc. of the 24th ICALP, vol. 1256 of LNCS, pp. 401–407.
1997.

2. A. Ambainis and S. Lokam. Improved upper bounds on the simultaneous messages
complexity of the generalized addressing function. In LATIN 2000, vol. 1776 of
LNCS, pp. 207 – 216. 2000.

3. L. Babai, P. G. Kimmel, and S. V. Lokam. Simultaneous messages vs. communi-
cation. In 12th STOC, vol. 900 of LNCS, pp. 361–372. 1995.

4. D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In STACS
’90, vol. 415 of LNCS, pp. 37–48. 1990.

5. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions:
Improvements and applications. J. of Cryptology, 10(1):17–36. 1997.

6. A. Beimel and Y. Ishai. Information-Theoretic Private Information Retrieval: A
Unified Construction. TR01-15, Electronic Colloquium on Computational Com-
plexity. 2001.

7. A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ computation in private
information retrieval: PIR with preprocessing. In CRYPTO 2000, vol. 1880 of
LNCS, pp. 56–74. 2000.

8. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In CRYPTO ’88, vol. 403 of LNCS, pp. 27–35. 1990.

9. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In EUROCRYPT ’99, vol. 1592 of LNCS,
402–414. 1999.

10. B. Chor and N. Gilboa. Computationally private information retrieval. In Proc.
of the 29th STOC, pp. 304–313. 1997.

926 A. Beimel and Y. Ishai

11. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
J. of the ACM, 45:965–981. 1998.

12. G. Di-Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for private
information retrieval. J. of Cryptology, 14(1):37–74. 2001.

13. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. JCSS, 60(3):592–629. 2000.

14. O. Goldreich and L. Trevisan. On the length of linear error-correcting codes having
a 2-query local decoding procedure. Manuscript, 2000.

15. Y. Ishai and E. Kushilevitz. Improved upper bounds on information theoretic
private information retrieval. In Proc. of the 31th STOC, pp. 79 – 88. 1999.

16. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structure. In Proc. of Globecom 87, pp. 99–102. 1987.

17. H. Karloff and L. Schulman. Manuscript, 2000.
18. J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-

correcting codes. In Proc. of the 32th STOC, pp. 80–86. 2000.
19. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In Proc. of the 38th FOCS, pp.
364–373. 1997.

20. E. Mann. Private access to distributed information. Master’s thesis, Technion –
Israel Institute of Technology, Haifa, 1998.

21. A. Shamir. How to share a secret. CACM, 22:612–613. 1979.

Secure Multiparty Computation of
Approximations

(Extended Abstract)

Joan Feigenbaum1?, Yuval Ishai2,3, Tal Malkin3, Kobbi Nissim4?,
Martin J. Strauss3, and Rebecca N. Wright3

1 Yale University, Computer Science Department, New Haven, CT 06520-8285 USA.
2 DIMACS Center, Piscataway, NJ, USA

3 AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932 USA.
4 Weizmann Institute, Dept. of Computer Science and Applied Math. Rehovot, Israel.

Abstract. Approximation algorithms can sometimes provide efficient
solutions when no efficient exact computation is known. In particular,
approximations are often useful in a distributed setting where the inputs
are held by different parties and are extremely large. Furthermore, for
some applications, the parties want to cooperate to compute a function
of their inputs without revealing more information than necessary.
If f̂ is an approximation to f , secure multiparty computation of f̂ al-
lows the parties to compute f̂ without revealing unnecessary information.
However, secure computation of f̂ may not be as private as secure com-
putation of f , because the output of f̂ may itself reveal more informa-
tion than the output of f . In this paper, we present definitions of secure
multiparty approximate computations that retain the privacy of a secure
computation of f . We present an efficient, sublinear-communication, pri-
vate approximate computation for the Hamming distance and an efficient
private approximation of the permanent.

1 Introduction

There are an increasing number and variety of real-world applications that collect
a massive amount of data and wish to make use of it. For example, massive data
sets arise in physical sciences such as biology and astronomy, in marketing, in
network operations, and in Web searches. The search for efficient and effective
data mining algorithms is an important emerging area of research [12].

Unfortunately, many useful functions are expensive to compute. Even func-
tions that are efficiently computable for moderately sized data sets are often not
efficiently computable for massive data sets. For example, even quadratic algo-
rithms cannot generally be considered practical on input consisting of a terabyte
of data; such data sets are now routinely generated daily.1 Besides the size of the
? Part of this work was done while the author was at AT&T Labs—Research.
1 For example, AT&T’s phone network carries about 300 million calls per day, each

of which generates a few kilobytes of billing data.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 927–938, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

928 J. Feigenbaum et al.

input, the distributed nature of data sets can be an obstacle to computation. A
single logical data set is often stored in several remote pieces, and a computation
on the data set may require prohibitively costly communication.

Another important concern, in addition to the efficiency of a computation,
is its security. In a distributed setting, the pieces of a distributed data set may
be controlled by different parties who wish to collaborate in order to compute
some function of their data without fully revealing their piece of the data to the
other parties. To that end, the parties may want to compute a function of their
inputs securely, i.e., so that no party learns anything about the others’ inputs
except what is implied by her own output, perhaps even if some of the other
parties behave maliciously. For example, rival Internet service providers often
strike “peering agreements,” in which each carries the other’s Internet traffic at
no cost, as long as the characteristics of the traffic carried by each peer for the
other are comparable. The prospective peers each have data sets describing the
characteristics of their own traffic, and they would like to verify the similarity
of these data sets without revealing more than they have to. Several recent
papers have considered the problem of privacy-preserving data mining [1,29],
recognizing that it is often desirable to perform data mining without revealing
unnecessary information about the data.

Separately, each of the above two concerns has been previously addressed.
On one hand, when the cost of an exact computation of a function f is too high,
the parties may use an approximation f̂ to f . In some cases, the communication
of only a small random sample from each part of a data set stored in remote
pieces suffices for an approximation. In other cases, the communication of the
result of a local computation depending on the entire local data set is sufficient.
In both situations, the approximate computation typically requires less commu-
nication and less computation than an exact computation on the original data
set. On the other hand, secure multiparty computation (initiated by [35,18,6,8])
allows a group of parties to compute a function f without revealing unnecessary
information.

We address both concerns simultaneously: our goal is to construct approx-
imation algorithms (more efficient than exact computation), which also main-
tain the privacy of the data. Note that the straightforward approach of simply
computing an approximation f̂ via a secure multiparty computation, will not
work—it might be neither private nor efficient. Indeed, even when f̂ itself is effi-
cient, computing it using a general-purpose secure computation is typically very
expensive. Moreover, a secure computation of f̂ may still leak information about
f that follows from the output of f̂ itself. To illustrate this, consider an integer-
valued function f and an approximation f̂ to f that outputs f(x1, . . . , xn) with
the last bit possibly flipped so that that last bit is 0 if x1 is even and 1 if x1 is
odd. Then f̂(x1, . . . , xn) is a good approximation but unnecessarily reveals the
parity of x1.

Our work. In this paper, we provide definitions of secure approximate multi-
party computation that disallow the problems of information leakage discussed
above, and we present protocols for several natural functions.

Secure Multiparty Computation of Approximations 929

For massive data sets, distance functions are important because they give a
measure of similarity between two data sets. For example, telephone companies
may want to compute joint statistics on their calling data, ISPs may want to ver-
ify similar “peering” traffic characteristics, and Web search companies may want
to compare their images of the Web. Because the exact computation of the Ham-
ming and related distances requires Ω(n) communication, there has been much
recent work on sublinear-communication distance approximations. For example,
[3,15,21] present algorithms for efficiently approximating Lp distances between
two massive data sets. However, these approximations also suffer the kind of
information leakage described above. In this paper, our main technical contri-
bution is an efficient Õ(n1/2)-communication Hamming distance approximation
that does not leak unnecessary information about the parties’ inputs.2

Approximation algorithms are also useful in the setting where the data in-
volved is only moderate in size, but the function itself is computationally difficult.
We also consider this case and provide a private approximation to the permanent
and related #P-hard problems.

Related results. There are several very efficient algorithms for approximating
the Lp or Hamming distance (cf. [28,2,15,21]). However, these results do not
directly translate into communication-efficient private approximation protocols,
as is discussed further in Section 3.

Since the presentation of an early unpublished version of our work [13], Halevi
et al. [19] investigate private approximations of NP-hard functions. They show
there exist natural NP-hard functions (such as the size of the minimum vertex
cover in a graph) which do not admit non-trivial private approximation, although
they admit good approximation algorithms without the privacy restriction. They
also show that this phenomenon does not hold for all NP-hard functions by
presenting an artificial NP-hard function that can be privately approximated.

The approach of constructing private sublinear-communication protocols was
initiated in the context of private information retrieval [9] and further studied
both in other specific contexts (e.g., [29]) and in more general contexts [31].
The latter work presents a generic methodology for transforming protocols in
the communication complexity model into private protocols with low communi-
cation overhead. However, a straightforward application of their techniques to
existing Hamming distance approximation protocols results in a protocol requir-
ing superpolynomial work.

2 Secure Multiparty Approximations

In this section we define the notion of secure multiparty approximation. Further
discussion of other candidate definitions and their drawbacks can be found in [14].
2 In the full version of this paper [14], we show that if the model is relaxed to allow

linear offline communication (before the parties know their inputs), then it is possible
to obtain a more efficient solution, with polylogarithmic online communication, for
both the Hamming distance and the L2 distance.

930 J. Feigenbaum et al.

Approximations. In general, an approximation requirement could be any bi-
nary relation between a deterministic real-valued function f , called the target
function, and a possibly randomized real-valued function f̂ , called the approx-
imating function, that defines which functions are considered good approxima-
tions. The standard approximation relation is the 〈ε, δ〉-approximation:

Definition 1. We say that f̂ is an 〈ε, δ〉-approximation to f if, for all inputs
x, Pr[(1− ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] ≥ 1− δ, where the probability is over the
randomness of f̂ .

Secure Multiparty Computation. Secure multiparty computation allows two
or more parties to evaluate some function of their inputs, such that no more is
revealed to a party or a set of parties about other parties’ inputs and outputs,
except what is implied by their own inputs and outputs. When formally defining
security, it is convenient to think of an adversary which tries to gain as much
advantage as it can by corrupting at most t parties during the execution of
the protocol. Security is then defined by requiring that whatever the adversary
achieves in a real-life execution of the protocol it can efficiently simulate while
corrupting at most t parties in an ideal model, in which a trusted party is being
used to evaluate the function. Thus, the protocol prevents the adversary from
gaining an extra advantage over what it could have gained in an ideal solution.
We refer the reader to, e.g., [17,7,4,30] for formal definitions of secure computa-
tion in different settings, and to [14] for a somewhat simplified definition that
suffices for our purposes. Although in this paper we mostly focus on the simpler
case of privacy, i.e. security against a passive adversary, our definitions and some
of our results also apply to the case of security against an active adversary who
can arbitrarily modify the behavior of corrupted parties.

It is known that any polynomial-time computable (randomized) functionality
can be privately computed in polynomial time [35,18]. This general feasibility
result can be based on the existence of trapdoor permutations, which will be
assumed throughout the paper.

Secure Approximations. We restrict our attention to approximating a de-
terministic function f , mapping an input x = (x1, . . . , xm) (where xi is the
i-th party’s input) to a non-negative integer y. A generalization to multi-output
functions is straightforward.

We will start by defining a notion of functional privacy on which our definition
will rely. Informally, an approximation function f̂ is functionally private with
respect to the target function, f , if the output of f̂ reveals no more information
about its input than f does:

Definition 2. Let f(x) be as above and f̂(x) be a possibly randomized function.
Then f̂ is functionally t-private with respect to f if there is an efficient random-
ized algorithm S, called a simulator, such that for every x and 1 ≤ i1, . . . , it ≤ m,
S((i1, xi1), . . . , (it, xit), f(x)) is identically distributed to f̂(x).

Thus f̂ is functionally 0-private if it has a simulator S such that S(f(x)) and
f̂(x) are identically distributed. In that case, we call f̂ functionally private with

Secure Multiparty Computation of Approximations 931

respect to f . Note that functional privacy implies functional t-privacy, for any
t ≥ 0. Our examples in this paper are all functionally private.

Our definition for secure approximation requires that the protocol securely
computes some functionally-private approximation f̂ of f . Since we defined f̂ to
be a single-output function, we will need to fix some convention for extending it
to a multi-output function. Our default interpretation of a single-output function
f̂ in a multi-party setting assumes that a single value y is sampled from f̂(x) and
is output by all parties. We stress that other conventions are possible, and a more
general treatment would allow specifying an admissible collection of multi-output
approximations. However, we prefer here simplicity over generality. The above
discussion is formalized by the following definition, which may be instantiated
with any notion of security (e.g., active or passive adversary, and computational,
statistical, or perfect emulation).

Definition 3. Let f be a deterministic function. The protocol π is a t-secure
〈ε, δ〉-approximation protocol for f if it t-securely computes a (possibly random-
ized) function f̂ , such that f̂ is both functionally t-private with respect to f and
an 〈ε, δ〉-approximation of f .

Intuitively, the functional privacy of f̂ with respect to f says that the in-
put/output relation of the protocol does not reveal anything except what would
have been revealed by learning f , while the secure computation of f̂ ensures that
nothing additional is revealed during the computation.

Approximations are useful both for settings in which the inputs are small
but the target function is intractable and for settings in which the inputs are
massive. In the latter setting, we will consider sublinear approximations to func-
tions whose exact computation requires at least linear and at most polynomial
resources. We seek protocols in which the total communication and the number
of rounds are small. The parties should be able to compute their protocol re-
sponses quickly, using little storage space. Ideally, we desire that only one round
of the protocol need involve raw input and that each party can compute her
message for this round in just a single pass over her input, with little space
and little time required to process each item. In theory, this allows the parties
to regard their inputs as unbuffered data feeds that need not be stored at all,
i.e., the inputs may be regarded as data streams (cf. [20]). Our protocols indeed
satisfy these properties, requiring a single pass over the raw data, and sublinear
storage, proportional to the communication complexity.

3 Sublinear Private Approximation for the Hamming
Distance

In this section we present a two-party private protocol for the approximate Ham-
ming distance. Such a protocol allows Alice, holding an input a ∈ {0, 1}n, and
Bob, holding b ∈ {0, 1}n, to learn an ε-approximation of the Hamming distance
between a, b with negligible failure probability δ, without learning additional

932 J. Feigenbaum et al.

information about the other player’s input except what follows from the Ham-
ming distance. Our protocol requires roughly O(n1/2) bits of communication
and three rounds of interaction. By contrast, an exact computation of the Ham-
ming distance requires Ω(n) communication, even if a small failure probability
is allowed [33].

Notation. We let dh(a, b) denote the Hamming distance between a, b, and wh(x)
denote the Hamming weight of an n-bit string x. The asymptotic notation Õ(x)
should be read as “O(x · nγ) for an arbitarily small γ > 0”.3 When referring to
an approximation we will often omit the parameter δ. In such a case δ should
be understood to be either a constant (say 1/4) or negligible (n−ω(1)), as will
be made clear from the context. Note that a small constant failure probability
δ can always be decreased to a negligible one by Õ(1) repetitions.

Approximations via Sketches. Before describing our private protocol it is
instructive to consider the non-private variant of the problem. We first survey
known efficient solutions for this problem, then we explain why a naive attempt
to make these solutions private fails.

There are several known methods for approximating the Hamming distance
using poly-logarithmic communication [3,28,11,26]. More specifically, the best
〈ε, δ〉-approximations require O(log n log(1/δ)/ε2) communication. These meth-
ods are based on a sketching approach:

Definition 4. A sketching protocol for a 2-argument function f : {0, 1}n ×
{0, 1}n→N is defined by:

– A sketching function, S : {0, 1}n×{0, 1}∗→{0, 1}m mapping one input and
a random string to a sketch consisting of a (presumably short) string.

– A (deterministic) reconstruction function G : {0, 1}m × {0, 1}m→R, map-
ping a pair of sketches to an output.

On inputs a, b, the protocol proceeds as follows. First, Alice and Bob locally com-
pute a sketch sA = S(a, r) and sB = S(b, r) respectively, where r is a com-
mon random input.4 Then, the parties exchange sketches, and both locally out-
put g = G(sA, sB). We denote by g(a, b) the randomized function defined as the
output of the protocol on inputs a, b. A sketching protocol 〈ε, δ〉-approximates f
if g 〈ε, δ〉-approximated f .

We review an efficient sketching protocol for the Hamming distance [28,11]:

Example 1. (A sketching protocol for the Hamming distance.) Let the
common random input define a 0/1-valued matrix R, with O(log n) rows and
n columns, in which each entry of the i-th row (independently) takes the value
1 with probability pi = βi for some constant β depending on ε. The sketching
3 Following the single-parameter security definition of [17], a cryptographic security

parameter can be replaced by Õ(1).
4 The common random input r can be replaced by a common pseudo-random input,

whose succinct representation is picked by one party and communicated to the other.

Secure Multiparty Computation of Approximations 933

function is defined by S(x, R) = Rx, where R and x are viewed as a matrix and
a vector over GF(2), respectively. From the sketches Ra and Rb, the distance
dh(a, b) can be approximated (roughly, by observing that (Ra)i = (Rb)i with
probability close to 1/2 if dh(a, b) � 1/pi and with probability close to 1 if
dh(a, b) << 1/pi.) The communication complexity of this sketching protocol is
O(log n).

Achieving Privacy. Our goal is to obtain a sublinear-communication private
approximation protocol for the Hamming distance. A natural approach is to
seek a general way for converting an efficient sketching protocol approximating
a function f into a private protocol approximating f .

Suppose that the (randomized) function g produced by the sketching protocol
is functionally private with respect to f . This is indeed the case for the sketching
protocol from Example 1 as well as for the other sketching protocols for the
Hamming distance proposed in the literature. Then, to approximate f privately,
it suffices to let the players privately compute g.

While a general-purpose private computation protocol can be used to eval-
uate g, its communication complexity will be (at least) linear in n, whereas
we would like to obtain a sublinear-communication private protocol for g. At
first glance, the following naive protocol seems to work. The players exchange a
common random input r, locally compute a sketch based on individual inputs
and r, then apply a general-purpose private computation protocol to evaluate
g = G(sA, sB) from the sketches sA, sB . Although efficient, this protocol gen-
erally fails to be private, even when g is functionally private with respect to f ,
since knowing the output of g together with the random input r which was used
to generate this output can reveal additional information about the inputs. For
instance, in the protocol of Example 1, Alice can deduce Rb from her input a,
the output R(a− b), and the common random input R.

We do not know whether the sketching method of Example 1 can be made
private with sublinear communication, nor can we obtain a private protocol from
any other efficient protocol for approximating the Hamming distance appearing
in the literature. Underlying our solution is a combination of two different sketch-
ing protocols with small communication overhead (also referred to as estimators)
for the Hamming distance. Both these estimators are functionally private and
we show how to implement them privately with low communication overhead.

The first estimator, based on sampling, is efficient when the distance is high.
Towards a private implementation of this estimator, we devise a special-purpose
private protocol for comparing the bits in a random location, which may be
of independent interest. This protocol uses a sublinear-communication

(
n
1

)
-OT

protocol5 [27,16,34,32,10], which can be based on any homomorphic encryption
scheme. The second estimator is efficient when the distance is low, and, in fact,
5 (

n
1

)
-OT (“n choose 1 Oblivious Transfer”) is a private 2-party protocol for the fol-

lowing function: the sender ’s input is an n-bit string x and the receiver ’s input is
an index i ∈ [n]; the receiver outputs the bit xi, and the sender has no output. Note
that in the current context we only require security against a passive adversary.

934 J. Feigenbaum et al.

produces an exact result in this case. In the following sections we describe each of
the two private estimators, and then combine them to obtain the final protocol,
which is private and efficient for any distance.

The High Distance Estimator. Suppose that d = dh(a, b) is guaranteed to
be larger than some threshold dmin (which will be specified later). If dmin is
large, then Alice and Bob can efficiently approximate d by randomly sampling a
small number of bits in matching positions from their inputs. Specifically, Alice
and Bob count the number of differences ∆ in s = O(n

ε2dmin
) randomly selected

matching bits of their inputs and compute the estimate g = ∆·n
s . By a Chernoff-

bound argument, g is an ε-approximation of d. Note that the mod-2 sum of bits
in a pair of randomly selected matching positions is functionally private with
respect to dh(a, b) and the functional privacy of the protocol’s output follows.

We will show that for this particular sketching protocol, the output function
g can be privately computed with a very small communication complexity. Our
main tool is a private protocol for comparing a randomly sampled pair of bits.
Formally, the protocol computes Sample-XOR, defined as Sample-XOR(a, b) =
ar ⊕ br, where r

R← [n]. Note that a protocol for Sample-XOR should keep the
choice of r private from each party. Figure 1 describes a private protocol for
the function Sample-XOR that uses

(
n
1

)
-OT as a subprotocol. In it, for any x ∈

{0, 1}n, r ∈ [n] and m ∈ {0, 1}, we denote by x << r a cyclic shift of x by r bits
to the left, and by x⊕m the string whose i-th bit is xi ⊕m.

Private-Sample-XOR

1. Alice picks a random mask mA
R← {0, 1} and a random shift amount

rA
R← [n].

She computes the n-bit string a0 def= (a << rA) ⊕mA Symmetrically, Bob
picks mB

R← {0, 1} and rB
R← [n], and computes b0 def= (b << rB)⊕mB .

2. Alice and Bob invoke in parallel two
(

n
1

)
-OT protocols:

– Alice retrieves zA
def= b0

rA
from Bob;

– Bob retrieves zB
def= a0

rB
from Alice.

3. Alice sends z0
A

def= zA ⊕mA to Bob. Bob sends z0
B

def= zB ⊕mB to Alice.
Both parties locally output z0

A ⊕ z0
B .

Fig. 1. A private protocol for the function Sample-XOR

Lemma 1. Private-Sample-XOR is a private protocol computing the randomized
function Sample-XOR.

Given approximation parameters ε, δ, our private sampling estimator for the
high distance case will be implemented using s = O((n/dmin) · log(1/δ)/ε2)
parallel invocations of Protocol Private-Sample-XOR. As argued above, when
d = dh(a, b) ≥ dmin then an 〈ε, δ〉-approximation of d can be computed from the

Secure Multiparty Computation of Approximations 935

s outputs by multiplying their sum by n/s. Regardless of the distance between
the inputs a, b, the view of each party in these invocations can be simulated from
its input and dh(a, b). Summarizing, we have:

Lemma 2. (Private approximation for the high distance case.) Let OT
be an arbitrary

(
n
1

)
-OT protocol (with security against a passive adversary).

Then, there exists a protocol for approximating dh(a, b) whose communication
complexity is Õ((n/dmin)/ε2) times that of OT , and whose round complexity is
that of OT plus 1, such that:

– The protocol is private with respect to the function dh(a, b) (i.e., the view of
each party can be simulated from its input and dh(a, b));

– If d = dh(a, b) ≥ dmin, the protocol outputs an ε-approximation of d with
overwhelming probability.

The Low Distance Estimator. We next consider the low distance case, where
d ≤ dmax for some threshold dmax to be later specified. We design two alternative
private protocols for this case, each of which is based on a sketching protocol
with the following properties:

– The induced function g is almost determined by dh. That is, except with
negligible probability, g(a, b) takes a specific value determined by dh(a, b).

– The above value is equal to dh(a, b) if dh(a, b) ≤ dmax and “fail” otherwise.

For any sketching protocol satisfying the first property above, a private com-
putation of g is straightforward: the parties exchange a common random input
in the clear, then locally compute the sketches based on their inputs and the
random input, and, finally, apply a (general-purpose) private computation pro-
tocol for evaluating the reconstruction function G on their sketches. For such a
protocol to be communication-efficient, G must be computable by a small cir-
cuit. In [14], we describe two such protocols, one based on hashing and one on
Reed-Solomon codes. Using either protocol, we obtain:

Lemma 3. (Private approximation for the low distance case.) For any
1 ≤ dmax ≤ n, there exists a 3-round protocol π with Õ(dmax) communication,
such that:

– π is private with respect to the function dh(a, b);
– If d = dh(a, b) ≤ dmax, π outputs the exact value of d with overwhelming

probability;
– If d = dh(a, b) > dmax, π outputs “fail” with overwhelming probability.

The Combined Protocol. The combined protocol runs both estimators setting
dmin = dmax = n1/2/ε, and outputs the low distance output if it is not “fail”, and
the high distance estimator otherwise. Substituting the complexity parameters
of the two subprotocols and a 2-round Õ(1)-communication

(
n
1

)
-OT protocol

yields the following:

Theorem 1. Assuming the existence of homomorphic encryption, the Hamming
distance function can be privately ε-approximated with communication complexity
Õ(n1/2/ε) and three rounds of interaction.

936 J. Feigenbaum et al.

4 Efficient Approximations of #P-Hard Functions

We now turn our attention to #P-hard problems, where the goal is to achieve
polynomial-time private approximations. Note that artificial privately approx-
imable #P-hard problems are easily constructed. For example, consider any
#P-hard problem f(x) with output in the range [0, 2n]. Then g(x) = f(x) + 22n

is computationally equivalent to f(x), and can be privately approximated by
simply outputting 22n. However, this approximation does not apply to an “in-
teresting” quantity.

In this section, we give a private approximation of the permanent, the most
well-known #P-complete problem. The permanent per(M) of a 0/1-valued ma-
trix M counts the number of perfect matchings in the corresponding bipartite
graph. Our result extends to other natural #P-complete problems, which reduce
to the permanent in an approximation-preserving way. These include counting
problems that arise naturally in physics, such as the number of tilings of certain
lattices, or problems concerning the bond strength of molecules [25].

Approximating the Permanent. A string of results [22,5,23,24] provides effi-
cient approximation algorithms for the permanent. We build on their technique
to achieve a private approximation.

Theorem 2. Let f(M1, M2) = per(M1 + M2), where M1, M2 are n × n ma-
trices with n-bit non-negative entries. Then, for any ε ≥ 1/ poly(n) there is a
polynomial-time private ε-approximation for f .

Proof (sketch): Let M = M1 + M2. Using generic secure computation, it
suffices to show how to approximate per(M) in polynomial time in a functionally
private way.

Assume that per(M) > 0 (this can be efficiently verified). The technique
of [24] uses a rapidly-mixing Markov chain to sample from the set of all per-
fect matchings on a graph from a distribution that is statistically indistinguish-
able from uniform. For our purposes, we note only that their techniques pro-
vide an efficient implementation of “coins” with success probabilities statisti-
cally indistinguishable from p1, . . . , pn, where

∏
1/pi = per(M), and, for all i,

pi ≥ 1/ poly(n). Since each probability can be efficiently estimated by sampling,
a (non-private) approximation for the product, and thus for per(M), follows.

Note, however, that the product of approximations does potentially leak in-
formation about its factors (e.g., the standard deviation depends on the factors),
and, thus, the product of approximations is not functionally private. Fortunately,
we are able to avoid this leakage by manipulating success probabilities in various
ways. Given coins with success probabilities q0, q1 and r, one can form coins with
success probabilities q0q1, 1 − q0 , and rq1 + (1 − r)q0 (the latter by flipping r
and then flipping qr), without knowing any probability.

We proceed, roughly, as follows. First, we observe that if we could construct
coins with success probabilities p

1/n
i , then we could also construct a coin with

success probability
∏

p
1/n
i = 1/per(M)1/n. Since 1 ≤ per(M)1/n ≤ poly(n),

Secure Multiparty Computation of Approximations 937

the success probability of the latter coin can be efficiently estimated, yielding
an efficient and functionally-private approximation for the permanent. It thus
remains to create coins with success probabilities p

1/n
i . We use the Taylor series

for x1/n at x = 1. This series has the form 1−∑
i≥1 ci(1− x)i, where

∑
ci ≤ 1

and each ci is positive. For 1/ poly(n) ≤ x ≤ 1, one can estimate x1/n by the
first knO(1) terms, denoted T (x), with an error negligible in k. We conclude by
observing that T (x) is of the form constructible, using the above manipulations,
from a coin with success probability x.

Acknowledgements. We thank Dana Randall for suggesting some applications
in Section 4 and Jessica Fong for helpful discussions and collaboration in early
stages of this work.

References

1. R. Agrawal and S. Ramakrishnan. Privacy-preserving data mining. In ACM SIG-
MOD, 439–450, 2000.

2. N. Alon, P. Gibbons, Y. Matias, and M. Szegedy, Tracking join and self-join sizes
in limited storage. In 18th PODS, 10–20, New York, 1999.

3. N. Alon, Y. Matias, and M. Szegedy, The Space Complexity of approximating the
frequency moments. In 28th STOC, 20–29, 1996.

4. D. Beaver, Foundations of secure interactive computing, CRYPTO ’91, LNCS 576,
1991.

5. A. Broder, How Hard Is It To Marry At Random? (On the approximation of the
permanent), In 18th STOC, 1986, 50–58. Erratum in 20th STOC, p. 551.

6. M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In 20th STOC, 1–10, 1988.

7. R. Canetti, Security and composition of multiparty cryptographic protocols, Jour-
nal of Cryptology, Vol. 13, No. 1, Winter 2000.

8. D. Chaum, C. Crépeau, and I. Damg̊ard, Multiparty unconditionally secure pro-
tocols. In 20th STOC, 11–19, 1988.

9. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In 36th FOCS, 41–51, 1995. Journal version: J. of the ACM, 45:965–981, 1998.

10. C. Cachin, S. Micali, and M. Stadler, Computationally private information retrieval
with polylogarithmic communication. In Advances in Cryptology: EUROCRYPT
’99, LNCS 1592, 402–414, 1999.

11. G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin, Communication complexity
of document exchange. In 11th SODA, 197–206, 2000.

12. DIMACS special year on massive data sets, 1997–1999,
http://dimacs.rutgers.edu/SpecialYears/1997 1998/.

13. J. Feigenbaum, J. Fong, M. Strauss, and R. Wright, Secure multiparty compu-
tation of approximations, presented at DIMACS Workshop on Cryptography and
Intractability , 2000.

14. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright, Secure
multiparty computation of approximations, available at
http://eprint.iacr.org/2001/024/.

15. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, An approximate
L1-difference algorithm for massive data streams. In 40th FOCS, 501–511, 1999.

http://eprint.iacr.org/2001/024/

938 J. Feigenbaum et al.

16. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy
in private information retrieval schemes. J. of Computer and System Sciences,
60(3):592–629, 2000. A preliminary version appeared in 30th STOC, 1998.

17. O. Goldreich, Secure multi-party computation, (working draft, Version 1.1), 1998.
Available from http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html.

18. O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game. In 19th
STOC, pp. 218–229, 1987.

19. S. Halevi, E. Kushilevitz, R. Krauthgamer, and K. Nissim, Private approximations
of NP-hard functions. To appear, STOC 2001.

20. M. Rauch Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. Technical Report 1998-011, Digital Equipment Corporation Systems Re-
search Center, 1998.

21. P. Indyk, Stable distributions, pseudorandom generators, embeddings and data
stream computation. In 41st FOCS, 2000.

22. M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science 43 (1986)
169–188.

23. M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on
Computing 18 (1989), 1149–1178.

24. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algo-
rithm for the permanent of a matrix with non-negative entries. STOC 2001, to
appear.

25. R. Kenyon. Local statistics of lattice dimers. Ann. IHP Prob. Stat. 33 (1997),
591–618.

26. E. Kushilevitz and N. Nisan, Communication complexity. Cambridge University
Press, 1997.

27. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In 38th FOCS, 364–373, 1997.

28. E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient search for approximate
nearest neighbor in high dimensional spaces. In 30th STOC, 614–623, 1998.

29. Y. Lindell and B. Pinkas, Privacy preserving data mining. In Advances in Cryp-
tology - CRYPTO ’00, LNCS 1880, 36–54, 2000.

30. S. Micali and P. Rogaway, “Secure computation”, CRYPTO ’91, LNCS 576,
Springer-Verlag, 1991.

31. M. Naor, and K. Nissim. Communication preserving protocols for secure function
evaluation. To appear, STOC 2001.

32. M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation. In 31st
STOC, 245–254, 1999.

33. K. Pang and A. El-Gamal. Communication complexity of computing the Hamming
distance. SIAM J. on Computing, 15(4):932–947, 1986.

34. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Advances in Cryptology - ASIACRYPT ’98, LNCS 1514, 357–371, 1998.

35. A. C. Yao, Protocols for secure computation. In 23rd FOCS, 160–164, 1982.
36. A. C. Yao. How to generate and exchange secrets. In 27th FOCS, 162–167, 1986.

Secure Games with Polynomial Expressions

Aggelos Kiayias1 and Moti Yung2

1 Graduate Center, CUNY, NY USA,
akiayias@gc.cuny.edu

2 CertCo, NY USA
moti@cs.columbia.edu

Abstract. We present the first private information retrieval (PIR) sche-
me which is both, deterministically correct and has poly-logarithmic
communication complexity. Our PIR protocol is symmetrically secure,
and improves by a few orders of magnitude the known probabilistically
correct poly-logarithmic scheme. This result is achieved as an applica-
tion of our methodology which introduces a broad family of games, called
Secure Games with Polynomial Expressions (SGPEs), that involve two
interacting players: Alice and Bob. The objective of these games is the
secure “interactive computation” of the value of a polynomial expression
which is made up of polynomials and field elements that both players dis-
tributedly contribute to the game. The players wish to keep some or all
the data (field elements and polynomials) they contribute to the game,
secret and independently secure. We show that any SGPE can be played
much more efficiently than by using generic methods, and so that no
party reveals more than what it intends to. Besides the above mentioned
PIR application, we present additional applications such as the “lists’
intersection predicate” which is useful for secure conduct of e-commerce
procedures, such as negotiation methods known as “settlement escrows”
in the legal/ economics/ business literature.

1 Introduction

One of the most important results on the foundations of cryptography (suggested
by Yao [Yao86], generalized to multi-party by Goldreich, Micali and Wigderson
[GMW87], and characterized based on the Oblivious Transfer primitive by Kilian
[Kil90]) is that given any polynomially computable function f(x, y), it is possible
for two parties, Alice (A for short) and Bob (B for short), to jointly compute
f(α, β), with A contributing α and B contributing β, in such a way so that
no party learns anything more than what can be deduced by the final output.
The resulting protocols are relative to the size of the circuit that computes f
that, even for simple functions, are considerably expensive to implement. Conse-
quently, nowadays where distributed applications over the Internet are about to
become a reality, it is worthwhile to seek special cases of useful function families
that can accept more efficient protocol techniques (as advocated in [Gol97]).

In that spirit, Naor and Pinkas [NP99] introduced an efficient protocol for
obliviously computing the value of a polynomial (Oblivious Polynomial Evalua-

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 939–950, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

940 A. Kiayias and M. Yung

tion, OPE). In their setting, B possesses a polynomial P , A has a value α and
wishes to obliviously compute P (α).

In this paper, we further investigate possibilities for efficient solutions of new
useful problems in the general area of secure function evaluation by introducing
a family of protocols called Secure Games with Polynomial Expressions (SG-
PEs). The general idea of our approach is to consider the joint computation of
a polynomial expression that is made up of secret polynomials owned by the
two players (as well as non-secret components). Player A selects an input for
the expression, and wishes to obtain the value of the expression on this input.
Depending on the contribution of A to the expression we can categorize SGPEs
to those that A contributes only field elements to the expression (type 1), and
to those that A contributes also polynomials (type 2). An example of a type-
1 SGPE is the Secure Multivariate Polynomial Evaluation (SMPE): B holds a
secret multivariate polynomial P , and A wishes to obtain a point in the graph
of P of her choice. A Secure Nested Polynomial Game (SNPG for short) is an
example of SGPE of type-2: A holds a constant number of c secret polynomials
Q2, . . . , Qc and wants to compute Pc(Qc(. . . (P2(Q2(P1(α)))) . . .)) for an α of
her choice, where the polynomials P1, P2, . . . , Pc are contributed by B.

The security conditions that we consider, are the following: A does not want
to reveal anything about the data she contributes to the game, and B does
not want to disclose his data beyond what is trivially inferred from A’s output.
In addition to the above (traditional) conditions, both players wish that if the
secrecy of some of their private data is compromised or the search space of some
part of the data is small, this has no effect on the secrecy of the remaining inputs
(this property can be called secret independence). More generally players wish
that their data are secure even if they are not uniformly distributed over all
possible inputs.

We present an efficient construction for SGPEs of type-1 and an efficient
transformation of a type-2 game to a type-1 game. We get a protocol of two
flows of communication, one of which is employing an implementation of a single
t-out-of-n Oblivious Transfer over values of the proper field, where t and n are
small polynomial functions (in the size of the polynomial expression used in
the game). Our security assumption is coding theoretic and is related to the
Polynomial Reconstruction Problem. In fact, one of the basic contributions of
Naor and Pinkas [NP99] is the consideration of this problem as a hard problem
to base protocol security on.

Using SMPE, we provide a new Private Information Retrieval scheme (PIR)
with polylogarithmic communication complexity. Our scheme is the first direct
polylogarithmic Symmetric PIR that is deterministically correct and is at least
five orders of magnitude better, in the polylogarithmic sense, compared to the
previous polylogarithmic PIR of [CMS99]. Our PIR protocol assures correct ex-
ecution always in contrast with the [CMS99]-scheme, which is a probabilistically
correct protocol that exhibits a trade-off between error probability and commu-
nication complexity.

Secure Games with Polynomial Expressions 941

Using our construction for type-1 games we can solve a variety of other prob-
lems such as the “Lists’ Intersection Predicate.” In this problem, two agencies
A and B, have two lists SA, SB respectively, and they want to check whether
SA ∩ SB 6= ∅. If this is the case, no agency wants to reveal any witness for this
fact. This procedure enables negotiating parties to know that there is a common
issue to be discussed without revealing mutual interests up front. This can be
applied to solving (without any trusted party) the problem known as “settlement
escrows.” This procedure was originally proposed for pretrial negotiations (em-
ploying a trusted third party) in out of court legal settlements [GM95]. It allows
two negotiating parties to figure out if their price ranges intersect and nothing
more, in order to further continue with negotiating a deal. It can be applied to
distributed decision-making in general e-commerce and business procedures (see
[BN96]).Additional applications of our setting such as “Oblivious Negotiations”
or “Oblivious Bargaining” will appear in the full version due to lack of space.

We note that trying to reduce our setting to OPE encounters a number of
problems, mainly with respect to security, as the reduction fails to enforce secret-
independence, a property that is necessary for the new applications. Ultimately
secret-independence appears to require a stronger intractability assumption com-
pared to the one needed for the security of OPE, which we formulate in this work.
The OPE protocol has a two-flow structure for two layer computation (polyno-
mial over data). We note that it is not at all obvious how to retain this protocol
structure for our multi-layer setting, but, interestingly, we show it to be possible.

2 Preliminaries and Definitions

Let P := {P1, P2, . . .} be a set of predicates, and X := {x1, x2, . . .} a set of
variables. An expression E is a rooted-DAG (direct acyclic graph) with all arcs
directed towards the root specified as follows: each node is one of the following:
Pi, +, ·, or a natural number. If a node is + or · then it has two children, if a node
is a number it has a single child; if a node is Pi then it has any non-zero number
of children; each arc entering Pi is labeled by a non-zero natural number; The
leaves of the DAG are selected from X . The value of a path from a leaf to the
root, is the product of all labels and number nodes that are in its course (and
is set to 1, if there are no labels or number nodes). The degree of a variable is
defined as the maximum path value taken over all paths from the variable node
to the root. Let E be an expression, and let P1, . . . , Pv denote its predicate nodes;
if we map each predicate Pi to a polynomial with the same number of variables
as the children of Pi and of the same degrees as the labels of its incoming arcs,
an in-order traversal of E can be seen as a polynomial (interpreting each number
node as exponentiation); we denote this polynomial by E(P1, . . . , Pv), and say
that the polynomials P1, . . . , Pv “fit into” E .

If P is a predicate node we denote by label(P, j) the label of the j-th incoming
arc. Let |E| denote the size of the DAG (number of arcs). We define size(E) :=
|E| + ∑

P

∏
j(label(P, j) + 1) where the sum is over all predicate nodes of E .

In order to store E(P1, . . . , Pv) we need size(E) space. One of the reasons for

942 A. Kiayias and M. Yung

introducing expressions instead of talking simply about polynomials is space: if
coef(P) denotes the number of coefficients of a polynomial P , then it holds that
coef(E(P1, . . . , Pv)) can be exponentially large compared to size(E). In order to
compute a value of E(P1, . . . , Pv) using the expression representation we need
O(size(E)) field operations. If E is an expression, denote by d1, . . . , dr the degrees
of its variables. For a fixed constant c, we say that an expression is c-bound if
lcm(d1, . . . , dr) = O([size(E)]c).

Fig. 1. Example of an expression that defines the polynomial Q(x1, x2 + x3P (x4) +
x5(P (x4))2 + x6(P (x4))3), with degree(x2) = degree(x3) = degree(x5) = degree(x6) =
d, degree(x1) = d0, degree(x4) = 3dd00.

For the following, fix a c-bound expression E with v predicates and r variables.
Note that we restrict the applicability of our protocol to c-bound expressions.
Although we do not rule out the existence of a construction for unbounded
expressions, c-bound expressions are sufficient for all applications discussed here.

A type-1 SGPE is as follows: player B has v secret polynomials
P1, . . . , Pv, player A has r secret values α1, . . . , αr ∈ IF and wants to obtain
E(P1, . . . , Pv)(α1, . . . , αr). Some of the polynomials of player B may be publicly
known. If v = 1 and E(P) := P , then the game is called “Secure Multivariate
Polynomial Evaluation” (SMPE). A type-2 SGPE is defined similarly with the
only difference that some of the P1, . . . , Pv polynomials are contributed by A.
When E has the form Pc(Qc(. . . (P2(Q2(P1(x)))) . . .)) with the Pi contributed
by B, and the Qi contributed by A then we will call this game a “Secure Nested
Polynomial Game” (SNPG). Our game schema involves two flows of informa-
tion, from A to B and from B to A (this latter flow employs a t-out-of-n OT).
Correctness and security requirements for both types of games are as follows:

Definition 1. Let E be a c-bound expression with v predicates P1, . . . , Pv, and
r variables. Let HA,HB denote the sequence of secrets contributed by the two
players to the expression. There are two probabilistic polynomial time (PPT)
algorithms A,B and a deterministic algorithm C (parts of our protocol) so that:
C(B(A(HA),HB)) = E(P1, . . . , Pv)(α1, . . . , αr) (independently of the coin tosses
of A,B). Informally, A is used by A to hide her secrets and give them to B; B
uses B to hide his secrets and apply them over the secrets of A; C is used by A

Secure Games with Polynomial Expressions 943

to reconstruct the output of the protocol from the reply of B (which is obtained
through a t-out-of-n OT). The computation cost is polynomial in size(E).
Security of A. Informally, the security of A is established by showing that B
cannot deduce anything meaningful out of the protocol transcript he receives.
More formally, for all PPT B′ playing B’s part and all probability distributions
DA for HA there is a PPT B′′ such that the following is negligible:

| Prob[Z = HA : Z ← B′(A(HA))]−Prob[Z = HA : Z ← B′′] |
Security of B. Informally, security of B can be claimed by comparing with the
ideal implementation. Let I(HA,HB) denote the output of player A in the ideal
implementation of the protocol. Also, let T (HA,HB) be the protocol transcript
obtained by player A at the end of the protocol. We show that for any PPT A′

and any HA there is a PPT A′′ s.t.

| Prob[A′(T (HA,HB)) = 1]−Prob[A′′(I(HA,HB)) = 1] |
is negligible (the probability is taken over the internal coin tosses of A′,A′′ and
HB is distributed according to some probability distribution DB).

The security of the party A for the OPE protocol of [NP99] was based on the
following problem, which is also related to the security of A in our construction:

Definition 2. Polynomial Reconstruction (PR). Given n, k, t and the
pairs {〈zi, yi〉}ni=1 in IF2, output all 〈p, I〉 such that p ∈ IF[x], degree(p) < k,
I ⊆ {1, . . . , n}, |I| = t and ∀i ∈ I(p(zi) = yi).

PR is of prime interest in Coding Theory, since it corresponds to the decod-
ing problem of Reed-Solomon codes. Translated in this context PR asks for all
messages that agree with at least t positions of the received codeword. For a
general treatment on the subject the interested reader is referred to [Ber68] or
[MS77]. From the perspective of Reed-Solomon codes, we will further specialize
definition 2 to require: (i) k < n since k/n is the message rate of the code, and
(ii) at least one solution 〈p, I〉 exists, since before the addition of the noise all
pairs belong in the graph of some polynomial.

When t ≥ n+k
2 then PR has only one solution and it can be found with the

algorithm of Berlekamp and Welch [BW86] (n+k
2 is the error-correction bound of

Reed-Solomon codes). The problem has been investigated further for smaller val-
ues of t ([Sud97,GS98,GSR95]) and it is believed that PR is hard when t <

√
kn

(the best algorithm known, by Guruswami and Sudan [GS98], finds all solutions
when t ≥ √kn). From a cryptographic perspective we are more interested in
the hardness of PR on the average. It is easy to see that PR on the average
(termed also noisy PR) has only one solution 〈p, I〉 such that |I| = t with very
high probability. It is believed that the noisy PR is not easier than the PR (see
[NP99]). This is because given an instance of the PR it is possible to randomize
the polynomial (but it is not known how to randomize the noise). PR was further
investigated in [BN00].

Our proof of security (for player A) is based on the following problem, which
we call Multisample Polynomial Reconstruction (MPR):

944 A. Kiayias and M. Yung

Definition 3. MPR. Given n, k, t, r, and the distinct tuples {〈zi, yi,1, . . . ,
yi,r〉}ni=1 so that each {〈zi, yi,`〉}ni=1 is a noisy PR instance with parameters n, k, t
and solution 〈p`, I〉, find 〈p1, . . . , pr, I〉.

MPR appears to be not much easier than PR, a fact that is justified similarly
to the case of PR vs. noisy PR: given an instance of PR it is possible to randomize
the polynomial r times and get a version of MPR, but as before it is not apparent
how to replicate and randomize the noise. We will formulate this as a complexity
assumption:

Complexity Assumption. For any r there are n, k, t polynomially related
parameters so that any probabilistic algorithm solving the MPR has negligible
success probability in n.

Solving MPR either involves using techniques against a specific noisy PR
instance that is included in the MPR instance (since the recovery of some 〈p`, I〉
immediately implies the recovery of 〈p1, . . . , pr, I〉) or in a more direct fashion
trying to take advantage of the relation between the noisy PR instances in-
cluded in the MPR instance. The best algorithm for solving PR is [GS98], which
succeeds when t ≥ √kn. Solving MPR directly has been discussed recently in
[KY01] and succeeds for choices of r > n

t . As a result the current state of the
art suggests that MPR is hard when ct <

√
kn and c′r < n

t for some c, c′ > 1.
To complete this section, let us comment briefly on the relation of SGPEs

and OPE. In particular if it is possible to simulate a SGPE using OPE; there
are two possibilities: (1) if only univariate polynomials appear in the expression
the two players can use many individual OPEs to obtain intermediate results
and finally player A will compose the final output. Nevertheless to conform
to the security requirements randomization of the partial results is necessary
something that appears to be hard unless the expression degenerates to an affine
transformation. (2) The case of multivariate polynomial evaluation e.g. P (α, β),
it can be performed by OPE as follows: A sends to B random s(x), s′(x) ∈ IF[x]
s.t. s(x0) = α and s′(x0) = β (x0 is kept secret by A); A and B engage in OPE
so that A obtains P (s(x0), s′(x0)). This approach has the deficiency that the
values contributed by A are not “independently secure”, i.e. partial knowledge
of some of the values (or a small search-space for one of the values) can lead to
the recovery of all secret input of A with non-negligible probability.

3 SPGEs of Type 1

In the following construction, a t-out-of n OT protocol is used as a primitive.

- Protocol parameter: a c-bound expression E of v predicates.
- Input of B: Polynomials P1, . . . , Pv that fit into E .
- Input of A: r elements of IF, α1, . . . , αr.
- Output of A: E(P1, . . . , Pv)(α1, . . . , αr).
- Security parameters: n, l.
- Let P (x1, . . . , xr) := E(P1, . . . , Pv)(x1, . . . , xr), and denote by d` the de-

gree of x` in P . Set d := lrlcm(d1, . . . , dr), and k := min`
d

rd`
+ 1.

Secure Games with Polynomial Expressions 945

Step 1. A generates r instances of the noisy PR, {〈zi, yi,`〉}ni=1 with solution
〈p`, I〉, such that p`(0) := α`, degree(p`) = k − 1, zi 6= 0 and zi 6= zj for all i, j,
j 6= i. Then, A, forms the (r + 1)-tuples {〈zi, yi,1, . . . , yi,r〉}ni=1, and she sends
them to B.
Step 2. B hides P in a random polynomial Q: Let C, C ′ ∈ IF[x] be ran-
dom polynomials of degree d such that C(x) = C ′(x) = 0. Define a polyno-
mial Q ∈ IF[x0, x1, . . . , xr] as follows: Q(x0, . . . , xr) = P (x1, . . . , xr) + C(x0) +
xd1

1 . . . xdr
r C ′(x0). The storage space needed for Q is size(E) + 2d. Comput-

ing a value of Q requires O(size(E) + d) field operations. For each tuple
(zi, yi,1, . . . , yi,r) B computes the value Q(zi, yi,1, . . . , yi,r). Note that the polyno-
mial R(x) := Q(x, p1(x), . . . , pr(x)) on 0 gives R(0) = P (α1, . . . , αr). The degree
of R is dR = d + d1dp1 + . . . + drdpr

≤ 2d. Therefore, if A learns t := 2d + 1
values of R, she can interpolate it and compute R(0).
Step 3. A and B engage in a t-out-of n OT in which A chooses to learn the
values Q(zi, p1(zi), . . . , pr(zi)). Now A knows 2d + 1 values of the polynomial R
and can interpolate it to compute R(0) = P (α1, . . . , αr).
Implementation and Complexity. Clearly, A can compute P (α1, . . . , αr) for
any α1, . . . , αr of her choice. The time-complexity of the protocol is O(rn +
d log2 d + fA(t, n)) for player A and O(nd + nsize(E) + fB(t, n)) for player B,
where fA(t, n), fB(t, n) denotes the running time of the t-out-of n OT protocol
for each player respectively. The communication complexity is O(rn + c(t, n))
where c(t, n) is the communication complexity of the t-out-of n OT. Regarding
the security parameters, in section 3.1 we show that n = O(rd+d2/l) is sufficient;
l relates to the value k and is chosen so that k is large enough so that player B
is not be able to find p1, . . . , pr by brute-force in min{(n

t

)
,
(
n
k

)} steps. We point
here that if the expression E is 0-bound, then the complexity of player A does
not depend on the size of the expression. For a t-out-of-n OT protocol the reader
is referred to e.g. [NP99] where t-out-of n OT is efficiently and unconditionally
reduced to 1-out-of-2 OT.

3.1 Security of A

The security of A is based on the hardness of MPR as the following theorem
reveals:

Theorem 1. If B breaks the security of A in our protocol then, assuming that
the underlying t-out-of-n OT is secure, MPR is polynomial time for parameters
n, k − 1 := min`

d
rd`

, t := 2d + 1, r.

By a suitably large choice of the security parameter n we can enforce the
security of A under the MPR-complexity-assumption (provided that the security
parameter l is large enough to withstand a brute-force attack – see previous
section). Both ct <

√
kn and c′r < n

t should be satisfied (the parameters c, c′

allow for small improvements to the results against MPR). It is easy to see that
it suffices to select n = O(rd + d2/l).

946 A. Kiayias and M. Yung

3.2 Security of B

The security of player B is established by showing that the output of player A
out of a protocol execution (the protocol transcript obtained by A) is essen-
tially identical to what she gets in an ideal implementation. This holds true
independently of A’s behavior. In an ideal implementation, A gives to a trusted
third party C all information send to B in step 1 of the protocol together with
the randomness she used — note that this reveals her secret values α1, . . . , αr.
Player B gives to C its secret input P1, . . . , Pv. In turn, C returns to A, either
a value of E(P1, . . . , Pv)(x1, . . . , xr) or a linear combination of some values of
E(P1, . . . , Pv)(x1, . . . , xr) (the exact formulation is given in the full version).

Lemma 1. There is a PPT G that given the output of the ideal implementation
of the protocol for player A, and all information available to player A, generates
a protocol transcript that is statistically indistinguishable from legitimate protocol
transcripts generated during normal operation, under the assumption that t-out-
of-n OT can be implemented ideally.

Theorem 2. Our construction is secure with respect to player B under the as-
sumption that the underlying t-out-of-n OT is secure.

4 SGPEs of Type 2

In this section we present a transformation of type-2 games to type-1 games.
First we deal with SNPGs: we will consider only the two round case and it
will become clear how to generalize to any constant number of rounds. Suppose
B possesses the secret polynomials P2, P1 ∈ IF[x] and A the secret polynomial
Q2 ∈ IF[x] of degree δ (known to B). A wants to compute P2(Q2(P1(α))) for
an α of her choice. B defines the expression E(P1, P2)(x0, . . . , xδ, x) = P2(x0 +
x1P1(x) + . . . xδ(P1(x))δ).

If Q2(x) = a0 +a1x+ . . . aδx
δ then A, using the type-1 protocol, can compute

the value E(P2, P1)(a0, . . . , aδ, α) for an α of her choice. Now by the definition:
E(P2, P1)(a0, . . . , aδ, α) = P2(a0 + a1P1(α) + . . . aδ(P1(α))δ) = P2(Q2(P1(α))).

The case of any type-2 game can be sketched as follows: player A should
obtain E(P1, . . . , Pv, Q1, . . . , Qv′)(α1, . . . , αr) where the polynomials P1, . . . , Pv

are contributed by B, and the values α1, . . . , αr, and polynomials Q1, . . . , Qv′

are contributed by A. For simplicity we assume that the polynomials Qi are
univariate. Let the degree of Qi be δi. B substitutes in the expression E each
occurrence of Qi(V) with x0 +x1V + . . . xδi

V δi for all i = 1, . . . , v′. The resulting
expression is E ′. Note that E ′ is independent of the sequence of the substitutions
(each substitution works on a disjoint portion of the DAG). It is not hard to
show that |E ′| = O(size(E)), and consequently size(E ′) = O(size(E)). Note also
that if E is c-bound then E ′ is also c-bound. By engaging in type-1 game with
E ′, player A can “plug-in” all the coefficients of her polynomials, along with the
values α1, . . . , αr, and therefore the type-2 game transforms to a type-1 game.

Secure Games with Polynomial Expressions 947

Theorem 3. The correctness and security of our construction for type-1 games,
implies the correctness and security of the type-2 protocol described above.

We note that in general, SNPGs are not produced by c-bound expressions. An
expression for an SNPG is c-bound only if the number of polynomials contributed
by both players is constant (constant nesting).

5 Private Information Retrieval

In Private Information Retrieval (PIR for short), the database prober, wants
to obtain a bit or an object of her choice from a database of size N , without
revealing her choice to the database moderator. The problem was introduced in
[CGKS95]. A PIR can be seen as a 1-out-of-N OT with the additional restriction
that we are interested in achieving prober time complexity which is sublinear
in N , and more specifically sublinear communication complexity. Note that in a
PIR scheme the security of the database is not enforced; something that happens
in a Symmetric PIR – SPIR for short, [GIKM98]. Communication complexity of
O(N1/k) in [CGKS95] (replication of the databases), and later O(N c) in [CG97]
(computational setting – cPIR) was shown. In [KO97] replication was dropped
as a requirement (for the computational setting), and in [CMS99] the first cPIR
with polylogarithmic communication complexity was presented. For any cPIR,
it seems inevitable that the communication complexity is polynomial in some
security parameter l. A polylogarithmic PIR has communication complexity of
O(polylog(N)), therefore it is meaningful to require l = O(polylog(N)) also.
In [CMS99], communication is polynomial in the security parameter l and the
moderator can break the security of the prober by an O(2cl) computation (pro-
vided that the underlying security assumption is true); therefore by choosing
l = Ω(δ2), where δ = log N , breaking the security of the prober becomes super-
polynomial in N . Here, we present the first direct (computational) SPIR protocol
that has polylogarithmic communication complexity. We achieve substantial im-
provements compared to the result of [CMS99]:
1. The correctness of our PIR protocol is deterministic, rather than probabilistic
as in [CMS99]. Note that in the [CMS99]-PIR reducing the error probability
results in asymptotic increase of the communication complexity.
2. The communication complexity of our SPIR protocol is O(hl2δ3), where h
denotes the number of bits that are required to store a single object of the
database. The choice l = Ω(δ) is sufficient in order to ensure that the moderator
needs to spend super-polynomial time in N for the search. If we set l := δ the
communication complexity of our scheme is O(hδ5). The communication of the
[CMS99]-PIR is O(hlf) where f ≥ 5 and depends on the underlying Φ-Hiding
Assumption (its second constant). If f = 5, and l = δ2 then the communication
of the PIR is O(hδ10). Increasing l to achieve stronger security for the prober,
yields larger asymptotic speed-up for our PIR-scheme.

The time-complexity of the two parties is low: O(l2δ3) for the prober, and
O(Nlδ2) for the moderator; our construction requires an O(N2) pre-processing

948 A. Kiayias and M. Yung

stage by the database moderator that needs to be performed only once, prior to
servicing any number of requests.

Note that we deal directly with a database containing words rather than
bits. Let ∆ be a database consisting of N := 2δ words, ∆ := {w0, . . . , wN−1}.
Define a polynomial P (x1, . . . , xδ) :=

∑
j1,...,jδ

aj1j2...jδ
xj1

1 xj2
2 . . . xjδ

δ , where each
j` ∈ {0, 1}, ` = 1, . . . , δ. Let v(j1, . . . , jδ) := jδ + 2jδ−1 + . . . + 2δ−1j1. We
write 〈j1, . . . , jδ〉 ≺ 〈i1, . . . , iδ〉 to denote the coordinate-wise ordering of bit-
strings. The coefficient aj1j2...jδ

of P is defined recursively as follows: aj1j2...jδ
:=

wv(j1,j2,...,jδ) −
∑

〈j′
1,j′

2,...,j′
δ
〉≺〈j1,j2,...,jδ〉 aj′

1j′
2...j′

δ
(note that a00...0 := w0).

In our PIR protocol, A plays the role of the prober and player B is the mod-
erator of the database. B prepares P during a pre-processing stage. A wants to
obtain the word wq of the database. Let 〈j1, . . . , jδ〉 be the binary representation
of q. By using the type-1 protocol for SMPE, A obtains the value P (j1, . . . , jδ)
which is equal to wq.

Theorem 4. The scheme above is a deterministically correct SPIR scheme with
polylogarithmic communication complexity.

We point out that the multivariate polynomial setting is suitable for PIR,
since only in such a polynomial it is possible to directly store “exponentially”
many words while at the same time keeping the degree logarithmically small
w.r.t. the number of coefficients. This is what allows the complexity of the prober
to be sublinear in the database size, as the prober has to spend polynomial time
in the degree of the polynomial.

6 Lists’ Intersection Predicate

The List Intersection Problem was introduced and solved in [NP99]: two agen-
cies holding two lists, jointly compute their intersection, without revealing any
elements not common to both lists. Here we consider a different setting for this
problem where even the common part needs to remain secret. More specifically,
the two agencies have a number of lists and want to check whether there exist
any common items in these lists; if this is the case no party should get any infor-
mation about these elements. This makes it possible for two parties to discover
whether they are holding the same elements without revealing them if this is the
case.

Assume that B has a collection of sets S1
B , . . . , Sv

B and A has a collection of
sets S1

A, . . . , Sv
A. A wants to compute the truth-value of the following predicate:

(S1
A ∩ S1

B 6= ∅) ∧ (S2
A ∩ S2

B 6= ∅) ∧ . . . ∧ (Sv
A ∩ Sv

B 6= ∅)

B agrees that A can learn the truth-value of the predicate however he does not
want to let A find out anything more (e.g. in case S1

A ∩ S1
B 6= ∅, A should not

find a witness for this fact). For simplicity, we assume that ∀j, |Sj
B | = L. Let

S1
A = {α1, . . . , αk1} and for j = 2, . . . , v, Sj

A = {αkj−1 + 1, . . . , αkj
}. Let k :=

Secure Games with Polynomial Expressions 949

kv =
∑v

j=1 |Sj
A|. B computes k polynomials pi such that s ∈ Sj

B iff (pi(s) = 0)∧
(kj−1 ≤ i ≤ kj). The degree of each pi is L, (note that given Sj

B , there are |IF|−1
possible choices for each pi). We define the following expression: P (x1, . . . , xr) :=
E(p1, . . . , pk)(x1, . . . , xk) =

∑v
j=1

∏kj

i=kj−1+1 pi(xi) (where k0 := 0). Note that E
is 1-bound. Following the type-1 protocol, A securely computes P (α1, . . . , αk).
The lists’ intersection predicate is [P (α1, . . . , αr) = 0].

Theorem 5. The above scheme computes the lists’ intersection predicate with
error probability at most 1/|IF| (error probability 0, in the case v = 1).

Note two interesting special cases: (1) when v=1, A merely checks whether
SA ∩ SB 6= ∅. If they are disjoint A does not gain any additional information,
and if they have common elements A does not obtain a witness. (2) If ∀j (|Sj

A| =
1) ∧ (Sj

B = SB), A checks whether SA ⊆ SB (where SA := ∪jS
j
A)). If this is not

the case A does not gain any information about SB .
An application of the above is the Settlement Escrows Problem [GM95,

BN96]: A (the buyer) and B (the seller) negotiate in some fixed price range
[1, . . . , N]. B will accept any offer over pB and A will give at most pA. A and
B wish to know whether pA and pB “cross” i.e. pA ≥ pB . Traditionally this
problem is solved by revealing the prices to a third party (escrow). Using the
lists’ intersection predicate scheme twice with v = 1, and SA = {1, . . . , pA} and
SB = {pB , . . . , N} each player checks whether there is a cross, without a third
party.

7 Other Applications

SGPEs can capture a variety of other “oblivious” interactions between two play-
ers. In the full version we present more applications of our construction for
type-1 and type-2 games such as Oblivious Negotiations, Oblivious Bargaining,
Committing to Large Files and Oblivious Scoring.

Acknowledgments. We would like to thank Dan Boneh and Yuval Ishai for
their helpful suggestions.

References

[Ber68] Elwyn R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, 1968.
[BW86] Elwyn R. Berlekamp and L. Welch, Error Correction of Algebraic Block

Codes. U.S. Patent, Number 4,633,470 1986.
[BN00] Daniel Bleichenbacher and Phong Nguyen, Noisy Polynomial Interpola-

tion and Noisy Chinese Remaindering. In the Proceedings of EURO-
CRYPT2000, Lecture Notes in Computer Science, Springer, 2000.

[BN96] Adam M. Brandeburger and Barry J. Nalebuff, Co-opetition, Doubleday
Publications, 1996.

950 A. Kiayias and M. Yung

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler, Computationally Pri-
vate Information Retrieval with Polylogarithmic Communication, In the
Proceedings of EUROCRYPT ’99, Lecture Notes in Computer Science,
Springer, 1999.

[CG97] Benny Chor and Niv Gilboa, Computationally Private Information Re-
trieval, In the Proceedings of the 29th ACM Symposium on the Theory of
Computing, 1997.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan, Private
Information Retrieval, In the Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, 1995.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin, Protecting
Data Privacy in Private Information Retrieval Schemes, In the Proceed-
ings of the 30th ACM Symposium on the Theory of Computing, 1998.

[GM95] Robert H. Gertner and Geoffrey P. Miller, Settlement Escrows, Journal of
Legal Studies, Vol. 24, pp.87-122, 1995.

[Gol97] S. Goldwasser, Multi-party computations: Past and present. In PODC’97,
pages 1–6. invited talk.

[GS98] Venkatesan Guruswami and Madhu Sudan, Improved Decoding of Reed-
Solomon and Algebraic-Geometric Codes. In the Proceedings of the 39th
Annual Symposium on Foundations of Computer Science, 1998.

[GMW87] Oded Goldreich, Silvio Micali and Avi Wigderson, How to Play any Mental
Game — A Completeness Theorem for Protocols with Honest Majority. In
the Proceedings of the 19th ACM Symposium on the Theory of Computing,
1987.

[GSR95] Oded Goldreich, Madhu Sudan and Ronitt Rubinfeld, Learning Polynomi-
als with Queries: The Highly Noisy Case. In the Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, 1995.

[KY01] Aggelos Kiayias and Moti Yung, Computationally Perfect Symmetric En-
cryption based on Polynomial Reconstruction, manuscript, 2001.

[Kil90] Joe Kilian, Use of Randomness in Algorithms and Protocols. MIT Press,
Cambridge, Massachusetts 1990.

[KO97] Eyal Kushilevitz amd Rafail Ostrovsky, Replication is not Needed: Single
Database, Computationally-Private Information Retrieval, In the Proceed-
ings of the 38th Annual Symposium on Foundations of Computer Science,
1997.

[MS77] F. J. MacWilliams and N. Sloane, The Theory of Error Correcting Codes.
North Holland, Amsterdam, 1977.

[NP99] Moni Naor and Benny Pinkas, Oblivious Transfer and Polynomial Evalu-
ation. In the Proceedings of the 31th ACM Symposium on the Theory of
Computing, 1999.

[Sud97] Madhu Sudan, Decoding of Reed Solomon Codes beyond the Error-
Correction Bound. Journal of Complexity 13(1), pp. 180–193, 1997.

[Yao86] Andrew C. Yao, How to Generate and Exchange Secrets. In the Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, 1986.

On the Completeness of Arbitrary Selection
Strategies for Paramodulation?

Miquel Bofill1 and Guillem Godoy2

1 Universitat de Girona, Dept. IMA,
Llúıs Santaló s/n, 17071 Girona, Spain

mbofill@ima.udg.es
2 Technical University of Catalonia, Dept. LSI,

Jordi Girona 1, 08034 Barcelona, Spain
Phone/fax: +34-934017295/7014

ggodoy@lsi.upc.es

Abstract. A crucial way for reducing the search space in automated
deduction are the so-called selection strategies: in each clause, the subset
of selected literals are the only ones involved in inferences.
For first-order Horn clauses without equality, resolution is complete with
an arbitrary selection of one single literal in each clause [dN96].
For Horn clauses with built-in equality, i.e., paramodulation-based infer-
ence systems, the situation is far more complex. Here we show that if a
paramodulation-based inference system is complete with eager selection
of negative equations and, moreover, it is compatible with equality con-
straint inheritance, then it is complete with arbitrary selection strategies.
A first important application of this result is the one for paramodulation
wrt. non-monotonic orderings, which was left open in [BGNR99].

Keywords: automated deduction.

1 Introduction

Deduction with equality is fundamental in mathematics, logics and many ap-
plications of formal methods in computer science. During the last two decades
this field has importantly progressed through new Knuth-Bendix-like completion
techniques and their extensions to ordered paramodulation for first-order clauses.
These techniques have lead to important results on theorem proving in first-order
logic with equality [HR91,BDH86,BD94,BG94] (that have been applied to state-
of-the-art theorem provers like Spass [Wei97]), results on logic-based complexity
and decidability analysis [BG96,Nie98], on deduction with constrained clauses
[KKR90,NR95], and on many other applications like inductive theorem proving,
? Both authors are partially supported by the ESPRIT Basic Research Action CCL-

II, ref. WG # 22457. and the Spanish CICYT project HEMOSS ref. TIC98-0949-
C02-01. The second author is supported by Departament d’Universitats, Recerca i
Societat de la Informació de la Generalitat de Catalunya. A version of this paper
with all proofs is available from www.lsi.upc.es/˜ggodoy.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 951–962, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

952 M. Bofill and G. Godoy

symbolic constraint solving, or equational-logic programming (see [NR01] for a
recent survey).

A crucial way for reducing the search space in automated deduction are the
so-called selection strategies. In such strategies the possible inferences between
clauses are restricted to the ones involving selected literals. This selection can be
done in several different ways. Well-known examples of selection strategies are
the maximal (or ordered) strategies for a given atom ordering. For example, in
a maximal resolution strategy, a (ground) inference between A ∨ C and ¬A ∨ D
is performed only if A is larger in the given atom ordering than all other atoms
in C and D. Another well-known selection strategy is the so-called eager nega-
tive selection strategy, where in each clause a single negative literal is selected
whenever there is any. This leads to the so-called positive strategies (positive
unit strategies in the Horn case) because always the left premise of each (reso-
lution or paramodulation) inference is a positive (unit) clause. These strategies
are usually easier to prove complete, but sometimes they are not very efficient,
because, roughly speaking, one enumerates all solutions of its conditions before
using the positive information of a clause (as discussed in [Der91]).

Another well-known way for reducing the search space is constraint inheri-
tance. The semantics of a clause C with a constraint T , written C | T , is simply
the set of all ground instances Cσ of C such that σ is a solution of T . For example,
if = denotes syntactic equality of terms, the constrained clause P (x) | x= f(y)
denotes all ground atoms of the form P (f(t)). Constraints are closely related
to basic strategies [BGLS95,NR95], where no inferences have to be computed
on subterms generated in unifiers of ancestor inference steps. In fact, an infer-
ence system with a basic strategy can be modeled as working with constrained
clauses, inheriting them and simply storing the unification restrictions in the
constraint part (i.e., without applying the constraints to the clause part).

For first-order Horn clauses without equality, resolution is complete with an
arbitrary selection of one single literal in each clause ([dN96], Theorem 6.7.4). For
Horn clauses with built-in equality, i.e., paramodulation-based inference systems,
the situation is far more complex. In [Lyn97] some positive and negative results
are given for the case where a total reduction (well-founded, monotonic) ordering
on ground terms is given. Then arbitrary selection strategies are compatible with
superposition1 (that is, paramodulation involving only maximal sides of equa-
tions). Also conditions for eliminating redundant clauses are given in [Lyn97],
and counter examples indicating the limitations for doing so. For example, in
certain circumstances the elimination of tautologies can lead to incompleteness.

Here we show a more general result for Horn clauses with equality, namely
that, if a paramodulation-based inference system2 is complete with eager selec-
tion of negative equations and, moreover, it is compatible with equality con-

1 About two years ago we contacted the author of [Lyn97] about some severe flaws in
his completeness proofs, which he agreed to fix, although to our knowledge this has
not happened yet.

2 That is, with inference rules for paramodulation and equality resolution, possibly
with constraint inheritance, see [NR01].

On the Completeness of Arbitrary Selection Strategies 953

straint inheritance (like, in particular, it happens for superposition), then it is
complete with arbitrary selection strategies.

Our completeness result is based on transformations of proof trees. Its gener-
ality allows us to obtain directly the completeness of arbitrary selection strategies
for other inference systems, apart from the one of superposition with total reduc-
tion orderings. A first important application of our result is the one for paramod-
ulation with non-monotonic orderings of [BGNR99], where the completeness of
strategies different from eager negative selection was left open. There, techniques
for dropping the monotonicity requirement were introduced, with the only prop-
erties required for the ordering being well-foundedness and the subterm property.
However, the inference system of [BGNR99] still required the eager selection of
negative equations. In Section 4 we show that those results are compatible with
equality constraint inheritance and hence with the basic strategy, thus further
restricting the search space. Therefore, our transformation method is applicable,
and we obtain the completeness of the same inference system but with arbitrary
selection strategies.

The structure of the paper is the following. In section 2 we give some basic
notions on terms, equations and clauses. In section 3 we present our transfor-
mation method for proofs, and our main result on completeness of arbitrary
selection strategies. In section 4 we apply this new technique to the case of the
inference system of [BGNR99]. Finally, in section 5 we discuss some possible
extensions of our technique, giving counter examples indicating the limitations
for some of the extensions.

2 Basic Notions

We use the standard definitions of [DJ90]: T (F ,X) (T (F)) is the set of (ground)
terms over F , the subterm of t at position p is denoted t|p, the result of replacing
t|p by s in t is denoted t[s]p, and syntactic equality of terms is denoted by ≡.

A substitution σ is a mapping from variables to terms. It can be extended
to a function from terms to terms (atoms, clauses) in the usual way: using a
postfix notation, tσ denotes the result of simultaneously replacing in t every
x ∈ Dom(σ) by xσ. A substitution σ is ground if its range is T (F). Here we
suppose that ground substitutions σ are also grounding : tσ is ground for all t.

An equation is a multiset {s, t}, denoted s ' t or, equivalently, t ' s.
A first-order clause is a pair of finite multisets of equations Γ (the antecedent)

and ∆ (the succedent), denoted by Γ → ∆. The empty clause 2 is a clause where
both Γ and ∆ are empty. For dealing with non-equality predicates, atoms A can
be expressed by equations A ' true where true is a new symbol.

The semantics of a clause C with a constraint T , written C | T , is simply the
set of all ground instances Cσ of C such that σ is a solution of T .

A (strict partial) ordering on T (F ,X) is an irreflexive transitive relation �.
It is a reduction ordering if it is well-founded and monotonic, and stable under
substitutions: s � t implies sσ � tσ for all substitutions σ. It fulfils the subterm
property if �⊇ �, where � denotes the strict subterm ordering.

954 M. Bofill and G. Godoy

3 The Transformation Method

In the following we deal with inference systems that are based on some selection
strategy. A selection strategy is a function from ground clauses to non-empty
sets of literals, such that the selected literals for a clause appear in the clause. An
inference between two ground clauses is allowed only if the literals involved in the
inference are selected. As usual, a non-ground inference represents all its ground
instances fulfilling the required conditions. In our case, a non-ground inference
is allowed only if, for some ground instance of the inference, the involved literals
are selected.

Our hypothesis in this section is that we have at hand a paramodulation-
based inference system N for first-order Horn clauses, which is compatible with
equality constraint inheritance and complete with a concrete strategy with eager
selection of negative equations. Let N consist of the following inference rules:

paramodulation right:

→ l ' r | T1 → s ' t | T2

→ s[r]p ' t | s|p = l ∧ T1 ∧ T2
if s|p 6∈ X

paramodulation left:

→ l ' r | T1 Γ, s ' t → ∆ | T2

Γ, s[r]p ' t → ∆ | s|p = l ∧ T1 ∧ T2
if s|p 6∈ X

equality resolution:

Γ, s ' t → ∆ | T
Γ → ∆ | s = t ∧ T

where the equations written underlined must belong to the set of selected literals.
Here = is interpreted as the syntactic equality relation ≡ when dealing with
instances. That is, we forbid those instances of the conclusion that correspond
to ground inferences between instances of the premises for which the constraints
do not hold.

Our aim is to prove completeness of the following inference system A, which
is a modification of N allowing an arbitrary selection strategy where a single
arbitrary literal is selected in each ground clause:

paramodulation right:

Γ1 → l ' r | T1 Γ2 → s ' t | T2

Γ1, Γ2 → s[r]p ' t | s|p = l ∧ T1 ∧ T2
if s|p 6∈ X

paramodulation left:

Γ1 → l ' r | T1 Γ2, s ' t → ∆ | T2

Γ1, Γ2, s[r]p ' t → ∆ | s|p = l ∧ T1 ∧ T2
if s|p 6∈ X

On the Completeness of Arbitrary Selection Strategies 955

equality resolution:

Γ, s ' t → ∆ | T
Γ → ∆ | s = t ∧ T

In order to prove the completeness of A we will proceed as follows. Assume
S is a set of constrained clauses that is closed under A. Furthermore, let P be
a proof by N deriving the empty clause from S. Then we will show that if P is
non-trivial, i.e., it has more than zero steps, then there exists another proof by
N from S of the empty clause with a smaller number of steps. By induction on
this proof transformation process, it follows that the empty clause belongs to S.

Let S be a set of constrained clauses and let C | T be a constrained clause
that is in the closure of S wrt. N . Then, as usual, the proof by N of C | T
from S can be expressed as a tree rooted by C | T , and whose leaves are in S.
Now assume T is satisfiable, and let σ be a ground solution of T . Furthermore,
σ can be taken such that its domain contains all variables ocurring in the proof.
Therefore we can deal with ground proofs where the constraints are replaced
by their solution σ (where a ground substitution σ itself is seen as an equality
constraint): by a (ground) N -proof P of C | σ from S we mean a proof tree
by N , whose nodes are clauses of the form D | σ, and whose leaves are clauses
D′ | σ where D′ | T ′ is in S and σ |= T ′. By steps(P) we refer to its number of
proof steps (or, equivalently, to its number of non-leaf nodes). The following is
an example of an N -proof.

Example 1.

→ c ' a | x = a
x ' a → b ' c | x = a

→ b ' c | x = a
→ b ' a | x = a

When dealing with N -proofs, we will frequently speak about its rightmost
leaf (x ' a → b ' c | x = a in the example), its rightmost inner node (→ b '
c | x = a), its rightmost step (the inference obtaining → b ' c | x = a from
x ' a → b ' c | x = a), and its rightmost path (the nodes x ' a → b ' c | x = a,
→ b ' c | x = a, → b ' a | x = a).

An N -proof is called antecedent elimination of Γ if its rightmost leaf is of
the form Γ → ∆ | σ, its root is → ∆ | σ, and no node on its rightmost path is
obtained by a paramodulation-right step. In the given proofs, the substitution
part | σ of the clauses is omitted in order to improve readability.

3.1 Completeness Proof

Lemma 1. (fusion lemma) Let P1 and P2 be two antecedent elimination N -
proofs of Γ1 and Γ2 respectively.

Then for an arbitrary ∆, there exists an antecedent elimination N -proof P
such that its rightmost leaf is Γ1, Γ2 → ∆. Moreover, steps(P) = steps(P1) +
steps(P2), and every non-rightmost leaf of P is a non-rightmost leaf of P1 or of
P2.

956 M. Bofill and G. Godoy

In the following, the N -proof P built as in the previous lemma will be called
the fusion of P1 and P2.

Lemma 2. (separation lemma) Let P be an antecedent elimination N -proof of
Γ1, Γ2.

Then, there exist two antecedent elimination N -proofs P1 and P2 of Γ1 and
Γ2 respectively. Moreover steps(P) = steps(P1) + steps(P2), and all the non-
rightmost leaves of P1 or of P2 are non-rightmost leaves of P .

Lemma 3. (general fusion lemma) Let P1 be an antecedent elimination N -proof
of Γ1. Let P2 be an N -proof of → ∆ with rightmost leaf Γ2 → ∆2 (therefore a
subtree in its rightmost path is antecedent elimination, i.e. the antecedent Γ2 is
eliminated in P2, but after this elimination, some paramodulation right inferences
can be made on the rightmost path).

Then there exists an N -proof P of → ∆ such that its rightmost leaf is
Γ1, Γ2 → ∆2. Moreover steps(P) = steps(P1) + steps(P2), and every non-
rightmost leaf of P is a non-rightmost leaf of P1 or of P2.

Lemma 4. (general separation lemma) Let P be an N -proof of → ∆ such that
its rightmost leaf is Γ1, Γ2 → ∆′.

Then, there exist two N -proofs P1 and P2 such that P1 is an antecedent
elimination proof of Γ1 and P2 is an N -proof of → ∆ with rightmost leaf Γ2 →
∆′. Moreover steps(P) = steps(P1)+steps(P2), and all the non-rightmost leaves
of P1 or of P2 are non-rightmost leaves of P .

Lemma 5. Let S be a set of clauses closed under A, and let P be an N -proof
of → ∆ from S.

Then there exists an antecedent elimination N -proof P ′ of → ∆ from S whose
rightmost leaf is of the form Γ → ∆, where steps(P ′) ≤ steps(P) and, if Γ is
non-empty, then ∆ is non-empty and its equation is the selected one in Γ → ∆
by A.

Proof. We will proceed by induction on steps(P). Let the rightmost leaf of P be
of the form Γ1 → ∆1. There are several cases to be considered:

0. If Γ1 and ∆1 are both empty, then P has no steps and P ′ can be P itself.

1. One of the selected equations of Γ1 → ∆1 by A is ∆1. We consider two
possibilities depending on whether some paramodulation right inference is made
or not on the rightmost path of P .

1a. In the case that no paramodulation right inference is made on the rightmost
path of P , we have that ∆ and ∆1 coincide and P is antecedent elimination.
Therefore the P ′ we are looking for is directly P .

1b. Suppose now there are some paramodulation right inferences on the right-
most path of P . Then the highest one is of the form:

On the Completeness of Arbitrary Selection Strategies 957

→ ∆2 → ∆1

→ ∆3

Let P1 be the subproof rooted by → ∆1. It is an antecedent elimination N -
proof. Let P2 be the subproof rooted by → ∆2. Let P3 be like P , but where P1
and P2 are removed (the rightmost leaf of P is → ∆3). Then we have steps(P) =
steps(P1)+steps(P2)+steps(P3)+1. By applying induction hypothesis to P2, we
obtain an antecedent elimination N -proof P ′

2 of → ∆2 from S s.t. its rightmost
leaf is of the form Γ2 → ∆2, where ∆2 is selected by A, and steps(P ′

2) ≤
steps(P2). If we apply the fusion lemma to P ′

2 and P1, we obtain an antecedent
elimination N -proof P4 of → ∆3, where its rightmost leaf is Γ1, Γ2 → ∆3, and
steps(P4) = steps(P ′

2) + steps(P1) ≤ steps(P2) + steps(P1). Now let P5 be
the N -proof formed by P3, and where above its rightmost leaf we insert P4.
We have → ∆ in the root of P5, and steps(P5) = steps(P3) + steps(P4) ≤
steps(P3) + steps(P2) + steps(P1) < steps(P) and the rightmost leaf of P5 is
Γ2, Γ1 → ∆3. Moreover, every non-rightmost leaf of P5 is from S: all the non-
rightmost leaves of P3 are from S, and, since P4 is the fusion of P ′

2 and P1, then,
its non-rightmost leaves are from S too. But also, the rightmost leaf of P5 is
from S, since the next inference is a A-inference from S:

Γ2 → ∆2 Γ1 → ∆1

Γ2, Γ1 → ∆3

Then the N -proof P ′ we are looking for is the one obtained by applying the
induction hypothesis to P5.

2. Assume now that Γ1 is of the form Γ11, e and e is a selected equation of
Γ1 → ∆1 by A. We apply the general separation lemma to P and we obtain
two N -proofs P1 and P2 s.t. P1 is an antecedent elimination proof of e and P2
is an N -proof of → ∆ with rightmost leaf Γ11 → ∆1. Moreover steps(P) =
steps(P1) + steps(P2), and all the non-rightmost leaves of P1 or of P2 are non-
rightmost leaves of P .

We distinguish two cases depending on wether the rightmost step of P1 is an
equality resolution or a paramodulation left inference on e:

2a. If it is an equality resolution step, it is of the form:

e →
→

Then P1 consists in only this step, and we have the A-inference

e, Γ11 → ∆1

Γ11 → ∆1

and hence Γ11 → ∆1 is in S. Therefore the N -proof P ′ we are looking for is the
one obtained by applying the induction hypothesis to P2.

958 M. Bofill and G. Godoy

2b. If the rightmost step of P1 is a paramodulation left inference, it is of the
form:

→ ∆3 e →
e′ →

Let P3 be the subproof of P1 rooted by → ∆3. Let P ′
1 be like P1 but where

the subproof P3 and the rightmost leaf are removed (the rightmost leaf of P ′
1

is e′ →). Note that all the non-rightmost leaves of P ′
1 are clauses from S. We

have steps(P1) = steps(P3) + steps(P ′
1) + 1. We apply induction hypothesis to

P3, and we obtain an antecedent elimination N -proof P ′
3 of → ∆3 from S s.t.

its rightmost leaf is of the form Γ3 → ∆3, where ∆3 is selected by A. Now, we
apply the fusion lemma to P ′

3 and P ′
1, and we get an N -proof P4 s.t. is antecedent

elimination of Γ3, e
′, and steps(P4) = steps(P ′

3) + steps(P ′
1). Applying now the

general fusion lemma to P4 and P2 we obtain an N -proof P5 s.t. its rightmost leaf
is Γ11, e

′, Γ3 → ∆1, steps(P5) = steps(P ′
3) + steps(P ′

1) + steps(P2) < steps(P)
and all the non-rightmost leaves of P5 are non-rightmost leaves of P ′

3 or of P ′
1 or

of P2 and, hence, from S. But also the rightmost leaf of P5 is a clause from S,
since the next inference is an A-inference from S:

Γ3 → ∆3 Γ11, e → ∆1

Γ3, Γ11, e
′ → ∆1

Therefore the N -proof P ′ we are looking for is the one obtained by applying
the induction hypothesis to P5. ut

Theorem 1. (Completeness theorem) Let S0 be an unconstrained set of clauses,
and let S be the closure of S0 under A. If S0 is unsatisfiable, then 2 ∈ S.

Proof. By completeness of N there is an N -proof of 2 from S. Then, applying
lemma 5 to the case where ∆ is empty gives us a trivial N -proof of 2, since ∆
can not be selected by A and, hence, Γ must be empty. Consequently 2 ∈ S. ut

4 Application to Paramodulation with Respect to
Non-monotonic Orderings

Here we prove the refutational completeness of the inference system presented
in [BGNR99] with added equality constraint inheritance, for the case of Horn
clauses.

Definition 1. A west-ordering is a well-founded ordering on T (F) that fulfils
the subterm property and that is total on T (F) (it is called west after well-
founded, subterm and total).

For a given a west ordering �, the inference system J for Horn clauses with
equality is (selected equations are written underlined):

On the Completeness of Arbitrary Selection Strategies 959

paramodulation right:

→ l ' r | T1 → s ' t | T2

→ s[r]p ' t | s|p = l ∧ T1 ∧ T2

if s|p 6∈ X and lσ � rσ for some ground substitution σ which is a solution of
s|p = l ∧ T1 ∧ T2.

paramodulation left:

→ l ' r | T1 Γ, s ' t → ∆ | T2

Γ, s[r]p ' t → ∆ | s|p = l ∧ T1 ∧ T2

if s|p 6∈ X and lσ � rσ for some ground substitution σ which is a solution of
s|p = l ∧ T1 ∧ T2.

equality resolution:

Γ, s ' t → ∆ | T
Γ → ∆ | s = t ∧ T

Theorem 2. The inference system J with equality constraint inheritance is
refutationally complete for first-order Horn clauses.

We can use our result of theorem 1 for proving the completeness of a mod-
ification J A of the inference system J . In J A any strategy selecting a single
(positive or negative) equation in each clause is allowed. Note that this new re-
sult is not an immediate consequence of theorem 1. The reason is that for right
and left paramodulation there is an ordering restriction lσ � rσ, and, for ex-
planatory reasons, we did not consider this kind of restrictions in the definition
of N . But in the proof transformation from N to A one uses a given substitution
σ that satisfies all the constraints. This also holds in the case of a proof tree by
J and, moreover, this σ satisfies all the required restrictions lσ � rσ appearing
in it. Hence the transformation process works exactly in the same way.

Theorem 3. The inference system J A with equality constraint inheritance is
refutationally complete for first-order Horn clauses.

5 Conclusions

We have shown that if a paramodulation-based inference system is complete with
a concrete strategy with eager selection of negative equations and, moreover,
it is compatible with equality constraint inheritance, then it is complete with
arbitrary selection strategies.

Therefore we have generalized the result in [Lyn97] about refutation com-
pleteness of arbitrary selection strategies for superposition. Moreover, the gen-
erality of our proof transformation method allows us to obtain directly the com-
pleteness of arbitrary selection strategies for other inference systems. We have

960 M. Bofill and G. Godoy

shown that the results in [BGNR99] for paramodulation with non-monotonic
orderings are compatible with equality constraint inheritance, thus further re-
stricting the search space and allowing arbitrary selection strategies.

We have also generalized, in a sense, the result in [dN96] for Horn clauses
without equality, about completeness of resolution with an arbitrary selection of
one single literal in each clause.

In [BG94] standard methods for proving compatibility with redundancy elim-
ination techniques are given, by which, roughly, a clause is redundant if it follows
from smaller clauses. These notions are not applicable to our proof transforma-
tion technique. But this is not surprising, since by these standard techniques
all tautologies are redundant, which is not the case here. Some kind of tautolo-
gies have to be kept in order to preserve completeness in the case of arbitrary
selection strategies, as shown by the following counter example from [Lyn97].

Example 2. Suppose we have

1. → P (c, b, b)
2. P (c, c, b), P (c, b, c) → b ' c
3. P (x, y, y) → P (x, y, x)
4. P (x, y, y) → P (x, x, y)
5. P (c, c, c) →

and assume an ordering such that b � c. Now, assume we are in the case of an
inference system applying superposition, with a selection rule such that the pos-
itive literal is selected in each program clause. The conclusion of every inference
in this set of clauses is identical to an existing clause or is a tautology of the
form A, Γ → A. However, the set of clauses is unsatisfiable. And, moreover, it
can be easily seen that the empty clause is generated if tautologies of the form
A, Γ → A are kept.

5.1 Future Work

Our result could be extended in several directions, the most interesting ones
being:

– Strategies with non-eager selection of negative equations. We think our proof
transformation technique could be adapted to cover also strategies with non-
eager selection of negative equations, i.e., proving that if there exists any
(not necessarily eager negative) complete selection strategy selecting a single
literal, then arbitrary selection strategies are complete. A possible way to go
could be to first transform such proofs into proofs with eager selection of
negative equations.

– Answer computation. In this paper we have focussed on refutation com-
pleteness, but we believe that our techniques easily extend to proving the
completeness for answer computation, thus obtaining similar results for this
purpose as the ones of [Lyn97] for total reduction orderings and superposi-
tion. The key idea is that solutions σ are preserved during our transformation
process.

On the Completeness of Arbitrary Selection Strategies 961

– Non-equality constraints. Very often it is the case that an inference system
works not only with equality constraints but also with other kind of con-
straints such as, for example, ordering constraints. But, as seen in section 4,
the whole transformation process can be done in the same way if there exists
some substitution σ that satisfies all the constraints. Note that this is a rea-
sonable assumption for many inference systems since, in our transformation,
the equations involved in the inferences of the proof by A are the same as
in the proof by N . It may be interesting to study with which other kind of
constraints this transformation method preserves completeness.

– General clauses. Our result is for first-order Horn clauses with equality. We
think that it would not be difficult to adapt our proof transformation method
to the case of general clauses, provided no factoring inferences occur in the
proofs. With factoring, incompleteness already appears in the propositional
case, as shown by the following counter example from [dN96].

Example 3. Suppose we have

1. → p, q
2. → q, r
3. → r, p
4. p, q →
5. q, r →
6. r, p →

This set of clauses is unsatisfiable, and factoring (in this propositional case,
elimination of repeated occurrences of positive literals) is needed for ob-
taining the empty clause. Now, suppose we choose the following arbitrary
selection:

1. → p, q
2. → q, r
3. → r, p
4. p, q →
5. q, r →
6. r, p →

By applying resolution involving only the selected literals we only obtain tau-
tologies of the form A → A, and after resolving with/on them we get clauses
of the initial set. Therefore this is a counter example to the completeness
of arbitrary strategies when factoring is required, even if all tautologies are
kept.

References

[BD94] Leo Bachmair and Nachum Dershowitz. Equational inference, canonical
proofs, and proof orderings. J. of the Association for Computing Machin-
ery, 41(2):236–276, February 1994.

962 M. Bofill and G. Godoy

[BDH86] Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Orderings for equa-
tional proofs. In First IEEE Symposium on Logic in Computer Science
(LICS), pages 346–357, Cambridge, Massachusetts, USA, 1986.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computa-
tion, 4(3):217–247, 1994.

[BG96] David Basin and Harald Ganzinger. Complexity Analysis Based on Or-
dered Resolution. In Eleventh Annual IEEE Symposium on Logic in Com-
puter Science (LICS), pages 456–465, New Brunswick, New Jersey, USA,
1996.

[BGLS95] L. Bachmair, H. Ganzinger, Chr. Lynch, and W. Snyder. Basic paramod-
ulation. Information and Computation, 121(2):172–192, 1995.

[BGNR99] Miquel Bofill, Guillem Godoy, Robert Nieuwenhuis, and Albert Rubio.
Paramodulation with non-monotonic orderings. In 14th IEEE Symposium
on Logic in Computer Science (LICS), pages 225–233, Trento, Italy, 1999.

[Der91] Nachum Dershowitz. Canonical sets of Horn clauses. In J. Leach Albert,
B. Monien, and M. Rodŕıguez Artalejo, editors, Proceedings of the Eigh-
teenth International Colloquium on Automata, Languages and Program-
ming (ICALP), LNCS 510, pages 267–278, Madrid, Spain, 1991. Springer-
Verlag.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B: Formal Models and Semantics, chapter 6, pages 244–320. Elsevier
Science Publishers B.V., Amsterdam, New York, Oxford, Tokyo, 1990.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Comm. of ACM, 22(8), 1979.

[dN96] Hans de Nivelle. Ordering refinements of resolution. Dissertation, Tech-
nische Universiteit Delft, Delft, 1996.

[HR91] J. Hsiang and M Rusinowitch. Proving refutational completeness of the-
orem proving strategies: the transfinite semantic tree method. Journal of
the ACM, 38(3):559–587, July 1991.

[KKR90] Claude Kirchner, Hélène Kirchner, and Michaël Rusinowitch. Deduc-
tion with symbolic constraints. Revue Française d’Intelligence Artificielle,
4(3):9–52, 1990.

[Lyn97] C. Lynch. Oriented equational logic programming is complete. Journal of
Symbolic Computation, 23(1):23–46, January 1997.

[Nie98] Robert Nieuwenhuis. Decidability and complexity analysis by basic
paramodulation. Information and Computation, 147:1–21, 1998.

[NR95] Robert Nieuwenhuis and Albert Rubio. Theorem Proving with Order-
ing and Equality Constrained Clauses. Journal of Symbolic Computation,
19(4):321–351, April 1995.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In J.A. Robinson and A. Voronkov, editors, Handbook of Auto-
mated Reasoning. Elsevier Science Publishers and MIT Press(to appear),
2001.

[Wei97] Christoph Weidenbach. SPASS—version 0.49. Journal of Automated Rea-
soning, 18(2):247–252, April 1997.

An Axiomatic Approach to Metareasoning
on Nominal Algebras in HOAS?

Furio Honsell, Marino Miculan, and Ivan Scagnetto

Dipartimento di Matematica e Informatica, Università di Udine, Italy
{honsell,miculan,scagnett}@dimi.uniud.it

Abstract. We present a logical framework Υ for reasoning on a very
general class of languages featuring binding operators, called nominal
algebras, presented in higher-order abstract syntax (HOAS). Υ is based
on an axiomatic syntactic standpoint and it consists of a simple types
theory à la Church extended with a set of axioms called the Theory of
Contexts, recursion operators and induction principles. This framework
is rather expressive and, most notably, the axioms of the Theory of
Contexts allow for a smooth reasoning of schemata in HOAS. An
advantage of this framework is that it requires a very low mathematical
and logical overhead. Some case studies and comparison with related
work are briefly discussed.

Keywords: higher-order abstract syntax, induction, logical frameworks.

Introduction

In recent years there has been growing interest in developing systems for defin-
ing and reasoning on languages featuring α-conversion. A very promising line
of approach has focused on Higher-Order Abstract Syntax (HOAS) [7,16,9]. The
gist of this approach is to delegate to type-theoretic metalanguages the machin-
ery for dealing with binders. This approach however has some drawbacks. First
of all, being equated to metalanguage variables, object level variables cannot
be defined inductively without introducing exotic terms [2,13]. A similar diffi-
culty arises with contexts, which are rendered as functional terms. Reasoning by
induction and definition by recursion on object level terms is therefore problem-
atic. Finally, the major virtue of HOAS bites back, in the sense that one looses
the possibility of reasoning on the properties which are delegated on the met-
alanguage, e.g. substitution and α-equivalence themselves. Various approaches
have been proposed to overcome these problems based on different techniques
such as modal types, functor categories, permutation models of ZF, etc. [3,4,8,
6,5,12].

The purpose of this paper is to present in broad generality yet another logical
framework for reasoning on systems presented in HOAS, called Υ , based on an
axiomatic syntactic standpoint. This system stems from the technique originally
? Work partially supported by Italian MURST TOSCA project and EC-WG TYPES.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 963–978, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

964 F. Honsell, M. Miculan, and I. Scagnetto

used by the authors in [10] for formally deriving in Coq [11] the metatheory of
strong late bisimilarity of the π-calculus as in [15].

Υ consists of a simple types theory à la Church extended with a set of axioms
called the Theory of Contexts, recursion operators and induction principles.

According to our experience, this framework is rather expressive. Higher
Order Logic allows for the impredicative definition of many relations, possibly
functional; the recursors and induction principles allow for the definition of many
important functions and properties over contexts; and most notably the axioms
in the Theory of Contexts allow for a smooth handling of schemata in HOAS.

We feel that one of the main advantages of our axiomatic approach, compared
to other semantical solutions in the literature [4,6], is that it requires a very low
mathematical and logical overhead. We do not need to introduce a new abstrac-
tion and concretion operators as in [6], but we can continue to model abstraction
with λ-abstraction and instantiation with functional application. Therefore our
approach can be easily utilized in existing interactive proof assistants, e.g. Coq,
without needing any redesign of the system.

Of course there are some tradeoffs. One of the major theoretical problems
concerning our method is the consistency of the axioms. It is here that we have
to resort to more sophisticated mathematical tools, such as functor categories,
à la Hofmann [8]. These are closer in spirit to [4,6], although not quite so, since
our method cannot be construed as a mere axiomatization of a topos, but rather
of a special tripos model. The consistency of the particular version of the system
Υ tailored to the treatment of the π-calculus is proved in [1].

Another tradeoff concerns functions. Our system does not satisfy the Axiom
of Unique Choice and hence it is functionally not very expressive. The expressive
power however can be recovered using functional relations in place of functions.

In this paper we try also to outline in full generality our methodological
protocol (which is the one underpinning [10]), using some well-known languages
as running examples.

We feel that the present work can be useful for users of interactive proof
assistants (Coq, LEGO, Isabelle [18]), as well as developers of programs/pro-
cesses/ambients calculi willing to consider higher order notions in their theories,
as well as implementors of proof assistants willing to extend their systems with
principles for reasoning on schemata.
Synopsis. In Section 1 we introduce the notion of nominal algebra, together with
some examples. In Section 2 we present the logical framework Υ , with the Theory
of Contexts. In Section 3 we discuss first-order and higher-order recursion and
induction principles in Υ . Some case studies are briefly presented in Section 4.
Conclusions and comparison with related work are in Section 5.

1 Nominal Algebras

In this section we present a rather general class of languages with binders, which
we call nominal algebras. The notion of binding signature [4] can be viewed as a
special case. Many languages we encounter in logic and computer science can be

An Axiomatic Approach to Metareasoning on Nominal Algebras 965

easily viewed as nominal algebras. Languages with infinitely many sorts (such
as the simply typed λ-calculus à la Church) or polyadic languages (such as the
polyadic π-calculus) escape the proposed format. We could have easily extended
it, at the expense of a more cumbersome notation, but this would have brought
in side issues inessential to our purposes.

Definition 1. A names set υ is an infinite enumerable set of different atomic
objects, with a decidable equality. A names base is a finite set V = {υ1, . . . , υk}
of names sets.

Definition 2. Let V = {υ1, . . . , υk} be a names base, whose elements are ranged
over by υ. Let I = {ι1, . . . , ιm} be a set of basic types, ranged over by ι.

A constructor arity over V, I for ι is a type α of the form τ1 × · · · × τn → ι,
where n ≥ 0 and for i = 1 . . . n, the type τi is either in V or it is of the form
τi = υi1 × · · · × υimi

→ σi where υij ∈ V and σi ∈ I. If mi > 0 for some i, then
α is said to be a binding arity, or to bind υi1, . . . , υimi over σi.

A constructor over V, I for ι is a typed constant cα where α is a constructor
arity over V, I. If α is a binding arity, then c is said to be a binding constructor,
or simply a binder.

A nominal algebra N is a tuple 〈V, I, C〉 where V is a set of names sets, I
is a set of basic types, and C is a set of constructors over V, I.

Example 1. Many languages can be viewed as nominal algebras.

– Untyped λ-calculus: Nλ = 〈{υ}, {Λ}, {varυ→Λ,λ(υ→Λ)→Λ, appΛ×Λ→Λ}〉
– First order logic (FOL): NFOL = 〈{υ}, {ι, φ}, {varυ→ι, 0ι, 1ι, +ι×ι→ι,

=ι×ι→φ,⊃φ×φ→φ,∀(υ→φ)→φ}〉
– Second Order Logic (SOL): NSOL = 〈{υ, υ′}, {ι, φ}, {varυ→ι, var′υ′→φ,

0ι, Sι→ι, =ι×ι→φ,⊃φ×φ→φ,∀(υ→φ)→φ, Λ(υ′→φ)→φ}〉
– π-calculus: Nπ = 〈{υ}, {ι},

{0ι, |ι×ι→ι, τ ι→ι, =υ×υ×ι→ι, ν(υ→ι)→ι, inυ×(υ→ι)→ι, outυ×υ×ι→ι}〉

Definition 3. Let N = 〈V, I, C〉 be a nominal algebra. The object language
generated by N , denoted by L(N) or simply L, is the set of well-typed terms
definable using the names in V and the constructors in C, up-to α-equivalence.
For ι ∈ I, we denote by Lι the subset of LN of terms of type ι.

A stage (in V = {υ1, . . . , υk}) is a tuple X = 〈X1, . . . , Xk〉 such that Xi ⊂ υi

finite for i = 1 . . . k. For X a stage in V , we denote by LX (resp., Lι
X) the subset

of L (resp., Lι) of terms with free names in X.

2 The Logical Framework Υ

In this section we present the type theoretic logical system Υ for reasoning
formally on nominal algebras. Many details of the underlying type theory are not
strictly intrinsic. The machinery that we define in this section could have been
based on any sufficiently expressive type theory, e.g., CIC. We picked Church
Simple Theory of Types only for simplicity.

966 F. Honsell, M. Miculan, and I. Scagnetto

−
Γ, x : τ `Σ x : τ

(VAR)

Γ `Σ M : τ 0 → τ Γ `Σ N : τ 0

Γ `Σ MN : τ
(APP)

Γ, x : τ 0 `Σ M : τ

Γ `Σ λx:τ 0.M : τ 0 → τ
(ABS)

−
Γ `Σ c : τ

(c:τ) ∈ Σc (CONST)

Γ `Σ M : o Γ `Σ N : o

Γ `Σ M ⇒ N : o
(IMP)

Γ, x : τ `Σ M : o

Γ `Σ ∀x:τ.M : o
(FORALL)

Fig. 1. Typing rules.

2.1 The Logical Framework Υ : Terms and Types

The logical framework Υ is a theory of Simple Types/Classical Higher Order
Logic à la Church (HOL) on a given signature Σ.

A type signature Σt is a finite list of atomic type symbols σ1, . . . , σn.
The simple types over a type signature Σt are ranged over by τ, σ (possi-

bly with indices or apices), and are defined by the following abstract syntax:
τ ::= o | σ | τ → τ where σ ∈ Σt

For each type there is a countably infinite disjoint set of variables.
A constant signature Σc is a finite list of constant symbols with simple types

c : τ1, . . . , cm : τm. A signature Σ consists of a type signature Σt and a constant
signature Σc.

The terms over the signature Σ = 〈Σc, Σt〉, ranged over by M, N, P, Q, R
(possibly with indices), are defined by the following abstract syntax:

M ::= x | MN | λx:τ.M | c | M ⇒ N | ∀x:τ.M where cσ ∈ Σc for some σ

As usual, we denote by M [N/x] capture-avoiding substitution. Terms are iden-
tified up-to α-conversion.

Remark 1. Primitive datatypes, such as natural numbers and lists, can be easily
added to the metalanguage. For the sake of simplicity, however, we prefer to
stick to the simplest theory of terms and types. Nevertheless, occasionally we
use natural numbers in the following examples.

A (typing) context is a finite set of typing assertions over distinct variables
(e.g. {x1 : τ1, x2 : τ2, . . . , xn : τn}). Typing contexts are ranged over by Γ .

Typing judgements have the form Γ `Σ M : τ , and they are inductively
defined by the rules in Figure 1.

Terms of type o are the propositions of our logic. Terms of type τ → o are
called predicates (over τ). As usual in HOL, all logical connectives can be defined
in terms of ∀ and ⇒. We list some definitions which will be used in the following:

⊥ , ∀P :o.P ∃x:τ.P , ¬∀x:τ.¬p M =τ N , ∀R:τ → o.(RM ⇒ RN)
¬P , P ⇒ ⊥ P ∨ Q , ¬P ⇒ Q P ∧ Q , ¬(P ⇒ ¬Q)

An Axiomatic Approach to Metareasoning on Nominal Algebras 967

2.2 Encoding Nominal Algebras in Υ

The theory of Υ is expressive enough to represent faithfully any nominal algebra.
The standard encoding methodology is based on the higher-order abstract syntax
paradigm [7,16], which can be succintely summarized as follows:

– object level names are represented by metalanguage variables;
– contexts are represented by higher-order terms, i.e. functions;
– binders are represented by constructors which take functions as arguments;
– contexts instantiation and capture-avoiding substitution are meta-level appli-

cations; hence, α-conversion is immediately inherited from the metalanguage.

Let N = 〈V, I, C〉 be a nominal algebra. The signature for N , Σ(N), is
defined as Σ(N) , 〈V ∪ I, {c : τ | cτ ∈ C}〉. Then, for each type τ ∈ V ∪ I and
for X stage in V , we define the encoding map ετ

X as follows:

– for υ ∈ V , let (ni)i be an enumeration of υ and (xi)i be an enumeration of
variables of type υ in Υ . Then, ευ

X(ni) , xi for ni ∈ Xi.
Without loss of generality, we can identify objects of υ with variables of type
υ, so that we can define ευ

X(x) , x.
– let cα ∈ C, where α = τ1 × · · · × τn → ι, τi = υi1 × · · · × υimi

→ τ ′
i (mi ≥ 0)

and τ ′
i ∈ V ∪ I. For i = 1 . . . n, let Yi be the stage whose components are

Yil , Xl] {xij | υij = υl, j = 1 . . . mi}, for l = 1 . . . k. Let ti ∈ Lτ ′i
Yi

. Then, we
define ει(cα(t1, . . . , tn)) , (c λx1:υ1.ε

τ1
Y1

(t1) . . . λxn:υn.ετn

Yn
(tn)), where λxi:υi

is a shorthand for λxi1:υi1 . . . λximi :υimi .

The canonical terms of Υ over Σ(N) correspond faithfully to L(N):
Theorem 1 (Adequacy of encoding). Let X be a stage in V , and let Γ (X) ,
{x : υi | x ∈ Xi, i = 1 . . . n}. For each type ι ∈ I, the map ει

X is a compositional
bijection between Lι

X and the set of terms in βη-normal form of type ι in the
context Γ (X).

Example 2. The nominal algebras of Example 1 can be encoded in Υ as follows:

– Untyped λ-calculus: Σ(Nλ)t = υ, Λ,
Σ(Nλ)c = var : υ → Λ, λ : (υ → Λ) → Λ, app : Λ → Λ → Λ

For instance, εΛ
∅ (λxxx) = λλx:υ.(app (var x) (var x)).

– SOL: Σ(NSOL)t = υ, υ′, ι, φ; Σ(NSOL)c = var : υ → ι, var′ : υ′ → φ, 0 :
ι, S : ι → ι, =: ι → ι → φ,⊃: φ → φ → φ,∀ : (υ → φ) → φ, Λ : (υ′ → φ) → φ

– π-calculus: Σ(Nπ)t = υ, ι; Σ(Nπ)c = 0 : ι, τ : ι → ι, | : ι → ι → ι, =: υ →
υ → ι → ι, ν : (υ → ι) → ι, in : υ → (υ → ι) → ι, out : υ → υ → ι → ι

2.3 The Logical Framework Υ : The Logic

Our framework Υ is a full-blown higher order logic. The logical derivation judge-
ment “Γ ; ∆ `Σ p” expresses the fact that p derives from the set of propositions
∆ in context Γ . ∆ is a set of propositions p1, . . . , pn such that Γ `Σ pi : o.

The system for deriving judgements consists of a set of logical rules and
axioms and a set of axioms representing the Theory of Contexts. The logical

968 F. Honsell, M. Miculan, and I. Scagnetto

Γ ; ∆, p `Σ q

Γ ; ∆ `Σ p ⇒ q
(⇒-I)

Γ ; ∆ `Σ p ⇒ q Γ ; ∆ `Σ p

Γ ; ∆ `Σ q
(⇒-E)

Γ, x : τ ; ∆ `Σ p

Γ ; ∆ `Σ ∀x:τ.p
x 6∈ FV (∆) (∀-I)

Γ ; ∆ `Σ ∀x:τ.p Γ `Σ M : τ

Γ ; ∆ `Σ p[M/x]
(∀-E)

Γ `Σ p : o

Γ ; ∆ `Σ p ∨ ¬p
(LEM)

Γ, x : τ `Σ M : σ Γ `Σ N : τ

Γ ; ∆ `Σ (λx:τ.M)N =σ M [N/x]
(β)

Γ `Σ M : τ → σ

Γ ; ∆ `Σ λx:τ.Mx =τ!σ M
x 6∈ FV (M) (η)

Γ, x : σ; ∆ `Σ M =τ N

Γ ; ∆ `Σ λx:σ.M =σ!τ λx:σ.N
(ξ)

Fig. 2. Logical rules and axioms.

H1 . . . Hn

Γ ; ∆ `Σ x 6∈ι
υ (c M1 . . . Mn)

cτ1�����τn!ι ∈ C (Notinc)

where Hi =

{
Γ ; ∆ `Σ ¬(x =υ Mi) if τi = υ

Γ, Γi; ∆, ∆i `Σ x 6∈ι′
υ (Mi y1 . . . ymi) if τi = υi1 × · · · × υimi → ι0

Γi = y1 : υi1, . . . , ymi : υimi ∆i = {¬(x =υ yj) | υj = υ, j = 1 . . . mi}

Fig. 3. Rules for non-occurrence predicates.

rules and axioms (see Figure 2) consist of a natural deduction-style system for
classical higher-order logic, with βηξ-equality.

Before introducing the Theory of Contexts, we define non-occurrence 6∈ι
υ:

υ → ι → o for each υ ∈ V and ι ∈ I. The intuitive meaning of a proposition
“x 6∈ι

υ M” (read “x not in M”) is “the name x (of type υ) does not appear free
in M (of type ι).” (The index υ will be dropped, when clear from the context.)
Since we have higher-order logic, these predicates can be defined by means of
higher-order quantifications and monotone operators over predicates, as in [1,
10]:

x 6∈ι
υ M , ∀P :υ → ι → o.(∀y:υ.∀N :ι.(T6∈ι

υ
P y N) ⇒ (P y N)) ⇒ (P x M)

where T 6∈ι
υ

: (υ → ι → o) → (υ → ι → o) is a suitable monotone operator defined
on the syntax of the language, i.e., on the constructors in C. An explicit defini-
tion of these operators, although straightforward, would be quite cumbersome,
especially in the case of languages with mutually defined syntactic sorts. Thus for
the sake of simplicity we give an implicit definition of the underlying operators
by means of a set of “derivation rules” for 6∈ι

υ, as described in Figure 3. It should
be clear, however, that these rules are derivable from the impredicative defini-
tion of the non-occurrence predicates. From a practical point of view, moreover,
a rule-based definition is closer to the approach which would be used in proof
assistants featuring inductive predicates, as it has been done in [10] using Coq.
Proposition 1 (Adequacy of 6∈τ

υ). For all Γ contexts, (x : υ) ∈ Γ and M
such that Γ `Σ M : ι, we have: Γ ; ∅ `Σ x 6∈τ

υ M iff x 6∈ FV (M)
Proof. By induction on the derivation (⇒), and on the syntax of M (⇐). ut

Non-occurrence predicates can be lifted to contexts, that is terms of type
υi1 → · · · → υik

→ ι:

An Axiomatic Approach to Metareasoning on Nominal Algebras 969

Γ `Σ P : ι

Γ ; ∆ `Σ ∃x:υ.x 6∈ P
(Unsatυ

ι)

Γ `Σ P : υ → τ Γ `Σ Q : υ → τ Γ `Σ x : υ

Γ ; ∆, x 6∈υ!τP, x 6∈υ!τQ, (P x) =τ (Q x) `Σ P =υ!τ Q
(Extτ

υ)

Γ `Σ P : τ Γ `Σ x : υ

Γ ; ∆ `Σ ∃Q:υ → τ .x 6∈υ!τ Q ∧ P =τ (Q x)
(β expτ

υ)

where τ = υi1 → · · · → υik → ι

Fig. 4. Axiom schemata for the Theory of Contexts.

x 6∈υ→τ
υ M , ∀y:υ.¬(x =υ y) ⇒ x 6∈τ

υ (M y)

x 6∈υ′→τ
υ M , ∀y:υ′.x 6∈τ

υ (M y) (υ 6= υ′)

Now we can introduce the second set of axioms (Figure 4). This is the real core
of the Theory of Contexts. We do not give any informal motivation since these
axioms reflect rather natural properties of contexts, when these are rendered by
λ-abstractions. They are crucial for reasoning on terms in higher-order abstract
syntax, see Theorem 3 and case studies (Section 4).

Remark 2. Our experience in encoding and formally proving metatheoretical
properties of nominal algebras indicates that full classical logic is not strictly
needed. Actually we could drop rule LEM in Figure 2 and simply assume that
either Leibniz equality over names is decidable or occurrence predicates of names
in terms are decidable. Indeed, this is the approach we adopted in [10]. More
specifically, the two above axioms are rendered in Υ as follows:

Γ `Σ x : υ Γ `Σ y : υ

Γ ; ∆ `Σ x =υ y ∨ x 6=υ y
(LEM=υ)

Γ `Σ x : υ Γ `Σ P : ι

Γ ; ∆ `Σ x 6∈ι
υ P ∨ ¬(x 6∈ι

υ P)
(LEM6∈ι

υ
)

It is worth noticing that LEM=υ derives directly from LEM6∈ι
υ
. On the converse,

LEM 6∈ι
υ

can be derived from LEM=υ using Unsatυι and by induction both over
plain terms and over contexts, using the principles Indι, Indυ→ι (Section 3.1.)

Remark 3. In [10] the Theory of Contexts is enriched by another rather useful
axiom stating the monotonicity of 6∈ι

υ:

Γ `Σ x : υ Γ `Σ y : υ Γ `Σ p : υ → ι

Γ ; ∆, x 6∈ι
υ (p y) `Σ x 6∈υ→ι

υ p
(MON6∈ι

υ
)

Recently, we discovered that the latter is indeed derivable from Unsatυι , LEM6∈ι
υ

and Indι. Another possibility of deriving MON6∈ι
υ

is to exploit Indυ→ι without
any other axioms, i.e., to reason inductively on the structure of the context p.

970 F. Honsell, M. Miculan, and I. Scagnetto

2.4 Properties of Υ

One upmost concern is soundness:
Theorem 2. For all nominal algebras N , the framework Υ over the signature
Σ(N) is sound, in the sense that for all Γ , it is not the case that Γ ; ∅ `Σ(N) ⊥.
The proof of this theorem relies on the construction of a model based on functor
categories, following the approach presented in [8]. The construction is quite
complex; for further details, we refer the reader to [1,19].

It would be interesting to investigate and formulate more expressive sound-
ness results, which could substantiate the intended meaning of our framework,
possibly based on this model. In this paper we discuss solely an important prop-
erty of Υ which motivates the very Theory of Contexts and can be viewed as a
first result in this direction. Let Γ `Σ p : υ → o; since terms are taken up-to
α-equivalence, we would like the following two rules to be derivable in Υ :

Γ ; ∆ `Σ ∀y:υ.y 6∈υ→o p ⇒ (p y)
Γ ; ∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)

(∀∃)
Γ ; ∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)
Γ ; ∆ `Σ ∀y:υ.y 6∈υ→o p ⇒ (p y)

(∃∀)

Indeed, we have that
Theorem 3. In Υ : ∀∃ is derivable, and ∃∀ is admissible.

Proof. (Idea.) For ∀∃: some first-order reasoning and an application of Unsatυι .
For ∃∀: after some first-order reasoning using Extτυ, it is easy to see that this

rule is implied by the following fresh renaming rule:

Γ, x : υ; ∆, x 6∈υ→o p `Σ (p x)
Γ, y : υ; ∆, y 6∈υ→o p `Σ (p y)

x, y 6∈ FV (∆) (Ren)

Rule Ren is admissible in our system, because there is no way for a predicate in
Υ to discriminate between two fresh names. Thus, a derivation for (p y) can be
readily obtained by mimicking that for (p x) by replacing every free occurrence
of x by y. ut
Using Extτυ and β expτ

υ, one can prove that the rule schema ∃∀ is indeed derivable
in Υ and many of its extensions, for most specific predicates of interest. This is
the case, for instance, of the transition relation and strong (late) bisimilarity of
π-calculus in Coq [10].

Rule Ren is only admissible because there can be non-standard notions of
“predicates” which do not satisfy rule Ren and still are consistent with respect to
the Theory of Contexts. An example can be constructed from a logical framework
with a distinct type of names ῡ, denoting the sum of all classes in the names base.
Then, in a nominal algebra with at least two names sets, it would be possible to
define a predicate over ῡ which discriminates “red” bound names from “black”
bound names, thus invalidating rule Ren.

The type theory of Υ satisfies all the usual properties of simply typed λ-
calculi:
Theorem 4. Let Γ be a context, M, N be terms and τ, σ be types.

– (Uniqueness of type) If Γ `Σ M : τ and Γ `Σ M : σ, then τ = σ

An Axiomatic Approach to Metareasoning on Nominal Algebras 971

– (Subject reduction) If Γ `Σ M : τ and Γ ; ∅ `Σ M =τ N , then Γ `Σ N : τ
– (Normal form) If Γ `Σ M : τ , then there exists N in canonical form such

that Γ ; ∅ `Σ M =τ N
– (Church-Rosser) If Γ ; ∆ `Σ M =τ N1 and Γ ; ∆ `Σ M =τ N2 then there

exists N such that Γ ; ∆ `Σ N1 =τ N and Γ ; ∆ `Σ N2 =τ N

3 Induction and Recursion in Υ

In this section we face the problem of defining relations and functions by struc-
tural induction and recursion, in Υ , and in particular over higher-order types.
This very possibility is one of the main properties of the frameworks in [6,5,4].

As originally pointed out in [8] for the case of λ-calculus, a rather surprising
tradeoff of our natural framework for treating contexts is the following:
Proposition 2. The Axiom of Unique Choice

Γ ` R : σ → τ → o Γ, a : σ; ∆ ` ∃!b : τ.(R a b)
Γ ; ∆ ` ∃f : σ → τ .∀a : σ.(R a (f a))

(AC!σ,τ)

is inconsistent with the Theory of Contexts.
Proof. Let us consider the case of the π-calculus encoding (see Nπ in Example 1),
then, by Unsatυι , we can infer the existence of two fresh names u′, v′; hence, we
can define the term R , λu : υ.λq : ι.λx : υ.λp : υ.(x =υ u ∧ p =ι 0) ∨ (¬x =υ

u ∧ p =ι q). It is easy to show that, for all p′ : ι, (R u′ p′) : υ → ι → o
is a functional binary relation. At this point we can prove, by means of Extιυ
and AC!υ,ι, that the proposition ∀p : ι.p =ι 0 holds; Indeed, from AC!υ,ι we
can deduce the existence of a function f : υ → ι such that, for all x : υ,
((R u′ p) x (f x)) holds. Hence, by Extιυ, we can prove that f =υ→ι λx : υ.p
because for any fresh name w we have that (f w) =ι p. Then we have that, for all
names y, (f y) =ι ((λx : υ.p) y) =ι p holds, whence the thesis, since (f u′) = 0.

At this point the contradiction follows because, as a special case, we have
that 0|0 = 0 while ι is an inductive type (the constructors are injective). ut
As a consequence of Proposition 2, there are (recursive) functions which cannot
be defined as such in Υ , but which can nevertheless be described as functional
(inductively defined) relations. We will elaborate more on this in Remark 4.

A rather powerful theory of recursion can nonetheless be obtained also within
Υ , following Hofmann [8], exploiting in particular the initial algebra property of
the tripos model [1].

3.1 First-Order and Higher-Order Induction

The usual induction principles can be extended naturally to terms possibly con-
taining higher-order terms. In Figure 5 we give the definition of a induction
schema for any nominal algebra. In case terms of a syntactic category contain
terms of other categories, this scheme turns out to be a mutual induction prin-
ciple. In this case several inductive properties, one for each syntactic category,
are mutually defined. This schema is a direct generalization of those obtained in
Coq by Scheme . . . Induction [11].

972 F. Honsell, M. Miculan, and I. Scagnetto

{Γ, Γc; ∆, ∆c `Σ (Pι (c x1 . . . xn)) | cτ1�����τn!ι ∈ C}
Γ ; ∆ `Σ ∀x:ι.(Pι x)

(Indι)

where τi = υi1 × · · · × υimi → ιi

Γc , x1 : τ 0
1, . . . , xn : τ 0

n (τ 0
i = υi1 → · · · → υimi → ιi)

∆c , {∀y1:υi1.∀ymi :υimi .(Pιi (xi y1 . . . ymi)) | i = 1, . . . , n, τi 6∈ V }

Fig. 5. First-order induction principle.

{Γ, Γc; ∆, ∆c `Σ (Pυ!ι λx:υ.(c t1 . . . tn)) | cτ1�����τn!ι ∈ C}
Γ ; ∆ `Σ ∀M :υ → ι.(Pυ!ι M)

(Indυ!ι)

where τi = υi1 × · · · × υimi → ιi and

Γc , {Mi : υ → τ 0
i | τi 6∈ V } ∪ {xi : τi | τi ∈ V } (τ 0

i = υi1 → · · · → υimi → ιi)

∆c , {∀y1:υi1 . . . ∀ymi :υimi .(Pυ!ιi λx:υ.(Mi x y1 . . . ymi)) | i = 1, . . . , n, τi 6∈ V }

ti ,

(Mi x) if τi 6∈ V

xi if τi ∈ V, τi = υ

xi or x if τi = υ

Fig. 6. Higher-order induction principle.

Example 3. The induction principle over terms of π-calculus of the previous
examples is the following:

Γ ; ∆ ` (Pι 0) Γ, x : ι; ∆, (Pι x) ` (Pι (τx))
Γ, x1 : ι, x2 : ι; ∆, (Pι x1), (Pι x2) ` (Pι (x1|x2))

Γ, x1 : υ, x2 : υ, x3 : ι; ∆, (Pι x3) ` (Pι [x1 = x2]x3)
Γ, x : υ → ι; ∆, ∀y:υ.(Pι (x y)) ` (Pι νx)

Γ, x1 : υ, x2 : υ → ι; ∆, ∀y:υ.(Pι (x2 y)) ` (Pι (in x1 x2))
Γ, x1 : υ, x2 : υ, x3 : ι; ∆, (Pι x3) ` (Pι (out x1 x2 x3))

Γ ; ∆ ` ∀x:ι.(Pι x)

The induction principles can be consistently axiomatized also for higher-order
terms, i.e. contexts. For the sake of simplicity, we present the general forms of
induction principles for simple contexts, that is terms of type υ → ι (Figure 6).
Nevertheless, the principles can be generalized to any number of abstractions;
see [1] for an example and for the semantic justification.

Notice that the terms ti’s are non deterministically defined. In the case that
τi is exactly υ, both the “xi” and “x” cases apply. This means that two premises,
one for each possible case, have to be taken. Hence, for each constructor c of
type τ1 × · · · × τn → ι, if υ occurs k times in the sequence τ1, . . . , τn, then in the
rule there are 2k premises. The following example should make this clear.

An Axiomatic Approach to Metareasoning on Nominal Algebras 973

F τ elimination scheme over τ in Γ

Γ `Σ F̂ τ
ι : ι → τ

(F̂ τ
ι)

Γ `Σ F̂ τ
ι : ι → τ Γ `Σ t1:τ1 . . . Γ `Σ tn:τn

Γ ; ∆ `Σ (F̂ τ
ι (c t1 . . . tn)) =τ (fc M1 . . . Mn)

(F̂ τ
ι eqc)

where cτ1�����τn!ι ∈ C, fc ∈ F τ and for i = 1 . . . n:

Mi ,
{

λxi1:υi1 . . . λximi :υimi .(F̂
τ
ιi

(ti xi1 . . . ximi)) if τi = υi1 × · · · × υimi → ιi

ti if τi ∈ V

Fig. 7. First-order recursion typing and equivalence rules

Example 4. The induction principle over contexts of λ-calculus is the following:

Γ, x1 : υ; ∆ ` (P λx:υ.(var x1)) Γ, x1 : υ; ∆ ` (P λx:υ.(var x))
Γ, M1:υ → Λ, M2:υ → Λ; ∆, (P M1), (P M2) ` (P λx:υ.(app (M1 x) (M2 x)))

Γ, M1 : υ → υ → Λ; ∆, ∀y1:υ.(P λx:υ.(M1 x y1)) ` (P λx:υ.(λ(M1 x)))
Γ ; ∆ ` ∀M :υ → Λ.(P M)

This principle is stronger than the one provided by Coq. In fact, Coq does not
recognize that (M1 x) is structurally smaller than λx : υ.(λ (M1 x)).

3.2 First-Order and Higher-Order Recursion

Despite the drawback we mentioned earlier, many interesting functions can be
defined by recursion anyway. Υ can be extended with recursion operators or
simply recursors, which smoothly generalize the usual ones for plain datatypes
to HOAS types, and even higher-order types.
Definition 4. Let N = 〈V, I, C〉 be a nominal algebra. Let ι ∈ I, τ be a type in
Σ(N), and let Γ be a context. An elimination scheme over τ (in Γ) is a family
of terms F τ = {fc | cα ∈ C} such that for cτ1×···×τn→ι ∈ C, we have

Γ ` fc : τ ′
1 → · · · → τ ′

n → τ

where τ ′
i ,

{
τi if τi ∈ V

υi1 → · · · → υimi → τ if τi = υi1 × · · · × υimi → ιi

Let F τ be an elimination scheme in Γ . For each ι in I, we introduce in the
language a new symbol, F̂ τ

ι , called the F -defined recursive map over ι. In Figure 7
we give the typing rules for each recursive map, and the equivalence rules for
each constructor. This schema naturally generalizes the usual one to the case of
mutually defined recursive maps, and to terms possibly containing higher-order
terms. This schema is validated by the model of the Theory of Contexts [1]. This
recursion schema allows to define many functions on the syntax of terms, e.g.,
the function which counts the number of abstractions in λ-terms.

Recursion principles can be consistently axiomatized for higher-order terms,
i.e. contexts. For the sake of simplicity, we present the general forms of recur-
sion principles for simple contexts, that is terms of type υ → ι. Nevertheless,

974 F. Honsell, M. Miculan, and I. Scagnetto

F τ υ-elimination scheme over τ in Γ

Γ `Σ F̂ τ
ι : (υ → ι) → τ

(F̂ τ
ι)

Γ `Σ F̂ τ
ι : (υ → ι) → τ {Γ `Σ ti : υ → τi | τi 6∈ V } {Γ `Σ yi : τi | τi ∈ V }

Γ ; ∆ `Σ (F̂ τ
ι λx:υ.(c N1 . . . Nn)) =τ (f l

c M1 . . . Mn)
(F̂ τ

ι eql
c)

where cτ1�����τn!ι ∈ C, l ∈ L(τ1 × · · · × τn → ι), f l
c ∈ F τ , and for i = 1 . . . n:

Ni =

(ti x) if τi 6∈ V

yi if τi ∈ V and (τi 6= υ or li = 1)
x if τi = υ and li = 0

Mi =

λxi1:υi1 . . . λximi :υimi .(F̂
τ
ιi

λx:υ.(ti x xi1 . . . ximi))
if τi = υi1 × · · · × υimi → ιi

yi if τi ∈ V and (τi 6= υ or li = 1)
(nothing) if τi = υ and li = 0

Fig. 8. Higher-order recursion typing and equivalence rules.

the principles can be generalized to any number of abstractions; see [1] for an
example and for the semantic justification of the principles.

Before giving the definitions and the rules, we need some notation. Let α =
τ1 × · · · × τn → ι be an arity of constructor. Let υ ∈ V and let 1 ≤ i1 ≤ · · · ≤
ik ≤ n (k ≥ 0) be the indices such that τij

= υ. Let L(α) , {0, 1}k be the set of
binary strings of length k, which we call the labels for α. (Thus, |L(α)| = 2k.)
For j = 1 . . . k, the j-th component of a label l is denoted by lij , that is it has
the same index of the occurrence of υ in τ1 . . . τn it refers to. Finally, we denote
by l • (τ ′

1 → · · · → τ ′
n → τ) the type obtained from τ ′

1 → · · · → τ ′
n → τ by

eliminating τ ′
ij

if lij = 0.

Definition 5. Let ι ∈ I, υ ∈ V , in Σ(N), and let Γ be a context. A υ-
elimination scheme over τ (in Γ) is a family of terms F τ = {f l

c | cα ∈ C, l ∈
L(α)} such that for cτ1×···×τn→ι ∈ C and l ∈ L(τ1 × · · · × τn → ι), we have

Γ ` f l
c : l • (τ ′

1 → · · · → τ ′
n → τ)

where τ ′
i ,

{
υ if τi = υ

υi1 → · · · → υimi
→ τ if τi = υi1 × · · · × υimi

→ ιi

Hence, for each constructor cα, there are |L(α)| terms in F τ .
Let F τ be a υ-elimination scheme in Γ . For each ι in I, we introduce in the

language a new symbol, F̂ τ
ι , called the F -defined recursive map over υ → ι. In

Figure 8 we give the typing rules for each recursive map, and the equivalence
rules for each term in F τ . This schema is validated by the categorical model of
the Theory of Contexts [1].

Example 5. In the signature Σ(Nλ), we will define, by higher-order recursion,
the substitution ·[N/·] for a given λ-term such that Γ ` N : Λ. The three sets of

An Axiomatic Approach to Metareasoning on Nominal Algebras 975

labels are L(υ → Λ) = {0, 1}, L(Λ → Λ → Λ) = L((υ → Λ) → Λ) = {〈〉}. Thus,
let FΛ , {f0

var, f
1
var, fapp, fλ} where f0

var , N , f1
var , var, fapp , app, fλ , λ.

Then, FΛ is a υ-elimination schema in Γ , such that Γ ` F̂Λ
Λ : (υ → Λ) → Λ and

the following are derivable:

−
Γ ; ∆ ` F̂Λ

Λ (var) =Λ N

Γ ` y : υ

Γ ; ∆ ` F̂Λ
Λ (λx:υ.(var y)) =Λ (var y)

Γ ` M : υ → υ → Λ

Γ ; ∆ ` F̂Λ
Λ (λx:υ.λ(M x)) =Λ λλx:υ.F̂Λ

Λ (M x)
Γ ` M1 : υ → Λ Γ ` M2 : υ → Λ

Γ ; ∆ ` F̂Λ
Λ (λx:υ.(app (M1 x) (M2 x)) =Λ (app F̂Λ

Λ (M1) F̂Λ
Λ (M2))

Hence, for any M term and x variable, the term F̂Λ
Λ (λx:υ.M) is equal to the

term obtained from M by replacing every free occurrence of x by N .

Remark 4. There are functions that we cannot define in Υ . The reason is that,
Υ does not allow to define functions whose definitions need freshly generated
names, since there is no means for generating a “fresh name” at the term level,
while we can use Unsatυτ for generating fresh names at the logical level. Nev-
ertheless, n-ary functions of this kind can be represented in Υ as (n + 1)-ary
relations, as in the next Example.

Example 6. Let us consider the function count : Λ → nat which takes as argu-
ment a term M of type Λ and returns the number of occurrences of free vari-
ables occurring in M . The corresponding elimination scheme over nat should be
fvar , λx : υ.1, fapp , λn : nat.λn′ : nat.n + n′, fλ , λg : υ → nat.(g z) ·−1,
where ·−1 denotes the predecessor function over natural numbers. However, the
above definition cannot be expressed in Υ since the fresh name z, needed in
the definition of fλ, is not definable. We do not have a mechanism working at
the level of datatypes for generating fresh names on the spot, like Gabbay and
Pitts’ fresh operator [6]. It is straightforward that, in the presence of such a fresh
operator, fλ can be defined as λg : υ → nat.fresh z.(g z) ·−1. However, we can
represent fλ as a binary relation Rλ : (υ → nat) → nat → o defined as

Rλ(g, n) , ∃z : nat.z 6∈υ→nat g ∧ (g z) ·−1 =nat n
the existence of the fresh variable z being granted by Unsatυnat. Hence, the fresh
operator can be mimicked at the logical level by our Unsatυι axiom scheme.

4 Case Studies

In order to prove the usability and expressiveness of our axiomatic Theory of
Contexts, we carried out several case studies about metatheoretical reasoning
on HOAS-based encodings. The first case study, which indeed yielded the first
version of our axiomatization, is the encoding of Milner’s π-calculus as presented
in [15]. We refer for more details to [10]; here we will only remark that the Theory
of Contexts allowed us to formally derive in Coq a substantial chapter of the
metatheory of strong late bisimilarity. For instance, the following property

976 F. Honsell, M. Miculan, and I. Scagnetto

[15, Lemma 6] If P
.∼ Q and w 6∈ fn(P, Q), then P{w/x} .∼ Q{w/x}.

has been formally derived, using all axioms of the Theory of Contexts.
Another substantial case study concerned the untyped and simply typed λ-

calculus in Coq [14]. A set of important metatheoretical results has been formally
proved by means of the Theory of Contexts, such as determinism and totality
of substitution:

For all M, N, x, there exists exactly one M ′ such that M ′ = M [N/x].

In this development, substitution has been defined as a relation between contexts
and terms, and the proof of totality relies on higher-order induction over con-
texts. Other properties which have been proved include determinism and totality
of big-step semantics, subject reduction and equivalence between small-step and
big-step semantics. A similar case study has been carried out for First Order
Logic, and on a smaller scale for a λ-calculus with explicit substitutions.

Currently there is work in progress on more complex process algebras, namely
the spi calculus and the ambient calculus. These case studies are quite challenging
for testing the expressivity of our axiomatization, since they provide a notion
of substitution of terms for names, while the original π-calculus only relies on
substitution of names for names. Some of the modal logics for ambient calculi are
troublesome also because they introduce distinct sets for names and variables.

5 Comparison with Related Work and Concluding
Remarks

The Theory of Contexts and Isabelle/HOL. The Theory of Contexts can be
used in many different logical frameworks in order to reason on higher-order
abstract syntax. A HOAS-based encoding of the syntax of π-calculus processes
in Isabelle/HOL is given in [18]. The axioms MON6∈ι

υ
, Extιυ and β expι

υ

are formally derived there from well-formedness predicates. The proof of the
monotonicity of the occurrence predicate 6∈ι

υ is straightforward, since this is
not defined independently, but simply as the negation of ∈ι

υ. It can be formally
proved equivalent to the constructive one, however, by means of Unsatυι and
Indι and LEM=υ . The proofs of extensionality and β-expansion rely heavily on
the fact that Isabelle/HOL implements an extensional equality. These proofs
cannot be mimicked in COQ.
The FM approach. Gabbay and Pitts in [6] introduce a system, called FM, with
a special quantifier for expressing freshness of names. The intuitive meaning of
y.p is “p holds for y a fresh name”. resembles both ∀ and ∃, and it satisfies

the rules:

Γ, y#x ` p

Γ ` y.p

Γ ` y.p Γ, p, y#x ` q

Γ ` q

where x is the “support” of p. In the Theory of Contexts, y.p and y#x can be
encoded as follows:

y.p , ∀y:υ.y 6∈υ→o (λy:υ.p) ⇒ p y#x , y 6∈o p

An Axiomatic Approach to Metareasoning on Nominal Algebras 977

Rules, corresponding to the ones above, can then be easily derived using the
Theory of Contexts. The abstraction (x.a) and instantiation (a@x) operators
are taken as primitives in FM. In our approach both can be rendered naturally,
using the features of the metalanguage: the first as λ-abstraction, the latter as
application. Notice that instantiation in FM is only partially defined, i.e., when
x is not in the support of a, i.e., the free variables of a. The fresh operator, on
the other hand, cannot be encoded at the level of terms. Its uses however can
be recovered at the level of predicates, see the paragraph below. It is interesting
to notice that this condition has a bearing on the fact that AC! holds in FM.

Correspondingly, suitable adaptations of our Theory of Contexts are vali-
dated in the FM. More experiments need to be carried out to verify the ade-
quacy of these translations, and to compare the advantages of using FM versus
the Theory of Contexts in, possibly mechanized, proof search.
Programming in Υ . Currently there is a great deal of research on programming
languages featuring contexts and binding structures as datatypes [17,12,5]. The
term language of Υ could be extended naturally to a functional programming
language to this end, possibly adding a fixed point operator. However, in view
of Remark 4 this would not be a very expressive language. A much better alter-
native would be to define separately a programming language whose semantics
would be the functional relations in Υ . An operational semantics for this lan-
guage could be given directly or in a logic programming style. A program logic
for this language should be derivable from Υ . More work needs to be done in
this direction.
Completeness of the Theory of Contexts. An open question.

References

1. A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and I. Scagnetto. Using functor
categories to explain and justify an axiomatization of variables and schemata in
HOAS. In preparation, 2001.

2. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order syntax in Coq. In Proc.
of TLCA’95, LNCS 905. Springer-Verlag, 1995.

3. J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher
order abstract syntax. Technical Report CMU-CS-96-172, Carnegie Mellon Uni-
versity, September 1996.

4. M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In
G. Longo, ed., Proc. 14th LICS, pages 193–202. IEEE, 1999.

5. M. J. Gabbay. A Theory of Inductive Definitions With α-equivalence. PhD thesis,
Trinity College, Cambridge University, 2000.

6. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. In G. Longo, ed., Proc. 14th LICS, pages 214–224. IEEE, 1999.

7. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, Jan. 1993.

8. M. Hofmann. Semantical analysis of higher-order abstract syntax. In G. Longo,
ed., Proc. 14th LICS, pages 204–213. IEEE, 1999.

9. F. Honsell and M. Miculan. A natural deduction approach to dynamic logics. In
Proc. of TYPES’95, LNCS 1158, pages 165–182. Springer-Verlag, 1996.

978 F. Honsell, M. Miculan, and I. Scagnetto

10. F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory.
TCS 253(2):239–285, 2001. First appeared as a talk at TYPES’98 annual workshop.

11. INRIA. The Coq Proof Assistant, 2000. http://coq.inria.fr/doc/main.html .
12. R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax.

In Proc. 12th LICS. IEEE, 1997.
13. M. Miculan. Encoding Logical Theories of Programs. PhD thesis, Dipartimento di

Informatica, Università di Pisa, Italy, Mar. 1997.
14. M. Miculan. Encoding and metareasoning of call-by-name λ-calculus. Available at

http://www.dimi.uniud.it/˜miculan/CoqCode/HOAS, 2000.
15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-

form. and Comput., 100(1):1–77, 1992.
16. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc. of ACM SIG-

PLAN ’88, pages 199–208, 1988.
17. A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names

modulo renaming. In Proc. MPC2000, LNCS 1837, pages 230–255. Springer, 2000.
18. C. Röckl, D. Hirschkoff, and S. Berghofer. Higher-order abstract syntax with

induction in Isabelle/HOL: Formalising the π-calculus and mechanizing the theory
of contexts. In Proc. FOSSACS 2001, LNCS 2030, pages 359–373. Springer, 2001.

19. I. Scagnetto. Reasoning on Names In Higher-Order Abstract Syntax. PhD thesis,
Dip. di Matematica e Informatica, Università di Udine, 2002. In preparation.

Knuth-Bendix Constraint Solving Is
NP-Complete

Konstantin Korovin and Andrei Voronkov

University of Manchester
{korovin,voronkov}@cs.man.ac.uk

Abstract. We show the NP-completeness of the existential theory of
term algebras with the Knuth-Bendix order by giving a nondetermin-
istic polynomial-time algorithm for solving Knuth-Bendix ordering con-
straints.

1 Introduction

Solving ordering constraints in term algebras with various reduction orders is
used in rewriting to prove termination of recursive definitions, and in automated
deduction to prune the search space [2,7,13]. Nieuwenhuis [13] connects further
progress in automated deduction with constraint-based deduction.

Two kinds of orders are used in automated deduction: the Knuth-Bendix
order [8] and various versions of recursive path orders [3]. The Knuth-Bendix
order is used in the state-of-the-art theorem provers, for example, E [15], SPASS
[16], Vampire [14], and Waldmeister [4]. There is extensive literature on solving
recursive path ordering constraints (e.g., [2,6,12,11]). The decidability of Knuth-
Bendix ordering constraints was proved only recently in [9]. The algorithm de-
scribed in that paper shows that the problem belongs to 2-NEXPTIME. It was
also shown that the problem is NP-hard by reduction of the solvability of systems
of linear Diophantine equations to the solvability of the Knuth-Bendix ordering
constraints. In this paper we present a nondeterministic polynomial-time algo-
rithm for solving Knuth-Bendix ordering constraints, and hence show that the
problem is NP-complete. As a consequence, we obtain that the existential first-
order theory of any term algebra with a Knuth-Bendix order is NP-complete
too.

This paper is structured as follows. In Section 2 we define the main notions
of this paper. In Section 3 we introduce the notion of isolated form of constraints
and show that every constraint can be effectively transformed into an equivalent
disjunction of constraints in isolated form. This transformation is represented as
a nondeterministic polynomial-time algorithm computing members of this dis-
junction. After this, it remains to show that solvability of constraints in isolated
form can be decided by a nondeterministic polynomial-time algorithm. In Sec-
tion 4 we present such an algorithm using transformation to systems of linear
Diophantine inequalities over the weights of variables. Finally, in Section 5 we
complete the proof of the main result.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 979–992, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

980 K. Korovin and A. Voronkov

The proofs in this paper are rather involved and we had to omit some of them
because of the page limit. For the proofs of statements labeled with ut consult
[10].

2 Preliminaries

A signature is a finite set of function symbols with associated arities. In this paper
we assume an arbitrary but fixed signature Σ. Constants are function symbols of
the arity 0. We assume that Σ contains at least one constant. We denote variables
by x, y, z and terms by r, s, t. The set of all ground terms of the signature Σ can
be considered as the term algebra of this signature, TA(Σ), by defining the inter-
pretation gTA(Σ) of any function symbol g by gTA(Σ)(t1, . . . , tn) = g(t1, . . . , tn).
For details see e.g. [5].

Denote the set of natural numbers by N. We call a weight function on Σ any
function w : Σ → N. A precedence relation on Σ is any linear order � on Σ.

The definition of the Knuth-Bendix order on TA(Σ) is parametrized by (i)
a weight function w on Σ; and (ii) a precedence relation � on Σ such that
(a) w(a) > 0 for every constant a and (b) if f is a unary function symbol and
w(f) = 0, then f must be the greatest element of Σ w.r.t. �. These conditions
on the weight function ensure that the Knuth-Bendix order is a simplification
order total on ground terms (see e.g., [1]). In this paper, f will always denote a
unary function symbol of the weight 0.

In the sequel we assume a fixed weight function w on Σ and a fixed precedence
relation � on Σ. The weight of any ground term t, denoted |t|, is defined as
follows: for any constant c we have |c| = w(c) and for any function symbol g of
a positive arity |g(t1, . . . , tn)| = w(g) + |t1| + . . . + |tn|.

The Knuth-Bendix order on TA(Σ) is the binary relation � defined as follows.
For any ground terms t = g(t1, . . . , tn) and s = h(s1, . . . , sk) we have t � s if
one of the following conditions holds:

1. |t| > |s|;
2. |t| = |s| and g � h;
3. |t| = |s|, g = h and for some 1 ≤ i ≤ n we have t1 = s1, . . . , ti−1 = si−1 and

ti � si.

The main result of this paper is the following

Theorem 2: The existential first-order theory of any
term algebra with the Knuth-Bendix order is NP-
complete.

To prove this, we introduce a notion of Knuth-Bendix ordering constraint
and show

Theorem 1: The problem of solving Knuth-Bendix or-
dering constraints is NP-complete.

Knuth-Bendix Constraint Solving Is NP-Complete 981

The proof will be given after a series of lemmas. The idea of the proof is as
follows. First, we will make TA(Σ) into a two-sorted structure by adding the
sort of natural numbers, and extend its signature by (i) the weight function on
ground terms; (ii) the addition function on natural numbers; (iii) the Knuth-
Bendix order on ground terms.

Given an existential formula of the first-order theory of a term algebra with
the Knuth-Bendix order, we will transform it step by step into an equivalent
disjunction of existential formulas of the extended signature. The main aim of
these steps is to replace all occurrences of � by linear Diophantine inequalities
on the weights of variables. After such a transformation we will obtain existential
formulas consisting of linear Diophantine inequalities on the weight of variables
plus statements expressing that, for some fixed natural number N , there exists
at least N terms of the same weight as |x|, where x is a variable. We will then
show how these statements can be expressed using systems of linear Diophantine
inequalities on the weights of variables and then we can use a nondeterminis-
tic polynomial-time algorithm to solve obtained systems of linear Diophantine
inequalities.

We denote by TA+(Σ) the following structure with two sorts: the term al-
gebra sort and the arithmetical sort . The domains of the term algebra sort and
the arithmetical sort are the sets of ground terms of Σ and natural numbers, re-
spectively. The signature of TA+(Σ) consists (i) of all symbols of Σ interpreted
as in TA(Σ), (ii) symbols 0, 1, >, + having their conventional interpretation over
natural numbers, (iii) the binary relation symbol � on the term algebra sort,
interpreted as the Knuth-Bendix order, (iv) the unary function symbol | . . . |,
interpreted as the weight function. When we need to distinguish the equality =
on the term algebra sort from the equality on the arithmetical sort, we denote
the former by =TA, and the latter by =N.

We will prove that the existential theory of TA+(Σ) is in NP, from which the
fact that the existential theory of any term algebra with the Knuth-Bendix order
belongs to NP follows immediately. We consider satisfiability and equivalence of
formulas with respect to the structure TA+(Σ). We call a constraint in the
language of TA+(Σ) any conjunction of atomic formulas of this language.

Proposition 1. The existential theory of TA+(Σ) is in NP if and only if so is
the constraint satisfiability problem.

A substitution is a mapping from a set of variables to the set of terms. A
substitution θ is called grounding for an expression C (i.e., term or constraint)
if for every variable x occurring in C the term θ(x) is ground. Let θ be a substi-
tution grounding for an expression C. We denote by Cθ the expression obtained
from C by replacing in it every variable x by θ(x). A substitution θ is called a
solution to a constraint C if θ is grounding for C and Cθ is valid.

In the sequel we will often replace a constraint C(x̄) by a formula A(x̄, ȳ)
containing extra variables ȳ and say that they are “equivalent”. By this we mean
that TA+(Σ) |= ∀x̄(C(x̄) ↔ ∃ȳA(x̄, ȳ)). In other words, the solutions to C are
exactly the solutions to A projected on x̄.

982 K. Korovin and A. Voronkov

3 Isolated Forms

We are interested not only in satisfiability of constraints, but also in their solu-
tions. Our algorithm will consist of equivalence-preserving transformation steps.
When the signature contains no unary function symbol of the weight 0, the trans-
formation will preserve equivalence in the following strong sense. At each step,
given a constraint C(x̄), we transform it into constraints C1(x̄, ȳ), . . . , Cn(x̄, ȳ)
such that for every sequence of ground terms t̄, the constraint C(t̄) holds if
and only if there exist k and a sequence of ground terms s̄ such that Ck(t̄, s̄)
holds. Moreover this transformations will be presented as a nondeterministic
polynomial-time algorithm which computes on every branch some Ci(x̄, ȳ), and
every Ci(x̄, ȳ) is computed on at least one branch. When the signature contains a
unary function symbol of the weight 0, the transformation will preserve a weaker
form of equivalence: some solutions will be lost, but solvability will be preserved.

In our proof, we will reduce solvability of Knuth-Bendix ordering constraints
to the problem of solvability of systems of linear Diophantine inequalities on the
weights of variables. Condition 1 of the definition of the Knuth-Bendix order |t| >
|s| has a simple translation into a linear Diophantine inequality, but conditions
2 and 3 do not. So we will split the Knuth-Bendix order in two partial orders:
�w corresponding to condition 1 and �lex corresponding to conditions 2 and 3.
Formally, we denote by t �w s the formula |t| > |s| and by t �lex s the formula
|t| =N |s| ∧ t � s. Obviously, t1 � t2 if and only if t1 �lex t2 ∨ t1 �w t2. So in the
sequel we will assume that � is replaced by the new symbols �lex and �w.

We use x1 � x2 � . . . � xn to denote the formula x1 � x2 ∧ x2 � x3 ∧ . . . ∧
xn−1 � xn, and similar for other binary symbols in place of �.

A term t is called flat if t is either a variable or has the form g(x1, . . . , xm),
where g ∈ Σ, m ≥ 0, and x1, . . . , xm are variables. We call a constraint chained
if (i) it has a form t1#t2# . . . #tn, where each occurrence of # is �w, �lex or
=TA, (ii) each term ti is flat, (iii) if some of the ti’s has the form g(x1, . . . , xn),
then x1, . . . , xn are some of the tj ’s. Denote by ⊥ the logical constant “false”.
Lemma 1. Any constraint C is equivalent to a disjunction C1 ∨ . . . ∨ Ck of
chained constraints. Moreover, there exists a nondeterministic polynomial-time
algorithm which, for a given C, computes on every branch either ⊥ or some Ci;
and every Ci is computed on at least one branch. ut

We will now introduce several special kinds of constraints which will be used
in our proofs below, namely arithmetical, triangle,simple and isolated. A con-
straint is called arithmetical if it uses only arithmetical relations =N and >, for
example |f(x)| > |a| + 3. A constraint y1 =TA t1 ∧ . . . ∧ yn =TA tn is said to be
in triangle form if (i) y1, . . . , yn are pairwise different variables, and (ii) for all
j ≥ i the variable yi does not occur in tj . The variables y1, . . . , yn are said to be
dependent in this constraint. A constraint is said to be simple if it has the form

x11 �lex x12 �lex . . . �lex x1n1 ∧ . . . ∧ xk1 �lex xk2 �lex . . . �lex xknk
,

where x11, . . . , xknk
are pairwise different variables. A constraint is said to be in

isolated form if either it is ⊥ or it has the form Carith ∧ Ctriang ∧ Csimp , where

Knuth-Bendix Constraint Solving Is NP-Complete 983

Carith is an arithmetical constraint, Ctriang is in triangle form, and Csimp is a
simple constraint such that no variable of Csimp is dependent in Ctriang .

Our decision procedure for Knuth-Bendix ordering constraints is designed
as follows. By Lemma 1 we can transform any constraint into an equivalent
disjunction of chained constraints. Our next step is to give a transformation of
any chained constraint into an equivalent disjunction of constraints in isolated
form. Then in Section 4 we show how to transform any constraint in isolated
form into an equivalent disjunction of systems of linear Diophantine inequalities
on the weights of variables. Then we can use the result that the decidability of
systems of linear Diophantine inequalities is in NP.

Let us show how to transform any chained constraint into an equivalent
disjunction of isolated forms. The transformation will work on the constraints
of the form

Cchain ∧ Carith ∧ Ctriang ∧ Csimp , (1)

such that (i) Carith , Ctriang , Csimp are as in the definition of isolated form; (ii)
Cchain is a chained constraint; (iii) each variable of Cchain neither occurs in Csimp
nor is dependent in Ctriang . We will call such constraints (1) working . Let us call
the size of a chained constraint C the total number of occurrences of function
symbols and variables in C. Likewise, the essential size of a working constraint
is the size of its chained part Cchain .

At each transformation step we will replace working constraint (1) by a dis-
junction of working constraints but of smaller essential sizes. Evidently, when
the essential size is 0, we obtain a constraint in isolated form.

Let us prove some lemmas about solutions to constraints of the form (1).
Note that any chained constraint is of the form

t11#t12# . . . #t1m1

�w

· · ·
�w

tk1#tk2# . . . #tkmk
,

(2)

where each # is either =TA or �lex and each tij is a flat term. We call a row in
such a constraint any maximal subsequence ti1#ti2# . . . #timi

in which �w does
not occur. So constraint (2) contains k rows, the first one is t11#t12# . . . #t1m1

and the last one tk1#tk2# . . . #tkmk
. Note that for any solution to (2) all terms

in a row have the same weight.
Lemma 2. There exists a polynomial-time algorithm which transforms any
chained constraint C into an equivalent chained constraint that is either ⊥, or
of the form (2) and has the following property. Suppose some term of the first
row t1j is a variable y. Then either

1. y has exactly one occurrence in C, namely t1j itself; or
2. y has exactly two occurrences in C, both in the first row: some t1n has the

form f(y) for n < j, and w(f) = 0; moreover in this case there exists at
least one �lex between t1n and t1j. ut

984 K. Korovin and A. Voronkov

It is not hard to argue that the transformation of Lemma 2 does not increase
the size of the constraint.

We will now take a working constraint Cchain ∧Carith ∧Ctriang ∧Csimp , whose
chained part satisfies Lemma 2 and transform it into an equivalent disjunction
of working constraints of smaller essential sizes. More precisely, these constraints
will be equivalent when the signature contains no unary function symbol of the
weight 0. When the signature contains such a symbol f , a weaker notion of
equivalence will hold.

A term s is called an f-variant of a term t if s can be obtained from t by a
sequence of operations of the following forms: replacement of a subterm f(r) by
r or replacement of a subterm r by f(r). Evidently, f -variant is an equivalence
relation. Two substitutions θ1 and θ2 are said to be f -variants if for every variable
x the term xθ1 is an f -variant of xθ2. In the proof of several lemmas below we
will replace a constraint C(x̄) by a formula A(x̄, ȳ) containing extra variables
ȳ and say that C(x̄) and A(x̄, ȳ) are equivalent up to f . By this we mean the
following.

1. For every substitution θ1 grounding for x̄ such that TA+(Σ) |= C(x̄)θ1, there
exists a substitution θ2 grounding for x̄, ȳ such that TA+(Σ) |= A(x̄, ȳ)θ2,
and the restriction of θ2 to x̄ is an f -variant of θ1.

2. For every substitution θ2 grounding for x̄, ȳ such that TA+(Σ) |= A(x̄, ȳ)θ2,
there exists a substitution θ1 such that TA+(Σ) |= C(x̄)θ1 and θ1 is an
f -variant of the restriction of θ2 to x̄.

Note that when the signature contains no unary function symbol of the weight
0, equivalence up to f is the same as ordinary equivalence.

Lemma 3. Let C = Cchain ∧Carith ∧Ctriang ∧Csimp be a working constraint and
θ1 be a solution to C. Let θ2 be an f-variant of θ1 such that (i) θ2 is a solution
to Cchain and (ii) θ2 coincides with θ1 on all variables not occurring in Cchain .
Then there exists an f-variant θ3 of θ2 such that (i) θ3 is a solution to C and
(ii) θ3 coincides with θ2 on all variables except for the dependent variables of
Ctriang . ut

This lemma will be used below in the following way. Instead of considering
the set Θ1 of all solutions to Cchain we can restrict ourselves to a subset Θ2 of
Θ1 as soon as for every solution θ1 ∈ Θ1 there exists a solution θ2 ∈ Θ2 such
that θ2 is an f -variant of θ1.

Let us call an f-term any term of the form f(t). By the f-height of a term
t we mean the number n such that t = fn(s) and s is not an f -term. Note that
the f -terms are exactly the terms of a positive f -height. We call the f-distance
between two terms s and t the difference between the f -height of s and f -height
of t. For example, the f -distance between the terms f(a) and f(f(g(a, b)) is −1.

Let us now prove a lemma that restricts f -height of solutions.

Lemma 4. Let Cchain be a chained constraint of the form pl#pl−1# . . . #p1 �w

. . . , where each # is either =TA or �lex . Further, let Cchain satisfy the conditions
of Lemma 2 and θ be a solution to Cchain . Then there exists an f-variant θ′ of

Knuth-Bendix Constraint Solving Is NP-Complete 985

θ such that (i) θ′ is a solution to Cchain and (ii) for every k ∈ {1, . . . , l}, the
f-height of pkθ′ is at most k.

Proof. Let us first prove the following statement

(3) The row pl#pl−1# . . . #p1 has a solution θ1, such that (i) θ1 is an f -
variant of θ, (ii) for every 1 < k ≤ l the f -distance between pkθ1 and pk−1θ1
is at most 1.

Suppose that for some k the f -distance between pkθ and pk−1θ is d > 1. Evi-
dently, to prove (3) it is enough to show the following.

(4) There exists a solution θ2 such that (i) θ2 is an f -variant of θ, (ii) the
f -distance between pkθ2 and pk−1θ2 is d − 1, and (iii) for every k′ 6= k the
f -distance between pk′θ2 and pk′−1θ2 coincides with the f -distance between
pk′θ and pk′−1θ.

Let us show (4), and hence (3). Since θ is a solution to the row, then for every
k′′′ ≥ k the f -distance between any pk′′′θ and pkθ is nonnegative. Likewise, for
every k′′ < k − 1 the f -distance between any pk−1θ and pk′′θ is nonnegative.
Therefore, for all k′′′ ≥ k > k′′, the f -distance between pk′′′θ and pk′′θ is ≥ d,
and hence is at least 2. Let us prove the following.

(5) Every variable x occurring in the sequence pl#pl−1# . . . #pk does not
occur in pk−1# . . . #p1.

Let x occur in both pl#pl−1# . . . #pk and pk−1# . . . #p1. Since the constraint
satisfies Lemma 2, then pi = f(x) and pj = x. Then the f -distance between piθ
and pjθ is 1, but by our assumption it is at least 2, so we obtain a contradiction.
Hence (5) is proved.

Now note the following.

(6) If for some k′′′ ≥ k a variable x occurs in pk′′′ , then xθ is an f -term.

Suppose, by contradiction, that xθ is not an f -term. Note that pk′′′ has a positive
f -height, so pk′′′ is either x of f(x). But we proved before that the f -distance
between pk′′′ and pk−1 is at least 2, so x must be an f -term.

Now, to satisfy (4), define the substitution θ2 as follows:

θ2(x) =
{

θ(x), if x does not occur in pl, . . . , pk,
t, if x occurs in pl, . . . , pk and θ(x) = f(t).

By (5) and (6), θ2 is defined correctly. We claim that θ2 satisfies (4). The prop-
erties (i)-(iii) of (4) are straightforward by our construction, it only remains to
prove that θ2 is a solution to the row, i.e. for every k′ we have pk′θ2#pk′−1θ2.
Well, for k′ > k we have pk′θ = f(pk′θ2) and pk′−1θ = f(pk′−1θ2), and for k′ < k
we have pk′θ = pk′θ2 and pk′−1θ = pk′−1θ2, in both cases pk′θ2#pk′−1θ2 follows
from pk′θ#pk′−1θ. The only difficult case is k = k′.

986 K. Korovin and A. Voronkov

Assume k = k′. Since the f -distance between pkθ and pk−1θ is d > 1, we have
pkθ 6= pk−1θ, and hence pk#pk−1 must be pk �lex pk−1. Since θ is a solution to
pk �lex pk−1 and since θ2 is an f -variant of θ, the weights of pkθ2 and pk−1θ2
coincide. But then pkθ2 �lex pk−1θ2 follows from the fact that the f -distance
between pkθ2 and pk−1θ2 is d − 1 ≥ 1.

Now the proof of (4), and hence of (3), is completed. In the same way as (3),
we can also prove

(7) The constraint Cchain has a solution θ′ such that (i) θ′ is an f -variant
of θ, (ii) for every 1 < k ≤ l the f -distance between pkθ1 and pk−1θ

′ is at
most 1. (iii) the f -height of p1θ

′ is at most 1; (iv) θ′ and θ coincide on all
variables occurring in the rows below the first one.

It is not hard to derive Lemma 4 from (7).

Lemma 5. Let C = Cchain ∧ Carith ∧ Ctriang ∧ Csimp be a working constraint
in which Cchain is nonempty. There exists a nondeterministic polynomial-time
algorithm which transforms C into a disjunction of working constraints having
Cchain of smaller sizes and equivalent to C up to f .
Proof. The proof is rather complex, so we will give a plan of it. The proof is pre-
sented as a series of transformations on the first row of C. These transformations
may result in new constraints added to Carith , Ctriang , and Csimp . First, we will
get rid of equations s =TA t in the first row, by introducing quasi-flat terms, i.e.
terms fk(t), where t is flat. If the first row contained no function symbols, then
we simply eliminate the first row, thus decreasing the size of the chained part.
If there were function symbols in the first row, we continue as follows.

We “guess” the values of some variables x of the first row, i.e. replace them
by some quasi-flat term fm(g(ȳ)), where ȳ is a sequence of new variables. After
these steps, the size of the first row can, in general, increase. Then we show how
to replace the first row by new constraints involving only variables occurring in
the row, but not function symbols. Finally we prove that the number of variables
from the new constraints that remain in the chained part is not greater than the
original number of variables in the first row, and therefore the size of the chained
part decreases.

Consider the first row of Cchain . Let this row be pl#pl−1# . . . #p1. Then
Cchain has the form pl#pl−1# . . . #p1 �w t1# . . . #tn. If l = 1, i.e., the first
row consists of one term, we can remove this row and add |p1| > |t1| to Carith
obtaining an equivalent constraint with smaller essential size. So we assume that
the first row contains at least two terms.

As before, we assume that f is a unary function symbol of the weight 0. By
Lemma 4, if some pi is either a variable x or a term f(x), it is enough to search
for solutions θ such that the height of xθ is at most l.

A term is called quasi-flat if it has the form fk(t) where t is flat. We will now
get rid of equalities in the first row, but by introducing quasi-flat terms instead
of the flat ones. When we use notation fk(t) below, we assume k ≥ 0, and f0(t)
will stand for t. Let us first get rid of equalities of the form fk(x) =TA fm(y)
and then of all other equalities.

Knuth-Bendix Constraint Solving Is NP-Complete 987

If the first row contains an equality fk(x) =TA fm(y), we do the following. If
x coincides with y and k 6= m, then the constraint is unsatisfiable. If x coincides
with y and k = m, we replace fk(x) =TA fm(y) by fk(x). Assume now that x
is different from y. Without loss of generality assume k ≥ m. We add y =TA
fk−m(x) to Ctriang , and replace all other occurrences of y in Cchain (if any) by
fk−m(x). Note that other occurrences of y in Cchain can only be in the first row,
and only in the terms fr(y).

After all these transformations we can assume that equalities fk(x) =TA
fm(y) do not occur in the first row.

If the first row contains an equality x =TA t between a variable and a term,
we replace this equality by t, replace all occurrences of x by t in the first row,
and add x =TA t to Ctriang obtaining an equivalent working constraint.

If the first row contains an equality g(x1, . . . , xm) =TA h(t1, . . . , tn) where g
and h are different function symbols, the constraint is unsatisfiable.

If the first row contains an equality g(x1, . . . , xn) =TA g(y1, . . . , yn) we do
the following. If the term g(x1, . . . , xn) coincides with g(y1, . . . , yn), replace this
equality by g(x1, . . . , xn). Otherwise, find the smallest number i such that xi is
different from yi and (i) add yi =TA xi to Ctriang ; (ii) replace all occurrences of
yi in Cchain by xi.

So we can now assume that the first row contains no equalities and hence
it has the form qn �lex qn−1 �lex . . . �lex q1, where all of the terms qi are
quasi-flat.

If all of the qi are variables, we can move qn �lex qn−1 �lex . . . �lex q1 to
Csimp and add |q1| > |t1| to Carith obtaining an equivalent working constraint
of smaller essential size. Hence, we can assume that at least one of the qi is a
nonvariable term.

Take any term qk in the first row such that qk is either a variable x or a term
fr(x). Note that other occurrences of x in Cchain can only be in the first row,
and only in the terms of the form fk(x).

Consider the formula G defined as

∨

g∈Σ−{f}

∨

m=0...l

x =TA fm(g(ȳ)). (8)

where ȳ is a sequence of pairwise different new variables. Since we proved that
it is enough to restrict ourselves to solutions θ for which the height of xθ is at
most l, the formulas C and C ∧ G are equivalent up to f .

Using the distributivity laws, C ∧ G can be turned into an equivalent dis-
junction of formulas x =TA fm(g(ȳ)) ∧ C. For every such formula, replace x by
fm(g(ȳ)) in the first row, and add x =TA fm(g(ȳ)) to the triangle part. We do
this transformation for all terms in the first row of the form fk(z), where k ≥ 0
and z is a variable.

Let us show how to replace constraints of the first row with equiva-
lent constraints consisting of constraints on variables and arithmetical con-
straints. Consider the pair qn, qn−1. Now qn = fk(g(x1, . . . , xu)) and qn−1 =
fm(h(y1, . . . , yv)) for some variables x1, . . . , xu, y1, . . . , yv and function symbols

988 K. Korovin and A. Voronkov

g, h ∈ Σ − {f}. Then qn �lex qn−1 is fk(g(x1, . . . , xu)) �lex fm(h(y1, . . . , yv)).
If k < m or (k = m and h � g), then fk(g(x1, . . . , xu)) �lex fm(h(y1, . . . , yv))
is equivalent to ⊥. If k > m or (k = m and g � h), then fk(g(x1, . . . , xu)) �lex
fm(h(y1, . . . , yv)) is equivalent to the arithmetical constraint |g(x1, . . . , xu)| =N

|h(y1, . . . , yv)| which can be added to Carith . If k = m and g = h (and hence
u = v), then

fk(g(x1, . . . , xu)) �lex fm(h(y1, . . . , yv)) ↔ |g(x1, . . . , xu)| =N |h(y1, . . . , yv)| ∧∨

i=1...u

(x1 =TA y1 ∧ . . . ∧ xi−1 =TA yi−1 ∧ xi � yi).

We can now do the following. Add |g(x1, . . . , xu)| =N |h(y1, . . . , yv)| to Carith
and replace qn �lex qn−1 with the equivalent disjunction

∨

i=1...u

(x1 =TA y1 ∧ . . . ∧ xi−1 =TA yi−1 ∧ xi � yi).

Then using the distributivity laws turn this formula into the equivalent dis-
junction of constraints of the form C ∧x1 =TA y1 ∧ . . .∧xi−1 =TA yi−1 ∧xi � yi

for all i = 1 . . . u. For each of these constraints, we can move, as before, the equal-
ities x =TA y one by one to the triangle part Ctriang , and make Cchain ∧ xi � yi

into a disjunction of chained constraints as in Lemma 1.
Let us analyze what we have achieved. After these transformations, in each

member of the obtained disjunction the first row is removed from the chained
part Cchain of C. Since the row contained at least one function symbol, each
member of the disjunction will contain at least one occurrence of a function
symbol less than the original constraint. This is enough to prove termination of
our algorithm, but not enough to present it as a nondeterministic polynomial-
time algorithm. The problem is that, when pn is a variable x or a term f(x),
one occurrence of x in pn can be replaced by one or more constraints of the form
xi � yi, where xi and yi are new variables. To be able to show that the essential
sizes of each of the resulting constraints is strictly less than the essential size of
the original constraint, we have to modify our algorithm slightly.

The modification will guarantee that the number of new variables introduced
in the chained part of the constraint is not greater than the number of variables
eliminated from the first row. We will achieve this by moving some constraints
to the simple part Csimp .

The new variables only appear when we replace a variable in the first row
by a term fk(h(u1, . . . , um)) or by fk(h(v1, . . . , vm)) obtaining a constraint
fk(h(u1, . . . , um)) �lex fk(h(v1, . . . , vm)), which is then replaced by

u1 =TA v1 ∧ . . . ∧ ui−1 =TA vi−1 ∧ ui � vi. (9)

Let us call a variable ui (respectively, vi) new if fk(h(u1, . . . , um)) appeared in
the first row when we replaced a variable by a nonvariable term containing h
using formula (8). In other words, new variables are those that did not occur in
the first row before our transformation, but appeared in the first row during the

Knuth-Bendix Constraint Solving Is NP-Complete 989

transformation. All other variables are called old. After the transformation we
obtain a conjunction E of constraints of the form xi =TA xj or xi � xj , where
xi, xj can be either new or old. Without loss of generality we can assume that this
conjunction of constraints does not contain chains of the form x1# . . . #xn#x1
where n ≥ 2 and at least one of the #’s is �. Indeed, if E contains such a chain,
then it is unsatisfiable.

We will now show that the number of new variables can be restricted by
moving constraints on these variables into the triangle or simple part. Among
the new variables, let us distinguish the following three kinds of variables. A new
variable x is called blue in E if E contains a chain x =TA x1 =TA . . . =TA xn,
where xn is an old variable. Evidently, a blue variable x causes no harm since it
can be replaced by an old variable xn. Let us denote by ≺ the inverse relation
to �. A new variable x is called red in E if it is not blue in E and E contains a
chain x#x1# . . . #xn, where xn is an old variable, and all of the #’s are either
=TA, or �, or ≺. Red variables are troublesome, since there is no obvious way
to get rid of them. However, we will show that the number of red variables is
not greater than the number of replaced variables (such as the variable x in (8)).
Finally, all variables that are neither blue nor red in E are called green in E.

Getting rid of green variables. We will now show that the green variables
can be moved to the simple part of the constraint Csimp . To this end, note an
obvious property: if E contains a constraint x#y and x is green, then y is green
too. We can now do the following with the green variables. As in Lemma 1,
we can turn all the green variables into a disjunction of chained constraints of
the form v1# . . . #vn, where # are =TA, �w, or �lex , and use the distributivity
laws to obtain chained constraints v1# . . . #vn. Let us call this constraint a
green chain. Then, if there is any equality vi =TA vi+1 in the green chain,
we add this equality to Ctriang and replace this equality by vi+1 in the chain.
Further, if the chain has the form v1 �lex . . . �lex vk �w vk+1# . . . #vn, we add
v1 �lex . . . �lex vk to Csimp and |vk| > |vk+1| to Carith , and replace the green
chain by vk+1# . . . #vn. We do this transformation until the green chain becomes
of the form v1 �lex . . . �lex vk. After this, the green chain can be removed from
E and added to Csimp . Evidently, this transformation can be presented as a
nondeterministic polynomial-time algorithm.

Getting rid of blue variables. If E contains a blue variable x, then it also
contains a chain of constraints x =TA x1 =TA . . . =TA xn, where xn is an old
variable. We replace x by xn in C and add x =TA xn to the triangle part Ctriang .

Red variables. Let us show the following: in every term fk(h(u1, . . . , um))
in the first row at most one variable among u1, . . . , um is red. It is not hard
to argue that it is sufficient to prove a stronger statement: if for some i the
variable ui is red or blue, then all variables u1, . . . , ui−1 are blue. So suppose
ui is red and ui#yn# . . . #y1 is a shortest chain in E such that y1 is old. We
prove that the variables u1, . . . , ui−1 are blue, by induction on n. When n = 1,
E contains either ui � y1 or y1 � ui, where y1 is old. Without loss of generality
assume that E contains ui � y1. Then (cf. (9)) this equation appeared in E
when we replaced fk(h(u1, . . . , um)) �lex fk(h(v1, . . . , vm)) by u1 =TA v1 ∧ . . .∧

990 K. Korovin and A. Voronkov

ui−1 =TA vi−1 ∧ ui � vi and y1 = vi. But then E also contains the equations
u1 =TA v1, . . . , ui−1 =TA vi−1, where the variables v1, . . . , vi−1 are old, and so
the variables u1, . . . , ui−1 are blue. In the same way we can prove that if ui is
blue then u1, . . . , ui−1 are blue. The proof for n > 1 is similar, but we use the
fact that v1, . . . , vi−1 are blue rather than old.

To complete the transformation, we add all constraints on red variables to
Cchain and make Cchain into a disjunction of chained constraint as in Lemma 1.

When we completed the transformation on the first row, the row disappears
from the chained part Cchain of C. If the first row contained no function symbols,
the size of Cchain will become smaller, since several variables will be removed
from it. If Cchain contained at least one function symbol, that after the transfor-
mation the number of occurrences of function symbols in Cchain will decrease.
Some red variables will be introduced, but we proved that their number is not
greater than the number of variables eliminated from the first row. Therefore,
the size of Cchain strictly decreases after the transformation.

Again, it is not hard to argue that the transformation can be presented as a non-
deterministic polynomial-time algorithm computing all members of the resulting
disjunction of constraints.

Lemmas 1 and 5 imply the following:

Lemma 6. Let C be a constraint. Then there exists a disjunction C1∨. . .∨Cn of
constraints in isolated form equivalent to C up to f . Moreover, members of such
a disjunction can be found by a nondeterministic polynomial-time algorithm.

4 From Constraints in Isolated Form to Systems of
Linear Diophantine Inequalities

Let C be a constraint in isolated form Csimp ∧ Carith ∧ Ctriang . Our decision
algorithm will be based on a transformation of the simple constraint Csimp into
an equivalent disjunction D of arithmetical constraints. Then we can check the
satisfiability of the resulting formula D∧Carith by using an algorithm for solving
systems of linear Diophantine inequalities on the weights of variables.

To transform Csimp into an arithmetical formula, observe the following. The
constraint Csimp is a conjunction of the constraints of the form x1 �lex . . . �lex
xN having no common variables. To solve such a constraint we have to ensure
that at least N different terms of the same weight as x1 exist.

Lemma 7. There exists a polynomial time of N algorithm, which constructs
an existential formula at leastN (x) of Presburger arithmetic valid on a natural
number x if and only if there exists at least N different terms of the weight x. ut

5 Main Result

Theorem 1. Knuth-Bendix ordering constraint solving is NP-complete.

Knuth-Bendix Constraint Solving Is NP-Complete 991

Proof. Take a constraint. By Lemma 5 it can be effectively transformed into
an equivalent disjunction of isolated forms, so it remains to show how to check
satisfiability of constraints in isolated form. Suppose that C is in isolated form

Carith ∧ Ctriang ∧ Csimp . (10)

Let Csimp contain a chain x1 �lex . . . �lex xN such that x1, . . . , xN does
not occur in the rest of Csimp . Denote by C ′

simp the constraint obtained from
Csimp by removing this chain. It is not hard to argue that C is equivalent to the
constraint

Carith ∧ Ctriang ∧ C ′
simp ∧

∧

i=2...N

(|xi| =N |x1|) ∧ at leastN (|x1|).

In this way we can replace Csimp by an arithmetical constraint, so we assume
that Csimp is empty. Let Ctriang have the form y1 =TA t1 ∧ . . . ∧ yn =TA tn.
Let Z be the set of all variables occurring in Carith ∧ Ctriang . It is not hard to
argue that Carith ∧ Ctriang is satisfiable if and only if the following constraint is
satisfiable:

Carith ∧ |y1| =N |t1| ∧ . . . ∧ |yn| =N |tn| ∧ ∧
z∈Z at least1(|z|).

So we reduced the decidability of the existential theory of term algebras with a
Knuth-Bendix order to the problem of solvability of systems of linear Diophan-
tine inequalities. Our proof can be represented as a nondeterministic polynomial-
time algorithm.

Let us refer to [9] where it is shown that the problem is NP-hard by reduction
of the solvability of systems of linear Diophantine equations to the solvability of
the Knuth-Bendix ordering constraints.

This result and Theorem 1 implies the main result of this paper.

Theorem 2. The existential first-order theory of any term algebra with the
Knuth-Bendix order is NP-complete.

References

1. F. Baader and T. Nipkow. Term Rewriting and and All That. Cambridge University
press, Cambridge, 1998.

2. H. Comon. Solving symbolic ordering constraints. International Journal of Foun-
dations of Computer Science, 1(4):387–411, 1990.

3. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Sci-
ence, 17:279–301, 1982.

4. Th. Hillenbrand, A. Buch, R. Vogt, and B. Löchner. Waldmeister: High-
performance equational deduction. Journal of Automated Reasoning, 18(2):265–
270, 1997.

5. W. Hodges. Model theory. Cambridge University Press, 1993.

992 K. Korovin and A. Voronkov

6. J.-P. Jouannaud and M. Okada. Satisfiability of systems of ordinal notations with
the subterm property is decidable. In J.L. Albert, B. Monien, and M. Rodŕıguez-
Artalejo, editors, Automata, Languages and Programming, 18th International Col-
loquium, ICALP’91, volume 510 of Lecture Notes in Computer Science, pages 455–
468, Madrid, Spain, 1991. Springer Verlag.

7. H. Kirchner. On the use of constraints in automated deduction. In A. Podelski,
editor, Constraint Programming: Basics and Tools, volume 910 of Lecture Notes in
Computer Science, pages 128–146. Springer Verlag, 1995.

8. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon
Press, Oxford, 1970.

9. K. Korovin and A. Voronkov. A decision procedure for the existential theory of
term algebras with the Knuth-Bendix ordering. In Proc. 15th Annual IEEE Symp.
on Logic in Computer Science, pages 291–302, Santa Barbara, California, June
2000.

10. K. Korovin and A. Voronkov. Knuth-Bendix constraint solving is NP-complete.
Preprint CSPP-8, Department of Computer Science, University of Manchester,
February 2000.

11. P. Narendran, M. Rusinowitch, and R. Verma. RPO constraint solving is in NP. In
G. Gottlob, E. Grandjean, and K. Seyr, editors, Computer Science Logic, 12th In-
ternational Workshop, CSL’98, volume 1584 of Lecture Notes in Computer Science,
pages 385–398. Springer Verlag, 1999.

12. R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing
Letters, 47:65–69, 1993.

13. R. Nieuwenhuis. Rewrite-based deduction and symbolic constraints. In
H. Ganzinger, editor, Automated Deduction—CADE-16. 16th International Con-
ference on Automated Deduction, Lecture Notes in Artificial Intelligence, pages
302–313, Trento, Italy, July 1999.

14. A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, Automated
Deduction—CADE-16. 16th International Conference on Automated Deduction,
Lecture Notes in Artificial Intelligence, pages 292–296, Trento, Italy, July 1999.

15. S. Schulz. System abstract: E 0.3. In H. Ganzinger, editor, Automated Deduction—
CADE-16. 16th International Conference on Automated Deduction, Lecture Notes
in Artificial Intelligence, pages 297–301, Trento, Italy, July 1999.

16. C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt,
and D. Topic. System description: Spass version 1.0.0. In H. Ganzinger, editor,
Automated Deduction—CADE-16. 16th International Conference on Automated
Deduction, volume 1632 of Lecture Notes in Artificial Intelligence, pages 378–382,
Trento, Italy, July 1999.

Amalgamation in Casl via Enriched Signatures

Lutz Schröder1, Till Mossakowski1, and Andrzej Tarlecki2,3

1 BISS, Department of Computer Science, Bremen University
2 Institute of Informatics, Warsaw University

3 Institute of Computer Science, Polish Academy of Sciences

Abstract. We construct a representation of the institution of the alge-
braic specification language Casl in an institution called enriched Casl.
Enriched Casl satisfies the amalgamation property, which fails in the
Casl institution, as well as its converse. Thus, the previously suggested
institution-independent semantics of architectural specifications is ac-
tually applicable to Casl. Moreover, a variety of results for institutions
with amalgamation, such as computation of normal forms and theorem
proving for structured specifications, can now be used for Casl.

Introduction

The use of formal methods within the development process of software systems is
important especially for complex or safety-critical systems. Here, ‘formal’ implies
that the specification is based on a logical system, with a rigorously defined
syntax and semantics. It has been recognized that structuring operations for
the specification of software systems can be studied largely independently of
the underlying logical system; the most prominent formalization of this concept
is the notion of institution [14]. Several institution independent languages for
structuring specifications, among them ASL+ [2,24,25], the module algebra in
[11], ACT TWO [12,13], and development graphs [21], have been investigated.
The recently developed language Casl [9,10,22] has an institution independent
semantics of both structured and architectural specifications (where the latter
have the purpose of structuring implementations rather than specifications). An
institution independent proof system for ASL-like specifications (parametrized
over a proof system for the respective institution) is presented in [6].

For each of these institution independent specification languages, central re-
sults require the underlying institution to have the so-called amalgamation pro-
perty (also referred to as exactness). Roughly speaking, this property states that
models of given signatures can be combined to yield a uniquely determined model
of a compound signature, provided that the original models are mutually com-
patible. The amalgamation property allows the computation of normal forms for
specifications [4,6]; it is a prerequisite for good behaviour w.r.t. parametrization
[13] and conservative extensions [11]. The combination of implementations in
the semantics of architectural specifications crucially depends on amalgamation
[27]. The proof system for development graphs with hiding [21], which allow a

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 993–1004, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

994 L. Schröder, T. Mossakowski, and A. Tarlecki

management of change for structured specifications, is sound only for instituti-
ons with amalgamation. Last but not least, a Z-like state based language over
an arbitrary institution with amalgamation has been developed in [3].

Many standard logical systems (like multisorted equational and first-order
logic with the respective standard notions of model) admit amalgamation, so
quite often this property is taken for granted in work on specification formalisms
(cf. e.g. [25]). However, the expected amalgamation property fails in the setting
of order-sorted algebra (when subsort relations are interpreted as arbitrary in-
jections1), in particular in the Casl institution. Generally, the amalgamation
property fails to hold if there are components in the models that are not named
in the signatures, e.g. the implicit universe in unsorted first-order logic (which
destroys amalgamation for disjoint unions of signatures), the implicit set of kinds
in LF [15], the implicit set of worlds in temporal or modal logics, or the implicit
subsort injections in the Casl logic.

The solution proposed here is to represent the Casl institution in an insti-
tution (called enriched Casl) that does have amalgamation. In this way, most
of the results cited above can be applied to Casl by forming compound (coli-
mit) signatures in the enriched signature category; the details of how this affects
the actual work with Casl specifications are briefly discussed in Section 5. The
institution independent form of this technique is used in the semantics of Casl
architectural specifications as outlined in [27].

We refer to [1,19] for categorical terminology left unexplained here.

1 Institutions

The considerations ahead deal with aspects of the notion of institution [14]. An
institution I consists of a category Sign of signatures, a model functor

Mod : Signop → CAT,

where CAT denotes the quasicategory of categories and functors [1], and further
components which formalize sentences and satisfaction. In this context, we need
only the category of signatures and the model functor.

A cocone for a diagram in Sign is called amalgamable if it is mapped to a
limit under Mod. I (or Mod) has the (finite) amalgamation property if (finite)
colimit cocones in Sign are amalgamable, i.e. if Mod preserves (finite) limits.
If, conversely, Mod reflects limits, I (or Mod) is called definitionally complete.
(Possibly more appropriate notions such as 2-limits or bilimits [5] are out of the
scope of this paper). Definitional completeness, which makes the colimit pro-
perty a necessary condition for amalgamability of cocones, is required, e.g., to
ensure ‘almost completeness’ for the static architectural semantics of [27]. It is
easily seen that, under cocompleteness of the signature category, a model func-
tor that has the amalgamation property is definitionally complete iff it reflects
1 This overcomes the drawbacks of the subsorts-as-inclusions approach, namely that

satisfaction is not closed under isomorphism, unless extra conditions like local filtra-
tion are assumed, which, however, behave bad w.r.t. colimits.

Amalgamation in Casl via Enriched Signatures 995

isomorphisms. Informally speaking, definitional completeness means that iden-
tifying symbols, adding a new symbol to a signature (without constraining it by
axioms), or altering ‘properties’ of a symbol always modifies the model class.

2 Standard CASL Signatures

The specification language Casl (Common Algebraic Specification Language)
has been designed by CoFI, the international Common Framework Initiative
for Algebraic Specification and Development [9]. Its features include first-order
logic, partial functions, subsorts, and structured and architectural specifications.

We sketch the definition of Casl signatures and their models; for further
details see [7,10]. A (standard) Casl signature Σ consists of a preordered set S
of sorts and sets of total and partial function symbols and predicate symbols.
Function and predicate symbols are written f : w → s and p : w, respectively,
where s is a sort and w is a string of sorts, thus determining their name and
profile. Symbols with identical names are said to be in an overloading relation if
their argument sorts have a common subsort and their result sorts (in the case
of function symbols) have a common supersort. Partial function symbols may
become total on subsorts, but not vice versa.

A signature morphism consists of an order-preserving map between the as-
sociated sort preorders and maps between the symbol sets that are compatible
with symbol profiles, preserve totality (i.e. may map partial to total function
symbols, but not vice versa), and preserve overloading. This defines the (cocom-
plete) signature category CASLsign.

A model of a Casl signature is an interpretation of the sorts by sets and of
the sort preorder by injective maps between these sets such that composition
and identities are preserved (in other words: a functor from the thin category
associated to the sort preorder into the category of sets and injective maps), of
the partial (total) function symbols by partial (total) functions between the sets
specified by their profiles, and of the predicate symbols by relations. The inter-
pretations of overloaded symbols are required to agree on common subsorts of
the argument sorts via the corresponding subsort injections. Model morphisms
are defined by the usual homomorphism condition (also w.r.t. the subsort em-
beddings) and preservation of predicate satisfaction.

Thus, we have a category ModCASL(Σ) of Σ-models; this assigment extends
to a model functor ModCASL : CASLsignop → CAT in the standard way. It is
well known that amalgamation fails for this model functor; the simplest example
is the following:

Example 1. Let Σ be the signature with sorts s and t (and no operations), and
let Σ1 be the extension of Σ by the subsort relation s < t. Then the pushout

Σ - Σ1

Σ1

?
- Σ1

?

996 L. Schröder, T. Mossakowski, and A. Tarlecki

in CASLsign fails to be amalgamable (since two models of Σ1, compatible w.r.t.
the inclusion of Σ, may interpret the subsort embedding by different injections).

Incidentally, ModCASL also fails to be definitionally complete: e.g., the in-
clusion Σ1 ↪→ Σ2, where Σ1 contains sorts s < t and an operation f : s and Σ2
contains an additional symbol f : t, induces an isomorphism between the two
model categories.

3 Enriched Signatures

We now introduce a category of enriched signatures in which standard signatures
can be represented via a suitable functor. Moreover, we equip this signature
category with a model functor which has the amalgamation property and is
definitionally complete, and which extends the original model functor up to a
natural isomorphism; this enables us to treat amalgamability in the extended
setting.

Example 1 suggests that the failure of amalgamation for standard signatures
can be remedied by replacing the sort preorder by a sort category that admits
more than one embedding between two sorts (similar category sorted algebras,
although without a view on amalgamation, appear in [23]). This will be the main
feature to distinguish enriched and standard signatures. We will certainly conti-
nue to require embeddings to be monomorphic; categories in which all morphisms
are monomorphisms will be called left cancellable.

Moreover, there is an elegant way of handling the overloading of function and
predicate symbols: introducing left and right actions of the sort category on the
symbols. In the case of a unary function symbol f : s → t and sort embeddings
d : u → s, e : t → v, these actions give rise to function symbols f · d : u → t and
e · f : s → v:

t
e- v

��
f ·d� ��e·f�

u
d
- s

f
6

(The right action also applies to predicate symbols.) The appropriate behaviour
of models w.r.t. overloading can then be ensured by requiring that the diagrams
that arise from the actions as above are translated to commutative diagrams of
maps (operations) in the models. This requirement replaces the rather cumber-
some overloading axioms for models needed in the case of standard signatures;
similarly, overloading preservation for signature morphisms now becomes a much
more straightforward equivariance condition.

Thus, we arrive at the following
Definition 2. An enriched (Casl) signature Σ consists of

(i) a left cancellable sort category S with morphisms called embeddings;
(ii) a class F of function symbols and a class P of predicate symbols; symbols

have profiles as in the case of standard signatures;

Amalgamation in Casl via Enriched Signatures 997

(iii) a unary totality predicate on F ;
(iv) a left action of S on F which assigns to each function symbol f : w → s

and each sort morphism e : s → t a function symbol e · f : w → t;
(v) a right (multi)action of S on F which assigns to each function symbol

f : s1 . . . sn → t and each tuple of sort embeddings d = (di : ui → si)i=1,...,n
a function symbol f · d : u1 . . . un → t, and a similar right action on P .

These data are subject to the following axioms:

(i) The associative law and the identity law hold in the obvious sense (e.g., in
the above notation, id · f = f and (e · f) · d = e · (f · d)).

(ii) For a sort embedding e and function symbols f , g with appropriate profiles,
e · f = e · g implies f = g.

(iii) Let f , e, and d be as above. If f is total, then f · d and e · f are total.
Moreover, if e · f is total, then f is total.

A signature morphism σ between enriched signatures consists of a functor bet-
ween the sort categories and a pair of maps between the classes of function and
predicate symbols, respectively; all three components are denoted by σ. σ is re-
quired to be compatible with symbol profiles and to preserve totality. Moreover,
σ is assumed to be equivariant w.r.t. the actions of the sort categories; i.e. if f ,
e, and d are as above, then

σ(e) · σ(f) = σ(e · f) and σ(f) · σ(d) = σ(f · d),

similarly for predicate symbols. An enriched signature is called small if its sort
category and its symbol classes are small. Small enriched signatures and signa-
ture morphisms form a category enrCASLsign.

More precisely, one should say that enrCASLsign is a 2-category: 2-cells
between signature morphisms are natural transformations between the functor
parts that satisfy the obvious naturality condition w.r.t. symbols. In particular,
one has a notion of equivalence of enriched signatures defined in the usual way
via ‘inverses up to isomorphism’. As in the case of categories, it is straightforward
to show that such a definition of equivalence is equivalent to the following:
Definition 3. A signature morphism σ is called an equivalence if the functor
part of σ is an equivalence, σ is, in the obvious sense, full and faithful on symbols,
and whenever σ(f) is a total function symbol, then so is f .

A crucial point is that the collection of all sets and partial maps can now
be regarded as a signature. (Due to the rather different treatment of overloa-
ding, there is no obvious way to make this work for the signatures defined in
[23]). More precisely: we have an enriched signature which has the category of
sets and injective maps as sort category and n-ary partial functions and rela-
tions as function and predicate symbols, respectively, with the obvious totality
predicate and assignment of profiles. The actions of the sort category are given
by composition (in the case of the right action, by composition with cartesian
products of maps or, for predicates, by taking preimages under such products).
This enriched signature will be denoted by Setp.

This enables us to define models in the spirit of Lawvere [18]:

998 L. Schröder, T. Mossakowski, and A. Tarlecki

Definition 4. A model of an enriched signature Σ with sort category S is a
signature morphism

Σ → Setp.

A morphism between two such models σ, τ is a natural transformation µ between
σ and τ , regarded as functors S → Set, such that the usual homomorphism con-
dition w.r.t. function symbols holds and satisfaction of predicates is preserved.

Thus, we have a model category of Σ, which we denote by Modenr(Σ).
A signature morphism Σ1 → Σ2 induces, via composition of signature mor-
phisms, a functor Modenr(Σ2) → Modenr(Σ1), so that we have a model functor
Modenr : enrCASLsignop → CAT.

Now the representing functor Enr : CASLsign → enrCASLsign acts on
standard signatures by first forming a suitable completion of the symbol sets
— closing symbol profiles under the sort preorder — to account for the actions
of the sort embeddings, and then reinterpreting the data in the usual way (i.e.
the sort preorder is interpreted as a thin category, and the actions of the sort
category are defined using the mentioned closure of symbol profiles). Thanks
to overloading preservation, this assignment on objects extends to a functor as
required. Note that Enr is faithful, but is neither full nor injective on objects
and, of course, does not preserve colimits.

It is easily verified that one indeed has a natural isomorphism

Modenr ◦ Enrop → ModCASL.

In particular, as indicated above,
Proposition 5. A cocone in CASLsign is amalgamable w.r.t. ModCASL iff
its image under Enr is amalgamable w.r.t. Modenr.

Finally,
Proposition 6. enrCASLsign is cocomplete.

4 Amalgamation and Definitional Completeness

In order to prove amalgamation and definitional completeness for enriched Casl,
we introduce a further representation of enriched signatures in a suitable class
of small categories which is easily seen to have the said properties; we then go
on to show that the representation is sufficiently well-behaved to transfer these
properties back to the setting of enriched signatures. In an intermediate step, we
introduce a coding of enriched signatures as equational partial specifications in
the sense of [8], thus essentially providing an extension of the existing embedding
of the Casl logic into partial first-order logic with equality. Full proofs, mostly
omitted here, can be found in the forthcoming [26].

Let Lex denote the category of small left exact (lex) categories (i.e. small
categories with finite limits) and left exact (lex, finite limit preserving) functors.
The model category Modlex(A) of a small lex category A is the category of lex

Amalgamation in Casl via Enriched Signatures 999

functors A → Set and natural transformations. By composition of lex functors,
this assignment extends to a functor

Modlex : Lexop → CAT.

Modlex trivially has the amalgamation property, i.e. preserves limits. Moreo-
ver, being a 2-functor, Modlex preserves equivalences. Conversely,

Theorem 7. Modlex reflects equivalences.

This is an immediate consequence of the fact that the finitely presentable objects
in Modlex(A) are precisely the representable functors [20].

An (equational partial) specification S = (Ω,A) is defined (slightly extending
the definition in [8]) as follows:

Ω is a signature consisting of sorts, including a terminal sort T, and (partial)
operation symbols with profiles as before, including a distinguished operation
ι : T. This signature gives rise to a notion of term (with indicated profile) in
the usual way. For convenience, tuples of terms are regarded as terms; so if
αi : w → si are terms for i = 1, . . . , n, then we write α = (αi) : w → v, where
v = s1 . . . sn. xv denotes ‘the’ term (x1, . . . , xn), where xi is a variable of sort
si, i = 1, . . . , n. If β is a term in the xi, then βα denotes the term obtained by
simultaneously substituting the αi for the xi.

A is a set of axioms that take the form of finite implications: an existential
equation is a pair φ = (α1, α2) of terms (with identical profiles), written α1

e= α2,
and a finite implication is an implication of the form φ ⇒ ψ, where φ and ψ are
existential equations. By virtue of the tuple notation, the definition of existential
equation covers finite conjunctions of such equations; we use notations like φ∧ψ
with the obvious meaning. For φ = (α1, α2), φβ denotes α1β

e= α2β ∧ β
e= β.

Equations α e= α are sometimes abbreviated as def α.
In Figure 1, we present the rules of a deduction system for existential equality

associated to a specification S = (Ω,A). This system is obviously sound w.r.t.
the notion of model defined below; it will turn out to be complete as well. We
write Φ ` φ if an existential equation φ can be deduced from a set Φ of existential
equations by means of these rules. If φ ` ψ for existential equations φ, ψ, we say
that φ ⇒ ψ is a theorem.

s is a sort
xs

e= xs xT
e= ι

α
e= β

β
e= α

α
e= β, β

e= γ

α
e= γ

φ, ψ

φ ∧ ψ
φ ∧ ψ
φ

φ ∧ ψ
ψ

α
e= α

β is a subterm of α

β
e= β

φ ⇒ ψ ∈ A
φα

ψα

α1
e= α2, β1

e= β2

αiβi is well-formed, i = 1, 2

α1β1
e= α2β2

(∗)

Fig. 1. Deduction rules for existential equality

1000 L. Schröder, T. Mossakowski, and A. Tarlecki

A morphism between specifications is defined as a theory morphism in the
usual sense, i.e. a signature morphism which preserves the terminal sort (and
the distinguished operation) and transforms axioms into theorems. Thus, speci-
fications form a category epSpec.

A model of the signature Ω is an algebra that interprets all symbols as partial
operations in the usual way, with T interpreted as a fixed singleton set. An
existential equation is satisfied in a model iff both terms are defined and equal
for all interpretations of the variables; the satisfaction of a finite implication
is defined in the obvious way. A model of S = (Ω,A) is a model of Ω that
satisfies all finite implications in A; it is clear how this leads to a model functor
Modeps : epSpecop → CAT.

Using the deduction system of Figure 1, we can now construct a lex category
Theps(S) from S: the objects of Theps(S) are pairs (w, φ), where w is a string of
sorts and φ is an existential equation in the variables of xw. Morphisms (w, φ) →
(v, ψ) are terms α : w → v such that φ ` ψα, taken modulo existential equality
deducible from φ. The identity on (w, φ) is represented by xw. Composition is
defined via simultaneous substitution of representing terms. This is a well-defined
operation thanks to the congruence rule (∗) in Figure 1 and the following meta-
theorem, which also shows that the composite is indeed a morphism:

Proposition 8. If φ and ψ are existential equations in variables xi of sorts si
and α is a tuple of terms αi of sorts si, i = 1, . . . , n, then φ ` ψ implies φα ` ψα.

As expected, ‘concatenation’ of objects defines finite products, and xw : (w, φ ∧
α1

e= α2) → (w, φ) is an equalizer of α1, α2 : (w, φ) → (v, ψ) in Theps(S). Thus,
Theps(S) is indeed a lex category. Similarly as in [8], one easily verifies that
one has an equivalence of categories Modlex(Theps(S)) → Modeps(S) (natural
in S) and concludes, using the fact that representable functors are models of
Theps(S), that the deduction system of Figure 1 is complete.

It is straightforward to translate an enriched Casl signature Σ into an equa-
tional partial specification Spec(Σ) = (Ω,A): the sorts in Ω are the sorts of Σ
and a new terminal sort T; the symbols in Ω are the function and predicate sym-
bols of Σ (where the range of all predicate symbols is T), the embedding symbols
with the obvious unary profiles, and a new symbol ι : T. The axioms are given
in Figure 2. It is easily verified that Modeps ◦ Specop is naturally isomorphic to
Modenr.

Remark 9. The translation functor Spec can be modified to retain predicates
and include an elementhood predicate and partial projection functions for sub-
sorts, thus providing an extension to enriched Casl of the existing embedding
of the Casl logic into partial first-order logic with equality [7].

Putting the two translations together, we have a representation Thenr :=
Theps ◦ Spec of enriched signatures as lex categories. Moreover, we have a na-
tural ‘forgetful functor’ U : Lex → enrCASLsign: given a lex category A, the
sorts of U(A) are the objects of A, and the function symbols are the partial
morphisms (spans containing a monomorphism, taken modulo isomorphy) with
profiles determined by the finite product structure. Such a symbol is total iff the

Amalgamation in Casl via Enriched Signatures 1001

def(e · f)(xw) ⇒ (e · f)(xw) e= e(f(xw))
def e(f(xw)) ⇒ (e · f)(xw) e= e(f(xw))

}
if f : w → s is a function symbol
and e : s → t is an embedding;

def(f · d)(xv) ⇒ (f · d)(xv) e= f(d(xv))
def f(d(xv)) ⇒ (f · d)(xv) e= f(d(xv))

}
if f is a function or predicate symbol
and d : v → w is a tuple of embeddings;

e(d(xs)) e= (e ◦ d)(xs), if d : s → t and e : t → u are embeddings;
ids(xs) = xs, if s is a sort;
def f(xw), if f : w → s is a total function symbol;
e(xs) e= e(ys) ⇒ xs

e= ys, if e : s → t is an embedding.

Fig. 2. Axioms associated to an enriched Casl signature

associated partial morphism is total, i.e. iff the associated monomorphism is an
isomorphism. Total monomorphisms double as embeddings, and partial function
symbols with terminal codomain (taken modulo isomorphy of terminal objects)
as predicate symbols.

Thenr is essentially a left adjoint for U (where ‘essentially’ means that the
factorizing lex functor in the universal property is unique only up to a natural
isomorphism). In particular, Thenr preserves colimits up to equivalence. Together
with minor considerations concerning actual preservation of limits as opposed
to preservation up to equivalence, this implies
Theorem 10. Modenr has the amalgamation property.
This is, of course, rather more easily proved directly. However, the representation
Thenr is not only of independent interest, but is also needed for the proof of
definitional completeness. In fact,
Theorem 11. Thenr reflects equivalences.
The proof relies on two facts about deduction in Spec(Σ) = S:
Definition 12. A term α in S is said to reduce to an embedding d in Σ if all
symbols in α are embeddings, and their composite is d. Reduction to a symbol
is defined analogously, using also the actions of the sort category.

Lemma 1. Let α and β be terms, and let h : w → s be a symbol in S such that
α

e= α ` β e= h(xw). Then β reduces to h.

Lemma 2. If ` def f(xw) in S for a function symbol f : w → s in Σ, then f
is total.

In a nutshell, this means that the only terms that are provably equal to symbols
are the obvious candidates, and that only total function symbols are provably
total (note that, even for standard Casl signatures, there are provably total
terms that cannot be expressed using only total function symbols!).

By Theorems 7 and 11, Modenr reflects equivalences. Since it is trivial to
show that a signature morphism σ is bijective on sorts if Modenr(σ) is an
isomorphism, this implies

1002 L. Schröder, T. Mossakowski, and A. Tarlecki

Corollary 13. Modenr is definitionally complete.
In particular, we now have a necessary and sufficient criterion for amalgama-

bility in CASLsign:
Corollary 14. A cocone in CASLsign is amalgamable iff its image under Enr
is a colimit in enrCASLsign.

5 Conclusions and Future Work

We have constructed a representation of the Casl institution (the extension to
sentences, disregarded here, is straightforward) in enriched Casl, an institution
with a category of enriched signatures that has the amalgamation property. This
makes a number of results (e.g. concerning normal forms and proof systems)
about institution independent specification languages applicable to Casl.

In more detail, we have modified Reynolds’ approach [23] to subsorting via
sort categories by using actions of the sort category on function and predicate
symbols. In this way we elegantly deal with the problems of both overloading
and amalgamation. Moreover, the associated logic admits a reduction to partial
conditional equational logic. For the latter, we provide a sound and complete
proof system, extending and simplifying the work of [8].

Typically, the use of enriched Casl will be as follows. Specifications are
written in ordinary Casl. In situations where the user inputs a certain com-
bination of signatures (e.g. when writing an instantiation of a parameterized
specification), the natural requirement will be to check whether this combina-
tion becomes a colimit in enriched Casl, thus guaranteeing amalgamability of
models. At this stage, enriched Casl remains completely hidden from the user.
In contrast to this, there are also situations where a combination of signatures
is automatically produced by a tool (e.g. during a proof in a development graph
or during static analysis of architectural specifications). In these situations, it is
advisable to use colimits that result in properly enriched signatures as interme-
diate results rather than discard them. Theorem proving in the enriched Casl
logic is eased by the fact that this logic can be embedded into partial first-order
logic with equality in much the same way as the Casl logic.

Moreover, we have shown that enriched Casl is definitionally complete,
which means that we can expect amalgamation only for combinations of sig-
natures that are actually colimits in the enriched signature category. Thanks to
this characterization of a model-theoretic condition by a syntactic condition con-
cerning signature combination, the model-theoretic and the static architectural
semantics of [27] essentially coincide. Algorithms related to the actual compu-
tation of colimits of enriched signatures (a prerequisite for the development of
tools for architectural specifications and proof support) are discussed in the
forthcoming [17].

Future lines of research include the generalization of the techniques developed
in this work to arbitrary institutions, possibly resulting in a generic procedure
for ‘making institutions amalgamable’. In particular, it is plausible to assume
that the institutions with unnamed universes mentioned in the introduction can

Amalgamation in Casl via Enriched Signatures 1003

— in analogy to the extension of unsorted to multisorted logic — be made
amalgamable by introducing ‘multiple universes’.

Moreover, we conjecture that not only the amalgamation property, but also
the Craig interpolation property (in the weakened form valid in multisorted
algebra), which fails in standard Casl, holds in enriched Casl. This property
is required e.g. by the institution independent proof calculus of [6]. Finally,
the representation of enriched signatures as left exact categories (which form a
cartesian closed category) may provide the proper framework for a semantics of
Casl architectural terms with bound variables [10] in the spirit of [27].

Acknowledgements. Partial support by the CoFI Working Group (ESPRIT
WG 29432) is gratefully acknowledged. Moreover, we wish to thank Bartek Klin
and Piotr Hoffman for collaboration and Maura Cerioli for pointing out the lack
of amalgamation for Casl models.

References

[1] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories, 2nd
ed., Wiley Interscience, New York, 1990.

[2] D. Aspinall, Types, subtypes, and ASL+, Recent Trends in Data Type Specifica-
tion, LNCS, vol. 906, Springer, 1994, pp. 116–131.

[3] H. Baumeister, Relations between abstract datatypes modeled as abstract datatypes,
Ph.D. thesis, Universität des Saarlandes, 1998.

[4] M. Bidoit, M. V. Cengarle, and R. Hennicker, Proof systems for structured spe-
cifications and their refinements, Algebraic Foundations of Systems Specification
(E. Astesiano et al., eds.), Springer, 1999, pp. 385–433.

[5] F. Borceux, Handbook of categorical algebra 1, Cambridge, 1994.
[6] T. Borzyszkowski, Logical systems for structured specifications, Theoret. Comput.

Sci., to appear.
[7] M. Cerioli, A. Haxthausen, B. Krieg-Brückner, and T. Mossakowski, Permissive

subsorted partial logic in Casl, Algebraic Methodology and Software Technology,
LNCS, vol. 1349, Springer, 1997, pp. 91–107.

[8] I. Claßen, M. Große-Rhode, and U. Wolter, Categorical concepts for parameterized
partial specifications, Math. Struct. Comput. Sci. 5 (1995), 153–188.

[9] CoFI, The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives, accessible by WWW2 and FTP3.

[10] CoFI Language Design Task Group, Casl Summary, version 1.0, Docu-
ments/CASL/Summary, in [9], July 1999.

[11] R. Diaconescu, J. Goguen, and P. Stefaneas, Logical support for modularisation,
Logical Environments, Cambridge, 1993, pp. 83–130.

[12] H. Ehrig and M. Große-Rhode, Functorial theory of parameterized specifications
in a general specification framework, Theoret. Comput. Sci. 135 (1994), 221–266.

[13] H. Ehrig and B. Mahr, Fundamentals of algebraic specification 2, Springer, 1990.
[14] J. Goguen and R. Burstall, Institutions: Abstract model theory for specification

and programming, J. ACM 39 (1992), 95–146.
2 http://www.brics.dk/Projects/CoFI
3 ftp://ftp.brics.dk/Projects/CoFI

1004 L. Schröder, T. Mossakowski, and A. Tarlecki

[15] R. Harper, F. Honsell, and G. D. Plotkin, A framework for defining logics, J. ACM
40 (1993), 143–184.

[16] B. Klin, An implementation of static semantics for architectural specifications in
Casl (in Polish), Master’s thesis, Warsaw University, 2000.

[17] B. Klin, P. Hoffman, A. Tarlecki, T. Mossakowski, and L. Schröder, Checking
amalgamability conditions for Casl architectural specifications, work in progress;
see also [16].

[18] F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Natl. Acad. Sci.
USA 50 (1963), 869–872.

[19] S. Mac Lane, Categories for the working mathematician, Springer, 1997.
[20] M. Makkai and A. M. Pitts, Some results on locally finitely presentable categories,

Trans. Amer. Math. Soc. 299 (1987), 473–496.
[21] T. Mossakowski, S. Autexier, and D. Hutter, Extending development graphs with

hiding, Fundamental Approaches to Software Engineering, LNCS, vol. 2029, Sprin-
ger, 2001, pp. 269–283.

[22] P. D. Mosses, Casl: A guided tour of its design, Workshop on Abstract Datatypes,
LNCS, vol. 1589, Springer, 1999, pp. 216–240.

[23] J. C. Reynolds, Using category theory to design implicit conversions and gene-
ric operators, Semantics-Directed Compiler Generation, LNCS, vol. 94, Springer,
1980, pp. 211–258.

[24] D. Sannella, S. Soko lowski, and A. Tarlecki, Towards formal development of pro-
grams from algebraic specifications: Parameterisation revisited, Acta Inform. 29
(1992), 689–736.

[25] D. Sannella and A. Tarlecki, Specifications in an arbitrary institution, Inform. and
Comput. 76 (1988), 165–210.

[26] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman, and B. Klin, Amalgamation
in the semantics of Casl, work in progress; preprint to be made available4.

[27] , Semantics of architectural specifications in Casl, Fundamental Approa-
ches to Software Engineering, LNCS, vol. 2029, Springer, 2001, pp. 253–268.

4 http://www.tzi.de/cofi/papers/amalg.ps

Lower Bounds for the Weak Pigeonhole
Principle Beyond Resolution

Albert Atserias?, Maŕıa Luisa Bonet??, and Juan Luis Esteban? ? ?

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona

{atserias,bonet,esteban}@lsi.upc.es†

Abstract. We work with an extension of Resolution, called Res(2), that
allows clauses with conjunctions of two literals. In this system there are
rules to introduce and eliminate such conjunctions. We prove that the
weak pigeonhole principle PHPcn

n and random unsatisfiable CNF formu-
las require exponential-size proofs in this system. This is the strongest
system beyond Resolution for which such lower bounds are known. As a
consequence to the result about the weak pigeonhole principle, Res(log)
is exponentially more powerful than Res(2). Also we prove that Reso-
lution cannot polynomially simulate Res(2), and that Res(2) does not
have feasible monotone interpolation solving an open problem posed by
Kraj́ıček.

1 Introduction

The pigeonhole principle, PHPn+1
n , expresses that it is not possible to have a

one-to-one mapping from n+1 pigeons to n holes. This simple principle is central
to many mathematical arguments. Since it can be formalized in propositional
logic, it is natural to ask in which propositional proof systems such a principle
can be proved in polynomial-size, with respect to the size of the encoding.

A fair amount of information is known about sizes of proofs of PHPn+1
n in

various proof systems. Haken [12] proved that this principle requires exponential-
size proofs in Resolution. His proof techniques were later extended and simpli-
fied [4,5]. Also Beame et al. [2] proved that PHPn+1

n requires exponential-size
proofs in bounded-depth Frege systems. Regarding upper bounds, Buss [8] gave
polynomial-size proofs of PHPn+1

n in unrestricted Frege systems.
The pigeonhole principle can be formulated in more general terms, allowing

the number of pigeons to be greater than n + 1. We call this principle weak
pigeonhole principle, or PHPm

n , when the number of pigeons m is at least 2n.
The proof techniques of Haken where extended in [9] to prove that PHPn2−ε

n re-
quires exponential-size proofs in Resolution. A very intriguing and often studied
? Supported by the CUR, Generalitat de Catalunya, through grant 1999FI 00532.

?? Partially supported by MEC through grant PB98-0937-C04 (FRESCO project) and
CICYT TIC 98-0410-C02-01.

? ? ? Partially supported by MEC through grant PB98-0937-C04 (FRESCO project)
† Partially supported by ALCOM-FT, IST-99-14186.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1005–1016, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

1006 A. Atserias, M.L. Bonet, and J.L. Esteban

open problem is to prove exponential-size lower bounds for Resolution proofs of
PHPnc

n , if that can be done at all. As a contrast, the techniques of [2] for prov-
ing lower bounds for the pigeonhole principle in bounded-depth Frege systems
can only prove lower bounds for PHPn+c

n , and it is again open whether lower
bounds can be proved when the number of pigeons in greater than n + c. Re-
garding upper bounds, it is known that PHP2n

n has quasipolynomial-size proofs
in bounded-depth Frege [15,14].

We work with the proof system Res(2), proposed by Kraj́ıček [13], that can
be viewed either as an extension of Resolution, or as a restriction of bounded-
depth Frege. In this system the clauses do not only contain literals, but can also
have conjunctions of two literals. The resolution rule gets modified to be able
to eliminate a conjunction of two literals from a clause. We prove that PHPcn

n

requires exponential-size proofs in Res(2). This is, to our knowledge, the first
lower bound proof for the weak pigeonhole principle in a subsystem of bounded-
depth Frege that extends Resolution. We note that the quasipolynomial upper
bound for bounded-depth Frege mentioned above can be carried over in depth-0.5
LK [14], which is equivalent to Res(log) (the analogue of Res(2) when we allow
conjunctions of up to polylog literals). As a consequence of our lower bound,
there is an exponential separation between Res(2) and Res(log).

Combining our techniques with those of [3], we also obtain an exponential-
size lower bound for Res(2)-refutations of random unsatisfiable k-CNF formulas
with clause density near the threshold. Again, this is the strongest system beyond
Resolution for which such a lower bound is known. This result may be considered
as a first step towards proving them hard for bounded-depth Frege.

Another important question to ask is whether Res(2) is more powerful than
Resolution. Here we prove that Resolution cannot polynomially simulate Res(2),
and therefore Res(2) is superpolynomially more efficient than Resolution. As a
corollary, we see that Res(2) does not have the feasible monotone interpolation
property, solving this way a conjecture of Kraj́ıček [13].

Another motivation for working with the system Res(2) is to see how useful
it can be in automated theorem proving. Given that it is more efficient than
Resolution (at least there is a superpolynomial separation), it might be a good
idea to try to find good heuristics to find proofs in Res(2) to be able to use it as
a theorem prover.

2 Definitions and Overview of the Lower Bound Proof

A k-term is a conjunction of up to k literals. A k-disjunction is an (unbounded
fan-in) disjunction of k-terms. If F is a k-disjunction, a 1-term of F is also
called a free-literal. The refutation system Res(k), defined by Kraj́ıček [13], works
with k-disjunctions. There are three inference rules in Res(k): Weakening, ∧-
Introduction, and Cut

A

A ∨ ∧
i∈I li

A ∨ ∧
i∈I li B ∨ ∧

i∈J li

A ∨ B ∨ ∧
i∈I∪J li

A ∨ ∧
i∈I li B ∨ ∨

i∈I l̄i

A ∨ B

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1007

where A and B are k-disjunctions, I, J are sets of indices such that |I ∪ J | ≤ k,
and the li’s are literals. As usual, if l is a literal, l̄ denotes its negation. Observe
that Res(1) coincides with Resolution with the Weakening rule. The size of a
Res(k)-refutation is the number of symbols in it. Mainly, we will work with
Res(2).

Let G = (U ∪ V, E) be a bipartite graph on the sets U and V of cardinality
m and n respectively, where m > n. The G-PHPm

n , defined by Ben-Sasson and
Wigderson [5], states that there is no matching of U into V . For every edge
(u, v) ∈ E, let xu,v be a propositional variable meaning that u is mapped to v.
The principle is then formalized as the conjunction of the following set of clauses:

xu,v1 ∨ · · · ∨ xu,vr u ∈ U, NG(u) = {v1, . . . , vr} (1)
x̄u,v ∨ x̄u′,v v ∈ V, u, u′ ∈ NG(v), u 6= u′. (2)

Here, NG(w) denotes the set of neighbors of w in G. Observe that if G is the
complete bipartite graph Km

n , then G-PHPm
n coincides with the usual pigeonhole

principle PHPm
n . It is easy to see that a lower bound for the size of Res(2)-

refutations of G-PHPm
n implies the same lower bound for the size of Res(2)-

refutations of PHPm
n .

Ben-Sasson and Wigderson proved that whenever G is expanding in a sense
defined next, every Resolution refutation of G-PHPm

n must contain a clause with
many literals. We observe that this result is not unique to Resolution and holds
in a more general setting. Before we state the precise result, let us recall the
definition of expansion:

Definition 1. [5] Let G = (U ∪ V, E) be a bipartite graph where |U | = m, and
|V | = n. For U ′ ⊂ U , the boundary of U , denoted by ∂U ′, is the set of vertices in
V that have exactly one neighbor in U ′; that is, ∂U ′ = {v ∈ V : |N(v)∩U ′| = 1}.
We say that G is (m, n, r, f)-expanding if every subset U ′ ⊆ U of size at most r
is such that |∂U ′| ≥ f · |U ′|.
The proof of the following statement is the same as in [5] for Resolution.

Theorem 1. [5] Let S be a sound refutation system with all rules having fan-in
at most two. Then, if G is (m, n, r, f)-expanding, every S-refutation of G-PHPm

n

must contain a formula that involves at least rf/2 distinct literals.

With these definitions, we are ready to outline the argument of the lower bound
proof. In section 3, we will prove the existence of a bipartite graph G = (U∪V, E)
with |U | = cn′ and |V | = n′ such that if we remove a small random subset of
nodes from V , and the corresponding edges, the resulting graph is (m, n, r, f)-
expanding for certain m, n, r and f . Then we will argue that G-PHPcn′

n′ requires
exponential-size Res(2)-refutations as follows. Assume, for contradiction, that
Π is a small refutation of G-PHPcn′

n′ . We say that a 2-disjunction in Π is large
if it contains at least d = rf/2 distinct literals. We apply a random restriction
ρ1 to the refutation such that for every large C, either C|ρ1 contains many free

1008 A. Atserias, M.L. Bonet, and J.L. Esteban

literals, or the total number of literals in C|ρ1 is less than d. Then we extend ρ1
to a new random restriction ρ ⊇ ρ1 that knocks out all those large C such that
C|ρ1 contains many free literals, ignoring those that are not free. After applying
ρ, we obtain a refutation of G(ρ)-PHPm

n where all 2-disjunctions have less than
rf/2 literals and G(ρ) is (m, n, r, f)-expanding. This contradicts Theorem 1.

3 Random Graphs and Restrictions

In this section we will prove the existence of a bipartite graph G as claimed in
Section 2. The principle G-PHPm

n will require exponential size Res(2)-proofs.
Let G(m, n, p) denote the distribution on bipartite graphs on sets U and V of

sizes m and n respectively, with edge probability p independently for each edge.

Lemma 1. If G is drawn from G(m, n, p), then Pr[∀v ∈ V : mp/2 < degG(v) <
2mp] ≥ 1 − 2ne− mp

8 .

Proof : Fix a vertex v ∈ V . Then, degG(v) ∼ Bin(m, p), so that E[degG(v)] = mp.
By Chernoff bounds, Pr[degG(v) ≥ 2mp] ≤ e−mp/3 and Pr[degG(v) ≤ mp/2] ≤
e−mp/8. By a union bound, Pr[∃v ∈ V : degG(v) ≤ mp/2 ∨ degG(v) ≥ 2mp] ≤
ne−mp/3 + ne−mp/8 ≤ 2ne−mp/8, and so Pr[∀v ∈ V : mp/2 < degG(v) < 2mp] ≥
1 − 2ne−mp/8. ut (lemma 1)

Lemma 2. Let m = kn, p = 48k ln(m)/m, α = 1/mp and f = np/6. Let G be
drawn from G(m, n, p). Then, Pr[G is (m, n, αm, f)-expanding] ≥ 1/2.

Proof : Fix U ′ ⊆ U of size s ≤ αm, and v ∈ V . Then, Pr[v ∈ ∂U ′] = sp(1 −
p)s−1. Let q = Pr[v ∈ ∂U ′]. Let Xv be the indicator random variable for the
event that v ∈ ∂U ′. Then, |∂U ′| =

∑
v∈V Xv. Observe that Xv and Xv′ are

independent whenever v 6= v′. Hence, |∂U ′| ∼ Bin(n, q), so that E[|∂U ′|] =
nq. By Chernoff bound, Pr[|∂U ′| ≤ nq/2] ≤ e−nq/8. On the other hand, nq =
nsp(1 − p)s−1 ≥ snp(1 − p)αm. Moreover, (1 − p)αm = (1 − p)1/p approaches
1/e for sufficiently large m. Therefore, nq ≥ snp/3. It follows that nq/2 ≥ sf
and e−nq/8 ≤ e−snp/24. We conclude that Pr[|∂U ′| < f · |U ′|] ≤ Pr[|∂U ′| ≤
nq/2] ≤ e−nq/8 ≤ e−snp/24. Finally, we bound the probability that G is not
(m, n, αm, f)-expanding by

αm∑

s=1

(
m

s

)

e−snp/24 ≤
αm∑

s=1

mse−snp/24 ≤
αm∑

s=1

(me−np/24)s. (3)

Recall that p = 48k ln(m)/m and m = kn. So me−np/24 ≤ me−2 ln(m) = m−1 <
1/4. Hence the sum in (3) is bounded by

∑∞
s=1

1
4s ≤ 1

2 . ut (lemma 2)

Let G be a fixed bipartite graph on {1, . . . , m} and {1, . . . , n}. A restriction
(for G) is a sequence of pairs ρ = ((u1, v1), . . . , (ur, vr)) such that (ui, vi) ∈
E(G), and all vi’s are distinct. We let Rr(G) be the set of restrictions of length
r. We define a distribution Rr(G) on Rr(G) as follows: Let V0 = {1, . . . , n}; for
every i ∈ {1, . . . , r} in increasing order, choose a hole vi uniformly at random in

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1009

Vi−1, choose a pigeon ui uniformly at random in NG(vi), and let Vi = Vi−1−{vi}.
The final restriction is ((u1, v1), . . . , (ur, vr)).

We define a distribution D(m, n, p, r) on the set of pairs (G, ρ) with ρ ∈
Rr(G): the graph G is drawn from G(m, n + r, p) first, and then ρ is drawn
from Rr(G). In other words, if (H, π) is a fixed pair with π ∈ Rr(H), then
Pr[G = H ∧ ρ = π] = pe(H)(1 − p)m(n+r)−e(H)|Rr(H)|−1.

If G is a bipartite graph on {1, . . . , m} and {1, . . . , n+r}, and ρ a restriction
((u1, v1), . . . , (ur, vr)) ∈ Rr(G), then G(ρ) denotes the graph that results from
deleting v1, . . . , vr from G, and renaming nodes in an order-preserving way. With
this definitions we are ready to prove:
Lemma 3. Let m = kn, p = 48k ln(m)/m, α = 1/mp and f = np/6. Let (G, ρ)
be drawn from D(m, n, p, r). Then, Pr[G(ρ) is (m, n, αm, f)-expanding] ≥ 1/2.
Proof : Let A be the event that G(ρ) is (m, n, αm, f)-expanding. Let S = {R ⊆
{1, . . . , n + r} : |R| = r}. Then, Pr[A] =

∑
R∈S Pr[A | ran(ρ) = R] Pr[ran(ρ) =

R]. The proof that Pr[A | ran(ρ) = R] ≥ 1/2 is the same as the proof of Lemma 2
replacing V by V − R. The result follows. ut (lemma 3)
Lemma 4. Let m = kn, p = 48k ln(m)/m, α = 1/mp and f = np/6. For every
r ≤ n, there exists a bipartite graph H on {1, . . . , m} and {1, . . . , n + r} such
that the following two properties hold:

(i) mp/2 ≤ degH(v) ≤ 2mp for every v ∈ {1, . . . , n + r},
(ii) Pr[H(ρ) is (m, n, αm, f)-expanding] ≥ 1/3,

when ρ is drawn from Rr(H).
Proof : Let (G, ρ) be drawn from D(m, n, p, r). According to Lemmas 3, we have
We have that Pr[G(ρ) is (m, n, αm, f)-expanding] ≥ 1/2. Moreover, Pr[∀v ∈ V :
mp/2 < degG(v) < 2mp] ≥ 1−(n+r)e−mp/9 ≥ 5/6 by Lemma 1. Let E(G, ρ) be
the event that G(ρ) is expanding and every right-node in G has degree between
mp/2 and 2mp. Combining both equations above we have that Pr[E(G, ρ)] ≥
1/3. On the other hand, Pr[E(G, ρ)] =

∑
H Pr[E(G, ρ) | G = H] Pr[G = H]

where H ranges over all bipartite graphs on m and n + r nodes. Therefore,
there exists some fixed H such that Pr[E(G, ρ) | G = H] ≥ 1/3. Moreover,
Pr[E(G, ρ) | G = H] equals Pr[E(H, π)] when π is drawn from Rr(H). Finally,
since this probability is strictly positive, it must be the case that H satisfies
property (i) in the lemma since it is independent of π. ut (lemma 4)

4 The Lower Bound Argument

Before we start the lower bound proof, we need a normal form for Res(2)-
refutations of G-PHPm

n . We claim that every Res(2)-refutation of G-PHPm
n can

be turned into a Res(2)-refutation of similar size in which no 2-term is of the
form xu,v ∧ xu′,v with u 6= u′. To check this, observe that such a 2-term must
have been introduced at some point by the rule of ∧-introduction with clauses,
say, A∨xu,v and B∨xu′,v. Cutting them with the axiom x̄u,v ∨x̄u′,v we get A∨B
that can be used to continue the proof because it subsumes A∨B∨(xu,v ∧xu′,v).

1010 A. Atserias, M.L. Bonet, and J.L. Esteban

Theorem 2. Let c > 1 be a constant. For all sufficiently large n, every Res(2)-
refutation of PHPcn

n has size at least en/(log n)14 .
Proof : Let k = c+1, r = n/c, n′ = n+r, and m = kn = cn′. Let G = (U ∪V, E)
with |U | = m and |V | = n+ r be the bipartite graph of Lemma 4. We show that
every Res(2)-refutation of G-PHP has size at least en/(log n)14 . This will imply
the Theorem since a Res(2)-refutation of PHPcn′

n′ gives a Res(2)-refutation of
G-PHP of no bigger size.

Let us assume, for contradiction, that G-PHP has a Res(2)-refutation Π

of size S < en/(log n)14 . Let C be a 2-disjunction, and let (u, v) ∈ E(G).
We let C|(u,v) be the result of assigning xu,v = 1 and xu′,v = 0 for every
u′ ∈ NG(v) − {u} to C, and simplifying as much as possible. This includes
replacing subformulas of the form l ∨ (l ∧ l′) by l, and subformulas of the form
l̄ ∨ (l ∧ l′) by l̄ ∨ l′ in some specified order; here l and l′ are literals. Given
a restriction ρ = ((u1, v1), . . . , (ur, vr)), we let C|ρ be the result of applying
(u1, v1), . . . , (ur, vr) successively in this order. For every i ∈ {1, . . . , r}, we let
ρi = ((u1, v1), . . . , (ui, vi)). We say that C is large if it contains at least d = n/12
distinct literals; otherwise, C is small. We say that C is wide if it contains at
least s = n/(log n)5 free literals; otherwise, C is narrow. We say that a pair
(u, v) ∈ E(G) hits C if either xu,v occurs positively in C, or xu′,v occurs nega-
tively in C for some u′ ∈ NG(v) − {u}. Equivalently, (u, v) hits C if it sets some
literal of C to 1. If the literal is free, it knocks out the 2-disjunction. If the literal
is part of a conjunction, it will locally create a free literal. In general, we say
that (u, v) ∈ E(G) knocks C if C|(u,v) ≡ 1. We say that (u, v) ∈ E(G) is a bad
pair for C if it does not knock it and there exists u′ ∈ NG(v) − {u} such that
(u′, v) knocks C. A bad pair may or may not be a hit.

In all probabilities that follow, ρ is drawn from the distribution Rr(G). Our
main goal is to prove that the probability that a fixed 2-disjunction C of Π
remains large is exponentially small; that is, we aim for a proof that

Pr[C|ρ is large] ≤ e−n/(log n)13 . (4)

This will suffice because then Pr[∃C ∈ Π : C|ρ is large] ≤ Se−n/(log n)13 <

en/(log n)14e−n/(log n)13 < 1/3, and also Pr[G(ρ) not (m, n, αm, f)-expanding] ≤
2/3 by Lemma 4. This means that there exists a restriction ρ ∈ Rr(G) such that
G(ρ) is (m, n, αm, f)-expanding and every 2-disjunction in Π|ρ has less than
d = αmf/2 literals. This is a contradiction with Theorem 1.

For i ∈ {1, . . . , r}, let Ai be the event that C|ρi
is large, and let Bi be the

event that C|ρi
is narrow. Recall that ρi = ((u1, v1), . . . , (ui, vi)). Then,

Pr[C|ρ is large] ≤ Pr

Ar ∧
∨

j≥r/2

Bj

 + Pr

Ar ∧
∧

j≥r/2

Bj

 ≤

≤
r∑

j=r/2

Pr[Aj ∧ Bj] + Pr

Ar ∧
∧

j≥r/2

Bj

 .

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1011

We will show that every term in this expression is exponentially small. The
bound on terms of the form Pr[Aj ∧Bj] will be proven in Lemma 6. For the last
term, we use an argument similar in spirit to the one by Beame and Pitassi [4]:
Lemma 5. Pr

[
Ar ∧ ∧

j≥r/2 Bj

]
≤ e−n/(log n)8 .

Proof : Let Si be the indicator random variable for the event that (ui, vi) knocks
C|ρi−1 . Then,

Pr

Ar ∧
∧

j≥r/2

Bj

 ≤ Pr

∧

i>r/2

Si = 0 ∧
∧

j≥r/2

Bj

 =

=
∏

i>r/2

Pr

Si = 0 ∧
∧

j≥r/2

Bj

∣
∣
∣
∣
∣
∣

∧

r/2<j<i

Sj = 0

 ≤

≤
∏

i>r/2

Pr

Si = 0 ∧ Bi−1

∣
∣
∣
∣
∣
∣

∧

r/2<j<i

Sj = 0

 ≤

≤
∏

i>r/2

Pr

Si = 0

∣
∣
∣
∣
∣
∣
Bi−1 ∧

∧

r/2<j<i

Sj = 0

 .

Fix i ∈ {r/2 + 1, . . . , r} and let H be the set of holes that occur in a free literal
of C|ρi−1 . Given that Bi−1 holds, C|ρi−1 is wide which means that there are at
least s free literals. Therefore |H| ≥ s/2∆, where ∆ = 2mp is an upper bound
on the right-degree of G. Moreover, every v ∈ H gives a possible knock, and
different holes give different knocks. The reason is the following: if xu,v is a free
literal, then (u, v) is a knock; and if x̄u,v is a free literal, then (u′, v) is a knock
for every u′ ∈ NG(v) − {u}, which is non-empty since the right-degree of G is at
least two. Therefore,

Pr

Si = 1

∣
∣
∣
∣
∣
∣
Bi−1 ∧

∧

r/2<j<i

Sj = 0

 ≥ |H|
∆(n + r − i + 1)

≥ s

3∆2n
.

Therefore,

Pr

Ar ∧
∧

j≥r/2

Bj

 ≤
(

1 − s

3∆2n

)r/2
≤ e− sr

6∆2n ≤ e−n/(log n)8 . ut (lemma 5)

Lemma 6. Let j be such that r/2 ≤ j ≤ r. Then, Pr[Aj ∧ Bj] ≤ e−n/(log n)11 .
Proof : Recall that Aj is the event that C|ρj is large, and Bj is the event that
C|ρj is narrow. We let Si be the indicator random variable for the event that
(ui, vi) hits C|ρi−1 , where ρi−1 = ((u1, v1), . . . , (ui−1, vi−1)). Let S =

∑j
i=1 Si.

Then, for every h,

Pr[Aj ∧ Bj] = Pr[Aj ∧ Bj ∧ S < h] + Pr[Aj ∧ Bj ∧ S ≥ h] ≤
≤ Pr[Aj ∧ S < h] + Pr[Aj ∧ Bj ∧ S ≥ h].

1012 A. Atserias, M.L. Bonet, and J.L. Esteban

We show that each term in this expression is exponentially small. More precisely,
we show that Pr[Aj ∧S < h] ≤ e−n/(log n)3 and Pr[Aj ∧Bj ∧S ≥ h] ≤ e−n/(log n)10

which is clearly enough to prove Lemma 6.

Claim 1 Let h = n/(log n)4. Then, Pr[Aj ∧ S < h] ≤ e−n/(log n)3 .

Proof : Let Y = {(a1, . . . , aj) ∈ {0, 1}j :
∑j

i=1 ai < h}. Observe that Aj implies
Ai for every i ≤ j because if C|ρj

is large, so is C|ρi
for every i ≤ j. Then,

Pr[Aj ∧ S < h] = Pr

[
j∑

i=1

Si < h ∧ Aj

]

=
∑

a∈Y

Pr

[
j∧

i=1

Si = ai ∧ Aj

]

=

=
∑

a∈Y

j∏

i=1

Pr

[

Si = ai ∧ Aj

∣
∣
∣
∣
∣

i−1∧

k=1

Sk = ak

]

≤

≤
∑

a∈Y

j∏

i=1

Pr

[

Si = ai ∧ Ai−1

∣
∣
∣
∣
∣

i−1∧

k=1

Sk = ak

]

≤

≤
∑

a∈Y

j∏

i=1

Pr

[

Si = ai

∣
∣
∣
∣
∣
Ai−1 ∧

i−1∧

k=1

Sk = ak

]

.

Fix i ∈ {1, . . . , j}. Let H be the set of holes that occur in C|ρi−1 . We have
|H| ≥ d/2∆ given that Ai−1 holds. Again, ∆ = 2mp is an upper bound to the
right-degree of G. Moreover, every v ∈ H gives a possible hit, and different holes
give different hits (the reason is the same as in Lemma 5 for knocks). Therefore,

Pr

[

Si = 1

∣
∣
∣
∣
∣
Ai−1 ∧

i−1∧

k=1

Sk = ak

]

≥ |H|
∆(n + r − i + 1)

≥ d

3∆2n
.

Since there are at least j − h zeros in (a1, . . . , aj), we obtain

Pr [Aj ∧ S < h] ≤
∑

a∈Y

(

1 − d

3∆2n

)j−h

≤
∑

i<h

(
j

i

)

e− d(j−h)
3∆2n ≤ hjhe− d(j−h)

3∆2n ≤

≤ exp
(

− j − h

36∆2 + h log(j) + log(h)
)

≤ e−n/(log n)3 .ut(claim 1)

Claim 2 Pr[Aj ∧ Bj ∧ S ≥ h] ≤ e−n/(log n)10 .

Proof : During this proof we will drop the subindex j in Aj and Bj since it
will always be the same. For every i ∈ {1, . . . , r}, let Ti ∈ {k, b, n} be a random
variable indicating whether (ui, vi) is a knock, a bad pair, or none of the previous
respectively for C|ρi−1 . For t ∈ {k, b, n}, let St

i be the indicator random variable
for the event that Ti = t, and let St =

∑j
i=1 St

i . Thus, Sk is the number of
knocks and Sb is the number of bad pairs of ρj .

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1013

Fix ρ = ((u1, v1), . . . , (ur, vr)) such that A ∧ B ∧ S ≥ h holds under ρ.
Observe that (ui, vi) does not knock C|ρi−1 for any i ∈ {1, . . . , j} since C|ρj

must be large. Hence, Sk = 0 under ρ. Let b = (h − s)/(2∆ + 1). We now
claim that Sb ≥ b. Suppose for contradiction that the number of bad pairs is
less than b. Every bad pair (ui, vi) removes at most 2∆ free literals since at
most those many literals about hole vi may appear. Moreover, since there are
no knocks, every hit (ui, vi) that is not a bad pair increases the number of free
literals by at least one. The reason is that such a hit turns a conjunction into
a free literal whose hole component must be different from vi for otherwise a
knock would be available; recall that the right-degree of G is at least three,
and that conjunctions of the form xu,v ∧ xu′,v with u 6= u′ do not occur in
the refutation. It follows that the number of free literals in C|ρj

is at least
(S − Sb) − 2∆Sb > h − (2∆ + 1)b = s, a contradiction with the fact that B
holds under ρ. We have proved that Pr[A ∧ B ∧ S ≥ h] ≤ Pr[Sk = 0 ∧ Sb ≥ b].
The intuition behind why this probability is small is that every bad pair could
have been a knock. This makes unlikely that ρ produces many bad pairs and no
knocks. In what follows, we will prove this intuition using martingales.

For t ∈ {k, b, n} and i ∈ {1, . . . , j}, let P t
i denote the random variable

Pr[Ti = t | ρ0, . . . , ρi−1]. We define a martingale X0, . . . , Xj with respect to
ρ0, . . . , ρj as follows: Let X0 = 0, and Xi+1 = Xi + Sb

i+1 − P b
i+1. Recall that

Sb
i+1 is the indicator random variable for the event that Ti+1 = b. So

E[Xi+1 | ρ0, . . . , ρi] = (Xi + 1 − P b
i+1) · P b

i+1 + (Xi − P b
i+1) · (1 − P b

i+1) =

= (Xi − P b
i+1)(P b

i+1 + 1 − P b
i+1) + P b

i+1 = Xi.

Hence, {Xi}i is a martingale with respect to {ρi}i. Observe also that Xj =
Sb −∑j

i=1 P b
i . Similarly, we define Y0, . . . , Yj as follows: Let Y0 = 0, and Yi+1 =

Yi + Sk
i+1 − P k

i+1. It is also easy to see that {Yi}i is a martingale with respect to
{ρi}i. Again, Yj = Sk − ∑j

i=1 P k
i .

Subclaim 1 P k
i (ρ) ≥ P b

i (ρ)/∆ for every ρ ∈ Rr(G) and i ∈ {1, . . . , j}.

Proof : Fix i ∈ {1, . . . , j} and ρ = ((u1, v1), . . . , (ur, vr)). We want to show
that P k

i (ρ) ≥ P b
i (ρ)/∆. Define three sets as follows: Q = {(u, v) ∈ E(G) :

v 6∈ {v1, . . . , vi−1}}, Qk = {(u, v) ∈ Q : (u, v) is a knock for C|ρi−1}, and Qb =
{(u, v) ∈ Q : (u, v) is a bad pair for C|ρi−1}. Observe that P b

i (ρ) = |Qb| · |Q|−1

and P k
i (ρ) = |Qk| · |Q|−1. On the other hand, every bad pair (u, v) ∈ Qb gives a

possible knock (u′, v) ∈ Qk by definition. Moreover, bad pairs with different hole
components give different possible knocks. Grouping Qb by holes, we have that
|Qk| ≥ |Qb|/∆. Consequently, P k

i (ρ) ≥ P b
i (ρ)/∆ as required. ut (subclaim 1)

To complete the proof of claim 2 we will need the following form of Azuma’s
Inequality: Let X0, . . . , Xn be a martingale such that |Xi − Xi−1| ≤ 1; then,
Pr [|Xn − X0| ≥ λ] ≤ 2e−λ2/n for every λ > 0 [11]. Now,

Pr[Sk = 0 ∧ Sb ≥ b] = Pr[Sk = 0 ∧ Sb ≥ b ∧ Xj ≥ b/2] +
+ Pr[Sk = 0 ∧ Sb ≥ b ∧ Xj < b/2].

1014 A. Atserias, M.L. Bonet, and J.L. Esteban

The first summand is bounded by Pr[Xj ≥ b/2] ≤ 2e−b2/4j by Azuma’s Inequal-
ity. The second summand is bounded by

Pr
[
Sk = 0 ∧ ∑j

i=1 P b
i ≥ b/2

]
≤ Pr

[
Sk = 0 ∧ ∑j

i=1 P k
i ≥ b/2∆

]
≤

≤ Pr[Yj ≤ −b/2∆] ≤ 2e−b2/4∆2j .

The first inequality follows from Subclaim 1, and the third follows from Azuma’s
Inequality again. The addition of the two summands is then bounded by
e−n/(log n)10 as required. ut (claim 2 and lemma 6)

We are ready to complete the proof of our goal: equation (4). We have shown
that

Pr[C|ρ large] ≤
r∑

j=r/2

e−n/(log n)11 + e−n/(log n)8 ≤ e−n/(log n)13 . ut (theorem 2)

The most general form of the previous theorem gives a lower bound for

PHPm
n of e

n9

(m log m)8 log3 n , using r = n/8, h = n3/((m log m)2 log n) and s = h/2,
therefore the best result is an exponential lower bound for PHPn9/8−ε

n .
Given that Res(log) and depth-0.5 LK are polynomially equivalent, and given

that PHP2n
n has quasipolynomial-size proofs in depth-0.5 LK [14], we obtain:

Corollary 1. There is an exponential separation between Res(2) and Res(log).
The model of random k-CNF formulas that we use is the one considered in

[10,3]. The distribution is denoted Fk,n
m and consists in choosing m clauses of

exactly k literals independently with replacement. The following result can be
obtained by an argument similar to that of Theorem 2. The proof can be found
in the complete version of the paper.
Theorem 3. Let F ∼ F3,n

5n . Almost surely, Res(2)-refutations of F require size
2Ω(n1/3/(log(n))2).

5 Separation between Res(2) and Resolution

In this section we prove that Resolution cannot polynomially simulate Res(2).
More precisely, we prove that a certain Clique-Coclique principle, as defined by
Bonet, Pitassi and Raz in [6], has polynomial-size Res(2)-refutations, but every
Resolution refutation requires quasipolynomial size.

The Clique-Coclique principle that we use, CLIQUEn
k,k′ , is:

xi,1 ∨ · · · ∨ xi,n 1 ≤ l ≤ k

x̄l,i ∨ x̄l,j 1 ≤ l ≤ k, 1 ≤ i, j ≤ n, i 6= j

x̄l,i ∨ x̄l′,i 1 ≤ l, l′ ≤ k, 1 ≤ i ≤ n, l 6= l′

y1,i ∨ · · · ∨ yk′,i 1 ≤ i ≤ n

ȳl,i ∨ ȳl′,i 1 ≤ l, l′ ≤ k′, 1 ≤ i ≤ n, l 6= l′

x̄l,i ∨ x̄l′,j ∨ ȳt,i ∨ ȳt,j 1 ≤ l, l′ ≤ k, 1 ≤ t ≤ k′, 1 ≤ i, j ≤ n, l 6= l′, i 6= j

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution 1015

Theorem 4. Let k′ < k ≤ n. If PHPk
k′ has Resolution refutations of size S,

then CLIQUEn
k,k′ has Res(2)-refutations of size Snc for some constant c > 0.

The proof can be found in the complete version of the paper. We reduce the
formula CLIQUEn

k,k′ to PHPk
k′ in Res(2). The meaning of variable pi,j is that

pigeon i sits in hole j. We perform the following substitutions:

pi,j ≡
n∨

l=1

(xi,l ∧ yi,l) p̄i,j ≡
n∨

l=1,j′ 6=j

(xi,l ∧ yj′,l)

We will use the Monotone Interpolation Theorem for Resolution together
with the following result of Alon and Boppana [1] establishing a lower bound to
the size of monotone circuits that separate large cliques from small cocliques. In
the following, F (m, k, k′) is the set of monotone functions that separate k-cliques
from k′-cocliques on m nodes. Let S+(f) be the monotone circuit size of f .

Theorem 5. If f ∈ F (m, k, k′), 3 ≤ k′ ≤ k and k
√

k′ ≤ m/(8 log m), then

S+(f) ≥ 1
8

(
m

4k
√

k′ log m

)(
√

k′+1)/2

.

Theorem 6. Let k =
√

m and k′ = (log m)2/8 log log m. Then, (i) CLIQUEm
k,k′

has Res(2)-refutations of size polynomial in m, and (ii) every Resolution refu-
tation of CLIQUEm

k,k′ has size at least exp(Ω((log m)2/
√

log log m)).

Proof : Regarding (i), we have that k′ log k′ ≤ 1
4 (log m)2, and so 2

√
k′ log k′ ≤

m1/2 = k. On the other hand, Buss and Pitassi [7] proved that PHPk
k′ has

Resolution refutations of size polynomial in k whenever k ≥ 2
√

k′ log k′ . There-
fore, by Theorem 4, CLIQUEm

k,k′ has Res(2)-refutations of size polynomial in m.
Regarding (ii), we apply the feasible monotone interpolation theorem for Reso-
lution. We have log m/(3

√
log log m) ≤ √

k′ ≤ log m. Therefore, by Theorem 5,
if f ∈ F (m, k, k′) is a monotone interpolant, then

S+(f) ≥ 1
8

(
m

4
√

m(log m)2

) log m

6
√

log log m

≥ 1
8

(m

m3/4

) log m

6
√

log log m
,

which is exp(Ω((log m)2/
√

log log m)). ut (theorem 6)

As a corollary, we solve an open problem posed by Kraj́ıček [13].

Corollary 2. Res(2) does not have the feasible monotone interpolation property.

6 Discussion and Open Problems

We proved that there is a quasipolynomial separation between Resolution and
Res(2). It is an open question whether the separation could be exponential, or
a quasipolynomial simulation of Res(2) by Resolution exists. It is important to

1016 A. Atserias, M.L. Bonet, and J.L. Esteban

notice, that our lower bound for PHP would not follow from such a simulation.
Indeed, the lower bound that would follow from that would be of the form 2nε

.
The previous separation was obtained using a lower bound for Resolution

via the monotone interpolation theorem. It is open whether this separation (or a
stronger one) could be obtained via the size-width trade-off [5]. It would also be
interesting to see what would that mean in terms of possible size-width trade-offs
for Res(2). We conjecture that Res(2) does not have a strong size-width trade-off.
Notice that Res(log) does not have it. This is because (a) Res(log) is equivalent
to depth-0.5 LK, (b) PHP2n

n has quasipolynomial-size proofs in depth-0.5 LK
[14], and (c) PHP2n

n has Ω(n) width lower bounds for Res(log).
We extended the width lower bound technique beyond Resolution. A very

interesting open question is whether the technique can be extended for Res(3),
etc. This is related to the optimality of the Res(log) upper bound for PHP2n

n .

References

1. N. Alon and R. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987.

2. P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and A. Woods. Ex-
ponential lower bounds for PHP. In STOC92, pages 200–220, 1992.

3. P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of resolution and
Davis-Putnam procedures. Submitted. Previous version in STOC’98, 1999.

4. P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In
FOCS96, pages 274–282, 1996.

5. E. Ben-Sasson and A. Wigderson. Short proofs are narrow: Resolution made simple.
In STOC99, pages 517–527, 1999. Revised version (2000).

6. M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with
small coefficients. The Journal of Symbolic Logic, 62(3):708–728, Sept. 1997.

7. S. Buss and T. Pitassi. Resolution and the weak pigeonhole principle. In CSL:
11th Workshop on Computer Science Logic. LNCS, Springer-Verlag, 1997.

8. S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The
Journal of Symbolic Logic, 52(4):916–927, Dec. 1987.

9. S. R. Buss and G. Turán. Resolution proofs on generalized pigeonhole principles.
Theoretical Computer Science, 62(3):311–317, Dec. 1988.

10. V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. ACM,
35(4):759–768, 1988.

11. G. Grimmet and D. Stirzaker. Probability and Random Processes. Oxford, 1982.
12. A. Haken. The intractability of resolution. TCS, 39(2-3):297–308, Aug. 1985.
13. J. Kraj́ıček. On the weak PHP. To appear in Fundamenta Mathematicæ, 2000.
14. A. Maciel, T. Pitassi, and A. Woods. A new proof of the weak pigeonhole principle.

In STOC00, pages 368–377, 2000.
15. J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the pigeonhole princi-

ple and the existence of infinitely many primes. The Journal of Symbolic Logic,
53(4):1235–1244, 1988.

Time and Space Bounds for Reversible
Simulation?

(Extended Abstract)

Harry Buhrman, John Tromp, and Paul Vitányi

CWI, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands, email{buhrman,tromp,paulv}@cwi.nl

Abstract. We prove a general upper bound on the tradeoff between
time and space that suffices for the reversible simulation of irreversible
computation. Previously, only simulations using exponential time or
quadratic space were known. The tradeoff shows for the first time that we
can simultaneously achieve subexponential time and subquadratic space.
The boundary values are the exponential time with hardly any extra
space required by the Lange-McKenzie-Tapp method and the (log 3)th
power time with square space required by the Bennett method. We also
give the first general lower bound on the extra storage space required by
general reversible simulation. This lower bound is optimal in that it is
achieved by some reversible simulations.

1 Introduction

Computer power has roughly doubled every 18 months for the last half-century
(Moore’s law). This increase in power is due primarily to the continuing minia-
turization of the elements of which computers are made, resulting in more and
more elementary gates per unit area with higher and higher clock frequency, ac-
companied by less and less energy dissipation per elementary computing event.
Roughly, a linear increase in clock speed is accompanied by a square increase
in elements per unit area—so if all elements compute all of the time, then the
dissipated energy per time unit rises cubicly (linear times square) in absence
of energy decrease per elementary event. The continuing dramatic decrease in
dissipated energy per elementary event is what has made Moore’s law possible.
But there is a foreseeable end to this: There is a minimum quantum of energy
dissipation associated with elementary events. This puts a fundamental limit on
how far we can go with miniaturazation, or does it?

Reversible Computation: R. Landauer [8] has demonstrated that it is
only the ‘logically irreversible’ operations in a physical computer that necessar-
ily dissipate energy by generating a corresponding amount of entropy for every
? All authors are partially supported by the EU fifth framework project QAIP, IST–

1999–11234, the NoE QUIPROCONE IST–1999–29064, the ESF QiT Programmme,
and the EU Fourth Framework BRA NeuroCOLT II Working Group EP 27150.
Buhrman and Vitányi are also affiliated with the University of Amsterdam. Tromp
is also affiliated with Bioinformatics Solutions, Waterloo, N2L 3G1 Ontario, Canada.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1017–1027, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

1018 H. Buhrman, J. Tromp, and P. Vitányi

bit of information that gets irreversibly erased; the logically reversible opera-
tions can in principle be performed dissipation-free. Currently, computations
are commonly irreversible, even though the physical devices that execute them
are fundamentally reversible. At the basic level, however, matter is governed by
classical mechanics and quantum mechanics, which are reversible. This contrast
is only possible at the cost of efficiency loss by generating thermal entropy into
the environment. With computational device technology rapidly approaching the
elementary particle level it has been argued many times that this effect gains in
significance to the extent that efficient operation (or operation at all) of future
computers requires them to be reversible (for example, in [8,1,2,4,7,11,5]). The
mismatch of computing organization and reality will express itself in friction:
computers will dissipate a lot of heat unless their mode of operation becomes re-
versible, possibly quantum mechanical. Since 1940 the dissipated energy per bit
operation in a computing device has—with remarkable regularity—decreased at
the inverse rate of Moore’s law [7] (making Moore’s law possible). Extrapolation
of current trends shows that the energy dissipation per binary logic operation
needs to be reduced below kT (thermal noise) within 20 years. Here k is Boltz-
mann’s constant and T the absolute temperature in degrees Kelvin, so that
kT ≈ 3 × 10−21 Joule at room temperature. Even at kT level, a future device
containing 1 trillion (1012) gates operating at 1 terahertz (1012) switching all
gates all of the time dissipates about 3000 watts. Consequently, in contempo-
rary computer and chip architecture design the issue of power consumption has
moved from a background worry to a major problem. For current research to-
wards implementation of reversible computing on silicon see MIT’s Pendulum
Project and linked web pages (http://www.ai.mit.edu/∼cvieri/reversible.html).
On a more futuristic note, quantum computing [15,14] is reversible. Despite its
importance, theoretical advances in reversible computing are scarce and far be-
tween; all serious ones are listed in the references.

Related Work: Currently, almost no algorithms and other programs are
designed according to reversible principles (and in fact, most tasks like comput-
ing Boolean functions are inherently irreversible). To write reversible programs
by hand is unnatural and difficult. The natural way is to compile irreversible
programs to reversible ones. This raises the question about efficiency of general
reversible simulation of irreversible computation. Suppose the irreversible com-
putation to be simulated uses T time and S space. A first efficient method was
proposed by Bennett [3], but it is space hungry and uses 1 time ST log 3 and space
S log T . If T is maximal, that is, exponential in S, then the space use is S2. This
method can be modelled by a reversible pebble game. Reference [12] demon-
strated that Bennett’s method is optimal for reversible pebble games and that
simulation space can be traded off against limited erasing. In [9] it was shown
that using a method by Sipser [16] one can reversibly simulate using only O(S)
extra space but at the cost of using exponential time. In [6] the authors provide

1 By judicious choosing of simulation parameters this method can be tweaked to run
in ST 1+ε time for every ε > 0 at the cost of introducing a multiplicative constant
depending on 1/ε. The complexity analysis of [3] was completed in [10].

Time and Space Bounds for Reversible Simulation 1019

an oracle construction (essentially based on [12]) that separates reversible and
irreversible space-time complexity classes.

Results: Previous results seem to suggest that a reversible simulation is
stuck with either quadratic space use or exponential time use. This impression
turns out to be false: 2

Here we prove a tradeoff between time and space which has the exponential
time simulation and the quadratic space simulation as extremes and for the first
time gives a range of simulations using simultaneously subexponential (2f(n) is
subexponential if f(n) = o(n)) time and subquadratic space. The idea is to use
Bennett’s pebbling game where the pebble steps are intervals of the simulated
computation that are bridged by using the exponential simulation method. (It
should be noted that embedding Bennett’s pebbling game in the exponential
method gives no gain, and neither does any other iteration of embeddings of
simulation methods.) Careful analysis shows that the simulation using k pebbles
takes T ′ := S3k2O(T/2k) time and S′ = O(kS) space, and in some cases the
upper bounds are tight. For k = 0 we have the exponential time simulation
method and for k = log T we have Bennett’s method. Interesting values arise for
say

(a) k = log log T : T ′ = S(log T)log 32O(T/ log T) and S′ = S log log T ≤ S log S;

(b) k =
√

log T : S′ = S
√

log T ≤ S
√

S and T ′ = S3
√

log T 2O(T/2
√

log T).
(c) Let T, S, T ′, S′ be as above. Eliminating the unknown k shows the tradeoff

between simulation time T ′ and extra simulation space S′: T ′ = S3
S′
S 2O(T/2

S′
S).

(d) Let T, S, T ′, S′ be as above and let the irreversible computation be halting
and compute a function from inputs of n bits to outputs. For general reversible
simulation by a reversible Turing machine using a binary tape alphabet and a
single tape, S′ ≥ n + log T + O(1) and T ′ ≥ T . This lower bound is optimal
in the sense that it can be achieved by simulations at the cost of using time
exponential in S.

Main open problem: The ultimate question is whether one can do better,
and obtain improved upper and lower bounds on the tradeoff between time and
space of reversible simulation, and in particular whether one can have almost
linear time and almost linear space simultaneously.

2 Reversible Turing Machines

In the standard model of a Turing machine the elementary operations are rules
in quadruple format (p, s, a, q) meaning that if the finite control is in state p
and the machine scans tape symbol s, then the machine performs action a and
subsequently the finite control enters state q. Such an action a consists of either
printing a symbol s′ in the tape square scanned, or moving the scanning head
one tape square left or right.

2 The work reported in this paper dates from 1998; Dieter van Melkebeek has drawn
our attention to the unpublished [17] with similar, independent but later, research.

1020 H. Buhrman, J. Tromp, and P. Vitányi

Quadruples are said to overlap in domain if they cause the machine in the
same state and scanning the same symbol to perform different actions. A deter-
ministic Turing machine is defined as a Turing machine with quadruples no two
of which overlap in domain.

Now consider the special format (deterministic) Turing machines using
quadruples of two types: read/write quadruples and move quadruples. A
read/write quadruple (p, a, b, q) causes the machine in state p scanning tape
symbol a to write symbol b and enter state q. A move quadruple (p, ∗, σ, q)
causes the machine in state p to move its tape head by σ ∈ {−1, +1} squares
and enter state q, oblivious to the particular symbol in the currently scanned
tape square. (Here ‘−1’ means ‘one square left’, and ‘+1’ means ‘one square
right’.) Quadruples are said to overlap in range if they cause the machine to
enter the same state and either both write the same symbol or (at least) one
of them moves the head. Said differently, quadruples that enter the same state
overlap in range unless they write different symbols. A reversible Turing machine
is a deterministic Turing machine with quadruples no two of which overlap in
range. A k-tape reversible Turing machine uses (2k + 2) tuples which, for every
tape separately, select a read/write or move on that tape. Moreover, any two
tuples can be restricted to some single tape where they don’t overlap in range.

To show that every partial recursive function can be computed by a reversible
Turing machine one can proceed as follows [1]. Take the standard irreversible
Turing machine computing that function. We modify it by adding an auxiliary
storage tape called the ‘history tape’. The quadruple rules are extended to 6-
tuples to additionally manipulate the history tape. To be able to reversibly
undo (retrace) the computation deterministically, the new 6-tuple rules have the
effect that the machine keeps a record on the auxiliary history tape consisting of
the sequence of quadruples executed on the original tape. Reversibly undoing a
computation entails also erasing the record of its execution from the history tape.
This notion of reversible computation means that only 1 : 1 recursive functions
can be computed. To reversibly simulate an irreversible computation from x to
f(x) one reversibly computes from input x to output 〈x, f(x)〉.

Reversible Turing machines or other reversible computers will require special
reversible programs. One feature of such programs is that they should be exe-
cutable when read from bottom to top as well as when read from top to bottom.
Examples are the programs F (·) and A(·) in [12]. In general, writing reversible
programs will be difficult. However, given a general reversible simulation of irre-
versible computation, one can simply write an oldfashioned irreversible program
in an irreversible programming language, and subsequently simulate it reversibly.
This leads to the following:

Definition 1. An irreversible-to-reversible compiler receives an irreversible pro-
gram as input and compiles it to a reversible program.

Note that there is a decisive difference between reversible circuits and reversible
special purpose computers [4] on the one hand, and reversible universal comput-
ers on the other hand [1,3]. While one can design a special-purpose reversible ver-
sion for every particular irreversible circuit using reversible universal gates, such

Time and Space Bounds for Reversible Simulation 1021

a method does not yield an irreversible-to-reversible compiler that can execute
any irreversible program on a fixed universal reversible computer architecture as
we are interested in here.

3 Time Parsimonious Simulation

3.1 Background

We keep the discussion at an intuitive informal level; the cited references con-
tain the formal details and rigorous constructions. An irreversible deterministic
Turing machine has an infinite graph of all configurations where every configu-
ration has outdegree at most one. In a reversible deterministic Turing machine
every configuration also has indegree at most one. The problem of reversing an
irreversible computation from its output is to revisit the input configurations
starting from the output configuration by a process of reversibly traversing the
graph.

The reversible Bennett strategy [3] essentially reversibly visits only the linear
graph of configurations visited by the irreversible deterministic Turing machine
in its computation from input to output, and no other configurations in the
graph. It does so by a recursive procedure of establishing and undoing interme-
diate checkpoints that are kept simultanously in memory. It turns out that this
can be done using limited time T log 3 and space S log T .

3.2 Reversible Pebbling

Let G be a linear list of nodes {1, 2, . . . , TG}. We define a pebble game on G as
follows. The game proceeds in a discrete sequence of steps of a single player.
There are n pebbles which can be put on nodes of G. At any time the set of
pebbles is divided in pebbles on nodes of G and the remaining pebbles which are
called free pebbles. At every step either an existing free pebble can be put on a
node of G (and is thus removed from the free pebble pool) or be removed from
a node of G (and is added to the free pebble pool). Initially G is unpebbled and
there is a pool of free pebbles. The game is played according to the following
rule:

Reversible Pebble Rule: If node i is occupied by a pebble, then one may
either place a free pebble on node i + 1 (if it was not occupied before), or
remove the pebble from node i + 1.

We assume an extra initial node 0 permanently occupied by an extra, fixed
pebble, so that node 1 may be (un)pebbled at will. This pebble game is inspired
by the method of simulating irreversible Turing Machines on reversible ones in a
space efficient manner. The placement of a pebble corresponds to checkpointing
the next state of the irreversible computation, while the removal of a pebble cor-
responds to reversibly erasing a checkpoint. Our main interest is in determining
the number of pebbles k needed to pebble a given node i.

1022 H. Buhrman, J. Tromp, and P. Vitányi

The maximum number n of pebbles which are simultaneously on G at any
one time in the game gives the space complexity nS of the simulation. If one
deletes a pebble not following the above rules, then this means a block of bits of
size S is erased irreversibly.

3.3 Algorithm

We describe the idea of Bennett’s simulation [3]. This simulation is optimal [12]
among all reversible pebble games. The total computation of T steps is broken
into 2k segments of length m = T2−k. Every mth point of the computation is a
node in the pebbling game; node i corresponding to im steps of computation.

For each pebble a section of tape is reserved long enough to store the whole
configuration of the simulated machine. By enlarging the tape alphabet, each
pebble will require space only S + O(1).

Both the pebbling and unpebbling of a pebble t on some node, given that
the previous node has a pebble s on it, will be achieved by a single reversible
procedure bridge(s, t). This looks up the configuration at section s, simulates m
steps of computation in a manner described in section 4, and exclusive-or’s the
result into section t. If t was a free pebble, meaning that its tape section is all
zeroes, the result is that pebble t occupies the next node. If t already pebbled
that node then it will be zeroed as a result.

The essence of Bennett’s simulation is a recursive subdivision of a computa-
tion path into 2 halves, which are traversed in 3 stages; the first stage gets the
midpoint pebbled, the second gets the endpoint pebbled, and the 3rd recovers
the midpoint pebble. The following recursive procedure implements this scheme;
Pebble(s, t, n) uses free pebbles 0, . . . , n − 1 to compute the 2nth node after the
one pebbled by s, and exclusive-or’s that node with pebble t (either putting t on
the node or taking it off). Its correctness follows by straightforward induction.
Note that it is its own reverse; executing it twice will produce no net change.
The pebble parameters s and t are simply numbers in the range −1, 0, 1, . . . , k.
Pebble -1 is permanently on node 0, pebble k gets to pebble the final node, and
pebble i, for 0 ≤ i < k pebbles nodes that are odd multiples of 2i. The entire
simulation is carried out with a call pebble(−1, k, k).

pebble(s, t, n)
{

if (n = 0)
bridge(s, t);

fi (n = 0)
if (n > 0)
let r = n − 1
pebble(s, r, n − 1);
pebble(r, t, n − 1);
pebble(s, r, n − 1)
fi (n > 0)

}

Time and Space Bounds for Reversible Simulation 1023

As noted by Bennett, both branches and merges must be labeled with mu-
tually exclusive conditions to ensure reversibility. Recursion can be easily imple-
mented reversibly by introducing an extra stack tape, which will hold at most n
stack frames of size O(log n) each, for a total of O(n log n).

This pebbling method is optimal in that no more than 2n+1 − 1 steps can be
bridged with n pebbles [12]. A call pebble(s, t, n) results in 3n calls to bridge(·,·).
Bennett chose the number of pebbles large enough (n = Ω(log T)) so that m
becomes small, on the order of the space S used by the simulated machine. In
that case bridge(s, t) is easily implemented with the help of an additional history
tape of size m which records the sequence of transitions. Instead, we allow an
arbitrary choice of n and resort to the space efficient simulation of [9] to bridge
the pebbled checkpoints.

4 Space Parsimonious Simulation

Lange, McKenzie and Tapp, [9], devised a reversible simulation, LMT-simulation
for short, that doesn’t use extra space, at the cost of using exponential time.
Their main idea of reversibly simulating a machine without using more space
is by reversibly cycling through the configuration tree of the machine (more
precisely the connected component containing the input configuration). This
configuration tree is a tree whose nodes are the machine configurations and
where two nodes are connected by an edge if the machine moves in one step
from one configuration to the other. We consider each edge to consist of two
half-edges, each adjacent to one configuration.

The configuration tree can be traversed by alternating two permutations on
half-edges: a swapping permutation which swaps the two half-edges constitut-
ing each edge, and a rotation permutation whose orbits are all the half-edges
adjacent to one configuration. Both permutations can be implemented in a con-
stant number of steps. For simplicity one assumes the simulated machine strictly
alternates moving and writing transitions. To prevent the simulation from ex-
ceeding the available space S, each pebble section is marked with special left and
right markers †, ‡, which we assume the simulated machine not to cross. Since
this only prevents crossings in the forward simulation, we furthermore, with the
head on the left (right) marker, only consider previous moving transitions from
the right (left).

5 The Tradeoff Simulation

To adapt the LMT simulation to our needs, we equip our simulating machine
with one extra tape to hold the simulated configuration and another extra tape
counting the difference between forward and backward steps simulated. m = 2n

steps of computation can be bridged with a log m bits binary counter, incre-
mented with each simulated forward step, and decremented with each simu-
lated backward step— incurring an extra O(log m) factor slowdown in simula-
tion speed. Having obtained the configuration m steps beyond that of pebble

1024 H. Buhrman, J. Tromp, and P. Vitányi

s, it is exclusive-or’d into section t and then the LMT simulation is reversed
to end up with a zero counter and a copy of section s, which is blanked by an
exclusive-or from the original.

bridge(s, t)
{

copy section s onto (blanked) simulation tape
setup: goto enter;
loop1: come from endloop1;
simulate step with swap&rotate and adjust counter
if (counter=0)

rotate back;
if (simulation tape = section s)

enter: come from start;
fi (simulation tape = section s)

fi (counter=0)
endloop1: if (counter!=m) goto loop1;
exclusive-or simulation tape into section t
if (counter!=m)

loop2: come from endloop2;
reverse-simulate step with anti-rotate&swap and adjust counter
if (counter=0)

rotate back;
if (simulation tape = section s) goto exit;

fi (counter=0)
endloop2: goto loop2;
exit: clear simulation tape using section s

}

5.1 Complexity Analysis

Let us analyze the time and space used by this simulation.

Theorem 1. An irreversible computation using time T and space S can be sim-
ulated reversibly in time T ′ = 3k2O(T/2k)S and space S′ = S(1 + O(k)), where
k is a parameter that can be chosen freely 0 ≤ k ≤ log T to obtain the required
tradeoff between reversible time T ′ and space S′.

Proof. (Sketch) Every invocation of the bridge() procedure takes time
O(2O(m)S). That is, every configuration has at most O(1) predecessor configu-
rations where it can have come from (constant number of states, constant alpha-
bet size and choice of direction). Hence there are ≤ 2O(m) configurations to be
searched and about as many potential start configurations leading in m moves
to the goal configuration, and every tape section comparison takes time O(S).
The pebbling game over 2k nodes takes 3k (un)pebbling steps each of which is
an invocation of bridge(). Filling in m = T/2k gives the claimed time bound.
Each of the k + O(1) pebbles takes space O(S), as does the simulation tape and
the counter, giving the claimed total space. ut

Time and Space Bounds for Reversible Simulation 1025

It is easy to verify that for some simulations the upper bound is tight. The
boundary cases, k = 0 gives the LMT-simulation using exponential time and no
extra space, and k = log T gives Bennett’s simulation using at most square space
and subquadratic time. Taking intermediate values of k we can choose to reduce
time at the cost of an increase of space use and vice versa. In particular, special
values k = log log T and k =

√
T give the results using simultaneously subexpo-

nential time and subquadratic space exhibited in the introduction. Eliminating
k we obtain:

Corollary 1. Let T, S, T ′, S′ be as above. Then there is a reversible simulation
that has the following tradeoff between simulation time T ′ and extra simulation
space S′:

T ′ = S3
S′
S 2O(T/2

S′
S).

5.2 Local Irreversible Actions

Suppose we have an otherwise reversible computation containing local irre-
versible actions. Then we need to reversibly simulate only the subsequence of
irreversible steps, leaving the connecting reversible computation segments un-
changed. That is, an irreversiblity parsimonious computation is much cheaper
to reversibly simulate than an irreversibility hungry one.

5.3 Reversible Simulation of Unknown Computing Time

In the previous analysis we have tacitly assumed that the reversible simulator
knows in advance the number of steps T taken by the irreversible computation
to be simulated. In this context one can distinguish on-line computations and
off-line computations to be simulated. On-line computations are computations
which interact with the outside environment and in principle keep running for-
ever. An example is the operating system of a computer. Off-line computations
are computations which compute a definite function from an input (argument)
to an output (value). For example, given as input a positive integer number,
compute as output all its prime factors. For every input such an algorithm will
have a definite running time.

There is a well-known simple device to remove this dependency for batch com-
putations without increasing the simulation time (and space) too much. Suppose
we want to simulate a computation with unknown computation time T . Then we
simulate t steps of the computation with t running through the sequence of val-
ues 2, 22, 23, . . . For every value t takes on we reversibly simulate the first t steps
of the irreversible computation. If T > t then the computation is not finished
at the end of this simulation. Subsequently we reversibly undo the computation
until the initial state is reached again, set t := 2t and reversibly simulate again.
This way we continue until t ≥ T at which bound the computation finishes. The
total time spent in this simulation is

T ′′ ≤ 2
dlog Te∑

i=1

S3
S′
S 2O(2i− S′

S) ≤ 2T ′.

1026 H. Buhrman, J. Tromp, and P. Vitányi

6 Lower Bound on Reversible Simulation

It is not difficult to show a simple lower bound on the extra storage space required
for general reversible simulation. We consider only irreversible computations that
are halting computations performing a mapping from an input to an output. For
convenience we assume that the Turing machine has a single binary work tape
delemited by markers †, ‡ that are placed S positions apart. Initially the binary
input of length n is written left adjusted on the work tape. At the end of the
computation the output is written left adjusted on the work tape. The markers
are never moved. Such a machine clearly can perform every computation as long
as S is large enough with respect to n. Assume that the reversible simulator is a
similar model albeit reversible. The average number of steps in the computation
is the uniform average over all equally likely inputs of n bits.

Theorem 2. To generally simulate an irreversible halting computation of a Tur-
ing machine as above using storage space S and T steps on average, on inputs of
length n, by a general reversible computation using S′ storage space and T ′ steps
on average, the reversible simulator Turing machine having q′ states, requires
trivially T ′ ≥ T and S′ ≥ n + log T − O(1) up to a logarithmic additive term.

Proof. There are 2n possible inputs to the irreversible computation, the com-
putation on every input using on average T steps. A general simulation of this
machine cannot use the semantics of the function being simulated but must sim-
ulate every step of the simulated machine. Hence T ′ ≥ T . The simulator being
reversible requires different configurations for every step of everyone of the simu-
lated computations that is, at least 2nT configurations. The simulating machine
has not more than q′2S

′
S′ distinct configurations—2S

′
distinct values on the

work tape, q′ states, and S′ head positions for the combination of input tape
and work tape. Therefore, q′2S

′
S′ ≥ 2nT . That is, q′S′2S

′−n ≥ T which shows
that S′ − n − log S′ ≥ log T − log q′. ut

For example, consider irreversible computations that don’t use extra space
apart from the space to hold the input, that is, S = n. An example is the
computation of f(x) = 0.

– If T is polynomial in n then S′ = n + Ω(log n).
– If T is exponential in n then S′ = n + Ω(n).

Thus, in some cases the LMT-algorithm is required to use extra space if we
deal with halting computations computing a function from input to output. In
the final version of the paper [9] the authors have added that their simulation
uses some extra space for counting (essentially O(S)) in case we require halting
computations from input to output, matching the lower bound above for S = n
since their simulation uses on average T ′ steps exponential in S.

Optimality and Tradeoffs: The lower bound of Theorem 2 is optimal in the
following sense. As one extreme, the LMT-algorithm of [9] discussed above uses
S′ = n+log T space for simulating irreversible computations of total functions on
inputs of n bits, but at the cost of using T ′ = Ω(2S) simulation time. As the other

Time and Space Bounds for Reversible Simulation 1027

extreme, Bennett’s simple algorithm in [1] uses T ′ = O(T) reversible simulation
time, but at the cost of using S′ = Ω(T) additional storage space. This implies
that improvements in determining the complexity of reversible simulation must
consider time-space tradeoffs.

References

1. C.H. Bennett. Logical reversibility of computation. IBM J. Res. Develop., 17:525–
532, 1973.

2. C.H. Bennett. The thermodynamics of computation—a review. Int. J. Theoret.
Phys., 21(1982), 905-940.

3. C.H. Bennett. Time-space tradeoffs for reversible computation. SIAM J. Comput.,
18(1989), 766-776.

4. E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theoret. Phys., 21(1982),219-
253.

5. M. Frank, T. Knight, and N. Margolus, Reversibility in optimally scalable computer
architectures, Manuscript, MIT-LCS, 1997
//http://www.ai.mit.edu/∼mpf/publications.html.

6. M.P. Frank and M.J. Ammer, Separations of reversible and irreversible space-time
complexity classes, Submitted.
//http://www.ai.mit.edu/∼mpf/rc/memos/M06 oracle.html.

7. R.W. Keyes, IBM J. Res. Dev., 32(1988), 24-28.
8. R. Landauer. Irreversibility and heat generation in the computing process. IBM

J. Res. Develop., 5:183–191, 1961.
9. K.J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic space,

J. Comput. System Sci., 60:2(2000), 354–367.
10. R.Y. Levine and A.T. Sherman, A note on Bennett’s time-space tradeoff for re-

versible computation, SIAM J. Comput., 19:4(1990), 673-677.
11. M. Li and P.M.B. Vitányi, Reversibility and adiabatic computation: trading time

and space for energy, Proc. Royal Society of London, Series A, 452(1996), 769-789.
12. M. Li, J. Tromp, and P. Vitányi, Reversible simulation of irreversible computation.

Physica D, 120(1998) 168-176.
13. K. Morita, A. Shirasaki, and Y. Gono, A 1-tape 2-symbol reversible Turing ma-

chine, IEEE Trans. IEICE, E72 (1989), 223–228.
14. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cam-

bridge University Press, 2000.
15. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput., 26:5(1997), 1484–1509.
16. M. Sipser, Halting space-bounded computation, Theoret. Comp. Sci., 10(1990),

335–338.
17. R. Williams, Space-Efficient Reversible Simulations, DIMACS REU report, July

2000. http://dimacs.rutgers.edu/∼ryanw/

Finite-State Dimension

Jack J. Dai1?, James I. Lathrop2, Jack H. Lutz2∗, and Elvira Mayordomo3??

1 Department of Mathematics,
Iowa State University, Ames, IA 50011, USA

jdai@iastate.edu
2 Department of Computer Science,

Iowa State University, Ames, IA 50011, USA,
jil@cs.iastate.edu, lutz@cs.iastate.edu

3 Departamento de Informática e Ing. de Sistemas,
Universidad de Zaragoza, 50015 Zaragoza, SPAIN,

elvira@posta.unizar.es

Abstract. Classical Hausdorff dimension was recently effectivized using
gales (betting strategies that generalize martingales), thereby endowing
various complexity classes with dimension structure and also defining the
constructive dimensions of individual binary (infinite) sequences. In this
paper we use gales computed by multi-account finite-state gamblers to
develop the finite-state dimensions of sets of binary sequences and indi-
vidual binary sequences. Every rational sequence (binary expansion of a
rational number) has finite-state dimension 0, but every rational num-
ber in [0, 1] is the finite-state dimension of a sequence in the low-level
complexity class AC0. Our main theorem shows that the finite-state di-
mension of a sequence is precisely the infimum of all compression ratios
achievable on the sequence by information-lossless finite-state compres-
sors.

1 Introduction

Hausdorff dimension, best known as a powerful tool of fractal geometry, has
been known for over fifty years to be closely related to information. For example,
Eggleston [3] proved that in the space of all infinite binary sequences, if we let
FREQ(α) be the set of sequences in which 1 appears with asymptotic frequency
α (0 ≤ α ≤ 1), then the Hausdorff dimension of FREQ(α) is precisely H(α), the
binary entropy of α. More recent investigations of Ryabko [13,14,15], Staiger [17,
18], and Cai and Hartmanis [2] have explored relationships between Hausdorff
dimension and Kolmogorov complexity (algorithmic information).

? This research was supported in part by National Science Foundation Grants 9610461
and 9988483.

?? This research was supported in part by Spanish Government MEC projects PB98-
0937-C04-02 and TIC98-0973-C03-02. It was done while visiting Iowa State Univer-
sity.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1028–1039, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Finite-State Dimension 1029

Hausdorff dimension was originally defined topologically, using open covers
by balls of diminishing radii [6,4]. Very recently, Lutz [11] proved a new charac-
terization of Hausdorff dimension in terms of gales, which are betting strategies
that generalize martingales. Lutz used this characterization to effectivize Haus-
dorff dimension, thereby defining dimension in complexity classes [11] and the
constructive dimensions of individual sequences [12].

In this paper we extend the effectivization of dimension all the way to the
level of finite-state computation. We define a multi-account finite-state gambler
to be a finite-state gambler that maintains its capital in a portfolio of k separate
accounts, so that capital in one account is shielded from losses in other accounts.
(Finite-state gamblers with only one account have been investigated by Schnorr
and Stimm [16] and Feder [5].) We use gales induced by multi-account finite-state
gamblers to define the finite-state dimension dimFS(X) of each set X ⊆ C,
where C is the Cantor space, consisting of all infinite binary sequences. This
definition is the natural finite-state effectivization of the gale characterization of
classical Hausdorff dimension. In general, dimFS(X) is a real number satisfying

0 ≤ dimH(X) ≤ dimFS(X) ≤ 1,

where dimH(X) is the Hausdorff dimension of X. Like Hausdorff dimension,
finite-state dimension has the stability property that

dimFS(X ∪ Y) = max {dimFS(X), dimFS(Y)}

for all X, Y ⊆ C.
We show that finite-state dimension endows Q, the set of all binary expan-

sions of rational numbers in [0, 1], with internal dimension structure. In partic-
ular, Q itself has finite-state dimension 1.

For an individual sequence S ∈ C, we define the finite-state dimension of S
to be dimFS(S) = dimFS({S}). Each element of Q has finite-state dimension
0, while every sequence that is normal in the sense of Borel [1] has finite-state
dimension 1. We show that every rational in [0, 1] is the finite-state dimension of
a sequence of very low complexity, namely, a sequence in the logspace-uniform
version of the complexity class AC0.

Our main theorem relates finite-state dimension to compressibility by infor-
mation-lossless finite-state compressors, which were introduced by Huffman [7]
and have been extensively investigated. (E.g., see [8] or [9].) Specifically, given
such a compressor C and a sequence S ∈ C, let ρC(S) denote the limit infimum
of all compression ratios achieved by C on prefixes of S, and let ρFS(S) denote
the infimum of all such ρC(S). Our main theorem says that dimFS(S) is precisely
ρFS(S). Thus, with respect to finite-state computation, dimension and density
of information are one and the same for individual sequences.

If ρLZ(S) is the limit infimum of all compression ratios achieved by (any
variant of) the Lempel-Ziv compression algorithm on prefixes of a sequence S ∈
C, then it is well known that ρLZ(S) ≤ ρFS(S) [19]. Thus our main theorem
implies that ρLZ(S) ≤ dimFS(S). However, this inequality may be proper. For

1030 J.J. Dai et al.

example, Lathrop and Strauss [10] have shown that for every ε > 0 there is a
sequence S that is normal, whence dimFS(S) = 1, but satisfies ρLZ(S) < ε.

In the last part of the paper we discuss the role of multiple accounts in our
model of finite-state gambling. Multiple accounts are necessary and sufficient
for the associated class of gales to be closed under nonnegative, rational, linear
combinations. However, we show that the restriction to single-account finite-state
gamblers does not alter the finite-state dimension of any set of sequences. In our
proof, the single-account gamblers have far more states than their multi-account
counterparts, suggesting a possible tradeoff between accounts and states. It is
an open question whether this tradeoff is real or merely a feature of our proof.

2 Preliminaries

If S ∈ C, we write S[i..j] for the finite string consisting of the i-th through
the j-th bits of S. A sequence S ∈ C is normal [1] if each finite string x has
asymptotic frequency 2−|x| in S. That is, for each x ∈ {0, 1}∗,

lim
n→∞

∣
∣
∣
{

i < n
∣
∣
∣ S[i .. i + |x| − 1] = x

}∣
∣
∣

n
= 2−|x|.

NORM is the class of all normal sequences.

3 Finite-State Dimension

This section develops finite-state dimension and its fundamental properties. We
first review the gale characterization of classical Hausdorff dimension, which
motivates our development.
Definition. [11] Let s ∈ [0,∞)

1. An s-gale is a function d : {0, 1}∗ → [0,∞) that satisfies the condition

d(w) = 2−s [d(w0) + d(w1)] (∗)

for all w ∈ {0, 1}∗.
2. A martingale is a 1-gale.

Intuitively, an s-gale is a strategy for betting on the successive bits of a
sequence S ∈ C. For each prefix w of S, d(w) is the capital (amount of money)
that d has after betting on the bits w of S. When betting on the next bit b of
a prefix wb of S (assuming that b is equally likely to be 0 or 1), condition (∗)
tells us that the expected value of d(wb) – the capital that d expects to have
after this bet – is (d(w0) + d(w1))/2 = 2s−1d(w). If s = 1, this expected value is
exactly d(w) – the capital that d has before the bet – so the payoffs are “fair.”
If s < 1, this expected value is less than d(w), so the payoffs are “less than fair.”
Similarly, of s > 1, the payoffs are “more than fair.”

The following generalization of the Kraft inequality and its corollaries will
be useful.

Finite-State Dimension 1031

Lemma 3.1. [11] Let s ∈ [0,∞). If d is an s-gale and B ⊆ {0, 1}∗ is a prefix set,
then for all w ∈ {0, 1}∗,

∑

u∈B

2−s|u|d(wu) ≤ d(w).

Corollary 3.2. [11] Let d be an s-gale, where s ∈ [0,∞). Then for all w ∈
{0, 1}∗

, l ∈ N, and 0 < α ∈ R, there are fewer than 2l

α strings u ∈ {0, 1}l for
which d(wu) > α2(s−1)ld(w).

Corollary 3.3. [11] If d is an s-gale, where s ∈ [0,∞), then for all w, u ∈ {0, 1}∗,

d(wu) ≤ 2s|u|d(w).

Of course the objective of an s-gale is to win a lot of money.
Definition. Let d be an s-gale, where s ∈ [0,∞).

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S [0..n − 1]) = ∞.

2. The success set of d is

S∞[d] =
{

S ∈ C
∣
∣
∣ d succeeds on S

}
.

Observation 3.4. Let s, s′ ∈ [0,∞). For every s-gale d, the function d′ :
{0, 1}∗ → [0,∞) defined by d′(w) = 2(s′−s)|w|d(w) is an s′-gale. If s ≤ s′,
then S∞[d] ⊆ S∞[d′].

Notation. For X ⊆ C,G(X) is the set of all s ∈ [0,∞) such that there is an
s-gale d for which X ⊆ S∞[d].

It was shown in [11] that the following definition is equivalent to the classical
definition of Hausdorff dimension in C.
Definition. The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf G(X).

In order to define finite-state dimension, we restrict attention to s-gales that
are specified by finite-state devices. These devices place bets, which we require
to be rational.
Definition. A binary bet is a rational number r such that 0 ≤ r ≤ 1. We let B
denote the set of all binary bets, i.e., B = Q ∩ [0, 1].

Intuitively, if a gambler whose current capital is c ∈ [0,∞) places a binary
bet r ∈ B on a (perhaps unknown) bit b ∈ {0, 1}, then the gambler is betting
the fraction r of its capital that b = 1 and is betting the remainder of its capital

1032 J.J. Dai et al.

that b = 0. If the payoffs are fair, then after this bet the gambler’s capital will
be

2c[(1 − b)(1 − r) + br] =

{
2rc if b = 1,

2(1 − r)c if b = 0.

We now introduce the model of finite-state gambling that is used to develop
finite-state dimension. Intuitively, a finite-state gambler is a finite-state device
that places k separate binary bets on each of the successive bits of its input
sequence. These bets correspond to k separate accounts into which the gambler’s
capital is divided.
Definition. If k is a positive integer, then a k-account finite-state gambler (k-
account FSG) is a 5-tuple

G =
(
Q, δ, ~β, q0,~c0

)
,

where

– Q is a nonempty, finite set of states,
– δ : Q × {0, 1} → Q is the transition function,
– ~β : Q → Bk is the betting function,
– q0 ∈ Q is the initial state, and
– ~c0 = (c0,1, . . . , c0,k), the initial capital vector, is a sequence of nonnegative

rational numbers.

A finite state gambler (FSG) is a k-account FSG for some positive integer k.
Note that we require k > 0. No-account gamblers are not worthy of discus-

sion.
The case k = 1, where there is only one account, is the model of finite-state

gambling that has been considered (in essentially equivalent form) by Schnorr
and Stimm [16], Feder [5], and others. In this case we do not regard ~c0 as a vector,
but simply as a nonnegative rational number c0, which is the initial capital of
G.

If k > 1, it is convenient to regard the betting function ~β : Q → Bk as a
vector ~β = (β1, . . . , βk) of component betting functions βi : Q → B, so that

~β(q) = (β1(q), . . . , βk(q))

for each q ∈ Q. If k = 1, we write β for ~β.
As usual with finite-state transition structures, we extend δ to the transition

function

δ∗ : Q × {0, 1}∗ → Q

defined by the recursion

δ∗(q, λ) = q,

δ∗(q, wb) = δ(δ∗(q, w), b)

Finite-State Dimension 1033

for all q ∈ Q, w ∈ {0, 1}∗, and b ∈ {0, 1}; we write δ for δ∗; and we use the
abbreviation δ(w) = δ(q0, w).

Intuitively, if a k-account FSG G = (Q, δ, ~β, q0,~c0) is in state q ∈ Q and its
current capital vector is ~c = (c1, . . . , ck) ∈ (Q ∩ [0,∞))k, then for each of its
accounts i ∈ {1, . . . , k}, it places the binary bet βi(q) ∈ B. If the payoffs are
fair, then after this bet G will be in state δ(q, b) and its ith account will have
capital

2ci[(1 − b)(1 − βi(q)) + bβi(q)] =

{
2βi(q)ci if b = 1,

2(1 − βi(q))ci if b = 0.

This suggests the following definition.
Definition. Let G = (Q, δ, ~β, q0,~c0) be a k-account finite-state gambler.

1. For each 1 ≤ i ≤ k, the ith martingale of G is the function

dG,i : {0, 1}∗ → [0,∞)

defined by the recursion

dG,i(λ) = c0,i,

dG,i(wb) = 2dG,i(w)[(1 − b)(1 − βi(δ(w))) + bβi(δ(w))]

for all w ∈ {0, 1}∗ and b ∈ {0, 1}.
2. The total martingale (or simply the martingale) of G is the function

dG =
k∑

i=1

dG,i.

It is clear by inspection that dG,1, . . . , dG,k, and dG are all martingales for
every k-account FSG G.

Example 3.5. The diagram

0
2
3 3

1

1
1

1

1

0

0

denotes the 1-account FSG G = (Q, δ, β, 0, 1), where Q = {0, 1}, δ(0, 0) =
δ(1, 0) = 0, δ(0, 1) = δ(1, 1) = 1, β(0) = 2

3 , and β(1) = 1
3 . It is easy to verify

that dG(λ) = 1, dG(1) = 4
3 , dG(11) = 8

9 , and dG(110) = 32
27 .

1034 J.J. Dai et al.

Example 3.6. The diagram

0
0, 12

3,3
1

1
2

1
2(),

denotes the 2-account FSG G = (Q, δ, ~β, 0, (1
2 , 1

2)), where Q = {0}, δ(0, 0) =
δ(0, 1) = 0, β1(0) = 1

3 , and β2(0) = 2
3 . Although the two components of ~β

make “opposite” bets, these do not “cancel” each other. For example, note that
dG(00) = dG(11) = 10

9 > 1 = dG(0) = dG(1). This is because the separation of
accounts causes the effect of a component bet βi(q) to be proportional to the
current capital in the ith account.

Many of the k-account FSGs that we consider have the form G =
(Q, δ, ~β, q0,~c), where ~c = (1

k , 1
k , . . . , 1

k). In this case we omit ~c from the nota-
tion, referring simply to the k-account FSG G = (Q, δ, ~β, q0). Note that such a
gambler always has initial capital dG(λ) = 1.

Lemma 3.7. If G1 is a k1-account FSG with n1 states and G2 is a k2-account
FSG with n2 states, then there is a (k1 + k2)-account FSG G with n1n2 states
such that dG = dG1 + dG2 .

By Observation 3.4, an FSG G defines not only the martingale dG, but also
an s-gale for every s.
Definition. For s ∈ [0,∞), the s-gale of an FSG G is the function

d
(s)
G : {0, 1}∗ → [0,∞)

defined by

d
(s)
G (w) = 2(s−1)|w|dG(w)

for all w ∈ {0, 1}∗.
In particular, note that d

(1)
G = dG.

Definition.

1. For s ∈ [0,∞), a finite-state s-gale is an s-gale d for which there exists an
FSG G such that d

(s)
G = d.

2. A finite-state martingale is a finite-state 1-gale.

We now use finite-state gales to define finite-state dimension.
Notation. For X ⊆ C, GFS(X) is the set of all s ∈ [0,∞) such that there is a
finite-state s-gale d for which X ⊆ S∞[d].

Observation 3.8. Let X, Y ⊆ C and s, s′ ∈ [0,∞).

Finite-State Dimension 1035

1. If s′ ≥ s ∈ GFS(X), then s′ ∈ GFS(X).
2. (1,∞) ⊆ GFS(X) ⊆ (0,∞).
3. GFS(X) ⊆ G(X).
4. If X ⊆ Y , then GFS(Y) ⊆ GFS(X).

Recalling that the Hausdorff dimension of a set X ⊆ C is dimH(X) =
inf G(X), it is natural to define the finite-state dimension as follows.
Definition. The finite-state dimension of a set X ⊆ C is

dimFS(X) = inf GFS(X).

Parts 1 and 2 of Observation 3.8 tell us that GFS(X) is always of the form
(s∗,∞), where 0 ≤ s∗ ≤ 1, or of the form [s∗,∞), where 0 < s∗ ≤ 1. In either
case, the number s∗ is the finite-state dimension of X.

Observation 3.8 has the following immediate consequences.

Observation 3.9. Let X, Y ⊆ C.

1. 0 ≤ dimH(X) ≤ dimFS(X) ≤ 1.
2. If X ⊆ Y , then dimFS(X) ≤ dimFS(Y).

An important property of Hausdorff dimension is its stability, which is the
term used by Falconer [4] for the fact that dimH(X ∪Y) is always the maximum
of dimH(X) and dimH(Y). We now show that finite-state dimension has this
property.

Theorem 3.10. For all X, Y ⊆ C,

dimFS(X ∪ Y) = max {dimFS(X), dimFS(Y)} .

Thus for all X1, . . . , Xn ⊆ C,

dimFS

(
n⋃

i=1

Xi

)

= max
1≤i≤n

dimFS(Xi).

We conclude this section with an easy technical lemma.
Definition. A 1-account FSG G = (Q, δ, β, q0) is nonvanishing if 0 < β(q) < 1
for all q ∈ Q.

Lemma 3.11. For every 1-account FSG G and every ε > 0, there is a nonvan-
ishing 1-account FSG G′ such that for all w ∈ {0, 1}∗, dG′(w) ≥ 2−ε|w|dG(w).

4 Rational Sequences

This brief section shows how to use finite-state dimension to define a natural
notion of dimension in the set of all binary expansions of rational numbers.
Definition. Let n ∈ Z

+ and S ∈ C.

1036 J.J. Dai et al.

1. S is eventually periodic with period n, and we write S ∈ Qn, if there exist
x ∈ {0, 1}∗ and y ∈ {0, 1}n such that for all k ∈ N, xyk v S.

2. S is eventually periodic, and we write S ∈ Q, if there exists n ∈ Z
+ such

that S ∈ Qn.

Note that for all m, n ∈ Z
+, Qn ⊆ Qmn. Note also that Q = ∪∞

n=1Qn

is precisely the set of all binary expansions of elements of Q ∩ [0, 1]. For this
reason, the elements of Q are also called rational sequences.

Lemma 4.1. For all n ∈ Z
+, dimFS(Qn) = 0.

In contrast with Lemma 4.1, and with the fact that every countable set of
sequences has classical Hausdorff dimension 0, we have the following.

Theorem 4.2. dimFS(Q) = 1.

Our proof of Theorem 4.2 uses a result of Schnorr and Stimm [16] on 1-
account FSGs. For each martingale d, let X(d) be the set of all S ∈ C such that
either

(i) d is eventually constant on S, i.e., d(S [0..n]) = d(S [0..n − 1]) for all suffi-
ciently large n, or

(ii) d decays exponentially on S, i.e., there exists α ∈ (0, 1) such that
d(S [0..n − 1]) < αn for all sufficiently large n.

Recall from section 2 that NORM is the set of all normal sequences.

Theorem 4.3. (Schnorr and Stimm [16]). If G is a 1-account FSG, then
NORM ⊆ X(dG).

We now define dimension in the set of rational sequences.
Definition. For X ⊆ C, the dimension of X in Q is

dim(X|Q) = dimFS(X ∩ Q).

This definition endows Q (and hence the set Q of rationals) with internal
dimension structure. For example we have the following.

Observation 4.4. Let X, Y ⊆ C.

1. 0 ≤ dim(X|Q) ≤ 1.
2. If X ∩ Q ⊆ Y ∩ Q, then dim(X|Q) ≤ dim(Y |Q).
3. If X ∩ Q is finite, then dim(X|Q) = 0.
4. dim(X ∪ Y |Q) = max {dim(X|Q), dim(Y |Q)}.
5. dim(Q|Q) = 1.

Finite-State Dimension 1037

5 Individual Sequences

It is natural to define the finite-state dimension of an individual sequence as
follows.
Definition. The finite-state dimension of a sequence S ∈ C is

dimFS(S) = dimFS({S}).

By Observation 4.4, every rational sequence has finite-state dimension 0.
On the other hand, by Theorem 4.3, every normal sequence has finite-state
dimension 1. The following theorem says that every rational number r ∈ [0, 1] is
the finite-state dimension of a reasonably simple sequence.

Theorem 5.1. For every r ∈ Q ∩ [0, 1] there exists S ∈ AC0 such that
dimFS(S) = r.

6 Dimension and Compression

In this section we characterize the finite-state dimension of individual sequences
in terms of finite-state compressibility. We first recall the definition of an
information-lossless finite-state compressor. (This idea is due to Huffman [7].
Further exposition may be found in [8] or [9].)
Definition. A finite-state compressor (FSC) is a 4-tuple

C = (Q, δ, ν, q0),

where

– Q is a nonempty, finite set of states,
– δ : Q × {0, 1} → Q is the transition function,
– ν : Q × {0, 1} → {0, 1}∗ is the output function, and
– q0 ∈ Q is the initial state.

For q ∈ Q and w ∈ {0, 1}∗, we define the output from state q on input w to be
the string ν(q, w) defined by the recursion

ν(q, λ) = λ

ν(q, wb) = ν(q, w)ν(δ(q, w), b)

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. We then define the output of C on input
w ∈ {0, 1}∗ to be the string

C(w) = ν(q0, w).

Definition. An FSC C = (Q, δ, ν, q0) is information-lossless (IL) if the function

{0, 1}∗ → {0, 1}∗ × Q

w 7→ (C(w), δ(w))

1038 J.J. Dai et al.

is one-to-one. An information-lossless finite-state compressor (ILFSC) is an FSC
that is IL.

That is, an ILFSC is an FSC whose input can be reconstructed from the
output and final state reached on that input.

Intuitively, an FSC C compresses a string w if |C(w)| is significantly less than
|w|. Of course, if C is IL, then not all strings can be compressed. Our interest
here is in the degree (if any) to which the prefixes of a given sequence S ∈ C
can be compressed by an ILFSC.
Definition. If C is an FSC and S ∈ C, then the compression ratio of C on S is

ρC(S) = lim inf
n→∞

|C(S[0 .. n − 1])|
n

.

Definition. The finite-state compression ratio of a sequence S ∈ C is

ρFS(S) = inf {ρC(S)|C is an ILFSC} .

The following theorem says that finite-state dimension and finite-state com-
pressibility are one and the same.

Theorem 6.1. For all S ∈ C,

dimFS(S) = ρFS(S).

7 Accounts versus States

The multi-account model of finite-state gambling has the useful closure property
that for every s, every nonnegative, rational, linear combination of finite-state
s-gales is a finite-state s-gale. The single-account model of finite-state gambling
does not enjoy this closure property. In fact, there is no 1-account FSG whose
martingale is that of the 2-account FSG of Example 3.6. Nevertheless, the fol-
lowing theorem shows that finite-state dimension can equivalently be defined by
the single-account model, provided that we are willing to accept a large increase
in the number of states.

Theorem 7.1. For each n-state, k-account FSG G and each ε ∈ (0, 1), if we let
m = dlog ke

ε and N = n(2m − 1), then there is an N -state, 1-account FSG G′

such that for all s ∈ [0, 1],

S∞[d(s)
G] ⊆ S∞[d(s+ε)

G′].

At the time of this writing, we do not know whether such a large number of
states is necessary.

Acknowledgment. We thank Giora Slutzki for useful discussions.

Finite-State Dimension 1039

References

1. É. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques.
Rend. Circ. Mat. Palermo, 27:247–271, 1909.

2. J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kol-
mogorov complexity of the real line. Journal of Computer and Systems Sciences,
49:605–619, 1994.

3. H.G. Eggleston. The fractional dimension of a set defined by decimal properties.
Quarterly Journal of Mathematics, Oxford Series 20:31–36, 1949.

4. K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.
5. M. Feder. Gambling using a finite state machine. IEEE Transactions on Informa-

tion Theory, 37:1459–1461, 1991.
6. F. Hausdorff. Dimension und äusseres Mass. Math. Ann., 79:157–179, 1919.
7. D. A. Huffman. Canonical forms for information-lossless finite-state logical ma-

chines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959.
Also avalaible in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-
Wesley, 1964, pages 866-871.

8. Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill,
1978.

9. A. A. Kurmit. Information-Lossless Automata of Finite Order. Wiley, 1974.
10. Lathrop and Strauss. A universal upper bound on the performance of the Lempel-

Ziv algorithm on maliciously-constructed data. In SEQS: Sequences ’97, 1997.
11. J. H. Lutz. Dimension in complexity classes. In Proceedings of the Fifteenth Annual

IEEE Conference on Computational Complexity, pages 158–169. IEEE Computer
Society Press, 2000.

12. J. H. Lutz. Gales and the constructive dimension of individual sequences. In
Proceedings of the 27th Colloquium on Automata, Languages and Programming,
pages 902–913. Springer Lecture Notes in Computer Science, 2000.

13. B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of Information
Transmission, 22:170–179, 1986.

14. B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of
Information Transmission, 29:186–193, 1993.

15. B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal
of Complexity, 10:281–295, 1994.

16. C. P. Schnorr and H. Stimm. Endliche automaten und zufallsfolgen. Acta Infor-
matica, 1:345–359, 1972.

17. L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and
Computation, 102:159–194, 1993.

18. L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal
prediction. Theory of Computing Systems, 31:215–229, 1998.

19. J. Ziv. Coding theorem for individual sequences. IEEE Transactions on Informa-
tion Theory, 24:405–412, 1978.

The Complexity of Computing the Size of an
Interval?

Lane A. Hemaspaandra1, Sven Kosub2, and Klaus W. Wagner2

1 Department of Computer Science, University of Rochester,
Rochester, NY 14627, USA
lane@cs.rochester.edu

2 Theoretische Informatik, Julius-Maximilians-Universität Würzburg
Am Hubland, D-97074 Würzburg, Germany

{kosub,wagner}@informatik.uni-wuerzburg.de

Abstract. We study the complexity of counting the number of elements
in intervals of feasible partial orders. Depending on the properties that
partial orders may have, such counting functions have different com-
plexities. If we consider total, polynomial-time decidable orders then we
obtain exactly the #P functions. We show that the interval size func-
tions for polynomial-time adjacency checkable orders are tightly related
to the class FPSPACE(poly): Every FPSPACE(poly) function equals a
polynomial-time function subtracted from such an interval size function.
We study the function #DIV that counts the nontrivial divisors of nat-
ural numbers, and we show that #DIV is the interval size function of a
polynomial-time decidable partial order with polynomial-time adjacency
checks if and only if primality is in polynomial time.

1 Introduction

The class NP, widely believed to contain computationally intractable problems,
captures the complexity of determining for a given problem instance whether at
least one suitable affirmative solution exists within an exponentially large set of
(polynomial-sized) potential solutions. It is seemingly much harder to count all
affirmative solutions in such solution sets. The corresponding counting functions
constitute Valiant’s famous counting class #P [23]. In the theory of counting
functions, which is devoted to the study of counting versions of decision problems,
most classes considered try to capture the pure phenomenon of counting, and in
doing so they obscure other factors, e.g., orders on solutions sets.

Natural counting problems in #P, of course, sometimes have strong relation-
ships between solutions. As an example, consider the counting function #DIV
which counts for each natural number the number of its nontrivial divisors.
Clearly, #DIV is in #P since division can be done in polynomial time. A suit-
able structure in the set of solutions is the partial order ≤| of divisibility (that
? Supported in part by grants NSF-INT-9815095/DAAD-315-PPP-gü-ab and NSF-

CCR-9322513. Work done in part while the first author was visiting Julius-
Maximilians-Universität Würzburg.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1040–1051, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Complexity of Computing the Size of an Interval 1041

is, n ≤| m iff n divides m). Obviously, #DIV(m) = ‖{k | 1 <| k <| m}‖,
i.e., #DIV(m) counts the number of elements in the open interval (1, m) in the
partial order ≤| of natural numbers.

Is #DIV an exceptional case among #P functions that has such an inter-
val size characterization? Interestingly, “no” is the answer. It turns out that a
function f is in #P if and only if it is an interval size function of a P-decidable
partial p-order. The latter means that there exist a partial p-order ≤A (i.e.,
a partial order such that, for some polynomial p and all x, y, it holds that
x ≤A y implies |x| ≤ p(|y|)) which is P-decidable (i.e., x ≤A y is decidable
in polynomial time) and polynomial-time computable functions b and t such
that f(x) = ‖{z | b(x) <A z <A t(x)}‖.

However, knowing that a partial p-order is polynomial-time decidable does
not give us as much information as sometimes is needed. For example, the
polynomial-time decidability of a p-order seemingly does not ensure that it has
efficient adjacency checks, i.e., that there is a polynomial-time algorithm check-
ing whether two elements are adjacent in this partial p-order. Indeed, if every
P-decidable partial p-order has efficient adjacency checks then P = NP (and
vice versa). Hence having additionally efficient adjacency checks seems to be a
restriction. Denoting by IFp (respectively, IFt) the class of interval size func-
tions of P-decidable partial p-orders (respectively, total p-orders) with efficient
adjacency checks, we obtain IFt ⊆ IFp ⊆ #P. On the one hand, we prove that
IFt - FP = IFp - FP = #P- FP, and thus these classes do not seem to be “very
different.” On the other hand, IFp = #P is equivalent to P = NP, and hence
it is very unlikely that IFp and #P coincide. Further, we discover relationships
between the classes IFt, FP, and UPSVt, as well as consequences of IFt = IFp.

We already mentioned that it is unlikely that every P-decidable partial p-
order has efficient adjacency checks. What about the converse? This also is not
likely; if every partial p-order with efficient adjacency checks is P-decidable
then P = PSPACE (and vice versa). Hence, in the presence of efficient ad-
jacency checks, removing the P-decidability requirement seems to be a re-
laxation. Denoting by IF∗

p (respectively, IF∗
t) the class of interval size func-

tions of partial p-orders (respectively, total p-orders) with efficient adjacency
checks, we obtain IFp ⊆ IF∗

p and IFt ⊆ IF∗
t . We prove that IF∗

p is remark-
ably powerful: IF∗

p - FP = FPSPACE(poly)- FP, which brings IF∗
p seemingly

close to FPSPACE(poly), the class of polynomially length-bounded, polynomial-
space computable functions. However, if these classes would really coincide then
UP = PSPACE. We clarify further relations among such classes and also with
respect to other function classes, in order to understand the power of interval
computing.

Finally we prove that the counting function #DIV is in IFp if and only if
primality is in P.

Using order-theoretic notions to approach complexity issues is not new, and
this appears in the literature in several settings (e.g., [7,6,24,10,12]) that, how-
ever, differ in intent from our approach. The notions from these studies focus

1042 L.A. Hemaspaandra, S. Kosub, and K.W. Wagner

on one specific ordering, namely the lexicographical ordering. However, for our
purposes it is essential to consider more general feasible orderings (see [15,11]).

Due to the page limit we omit some of the proofs here and defer them to the
journal version.

2 Preliminaries

For our finite alphabet Σ = {0, 1}, let Σ∗ be the set of all finite words (strings)
built with letters from Σ. Let ε denote the empty word. The length of a word
x ∈ Σ∗ is denoted by |x|. The complement of a set L ⊆ Σ∗ is denoted by L, i.e.,
L = Σ∗ \ L. For any class K of subsets of Σ∗, let coK be the class {L | L ∈ K}.
The cardinality of a set L is denoted by ‖L‖. The characteristic function of a
set L ⊆ Σ∗ is denoted by cL, i.e., cL(x) = 1 ⇔ x ∈ L and cL(x) = 0 ⇔ x /∈ L,
for all x ∈ Σ∗. Let N = {0, 1, 2, . . . }.

For the basic notions of complexity theory such as P, NP, PSPACE, and
so on see any standard text, e.g., [1,19]. The computation model we use is the
standard nondeterministic Turing machine.

We review the definitions of some complexity classes of functions, already
existing in the literature, that we will use in this paper.

– FP denotes the class of all polynomial-time computable, total functions from
Σ∗ to N. We will at times use FP to denote the class of all polynomial-time
computable, total functions from Σ∗ to Σ∗; via the natural, efficient bijection
between N and Σ∗, these are in essence the same.

– [13] FPSPACE(poly) is the class of all polynomial-space computable, total
functions with polynomially length-bounded outputs.

– [23] #P is the class of all total functions f for which there exists a nondeter-
ministic polynomial-time Turing machine M such that f(x) is the number
of accepting computations of M on input x. Equivalently, #P is the class of
all total functions f for which there exist a set B ∈ P and a polynomial p
such that f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖

– [8,12] UPSVt is the class of all total functions f for which there exists a
nondeterministic polynomial-time Turing machine M which always produces
on exactly one computation path an output, and this output is f(x).

For function classes F and G, let F - G denote the class of all functions h for
which there exist functions f ∈ F and g ∈ G such that h(x) = f(x) − g(x) for
all x ∈ Σ∗. For a class K of sets, let FPK (PK, resp.) be the class of functions
(sets resp.) that can be computed in polynomial time with an oracle from K.

Next we review the definitions of some complexity classes of sets, already
existing in the literature, that we will use in this paper.

– [22] UP is the class of all sets L such that cL ∈ #P.
– [3,14] NP is the class of all sets L for which there exists a function f ∈ #P

such that x ∈ L ⇔ f(x) > 0 for all x ∈ Σ∗.
– [20,5] PP is the class of all sets L for which there exist functions f ∈ #P

and g ∈ FP such that x ∈ L ⇔ f(x) ≥ g(x) for all x ∈ Σ∗.

The Complexity of Computing the Size of an Interval 1043

– [18,4] SPP is the class of all sets L such that cL ∈ #P- FP.
– [16,21] PH = NP ∪ NPNP ∪ NPNPNP ∪

The following results are well-known or easy to see.

Proposition 1. 1. FP ⊆ UPSVt = FPUP∩coUP ⊆ #P ⊆ FPSPACE(poly).
2. P ⊆ UP ⊆ NP ⊆ PH ⊆ PSPACE.
3. NP ∪ SPP ⊆ PP.

Finally, we will use a complexity-theoretic operator of Hempel and Wech-
sung [9], which maps function classes to set classes: For a function class F , let
∃ ·F be the class of all sets L for which there exists a function f ∈ F such that
x ∈ L ⇔ f(x) > 0 for all x ∈ Σ∗.

The following statements are immediate or easy to see.

Proposition 2. 1. ∃·FP = P.
2. ∃·UPSVt = ∃·(UPSVt- FP) = ∃·(UPSVt- UPSVt) = UP ∩ coUP.
3. ∃·#P = NP.
4. ∃·(#P- FP) = PP.
5. ∃·FPSPACE(poly) = PSPACE.

3 Orders with Feasibility Constraints

In this section we introduce the order-theoretic notions that we need, and their
polynomial-time versions (see also [11]).

A binary relation A ⊆ Σ∗ × Σ∗ is a partial order if it is reflexive, transi-
tive, and antisymmetric. A partial order A is a partial p-order if there exists a
polynomial p such that |x| ≤ p(|y|) for all (x, y) ∈ A. If A additionally satisfies
(x, y) ∈ A or (y, x) ∈ A for all x, y ∈ Σ∗, then A is said to be a total p-order.
Note that in a partial p-order for every string y there exist only exponentially
(in the length of y) many strings that are less than y with respect to the or-
der considered. Hence the interval size functions defined below are exponentially
value-bounded relative to the input length in the same way as usually functions
in polynomial-time settings, such as functions from FP and #P.

For any partial p-order A we make the following notational conventions. We
write x ≤A y if (x, y) ∈ A, we write x <A y if x ≤A y and x 6= y, and we write
x ≺A y if x <A y and there is no z with x <A z <A y. If x ≺A y we say that x
precedes y or, equivalently, y succeeds x. Finally, we set A≺ =def {(x, y) | x ≺A y}.

Feasibility restrictions on orders are essential in our further studies. A P-
decidable partial p-order is simply a partial p-order A that belongs to P. A
partial p-order A has efficient adjacency checks if and only if the set A≺ is in P.

The two feasibility constraints discussed above can be expected to be in-
comparable. However, there are complexity-theoretic connections between both
features.

Proposition 3. Let A be a partial p-order.

1. If A ∈ P then A≺ ∈ coNP.
2. If A≺ ∈ P then A ∈ PSPACE.

1044 L.A. Hemaspaandra, S. Kosub, and K.W. Wagner

Corollary 4. 1. If P = NP then all P-decidable partial p-orders have efficient
adjacency checks.

2. If P = PSPACE then all partial p-orders with efficient adjacency checks are
P-decidable.

In what follows we will see that the converse implications of the preceding
corollary are also valid.

4 Orders without Efficient Adjacency Checks

In this section we will see how to use partial and total p-orders to capture
function classes. In particular, we are interested in characterizing #P in terms of
feasible p-orders. However, if we omit all feasibility restrictions on p-orders then,
not surprisingly, all polynomially length-bounded functions can be characterized
in the same way as intended for #P.

Theorem 5. 1. For any function f the following statements are equivalent.
(1) f ∈ #P.
(2) There exist a partial p-order A ∈ P and functions b, t ∈ FP such that

f(x) = ‖{z | b(x) <A z <A t(x)}‖ for all x ∈ Σ∗.
(3) There exist a total p-order A ∈ P and functions b, t ∈ FP such that

b(x) ≤A t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖ for all x ∈ Σ∗.
2. For any function f the following statements are equivalent.

(1) f is polynomially length-bounded.
(2) There exist a partial p-order A and functions b, t ∈ FP such that f(x) =

‖{z | b(x) <A z <A t(x)}‖ for all x ∈ Σ∗.
(3) There exist a total p-order A and functions b, t ∈ FP such that b(x) ≤A

t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖ for all x ∈ Σ∗.

Proof. The implications (3) ⇒ (2) ⇒ (1) are obvious; we prove (1) ⇒ (3).
For every polynomially length-bounded function f : Σ∗ → N there exist a set

B ⊆ Σ∗ ×Σ∗ and a strictly monotonic polynomial p such that f(x) = ‖{z | |z| =
p(|x|) ∧ (x, z) ∈ B}‖. If, in addition, f ∈ #P then B can be chosen to be from
P. Without loss of generality assume that (x, 0p(|x|)), (x, 1p(|x|)) 6∈ B for all x.

We construct a total p-order A on Σ∗ as follows. Generally, A will coincide
with the lexicographical order on Σ∗ except, for every x, the interval between
x0p(|x|) and x1p(|x|), which will be is ordered differently in the following way:

- first x1p(|x|),
- then the elements of {xz | |z| = p(|x|) ∧ (x, z) ∈ B} in lexicographical order,

and
- then the elements of {xz | |z| = p(|x|) ∧ (x, z) 6∈ B ∧ z 6= 1p(|x|)} in lexico-

graphical order.

Obviously, f(x) = ‖{w | x1p(|x|) <A w <A x0p(|x|)}‖. If, in addition, B ∈ P then
also A ∈ P. ut

The Complexity of Computing the Size of an Interval 1045

5 Polynomial-Time Orders with Efficient Adjacency
Checks

From Theorem 5 in the preceding section we know that counting the size of
intervals of (partial) p-orders A ∈ P just characterizes the functions of #P. The
situation changes if we additionally assume efficient adjacency checks. The class
IFp (IFt, resp.) is defined as the class of all functions f : Σ∗ → N for which
there exist a partial (total, resp.) p-order A ∈ P having efficient adjacency
checks, and functions b, t ∈ FP, such that f(x) = ‖{z | b(x) <A z <A t(x)}‖
for every x ∈ Σ∗. The following theorem places the classes IFt and IFp between
well-known complexity classes.

Theorem 6. FP ⊆ IFt ⊆ IFp ⊆ #P.

What can we say about the inclusions in Theorem 6? We start by showing
that IFp and #P coincide on Nonzero =def {f | f(x) > 0 for all x}.

Theorem 7. IFp ∩ Nonzero = #P ∩ Nonzero.

Proof. Since IFp ⊆ #P, all that remains is to prove the inclusion “⊇.”
For f : Σ∗ → N from #P such that f(x) > 0 for all x, there exists a

set B ⊆ Σ∗ × Σ∗ from P and a strictly monotonic polynomial p such that
f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖.

We construct a partial p-order A on Σ∗ as follows. Generally, A coincides
with the lexicographical order on Σ∗ except, for every x, the interval between
x0p(|x|)00 and x0p(|x|)11, which will be partially ordered in the following way:

- x0p(|x|)00 <A x0p(|x|)01 <A x0p(|x|)11,
- the elements from {xz10 | |z| = p(|x|)∧(x, z) ∈ B} are pairwise incomparable

and all are between x0p(|x|)01 and x0p(|x|)11,
- the elements from {xz10 | |z| = p(|x|) ∧ (x, z) 6∈ B} ∪ {xzσ | |z| = p(|x|) ∧

z 6= 0p(|x|) ∧ σ ∈ {00, 01, 11}} are pairwise incomparable and all are between
x0p(|x|)00 and x0p(|x|)01.

Obviously, A is P-decidable, has efficient adjacency checks, and we obtain
‖{w | x0p(|x|)01 <A w <A x0p(|x|)11}‖ = f(x). ut

In what follows, we write 1 for the function class consisting of just the con-
stant function f(x) = 1, and we write O(1) for the function class that contains
exactly the functions f(x) = 0, f(x) = 1, f(x) = 2,

Corollary 8. 1. #P ⊆ IFp- 1.
2. #P-O(1) = IFp-O(1).

From Theorem 6 and Corollary 8 we can conclude that IFp ⊆ IFp - 1 which is
equivalent to the fact that IFp is closed under increment, i.e., for every f ∈ IFp
the function f ′ is also in IFp, where f ′(x) =def f(x)+1 for all x.

Corollary 9. The class IFp is closed under increment.

Corollary 8 is nicely complemented by the following theorem.

Theorem 10. 1. #P ⊆ IFt- FP.
2. IFt- FP = IFp- FP = #P- FP.

1046 L.A. Hemaspaandra, S. Kosub, and K.W. Wagner

Corollary 11. FPIFt = FPIFp = FP#P.

The previous results indicate that the computational power of IFp and IFt
is not very much lower than that of #P. However, Theorem 13 shows that these
classes cannot coincide unless P = NP. We start with a lemma on the application
of the ∃ operator to IFp and IFt. Comparing Lemma 12 with Theorem 7 and
taking into account ∃·#P = NP, it turns out that it is just the possibility of
f(x) = 0 that makes the classes #P and IFp different.

Lemma 12. ∃·IFp = ∃·IFt = P.

Theorem 13. The following statements are equivalent:
(1) P = NP.
(2) IFp = #P.
(3) IFt = #P.
(4) Every P-decidable partial p-order has efficient adjacency checks.
(5) Every P-decidable total p-order has efficient adjacency checks.

We know from Theorem 6 that FP ⊆ IFt. However, the equality of these
classes, or even IFt ⊆ UPSVt, has severe consequences.

Theorem 14. 1. FP = IFt if and only if P = PP.
2. IFt ⊆ UPSVt if and only if UP = PP.
3. UPSVt ⊆ IFp if and only if P = UP ∩ coUP.

However the class UPSVt is included in IFt when restricted to strictly positive
functions.

Theorem 15. UPSVt ∩ Nonzero ⊆ IFt ∩ Nonzero.

Corollary 16. UPSVt ⊆ IFt- 1.

By Corollary 9 the class IFp is closed under increment. This is also true for
the class IFt.

Theorem 17. The class IFt is closed under increment.

Corollary 18. IFt ⊆ IFt- 1.

Though UPSVt = IFt is very unlikely (see Theorem 14), for the case of
strictly positive, polynomially bounded functions this actually holds. We define
Polybounded =def {f | f(x) ≤ p(|x|) for some polynomial p and all x}.

Theorem 19. 1. IFt ∩ Polybounded ⊆ UPSVt ∩ Polybounded.
2. IFt ∩ Polybounded ∩ Nonzero = UPSVt ∩ Polybounded ∩ Nonzero.
3. UPSVt ∩ Polybounded ⊆ IFp ∩ Polybounded if and only if P = UP ∩ coUP.

From Theorem 5 we know that total and partial p-orders that are efficiently
decidable describe the same class of functions in our setting, namely #P. If
we consider total and partial p-orders that additionally have efficient adjacency
checks, then this does not hold unless an unexpected complexity class collapse
occurs.

Corollary 20. If IFt = IFp then UP = PH.

The Complexity of Computing the Size of an Interval 1047

6 Arbitrary Orders with Efficient Adjacency Checks

In the previous section we studied interval counting for polynomial-time or-
ders with efficient adjacency checks. But what happens if we do not insist on
polynomial-time decidability for the order but do keep the efficient adjacency
checks? The class IF∗

p (IF∗
t , resp.) is defined as the class of all functions f : Σ∗ →

N for which there exist a partial (total, resp.) p-order A having efficient adjacency
checks, and functions b, t ∈ FP, such that f(x) = ‖{z | b(x) <A z <A t(x)}‖ for
every x ∈ Σ∗.

We obtain the following inclusions between the interval size classes and other
complexity classes of functions. Recall that FPSPACE(poly) denotes the class
of all total functions that are polynomial-space computable and polynomially
length-bounded.

Proposition 21. IFt
⊆ IF∗

t ⊆
⊆ IFp ⊆ IF∗

p ⊆
#P ⊆ FPSPACE(poly).

The following theorem shows that the computational power of the class IF∗
p

is close to the power of FPSPACE(poly).

Theorem 22. FPSPACE(poly)- FP = IF∗
p- FP.

Proof. Since IF∗
p ⊆ FPSPACE(poly) we have to prove only FPSPACE(poly)

⊆ IF∗
p - FP.

Let f : Σ∗ → N be in FPSPACE(poly). Without loss of generality we can
assume that f is computed by a deterministic polynomial-work-space Turing
machine M that makes its output in unary. Let p a strictly increasing polynomial
such that every configuration K of M on input x can be encoded in an obvious
way as 〈x, K〉 ∈ Σp(|x|), and that the running time of M on input x is less than
2p(|x|). Let Kx be the initial configuration of M on input x, and let K∗ be the
(without loss of generality) only halting configuration of M .

Now we construct a partial p-order A on Σ∗ as follows: For i < 2p(|x|) let
bin(x, i) be the binary description of i with p(|x|) + 1 bits. The only adjacency
relations of A are:

- x〈x, K〉bin(x, t)0 ≺A x〈x, K ′〉bin(x, t + 1)0 for all x ∈ Σ∗, all t < 2p(|x|) − 1,
all configurations K without output, and K ′ being the successor configura-
tion of K,

- x〈x, K〉bin(x, t)0 ≺A x〈x, K〉bin(x, t)1 ≺A x〈x, K ′〉bin(x, t + 1)0 for all x ∈
Σ∗, all t < 2p(|x|) − 1, all configurations K with output, and K ′ being the
successor configuration of K, and

- x〈x, K∗〉bin(x, t)0 ≺A x〈x, K∗〉bin(x, t+1)0 for all x ∈ Σ∗ and all t ≤ 2p(|x|).

Obviously, A has efficient adjacency checks and we have ‖{w | x〈x, Kx〉bin(x, 0)0
<A w <A 〈x, K∗〉bin(x, 2p(|x|) − 1)0}‖ = f(x) + 2p(|x|) − 2. ut

Using analogous proof ideas we can show still more.

Theorem 23. ∃ · IF∗
p = PSPACE.

1048 L.A. Hemaspaandra, S. Kosub, and K.W. Wagner

As a consequence of Theorem 22 and Theorem 23 we obtain a collection of
characterizations of the class FPSPACE(poly) in terms of IF∗

p. For classes F and
G of functions mapping from Σ∗ to N, let F 	 G denote the class of all total,
nonnegative functions in F - G, i.e., all total functions h for which there exist
functions f ∈ F and g ∈ G such that f(x) ≥ g(x) and h(x) = f(x) − g(x) for
every x.

Corollary 24. FPSPACE(poly) = IF∗
p	 FP = FPIF∗p = FP∃·IF∗p .

Theorem 22 shows that IF∗
p is as powerful as FPSPACE(poly) within the

flexibility of subtracting FP functions. The next theorem shows that it is unlikely
that FPSPACE(poly) is included in IF∗

p itself.

Theorem 25. If FPSPACE(poly) ⊆ IF∗
p then UP = PSPACE.

From Theorem 22 and Theorem 23 we also get strong consequences for the
case that IF∗

p = IFp or IF∗
p ⊆ #P- FP.

Corollary 26. The following statements are equivalent:

(1) P = PSPACE.
(2) IFp = IF∗

p.
(3) Every partial p-order with efficient adjacency checks is P-decidable.

Corollary 27. 1. If IF∗
p ⊆ #P- FP then SPP = PSPACE.

2. If IF∗
p ⊆ #P then NP = SPP = PSPACE.

Similarly to the case of IFt and IFp, for function classes with p-orders that
only need to have efficient adjacency checks, it makes a difference whether we
consider total or partial p-orders.

Theorem 28. If IF∗
t = IF∗

p then UP = PH.

Figure 1 summarizes the results we have obtained regarding the inclusion
structure of the considered classes. Though we have not proven consequences
for the case of further collapses of classes that are drawn in the figure as being
different, we conjecture that the inclusions in the figure are all one can prove
without assuming unexpected collapses of complexity classes.

7 The Complexity of Counting Divisors

Finally, we explore the complexity of the function #DIV : N → N defined as

#DIV(m) =def ‖{n ∈ N | n 6= 1, n 6= m, and n divides m}‖
for m ≥ 1 and #DIV(0) =def 0, and we relate it to the interval size class IFp.

The complexity of #DIV depends on the complexity of primality testing.
Let PRIMES be the set of all prime numbers. It is well known that PRIMES is
in the class BPP but it is not known that PRIMES is in P (though sometimes
conjectured, see, e.g., [17,2]). The next result shows that this is necessary and
sufficient for #DIV to belong to the interval size class IFp.

Theorem 29. PRIMES is in P if and only if #DIV is in IFp.

The Complexity of Computing the Size of an Interval 1049

UPSVt

IFp 	 1

IF∗
t 	 FP

FPSPACE(poly) = IF∗
p 	 FP = FPIF∗p = FP∃·IF∗p

U
P

=
PS

PA
CE

P
=

PSPACE

SPP
=

PSPACE

UP = PP

P = UP ∩ coU
P

UP = PH

NP = PP

P = NP

UP = PH

UP = PH

P = PP

U
P

=
SP

P

IFt 	 1

IF∗
p

IFp

IFt

#P

FP

#P 	 FP = IFp 	 FP = IFt 	 FP

IF∗
t

Fig. 1. The landscape of interval size classes and further function classes. An equation
E at the edge between the function classes F1 and F2 means: If F1 = F2 then E. Edge-
equations that are not immediate consequences of the results of this paper are well-
known or easy to see. Since FP is of type Σ∗ → N and the edges indicate containment
claims, the fact that above we use “	 ” rather than “- ” is not of any consequence.

1050 L.A. Hemaspaandra, S. Kosub, and K.W. Wagner

Proof. [⇒]: Define A to be the set of all (x, y) with x dividing y. Then clearly
A ∈ P and A is a partial p-order (see the discussion in the introductory section).
Moreover, it clearly holds that x 6= 0 and y are adjacent with respect to A if and
only if y

x is a prime number. So, since PRIMES ∈ P, adjacency checking is easy
here. Consequently, #DIV is in IFp.

[⇐]: Let #DIV ∈ IFp via partial p-order A ∈ P having efficient adjacency
checks and functions b, t ∈ FP. Then an x > 1 is a prime number if and only if
#DIV(x) = 0, and this is the case if and only if b(x) 6≤A t(x), or b(x) ≺A t(x), or
b(x) = t(x). The latter conditions can be checked in polynomial time depending
on |x|. Hence, PRIMES belongs to P. ut

8 Conclusions

Reviewing all the results on the interval size classes IFp, IF∗
p, IFt, and IF∗

t , it
seems that we have a good idea of the computational power of the classes IFp
and IF∗

p, but there is a lack of corresponding knowledge for IFt and IF∗
t . Can

we find out more? In particular, what about the classes ∃·IF∗
t and ∃·(IF∗

t - FP),
which can be considered to be a kind of “total order” PSPACE, and what about
the class IFt - O(1), which can be considered to be a kind of “total order” #P?

References

1. D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Interna-
tional Series in Computer Science. Prentice Hall, New York, 1994.

2. A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Recent advances towards
proving P=BPP. Bulletin of the EATCS, 64:96–103, 1998.

3. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings 3rd
ACM Symposium on Theory of Computing, pages 151–158, 1971.

4. S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48:116–148, 1994.

5. J. Gill. Computational complexity of probabilistic complexity classes. SIAM Jour-
nal on Computing, 6:675–695, 1977.

6. A. V. Goldberg and M. Sipser. Compression and ranking. SIAM Journal on
Computing, 20(3):524–536, 1991.

7. J. Goldsmith, L. A. Hemachandra, D. Joseph, and P. Young. Near-testable sets.
SIAM Journal on Computing, 20(3):506–523, 1991.

8. J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosys-
tems. SIAM Journal on Computing, 17(2):309–335, 1988.

9. H. Hempel and G. Wechsung. The operators min and max on the polynomial
hierarchy. International Journal of Foundations of Computer Science, 11(2):315–
342, 2000.

10. U. Hertrampf, H. Vollmer, and K. W. Wagner. On balanced versus unbalanced
computation trees. Mathematical Systems Theory, 29:411–421, 1996.

11. K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and
System Sciences, 26:209–221, 1983.

12. S. Kosub. A note on unambiguous function classes. Information Processing Letters,
72(5-6):197–203, 1999.

The Complexity of Computing the Size of an Interval 1051

13. R. E. Ladner. Polynomial space counting problems. SIAM Journal on Computing,
18(6):1087–1097, 1989.

14. L. Levin. Universal sorting problems. Problems of Information Transmission,
9:265–266, 1973.

15. A. R. Meyer and M. Paterson. With what frequency are apparently intractable
problems difficult? Technical Report MIT/LCS/TM-126, Laboratory for Computer
Science, MIT, Cambridge, MA, 1979.

16. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential time. In Proceedings 13th Symposium on
Switching and Automata Theory, pages 125–129. IEEE Computer Society Press,
Los Alamitos, 1972.

17. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences, 13:300–317, 1976.

18. M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure
properties. Journal of Computer and System Sciences, 46:295–325, 1993.

19. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, 1994.
20. J. Simon. On Some Central Problems in Computational Complexity. PhD thesis,

Cornell University, Ithaca, 1975.
21. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,

3:1–22, 1977.
22. L. G. Valiant. Relative complexity of checking and evaluation. Information Pro-

cessing Letters, 5:20–23, 1976.
23. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM

Journal on Computing, 8(3):411–421, 1979.
24. H. Vollmer and K. W. Wagner. Complexity classes of optimization functions.

Information and Computation, 120:198–219, 1995.

Communication Gap for Finite Memory Devices?

Tomasz Jurdziński1,2 and Miros law Kuty lowski3,4

1 Institute of Computer Science, Wroc law University
2 Department of Computer Science, Technical University of Chemnitz

3 Department of Mathematics and Computer Science, Poznań University
4 Institute of Mathematics, Wroc law University of Technology

Abstract. So far, not much is known on communication issues for com-
putations on distributed systems, where the components are weak and
simultaneously the communication bandwidth is severely limited. We
consider synchronous systems consisting of finite automata which com-
municate by sending messages while working on a shared read-only data.
We consider the number of messages necessary to recognize a language
as a its complexity measure.
We present an interesting phenomenon that the systems described re-
quire either a constant number of messages or at least Ω((log log log n)c)
of them (in the worst case) for input data of length n and some constant
c. Thus, in the hierarchy of message complexity classes there is a gap be-
tween the languages requiring only O(1) messages and those that need a
non-constant number of messages. We show a similar result for systems
of one-way automata. In this case, there is no language that requires
ω(1) and o(log n) messages (in the worst case). These results hold for
any fixed number of automata in the system.
The lower bound arguments presented in this paper depend very much
on results concerning solving systems of diophantine equations and in-
equalities.

1 Introduction

Traditional complexity theory usually disregards either communication between
processing units or their internal limitations. On the other hands, for many
reasons it is interesting to consider the situation where we have many weak pro-
cessing units and severely limited communication between them. Not much is
known about communication complexity of problems in this setting. The classi-
cal complexity theory concentrates on the situation when input data is divided
into parts and every part is available to exactly one participant, while local
computational resources are unlimited. Perhaps, the major achievement for re-
stricted local resources are the results of Beame et al. [1] on tradeoffs between
the communication volume and space used.
? This research was partially supported by Deutsche Forschungsgemeinschaft and Ko-

mitet Badań Naukowych, grants 8 T11C 032 15, 8 T11C 012 18, and finally 7 T11C
032 20. Some of the results are contained in the Ph.D. dissertation of the first aut-
hor. Some work has been done when the second author was visiting University of
Mannheim.

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1052–1064, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Communication Gap for Finite Memory Devices 1053

We consider a setting, in which we do not use partitioning of input data for
getting lower bounds. While the whole input is available to every processing unit
we show that internal limitations of processing units cause large communication
requirements.

Model. We consider the simplest model one can imagine to study the prob-
lem mentioned above, namely systems of (a finite number of) finite automata
(equivalent to “multihead finite automata” [5], see also [12]). The automata work
independently on a common read-only input data and communicate by sending
(broadcasting) messages. Since each automaton has only finitely many internal
states, the number of different messages, as well as their size, is constant with
respect to the size of the data. So the number of messages corresponds roughly to
communication volume. The transition function of a single automaton depends
on its internal state, an input symbol seen and the messages received from other
automata at this moment. The automata work in parallel and synchronously,
the messages are delivered instantly. More formally:

Definition 1. We say that M = (A1, A2, . . . , Ak) is a system of finite automata,
if there is a finite set Q such that every internal state of any Ai is in Q; each
automaton has a single read-only head; and a step of M is executed as follows:
if Ai, for i ∈ {1, . . . , k}, is in a state q and a is an input symbol seen by the
read-head of Ai, then:
(1) Ai broadcasts a message m = µi(q, a) to other automata (for µi(q, a) = nil,
no message is sent by Ai);
(2) Ai changes its internal state to q′ and moves its read head r positions to
the right (r ∈ {0, 1,−1}), where q′ and r are given by transition function δi:

(q′, r) = δi(q, a,m1, . . . ,mi−1,mi+1, . . . ,mk),

mj denotes the message sent by automaton Aj during the first phase of the step
or “nil”, if no such a message is sent.

Communication configuration is a configuration of the system in which
at least one automaton sends a message (and the final configuration – the con-
figuration in which every automaton is in the final state, i.e., in the state for
which no transition is defined, independently of messages received and symbol
observed). An initial configuration of the system M is the configuration in
which all automata see the leftmost cell of the input tape and are in initial states
q10 , . . . , q

k
0 . An input word x is given on the tape together with endmarkers B

and C preventing the heads to leave B x C. A system accepts an input x when
a fixed automaton (for instance the first one) enters an accepting state (which
is the final state) during the computation on B x C which starts in the initial
configuration. A system recognizes language L, when a fixed automaton accepts
input x if and only if x ∈ L.

Message complexity classes. Let MESSAGE(f(n)) denote the class of lan-
guages that may be recognized by a system of automata such that at most
f(n) communication configurations occur for computation of the system on ev-
ery input word of length n (observe that the number of messages sent is at

1054 T. Jurdziński and M. Kuty lowski

most k times greater than the number of communication configurations). Note
that already MESSAGE(1) contains a non-regular language {ambm|m ∈ N}
and a non-context-free language {ambmcm|m ∈ N}. For example, to recognize
{ambm|m ∈ N} by 2 automata and one message we start both automata moving
right in such a way that the automaton A2 makes two steps on each symbol
and the automaton A1 makes one step on each symbol (so A2 moves two times
faster than A1). Additionally, A2 checks if the input has the form a∗b∗. Once A2
arrives at the right endmarker, it sends the message. The input is accepted if
and only if A1 receives the message just in the moment when it is on the border
between a’s and b’s.

A number of hierarchy results concerning message complexity classes have
been obtained in [8]. While there is a strict hierarchy concerning a constant
number of communication configurations (or messages), for non-constant num-
ber of messages, the hierarchy of this kind starts from MESSAGE(log logn). It
is also known [8] that the language
L2 = {1f1#1f2# . . .#1fk : f1 = 2, f2 = 3, fi−1|(fi − 1), fi−2|(fi − 1), fi >
1 for i = 3, . . . , k}
is in MESSAGE(O(log logn)) but not in any class of the type
MESSAGE(o(log logn)).

2 New Results

We show a gap phenomenon for message complexity classes: if the number of
messages is non-constant, it must reach a certain level. Results of this kind
are not sparse in complexity theory, but they are a little bit surprising in the
context of communication complexity (note that for the classical communication
complexity it does not occur). Our proof method relies on reducing the problems
to questions about the size of minimal solutions of some Diophantine systems. In
references in [11] one can find more examples of reductions of complexity theory
problems to “Diophantine problems”.

For one-way automata (for which the heads cannot move to the left) we show
that there is a gap between Θ(1) and Θ(log n) message complexity classes:

Theorem 1. For a function f(n) such that f(n) = ω(1) and f(n) = o(log n),
there is no one-way multi-automata system which requires Θ(f(n)) communica-
tion configurations.

The bound logn is optimal, since it is easy to see that the language
L1 = {120

#121
#122

. . .#12k

: k ∈ N} can be recognized with O(log n) mes-
sages: (the algorithm is based on the trick with different “speeds” presented
above for the language {ambm|m ∈ N}). For two-way systems, we have a much
smaller bound (note that it may not exceed log logn, as shown by the language
L2).

Theorem 2. There is a constant c such that for f(n) = ω(1) and f(n) =
o((log log logn)c), there is no two-way multi-automata system which requires
Θ(f(n)) communication configurations.

Communication Gap for Finite Memory Devices 1055

Outline of the proofs. Let S be a system of finite automata that needs ω(1)
communication configurations. Our goal is to show that if there is an input
that requires exactly g communication configurations, then there is an input of

length O(2g) (in the case of one-way systems) or 222u(g)

for some polynomial
u (in the case of two-way systems) with a similar history of computation, and,
what is most important, for which g communication configurations occur. Then,
Theorems 1 and 2 follow immediately.

The first step in finding such inputs is to show that after dividing compu-
tations into some number of categories, each category can be described by a
diophantine system. Such a system consists of linear equations and inequalities
with integer coefficients with absolute values bounded by a constant (in the the
case of one-way automata) and, additionally, of expressions like f(x)|g(x), where
f and g are linear functions with integer coefficients bounded by a constant (in
the general case).

The most important feature of diophantine systems derived is that any com-
putation corresponds to some diophantine solution of the system (i.e., a solution
in N), and vice versa, every diophantine solution describes some input data.
Additionally, the input length is bounded by a linear expression in some of the
variables occurring in the diophantine system.

To complete the proof, we argue that there is a small solution of the dio-
phantine system. Such a solution corresponds to an input word, for which, in
turn, the number g of communication configurations is relatively big, yielding
the claimed bound on the number of communication configurations in the worst
case. For linear equations and inequalities with coefficients having absolute val-
ues bounded by a constant the minimal solution is at most exponential in the
size of the system [4] (see [3] for efficient methods for finding minimal solutions).
For the case of divisibilities, one may analyze the construction of Lipshitz [9] to
find that the minimal solution is at most triple exponential.

The key technical part of this paper (Section 3) is expressing behavior of
systems of automata by diophantine systems. In Section 4, we guide over the
results concerning the size of minimal solutions of diophantine systems.

3 Reduction to Diophantine Problems

First, we introduce some notions describing work of automata during periods
when no messages are sent. Let {Ai}i=1,...,k be a set of finite automata of the sys-
tem S, let Q be the set of their states. Transition is a tuple (Ai, q, s, q

′, s′) where
q, q′ ∈ Q and s, s′ ∈ {Left,Right}. Word w satisfies a transition (Ai, q, s, q

′, s′),
if automaton Ai, starting the computation in state q on the side s of w, leaves
the word w in state q′ on the side s′ (if it receives no message in this time) and
does not send any message in this part of computation. Clocked transition
is a tuple (Ai, q, s, q

′, s′, t) where q, q′ ∈ Q, s, s′ ∈ {Left,Right} and t ∈ N.
Word w satisfies a clocked transition (Ai, q, s, q

′, s′, t), if Ai makes t steps in
part of computation which starts when it enters w in the state q on the side
s and finishes when it leaves w in the state q′ on the side s′ (and Ai does not
leave w between these two events). Transition set is a set of transitions. Clock

1056 T. Jurdziński and M. Kuty lowski

characterization is a set of clocked transitions. A communication partition
of a word x by the system S is a sequence of words x1, . . . , xh+1 and a sequence
of symbols σ1, . . . , σh such that x = x1σ1x2σ2 . . . xhσhxh+1 and:

1. during computation on x, at each communication configuration and at
the final configuration of S the read-heads occupy positions from the set
{|x1σ1 . . . xiσi| : i ∈ {1, . . . , h}}

2. for each i ∈ {1, . . . , h}, there is a communication configuration, in which
some head scans σi (i.e., it is on position |x1σ1 . . . xiσi|).

The positions u = |x1σ1 . . . xiσi| for i ∈ {1, . . . , h}, are called communication
positions. Obviously, h ≤ k · (g + 1), where k is the number of automata and
g the number of communication configurations. The words x1, x2, . . . , xh+1 are
called silent blocks of x.

A communication pattern of the system S on input x, is a set of tu-
ples of the form 〈i, (q1, i1), (q2, i2), . . . , (qk, ik)〉 such that when the ith commu-
nication configuration occurs the automaton Al is in the state ql on position
|x1σ1 . . . xil

σil
| for l ≤ k. By a full transition set of the block xi of the input

word x we mean a transition set of xi which consists of all transitions on xi made
during the computation of the system S on x. For any word w satisfying the full
transition set T , a full clock characterization of w is its clock characterization
consisting of its clocked transitions of all transitions from T .

A computation digest of the system S on word x, denoted by HS(x)
consists of:

– a sequence σ1, . . . , σh of symbols on consecutive communication positions
of x,

– a communication pattern of S on x,
– full transition sets of all silent blocks of x.

Observe that a computation digest fixes neither the silent blocks x1, . . . , xh nor
their full clock characterizations.

A state q is the blocking state for an automaton Ai and a symbol a if Ai

makes no move and no change of its state when it is in state q, reads input
symbol a and no message arrives, i.e., (q, 0) = δi(q, a, nil, . . . , nil),

3.1 Outline of Diophantine Characterization of One-Way Automata

First, we give an idea of a “linear” characterization of all inputs with compu-
tation digest HS(x) = H. Inside a silent block xk of x no message is sent or
received. So, from the point of view of computation of the system, the only im-
portant property of xk is its full clock characterization, Ck. If any other word
x′

k has the same full clock characterization Ck, then we may replace xk with x′
k

without changing messages sent (and acceptance). If x′
k is shorter than xk, then

we obtain a shorter input with computation digest H. However, in most cases
it would be impossible to shorten one block only, without changing the compu-
tation digest. Our approach is to describe dependencies between the blocks and
then to shorten the blocks simultaneously keeping these dependencies valid.

Communication Gap for Finite Memory Devices 1057

Example. To see how characterizations work, we consider a system S with two
automata A1 and A2 on the word x that has a communication partition which
consists of symbols σ1, σ2, σ3, σ4 and silent blocks x1, x2, x3, x4. The automa-
ton A1 (respectively A2) visits communication positions in states q1, q2, q3, q4
(respectively q′

1, q′
2, q′

3, q′
4). The communication pattern of S on x equals

{〈1, (q2, 2), (q′
1, 1)〉, 〈2, (q3, 3), (q′

2, 2)〉, 〈3, (q4, 4), (q′
4, 4)〉}. Assume also that au-

tomaton A1 (respectively A2) sends messages only in states q2 and q4 (respec-
tively q′

2), and q3 is the only blocking state. Let t1i, . . . , t4i denote the numbers
of steps spent by automaton Ai on blocks x1, . . . , x4 for i ∈ {1, 2}. We may
express H, the computation digest of S on x, by full transition sets of blocks
x1, x2, x3, x4 and the conditions:

t11 + t21 = t12, t22 ≥ t31, t41 = t32 + t42.

In general, once we have equations and inequalities as in the example above,
we look for the words x′

1, . . . , x
′
h which have :

– full transition sets determined by the computation digest H,
– full clock characterizations satisfying an appropriate system of linear equa-

tions and inequalities (determined by the communication pattern).
The equations and inequalities mentioned above describe dependencies be-

tween the numbers of steps made by the automata when they go through silent
blocks. However, the variables denoting the numbers of steps made by different
automata on the same block (like t11 and t12 in the example), are dependent.
The main difficulty here is that the “speed” of each automaton within a block
fluctuates heavily depending on the input symbols read. “Speed pattern” might
be extremely complicated. However, going through different speed phases is like
walking through a graph of different “speed states”. This graph has a constant
size, depending on automata only. So, we may hope to describe such walks by
linear expressions with variables describing how many times one goes through
certain cycles in the graph.

In fact, implementing this idea is nontrivial. To the full transition set of
the block xi we assign not a single set of expressions and inequalities but a
family Li of such sets. Each set φ ∈ Li consists of some linear inequalities and a
linear expression lij for each automaton Aj . The expression lij computes tij , the
number of steps made by the automaton Aj on block i of the communication
partition.

Li describes all words with a given full transition set in the following sense:
Each such a word corresponds to an assignment of variables for some φ ∈ L that
fulfills the conditions in φ. Vice versa: for each set ψ of L each assignment of
variables that satisfies conditions of ψ corresponds to a computation on some
word. It is important for us that the length of the silent block i is upper bounded
by each expression lij .

3.2 Linear Characterization Lemma for One-Way Automata

Lemma 1 (Linear Characterizations Lemma). Let S be a system of k one-
way automata, let H be a computation digest of S on some input x and g com-
munication configurations occur during a computation described by H. We can

1058 T. Jurdziński and M. Kuty lowski

associate with H a family L of systems of linear diophantine equations and in-
equalities such that for any system of equations Ay = b and inequalities Cy ≥ d
in L the following conditions hold:

1. the number of equations and inequalities occurring in the system is O(g),
2. the number of variables of the system is O(g),
3. coefficients of A, b, C and d are integers with absolute values limited by some

constant c2 which depends only on k and the number of the states of au-
tomata,

4. let x′ = x′
1σ1 . . . x

′
hσh be any word such that its computation digest is H,

communication partition consists of symbols σ1, . . . , σh and blocks x′
1, . . . , x

′
h.

Let
{〈Ai, qij , sij , q

′
ij , s

′
ij , tij(x′)〉 | 1 ≤ i ≤ k}

denote the full clock characterization of word x′
j

1 (so tij(x′) denotes the
number of steps made by Ai on x′

j, the j-th silent block). Then, there are
γ1, . . . , γm ∈ N, which form a solution of some system in L such that
tij(x′) = γ(j−1)k+i for 1 ≤ i ≤ k, 1 ≤ j ≤ h. Conversely, for each solu-
tion γ1, . . . , γm of any system in L one can find a word w with computation
digest H such that tij(w) = γ(j−1)k+1 for 1 ≤ i ≤ k, 1 ≤ j ≤ h (note that m
may be bigger than kh).

The rest of this section is devoted to the proof of Linear Characterizations
Lemma. The key part is to describe dependencies between number of steps nec-
essary to read the same silent block by different automata. We achieve this in
the following lemma:

Lemma 2. Let T = {〈Ai, qi, si, q
′
i, s

′
i〉|i = 1, . . . , k} be a transition set,

X = X(T) be a set of words satisfying transitions from the set T . Let
{〈Ai, qi, si, q

′
i, s

′
i, αi(x)〉|i = 1, . . . , k} denote the full clock characterization of

a word x, for x ∈ X. Then, there exists a family R of sequences of linear ex-
pressions and inequalities of c variables (c and the number of elements of R
are bounded by a number which depends on k and the number of states of the
automata only) such that:

1. Every sequence z ∈ R consists of k expressions z1, . . . , zk and c inequalities
n1, . . . , nc of variables v1, . . . , vc. Moreover, each inequality has the form
vi ≥ ci, for ci ∈ {0, 1}.

2. For every x ∈ X, there is a sequence of linear expressions and inequalities
z ∈ R,
z = 〈z1, . . . , zk;n1, . . . , nc〉 and numbers d1, . . . , dc ∈ N such that αi(x) =
zi(d1, . . . , dc) for i = 1, . . . , k and ni(d1, . . . , dc) is satisfied, for 1 ≤ i ≤ c.

3. For every d1, . . . , dc ∈ N and each z = 〈z1, . . . , zk;n1, . . . , nk〉 ∈ R, if
ni(d1, . . . , dc) holds for 1 ≤ i ≤ c, then there is a word x ∈ X such that
αi(x) = zi(d1, . . . , dc), for 1 ≤ i ≤ k.

Proof. We define an auxiliary one-way finite automaton A with the set of states
Qk and initial state (q10 , . . . , q

k
0). It works as follows. If A is in a state 〈q1, . . . , qk〉

1 there is only one tuple for every automaton, since we consider one-way devices

Communication Gap for Finite Memory Devices 1059

on the symbol a which is not an endmarker, then in one step it moves right
and reaches a state 〈q′

1, . . . , q
′
k〉 such that for i ∈ {1, . . . , k}, if the automaton Ai

starts the computation in the state qi on the symbol a, then it enters the next
cell in state q′

i. Every transition of A given by δ(〈q1, . . . , qk〉, a) = (〈q′
1, . . . , q

′
k〉, 1)

is associated with a step vector (s1, . . . , sk) such that for i ≤ k automaton Ai

needs si steps in order to move right from the state qi while reading the symbol
a. Now, we define a directed multi-graph G representing the transition function
of A and its steps vectors. The vertices of the graph represent the states of A; the
edges represent transitions of A. Each edge is labeled by an input symbol a and
a step vector (s1, . . . , sk) associated to this transition. We identify an edge by a
tuple (v1, v2, a), where v1, v2 are vertices adjacent to the edge (v1 is the source)
and a is a symbol labeling the edge. For an edge (v1, v2, a), for i ∈ {1, . . . , k},
let si(v1, v2, a) denote the ith coefficient of the steps vector of this edge.

Computation of A on input x = x(1)x(2) . . . x(p) (hence, also of A1, . . . , Ak)
is represented by a path W = (w1, w2, x(1))(w2, w3, x(2)) . . . (wp, wp+1, x(p))
in G which starts and finishes in vertices representing appropriate states, say
vertices s and t. Then, Ai makes Σp

j=1si(wj , wj+1, x(j)) steps on x. We denote
this number by si(W) or si(x).

Our goal is to construct a family R of sequences of expressions and inequal-
ities over some fixed set of variables V which “linearly characterize” all paths
from s to t. Moreover, the absolute values of coefficients in expressions and in-
equalities as well as the number of elements of R are to be bounded by numbers
which depend only on the size of G. It means that for every path W from s to t
there is a sequence 〈z1, . . . , zk, n1, . . . , nc〉 ∈ R and values V for variables V such
that inequalities n1, . . . , nc are satisfied for V and si(W) = zi(V) for each i.

The proof is by induction on the number of vertices in G. We partition each
path into subpaths going into the graph G′ = G\{s}. Then, using induction
hypothesis we combine “linear descriptions” of paths in G′ into a description of
paths from s to t in G.

The claim is obviously true for graphs with one vertex. Now, assume that it
holds for all graphs with less than n vertices. Let G be a graph with n vertices,
U = (u1, u2, δ1) . . .(up−1, up, δp−1) be a path in G, u1 = s and up = t. Let
U = U1U2 . . . Ua be the coarsest partition of U such that s may occur only on
the first and the last edge of any Ui. So for every i, the path Ui without the last
and the first edge does not leave the graph G′ = G\{s}. In this way we partition
any path U from s to t into subpaths going through the graph G′ with a smaller
number of vertices and some edges “connecting” these subpaths. By the in-
duction hypothesis, these subpaths have appropriate “linear characterizations”.
Our strategy is to use them for constructing such a “linear characterization” for
paths from s to t in G. Obviously, the linear characterization should have the
size bounded by some value dependent on the size of the graph, independent of
the lengths of paths. However, the partition of U may depend on its length. In
order to overcome this problem, we group subpaths in categories. A category is
defined by:
(a) the first and the last edge: (s, u1, σ1) and (u2, v, σ2) (where v ∈ {s, t}) of
the subpaths of this category,
(b) a sequence of linear expressions and inequalities r = 〈w1, . . . , wk;n1, . . . , nm〉

1060 T. Jurdziński and M. Kuty lowski

for paths from u1 to u2 in G′ (such a sequence exists by the induction hypothe-
sis).
Observe that, by the induction hypothesis, the number of categories is limited
by a number which depends solely on the size of the graph (so, on the number
of states of automata). Let cat(Ui) denote the category of the subpath Ui, K(U)
denote the set of all categories of subpaths U1, . . . , Ua.

Now, we show how to construct a sequence 〈w1, . . . , wk; n1, . . . , nm〉 of equal-
ities and inequalities which characterizes all paths U ′ from s to t in G such that
K(U ′) = K(U). So, by considering all possible sets of categories we obtain a
family of sequences which linearly characterize all possible paths from s to t in
G.

Let K(U) = {K1, . . . ,Kp}. We take one category, say Kl, and construct the
sequence of expressions and inequalities which will “cover” all subpaths of this
category in U and similarly all subpaths of this category in every path U ′ from
s to t such that K(U ′) = K(U). Assume that the category Kl is characterized
by:
(a) edges (s, u1, σ1) and (u2, s, σ2) (we omit the case in which the subpath
terminates in t; it can be considered in a similar way),
(b) linear expressions wi = ai0 +

∑m
j=1 aijξj for i ∈ {1, . . . , k}, and inequalities

ni ≡ (ξi ≥ ci), for i ∈ {1, . . . , d} where ci ∈ {0, 1}, over variables ξ1, . . . , ξm.

Let B = {i | ci = 1}. Our goal now is to construct expressions and inequalities
such that all steps of the automata made “inside” subpaths of category Kl will
be “counted” by these expressions. The key point is, we do not care where these
subpaths occur, and how they exactly look like. We only count the total number
of steps inside them. We claim that inequalities n′

0 ≡ (ξ0 ≥ 1), n′
i ≡ (ξi ≥ 0)

for i ∈ {1, . . . ,m}, and expressions

w′
i =

ai0 +
∑

j∈B

aij + si(s, u1, σ1) + si(u2, s, σ2)

 ξ0 +
m∑

j=1

aijξj

over variables ξ0, . . . , ξm may be used for this purpose. Intuitively, the “new”
variable ξ0 denotes the number of subpaths of category Kl in the path; elements
summarized as a coefficient multiplied by ξ0 consist of all “elements” which
have to occur in every (sub)path of category Kl. The remaining variables are
responsible for the “optional” parts of the paths (possibly repeated many times).

Finally, we join expressions and inequalities of all categories K1, . . . ,Kp.
Let Ni denote the sequence of inequalities and Wi = 〈w1

i , . . . , w
k
i 〉 be the

sequence of expressions which characterize the subpaths of category Ki (to
avoid conflicts, each category has its own variables). The sequence of inequalities
and expressions which characterizes the set of paths U ′ from s to t such that
K(U ′) = K(U) contains the inequalities from Ni, over all i, and the expres-
sions

∑
i w

1
i , . . . ,

∑
i w

k
i . It follows immediately from the construction that this

sequence has all properties claimed. Lemma 2
Now, in order to complete the proof of Linear Characterization Lemma we

show how to construct a system of linear equations and inequalities which defines
the number of steps spent on silent blocks and dependencies between them.

Communication Gap for Finite Memory Devices 1061

Let 〈i, (q1, j1), (q2, j2), . . . , (ql, jl)〉 and 〈i + 1, (q′
1, j

′
1), (q′

2, j
′
2), . . . , (q′

l, j
′
l)〉 be

consecutive entries in the communication pattern H for any i ∈ {1, . . . , g − 1}.
Let Aα be the automaton which sends the message in the (i+1)st communication
configuration (if more than one automaton sends a message we pick any of them).
Let I ⊆ {1, . . . , l} be the indices of automata which are then in blocking states.
Then, the properties

tα,jα+1(x)+tα,jα+2(x)+ . . .+tα,j′α(x) ≥ tδ,jδ+1(x)+tδ,jδ+2(x)+ . . .+tδ,j′
δ
(x) for δ ∈ I,

tα,jα+1(x)+ tα,jα+2(x)+ . . .+ tα,j′α(x) = tδ,jδ+1(x)+ tδ,jδ+2(x)+ . . .+ tδ,j′
δ
(x) for δ /∈ I

determine bahaviour of system S between the ith and the (i+1)st communication
configuration. By Lemma 2, the variables tij in the above expressions may be
replaced by some linear expressions of a constant number of variables (attached
with some inequalities concerning these variables). This yields the inequalities
stated by Lemma 2. It is easy to see that they satisfy all properties claimed.

3.3 Outline of Diophantine Characterization of Two-Way Automata

In this section, we confine ourselves to these elements that differ from the con-
struction for the one-way case. Before we go into details, we sketch how to rec-
ognize language L2, which witnesses that O(log logn) messages may suffice in
the case of two-way automata. Simultaneously, it explains in which direction the
changes in the construction of diophantine systems must go. We use automata
A1 and A2 to recognize L2. First, A1 checks if the first two blocks of ones have
lengths 2 and 3. Then, for i = 3, 4, . . . they verify that all required divisibilities
hold. In order to check whether fi−1|(fi − 1) (and similarly if fi−2|(fi − 1)),
automata A1 and A2 start moving with the same speed through block i− 1 and
i. Automaton A1 goes from the left to the right in block i, automaton A2 loops
between the ends of block (i − 1). They terminate this stage of computation
when A1 reaches symbol # and sends a message. Since A2 may remember in
states, if it has left the symbol # in the previous step, the divisibility can be
easily checked.

Now, we move to the general diophantine construction. Consider the number
of steps needed to move through a silent block of input x. The first problem is
that each automaton may move through a silent block many times entering it
from left/right and leaving on the left/right side. However, the number of possible
transitions over a silent block is limited by the number of possible “starting
points” determined by the state of the automaton and the side on which it enters
the block. (A head cannot loop inside a silent block, since finally a message would
be sent when the head is inside the block.) So, we have variables ti,j,q,d denoting
the number of steps which the automaton Ai spends before leaving the jth silent
block, when entering it in the state q from the side d.

In order to describe dependencies between the variables ti,j,q,d, we have to
use divisibilities. This is due to the fact that, as in the example above, while
the automaton which sends the ith message moves through some blocks, the
other automata may loop over some other blocks. For example, assume that the

1062 T. Jurdziński and M. Kuty lowski

ith message is sent by automaton Aα, which during the part of computation
between the (i − 1)st and the ith message makes Tα steps (Tα is obviously a
sum of some values tα,∗,∗,∗). At this time, automaton Aβ , after some initial
computation consisting of Tβ,1 steps gets into a loop consisting of Tβ,2 > 1 steps
(by loop we mean a part of computation which starts and finishes in state q on
position p for any q and p). Obviously, one may define beginning of the loop to
get that Aβ is at the end of the loop when a message is sent by Aα. Tβ,1 and Tβ,2
are obviously sums of some values tβ,∗,∗,∗. The dependencies described take the
form Tβ,2|(Tα − Tβ,1). In the case that Aβ does not get into a loop, we express
the dependencies like for systems of one-way automata.

The next major change with respect to the one-way case is how to con-
struct linear formulas for the variables ti,j,q,d. Let us consider a transition
〈Ai, q, d, q

′, d′〉 of block j. First, we construct a (nondeterministic) one-way
automaton for such a transition. This automaton goes from left to right and
guesses crossing sequences for consecutive positions (similarly as it is done to
show equivalence between one-way and two-way finite automata [6]; crossing se-
quences required for border positions of the block are determined by the tuple
〈Ai, q, d, q

′, d′〉). With each step of this automaton we associate a weight denot-
ing the number of steps needed by Ai to perform transitions described by the
crossing sequence. The automaton is nondeterministic, but its work corresponds
to a path in a certain graph. The rest of the construction is the same as before
(so, we built a “Cartesian product” of such automata associated to transitions).

4 Solutions for Diophantine Problems for Addition and
Divisibility

Decidability issues. In general, deciding whether a system of diophantine in-
equalities has a solution is an undecidable problem [11]. Even more surprising
is that very “simple” systems of diophantine inequalities are undecidable. There
have been lot of research on setting the exact boundary between decidable and
undecidable instances of this problem. Decidability proofs follow often a com-
mon scenario: one shows that if there is a solution of a system of diophantine
inequalities, then there is a solution bounded by some number that can be ef-
fectively determined. So deciding whether there is a solution may be reduced to
checking whether there is a solution of a certain size.

Minimal solutions for polynomials of degree 1. In this case, the system consists
of a number of linear equations and inequalities.

Theorem 3. ([4], a restricted version) Let A, b, C, d be respectively m× n,
m×1, p×n, p×1 matrices with integer coefficients with absolute values bounded
by a constant f . If there exists an integer solution x for Ax = b and Cx ≥ d,
then there is a solution x′ with absolute values of coefficients bounded by 2cf n,
where cf is a constant depending on f .

Communication Gap for Finite Memory Devices 1063

Minimal solutions for divisibility. Now consider a system φ of divisibility rela-
tions

fi(x)|gi(x), for i ≤ K, (1)

where each fi and gi is a polynomial of degree 1 and variables from x are over N.
Recall that an equality f(x) = g(x) may be expressed as divisibilities: f(x)|g(x)
and g(x)|f(x), f(x) + 1|g(x) + 1, g(x) + 1|f(x) + 1. An inequality f(x) > g(x)
may by expressed by an equality f(x) + y+ 1 = g(x) with a new variable y, and
then in turn by divisibilities.

In papers [9,10], Lipshitz discusses the problem of existence of natural solu-
tions of systems (1). In [9], he shows that the problem is decidable by reducing
it to the question of existence of solutions modulo ps for certain prime numbers
p and s ∈ N which depends on the system. In [10], he argues that for each fixed
K, the minimal solutions, if exist, are of a polynomial size. Note that from the
example of language L2 it follows that the degree of this polynomial grows with
K.

For our purposes, we follow the arguments from [9] and state some properties
implicitly contained there. The first step in Lipshitz’s construction is to replace
a system of diophantine divisibilities by systems of totally positive diophantine
divisibilities (for a technical definition see [9]). This special form of diophantine
divisibilities is crucial for finding “small” solutions.

Theorem 4. ([9], Section 1) For each system of diophantine divisibilities φ
there is a set φ1, . . . , φm of totally positive systems of diophantine divisibilities,
so that the set of solutions to φ coincides with the union of the sets of solutions
for φ1, . . . , φm.

In the following parts we shall assume that φ is a system of diophantine divisibil-
ities with all coefficients bounded by some constant. Let N be an upper bound
on the number of variables and on the number of divisibilities occurring in φ.
By following the original proof, we get an estimation on the size of coefficients:

Proposition 1. There is a polynomial w such that absolute value of each coef-
ficient occurring in any φi is bounded by 22w(N)

.

The next step in the construction of Lipshitz is to find a “small” solution for φi

provided that we know that a solution does exist. This is given by the next two
theorems:

Theorem 5. ([9], Lemma 5) If ψ is a system of totally positive diophantine
divisibilities, p is a prime number, and there is a solution to ψ, then there is
a solution modpkp , such that for every divisor fi(x) from ψ is different from
0 mod pkp . The number kp can be bounded in terms of the maximum value of
coefficients in ψ, the number of divisibilities and the number of variables.

Proposition 2. If we start with a φ as above, then pkp is bounded by 222v(N)

for some polynomial v.

1064 T. Jurdziński and M. Kuty lowski

Theorem 6. ([9], Lemma 6) Let ψ be a system of totally positive diophantine
divisibilities. There is Mφ ∈ N depending on the maximum value of coefficients,
the number of divisibilities and the number of variables in ψ such that the fol-
lowing property holds. If for every prime number p < Mφ, there is a solution of
ψ modulo pkp such that every divisor fi(x) in ψ holds fi(x) 6= 0 mod pkp , then
there is an integer solution to ψ.
Again, following the construction we may check the following property:
Proposition 3. The integer solution found in Theorem 6 for the system φ is

bounded by 222u(N)

, where u is a polynomial.

Conclusions. Still, there is a gap between the bound Θ(log logn) given by L2 and
the lower bound of Theorem 2. To close it, one may try to sharpen the results
concerning minimal solutions of systems of diophantine divisibilities (compare
also [10] and [2]).

Acknowledgment. We would like thank Krzysztof Loryś for very helpful dis-
cussions.

References

1. P. Beame, M. Tompa, P. Yan, Communication-Space Tradeoffs for Unrestricted
Protocols, SICOMP 23 (1994), 652–661.

2. P. J. Cohen, Decision procedures for real and p-adic fields, Comm. on Pure and
Applied Math. 22 (1969), 131–151.

3. E. Contejean, H. Devie, An efficient algorithm for solving systems of diophantine
equations, Information and Computation 113 (1994), 143–172.

4. J. von zur Gathen, M. Sieveking, A bound on solutions of linear integer equalities
and inequalities, Proc. of the AMS 72(1) (1978), 155–158.

5. M. Holzer, Multi-Head Finite Automata: Data-Independent Versus Data-Dependent
Computations, Proc. MFCS’97, LNCS 1295, Springer Verlag, Berlin, 1997, 299–309.

6. J. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley, 1979.

7. T. Jurdziński, Communication Aspects of Computation of Systems of Finite Au-
tomata, Wroc law University, 2000.
(http://www.ii.uni.wroc.pl/∼acm/doktoraty.html)

8. T. Jurdziński, M. Kuty lowski, K. Loryś, Multiparty finite computations, in Comput-
ing and Combinatorics, Proc. COCOON’99, LNCS 1627, Springer Verlag, Berlin,
1999, 318–329.

9. L. Lipshitz, The diophantine problem for addition and divisibility, J. AMS 235
(1978), 271–283.

10. L. Lipshitz, Some remarks on the diophantine problem for addition and divisibility,
Bull. Soc. Math Belg. 33 (1981), 41–52.

11. Ju. Matijasevič, Hilbert’s tenth problem, Foundations in Computing Series, MIT
Press, Cambridge, 1993.

12. V. Mitrana, On the degree of communication in parallel communicating finite au-
tomata systems, Journal of Automata, Languages and Computation Vol. 5, 3(2000),
301–314.

Separating Quantum and Classical Learning

Rocco A. Servedio

Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138

rocco@deas.harvard.edu

Abstract. We consider a model of learning Boolean functions from
quantum membership queries. This model was studied in [26], where it
was shown that any class of Boolean functions which is information-
theoretically learnable from polynomially many quantum membership
queries is also information-theoretically learnable from polynomially
many classical membership queries.
In this paper we establish a strong computational separation between
quantum and classical learning. We prove that if any cryptographic one-
way function exists, then there is a class of Boolean functions which is
polynomial-time learnable from quantum membership queries but not
polynomial-time learnable from classical membership queries. A novel
consequence of our result is a quantum algorithm that breaks a general
cryptographic construction which is secure in the classical setting.

1 Introduction

Over the past decade the study of quantum computation has generated much
excitement and attracted intense research attention. One of the most interest-
ing aspects of this new computing paradigm is the possibility that polynomial-
time quantum computation may be strictly more powerful than polynomial-time
classical computation, i.e. that the quantum class BQP may strictly contain
BPP. Evidence for this possibility has been provided by Shor [27], who gave
polynomial-time quantum algorithms for factoring and discrete logarithms, two
problems which are not known to have polynomial-time classical algorithms.

Since many important learning problems are not known to be solvable in
polynomial time, from a learning theory perspective the prospect of gaining
computing power via quantum computation is quite intriguing. It is natural to
ask whether efficient quantum algorithms can be designed for learning problems
(such as the problem of learning DNF formulae) which have thus far resisted
efforts to construct polynomial-time algorithms. The ultimate goal of research
along these lines would be to construct quantum algorithms which learn using
traditional (classical) example oracles, but such algorithms are not yet known.

1.1 Previous Work

As a first step in this direction, several researchers have studied quantum learning
algorithms which have access to quantum oracles; so in this framework the source

F. Orejas, P.G. Spirakis, and J. van Leeuwen (Eds.): ICALP 2001, LNCS 2076, pp. 1065–1080, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

1066 R.A. Servedio

of examples as well as the learning algorithm itself is assumed to operate in a
quantum fashion. The first work along these lines is due to Bshouty and Jackson
[10] who defined a quantum PAC oracle and gave an efficient algorithm for
learning DNF from a uniform-distribution quantum PAC oracle.

In a different community, many complexity theory researchers have studied
the power of quantum computation with a black-box quantum oracle [3,4,5,6,7,8,
11,13,16,28,31]. This research has focused on understanding the relationship be-
tween the number of quantum versus classical black-box oracle queries required
to determine whether or not a black-box function has some particular prop-
erty such as ever taking a nonzero value [4,6,11,16,31] or being evenly balanced
between the outputs zero and one [13].

Since a classical black-box oracle query to a Boolean function is the same
thing as a membership query in learning theory, in light of the work described
above it is natural to consider a model of learning from quantum membership
queries. In contrast with the work described above, the goal here is to exactly
identify the black-box function rather than to determine whether or not it has
some property. Servedio and Gortler [26] defined such a model and proved that
any concept class C which is information-theoretically learnable from polynomi-
ally many quantum membership queries is also information-theoretically learn-
able from polynomially many classical membership queries (they also gave a
similar result for the quantum PAC learning model of [10]).

This result from [26] deals only with query complexity and does not ad-
dress the computational complexity of quantum versus classical learning. In-
deed, [26] also showed that polynomial-time quantum learning is more powerful
than polynomial-time classical learning under the assumption that factoring is
computationally hard for classical computers. This follows directly from the ob-
servation that Shor’s quantum factoring algorithm enables quantum algorithms
to efficiently learn concept classes whose classical learnability is directly related
to the hardness of factoring [2,20].

1.2 Our Results

We give strong evidence that efficient quantum learning algorithms are more
powerful than efficient classical learning algorithms. Our main result is the fol-
lowing theorem:

Theorem 1. If any one-way function exists, then there is a concept class C
which is polynomial-time learnable from quantum membership queries but is not
polynomial-time learnable from classical membership queries.

This separation between quantum and classical learning is far more robust than
previous work [26]. Even if a polynomial-time classical factoring algorithm were
to be discovered, our separation would hold as long as any one-way function
exists (a universally held belief in public-key cryptography).

The main cryptographic tool underlying our results is a new construction of
pseudorandom functions which are invariant under an XOR mask (see Section

Separating Quantum and Classical Learning 1067

4). As described in Section 5.1, each concept c ∈ C combines these new pseudo-
random functions with pseudorandom permutations in a particular way. Roughly
speaking, the XOR mask invariance of the new pseudorandom functions ensures
that a quantum algorithm due to Simon [28] can be used to extract some infor-
mation about the structure of the target concept and thus make progress towards
learning. On the other hand, the pseudorandomness ensures that no probabilis-
tic polynomial-time learning algorithm can extract any useful information, and
thus no such algorithm can learn successfully.

As discussed in Section 6, our results prove the existence of a quantum oracle
algorithm which defeats a general cryptographic construction secure in the clas-
sical setting. More precisely, given any one-way function we construct a family
of pseudorandom functions which are classically secure but can be distinguished
from truly random functions (and in fact exactly identified) by an algorithm
which makes quantum oracle queries. To our knowledge, this is the first break
of a general cryptographic protocol (not based on a specific assumption such as
factoring) in a quantum setting.

2 Preliminaries

A concept is a Boolean function c : {0, 1}n → {0, 1}. A concept class C = ∪n≥1Cn

is a collection of concepts with Cn = {c ∈ C : c is a concept over {0, 1}n}.

For α, β ∈ {0, 1} we write α⊕β to denote the exclusive-or α + β (mod 2).
Similarly for x, y ∈ {0, 1}n we write x⊕y to denote the n-bit string which is the
bitwise XOR of x and y. We write x · y to denote the inner product x1y1 + · · · +
xnyn (mod 2), and we write |x| to denote the length of string x.

We use script capital letters to denote probability distributions over sets
of functions; in particular Fn denotes the uniform distribution over all 2n2n

functions from {0, 1}n to {0, 1}n. If S is a finite set we write Prs∈S to denote a
uniform choice of s from S.

We write M(s) to indicate that algorithm M is given string s as input and
Mg to indicate that M has access to an oracle for the function g. If M is a
probabilistic polynomial-time (henceforth abbreviated p.p.t.) algorithm which
has access to an oracle g : {0, 1}`1 → {0, 1}`2 , then the running time of Mg is
bounded by p(`1 + `2) for some polynomial p.

In the model of exact learning from membership queries [1,9,14,18,19], the
learning algorithm is given access to an oracle for an unknown target concept
c ∈ Cn. When invoked on input x ∈ {0, 1}n, the oracle returns c(x) (such an
oracle call is known as a membership query). The goal of the learning algorithm
is to construct a hypothesis h : {0, 1}n → {0, 1} which is logically equivalent to c,
i.e. h(x) = c(x) for all x ∈ {0, 1}n. We say that a concept class C is polynomial-
time learnable from membership queries if there is a p.p.t. oracle algorithm A
with the following property: for all n ≥ 1, for all c ∈ Cn, with probability at
least 9/10 Ac outputs a Boolean circuit h which is equivalent to c.

1068 R.A. Servedio

Detailed descriptions of quantum Turing machine and circuit models and of
quantum oracle computation are given in [5,12,25,30]. Most of the details are
irrelevant for our needs, so we describe here only the essential aspects.

A quantum computation takes place over an m-bit quantum register. At any
stage in the execution of a quantum computation the state of this register is
some superposition

∑
z∈{0,1}m αz|z〉 of basis states |z〉, where the αz are com-

plex numbers which satisfy the constraint
∑

z∈{0,1}m ‖αz‖2 = 1. We may thus
view the state of a quantum register as being a 2m-dimensional complex vector
of unit norm. A single step of a quantum computation corresponds to a unitary
transformation of this vector, i.e. a 2m × 2m unitary matrix, and a quantum
algorithm is defined by a sequence of such matrices. A single quantum compu-
tation step is analogous to a single gate in a classical circuit; in order to ensure
that each step of quantum computation performs only a bounded amount of
work, the model stipulates that each unitary matrix must be simple and local
in a well-defined sense. At the end of a quantum computation a measurement
is performed on the register and an m-bit string is obtained as output. If the
register’s final state is

∑
z∈{0,1}m αz|z〉 then with probability ‖αz‖2 the string

z ∈ {0, 1}m is the output.
Quantum computation with access to an oracle c : {0, 1}n → {0, 1}` proceeds

as follows. If the oracle c is invoked when the current state of the quantum reg-
ister is

∑
x∈{0,1}n,y∈{0,1}`,w∈{0,1}m−n−` αx,y,w|x, y, w〉, then at the next step the

state of the register will be
∑

x∈{0,1}n,y∈{0,1}`,w∈{0,1}m−n−` αx,y,w|x, y⊕c(x), w〉.
(It can be verified that this change of state is a unitary transformation for any
oracle c.) Thus a quantum algorithm can invoke its oracle on a superposition of
inputs and receives a corresponding superposition of responses. This model of
quantum computation with an oracle has been studied by many researchers in
complexity theory [3,4,5,6,7,8,11,13,16,28,31] and has also recently been studied
from a learning theory perspective [26].

We say that a concept class C is polynomial-time learnable from quantum
membership queries if there is a quantum oracle algorithm A with the following
property: for all n ≥ 1, for all c ∈ Cn, Ac runs for at most poly(n) steps and with
probability at least 9/10 outputs a representation of a Boolean circuit h which is
logically equivalent to c. It is well known that any classical oracle algorithm can
be efficiently simulated by a quantum oracle algorithm, and thus any concept
class which is polynomial-time learnable from classical membership queries is
polynomial-time learnable from quantum membership queries.

3 Simon’s Algorithm

Let f : {0, 1}n → {0, 1}n be a function and let 0n 6= s ∈ {0, 1}n. We say that
f is two-to-one with XOR mask s if for all y 6= x, f(x) = f(y) ⇐⇒ y = x⊕s.
More generally, f is invariant under XOR mask with s if f(x) = f(x⊕s) for all
x ∈ {0, 1}n (note that such a function need not be two-to-one).

Simon [28] has given a simple quantum algorithm which takes oracle access
to a function f : {0, 1}n → {0, 1}n, runs in poly(n) time, and behaves as follows:

Separating Quantum and Classical Learning 1069

1. If f is a permutation on {0, 1}n, the algorithm outputs an n-bit string y
which is uniformly distributed over {0, 1}n.

2. If f is two-to-one with XOR mask s, the algorithm outputs an n-bit string
y which is uniformly distributed over the 2n−1 strings such that y · s = 0.

3. If f is invariant under XOR mask with s, the algorithm outputs some n-bit
string y which satisfies y · s = 0.

Simon showed that by running this procedure O(n) times a quantum algo-
rithm can distinguish between Case 1 (f is a permutation) and Case 3 (f is
invariant under some XOR mask) with high probability. In Case 1 after O(n)
repetitions the strings obtained will with probability 1 − 2−O(n) contain a basis
for the vector space (Z2)n (here we are viewing n-bit strings as vectors over
Z2), while in Case 3 the strings obtained cannot contain such a basis since each
string must lie in the subspace {y : y · s = 0}. Simon also observed that in Case
2 (f is two-to-one with XOR mask s) the algorithm can be used to efficiently
identify s with high probability. This is because after O(n) repetitions, with high
probability s will be the unique nonzero vector whose dot product with each y
is 0; this vector can be found by solving the linear system defined by the y’s.

Simon also analyzed the success probability of classical oracle algorithms for
this problem. His analysis establishes the following theorem:

Theorem 2. Let 0n 6= s ∈ {0, 1}n be chosen uniformly and let f : {0, 1}n →
{0, 1}n be an oracle chosen uniformly from the set of all functions which are two-
to-one with XOR mask s. Then (i) there is a polynomial-time quantum oracle
algorithm which identifies s with high probability; (ii) any p.p.t. classical oracle
algorithm identifies s with probability 1/2Ω(n).

This surprising ability of quantum oracle algorithms to efficiently find s is
highly suggestive in the context of our quest for a learning problem which sepa-
rates polynomial-time classical and quantum computation. Indeed, Simon’s al-
gorithm will play a crucial role in establishing that the concept class which we
construct in Section 5 is learnable in poly(n) time by a quantum algorithm.
Recall that in our learning scenario, though, the goal is to exactly identify the
unknown target function, not just to identify the string s. Since 2Ω(n) bits are
required to specify a randomly chosen function f which is two-to-one with XOR
mask s, no algorithm (classical or quantum) can output a description of f in
poly(n) time, much less learn f in poly(n) time. Thus it will not do to use
truly random functions for our learning problem; instead we use pseudorandom
functions as described in the next section.

4 Pseudorandomness

A pseudorandom function family [15] is a collection of functions {fs : {0, 1}|s| →
{0, 1}|s|}s∈{0,1}∗ with the following two properties: (i) (efficient evaluation) there
is a deterministic algorithm which, given an n-bit seed s and an n-bit input x,

1070 R.A. Servedio

runs in time poly(n) and outputs fs(x); (ii) (pseudorandomness) for all poly-
nomials Q, all p.p.t. oracle algorithms M, and all sufficiently large n, we have
that

∣
∣PrF∈Fn [MF outputs 1]− Prs∈{0,1}n [Mfs outputs 1]

∣
∣ < 1

Q(n) . Intuitively,
the pseudorandomess property ensures that in any p.p.t. computation which
uses a truly random function, a randomly chosen pseudorandom function may
be used instead without affecting the outcome in a noticeable way. Well known
results [15,17] imply that pseudorandom function families exist if and only if any
one-way function exists.

A pseudorandom permutation family is a pseudorandom function family with
the added property that each function fs : {0, 1}|s| → {0, 1}|s| is a permutation.
Luby and Rackoff [21] gave the first construction of a pseudorandom permuta-
tion family from any pseudorandom function family. In their construction each
permutation fs : {0, 1}n → {0, 1}n has a seed s of length |s| = 3n/2 rather than
n as in our definition above. Subsequent constructions [22,23,24] of pseudoran-
dom permutation families {fs : {0, 1}n → {0, 1}n} use n-bit seeds and hence
match our definition exactly. (Our definition of pseudorandomness could easily
be extended to allow seed lengths other than n. For our construction in Section
5 it will be convenient to have n-bit seeds.)

4.1 Pseudorandom Functions Invariant under XOR Mask

Our main cryptographic result, stated below, is proved in Appendix A:

Theorem 3. If any one-way function exists, then there is a pseudorandom func-
tion family {gs : {0, 1}|s| → {0, 1}|s|} such that gs(x) = gs(x⊕s) for all |x| = |s|.

A first approach to constructing such a family is as follows: given any pseu-
dorandom function family {fs}, let {gs} be defined by

gs(x) def= fs(x)⊕fs(x⊕s). (1)

This simple construction ensures that each function gs is invariant un-
der XOR mask with s, but the family {gs} need not be pseudorandom
just because {fs} is pseudorandom. Indeed, if {hs} is similarly defined by
hs(x) def= gs(x)⊕gs(x⊕s), then {hs} is not pseudorandom since hs(x) =
(fs(x)⊕fs(x⊕s))⊕(fs(x⊕s)⊕fs(x⊕s⊕s) = 0n.

While this example shows that (1) does not always preserve pseudorandom-
ness, it leaves open the possibility that (1) may preserve pseudorandomness for
certain function families {fs}. In Appendix A we show that if {fs} is a pseu-
dorandom function family which is constructed from any one-way function in a
particular way, then the family {gs} defined by (1) is indeed pseudorandom.

It may at first appear that the pseudorandom function family {gs} given by
Theorem 3 immediately yields a concept class which separates efficient quantum
learning from efficient classical learning. The pseudorandomness of {gs} ensures
that no p.p.t. algorithm can learn successfully; on the other hand, if Simon’s
quantum algorithm is given oracle access to a function which is two-to-one with

Separating Quantum and Classical Learning 1071

XOR mask s, then it can efficiently find s with high probability. Hence it may
seem that given access to gs Simon’s quantum algorithm can efficiently identify
the seed s and thus learn the target concept.

The flaw in this argument is that each function gs from Theorem 3, while
invariant under XOR mask with s, need not be two-to-one. Indeed gs could
conceivably be invariant under XOR mask with, say,

√
n linearly independent

strings s = s1, s2, . . . , s
√

n. Such a set of strings spans a 2
√

n-element subspace of
{0, 1}n; even if Simon’s algorithm could identify this subspace, it would not indi-
cate which element of the subspace is the true seed s. Hence a more sophisticated
construction is required.

5 Proof of Theorem 1

5.1 The Concept Class C

We describe concepts over {0, 1}m where m = n + 2 log n + 1. Each concept in
Cm is defined by an (n + 1)-tuple (y, s1, . . . , sn) where y = y1 . . . yn ∈ {0, 1}n

and each si ∈ {0, 1}n \ {0n}, so Cm contains 2n(2n − 1)n distinct concepts. For
brevity we write s to stand for s1, . . . , sn below.

Roughly speaking, each concept in Cm comprises n pseudorandom functions;
as explained below the string y acts as a “password” and the strings s1, . . . , sn

are the seeds to the pseudorandom functions. Each concept c ∈ Cm takes m-
bit strings as inputs; we view such an m-bit input as a 4-tuple (b, x, i, j) where
b ∈ {0, 1}, x ∈ {0, 1}n, and i, j ∈ {0, 1}log n each represent a number in the range
{1, 2, . . . , n}.

Let {h0
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be a pseudorandom permutation family

and let {h1
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be the pseudorandom function family

from Theorem 3, so h1
s(x) = h1

s(x⊕s). The concept cy,s is defined as follows on
input (b, x, i, j) :

– If b = 0: A query (0, x, i, j) is called a function query. The value of
cy,s(0, x, i, j) is hyi

si (x)j , i.e. the j-th bit of the n-bit string hyi

si (x). Thus
the bit yi determines whether the i-th pseudorandom function used is a
permutation or is invariant under XOR mask with si.

– If b = 1: A query (1, x, i, j) is called a seed query. The value of cy,s(1, x, i, j)
is 0 if x 6= y and is si

j (the j-th bit of the i-th seed si) if x = y.

The intuition behind our construction is simple: in order to learn the target con-
cept successfully a learning algorithm must identify each seed string s1, . . . , sn.
These strings can be identified by making seed queries (1, y, i, j), but in order to
make the correct seed queries the learning algorithm must know y. Since each
bit yi corresponds to whether an oracle is a permutation or is XOR-mask invari-
ant, a quantum algorithm can determine each yi and thus can learn successfully.
However, no p.p.t. algorithm can distinguish between these two types of oracles
(since in either case the oracle is pseudorandom and hence is indistinguishable
from a truly random function), so no p.p.t. algorithm can learn y.

1072 R.A. Servedio

5.2 A Quantum Algorithm Which Learns C in Polynomial Time

Theorem 4. C is polynomial-time learnable from quantum membership queries.

Proof sketch: Let cy,s ∈ Cm be the target concept. Each function hyi

si is a per-
mutation iff yi = 0 and is XOR-mask invariant iff yi = 1 (this is why we do not
allow si = 0n in the definition of the concept class). Using quantum member-
ship queries, a poly(n)-time quantum algorithm can run Simon’s procedure n
times, once for each function hyi

si , and thus determine each bit yi with high prob-
ability. (One detail which arises here is that Simon’s algorithm uses an oracle
{0, 1}n → {0, 1}n whereas in our learning setting the oracle outputs one bit at
a time. This is not a problem since it is possible to simulate any call to Simon’s
oracle by making n sequential calls, bit by bit, to our oracle.) Given the string
y = y1 . . . yn, the algorithm can then make n2 queries on inputs (1, y, i, j) for
1 ≤ i, j ≤ n to learn each of the n strings s1, . . . , sn. Once y and s1, . . . , sn are
known it is straightforward to output a circuit for cy,s. ut

5.3 No Classical Algorithm Learns C in Polynomial Time

Theorem 5. C is not polynomial-time learnable from classical membership
queries.

Let C ′
m ⊃ Cm, |C ′

m| = 2n2+n be the concept class C ′
m = {cy,s : y, s1, . . . , sn ∈

{0, 1}n}; thus C ′
m includes concepts in which si may be 0n. The following lemma

states that it is hard to learn a target concept chosen uniformly from C ′
m :

Lemma 1. For all polynomials Q, all p.p.t. learning algorithms A, and all suf-
ficiently large n, Prcy,s∈C′

m
[Acy,s outputs a hypothesis h ≡ cy,s] < 1

Q(n) .

To see that Lemma 1 implies Theorem 5, we note that the uniform distribution
over C ′

m and the uniform distribution over Cm are nearly identical (the two
distributions have total variation distance O(n/2n)). Lemma 1 thus has the
following analogue for Cm which clearly implies Theorem 5:

Lemma 2. For all polynomials Q, all p.p.t. learning algorithms A, and all suf-
ficiently large n, Prcy,s∈Cm [Acy,s outputs a hypothesis h ≡ cy,s] < 1

Q(n) .

The proof of Lemma 1 proceeds as follows: we say that a learning algorithm
A hits y if at some point during its execution A makes a seed query (1, y, i, j),
and we say that A misses y if A does not hit y. We have that

Pr
cy,s∈C′

m

[Acy,s outputs h ≡ cy,s] = Pr[Acy,s outputs h ≡ cy,s & Acy,s hits y] +

Pr[Acy,s outputs h ≡ cy,s & Acy,s misses y]
≤ Pr[Acy,s hits y] +

Pr[Acy,s outputs h ≡ cy,s | Acy,s misses y].

Lemma 1 thus follows from the following two lemmas:

Separating Quantum and Classical Learning 1073

Lemma 3. For all polynomials Q, all p.p.t. learning algorithms A, and all suf-
ficiently large n, Prcy,s∈C′

m
[Acy,s hits y] < 1

Q(n) .

Lemma 4. For all polynomials Q, all p.p.t. learning algorithms A, and all suf-
ficiently large n, Prcy,s∈C′

m
[Acy,s outputs h ≡ cy,s | Acy,s misses y] < 1

Q(n) .

Proof of Lemma 3. The idea of the proof is as follows: before hitting y for
the first time algorithm A gets 0 as the answer to each seed query, so A might
as well be querying a modified oracle which answers 0 to every seed query. We
show that no p.p.t. algorithm which has access to such an oracle can output
y with inverse polynomial success probability (intuitively this is because such
an oracle consists entirely of pseudorandom functions and hence can provide no
information to any p.p.t. algorithm), and thus A’s probability of hitting y must
be less than 1/poly(n) as well.

More formally, let A be any p.p.t. learning algorithm. Without loss of gener-
ality we may suppose that A always makes exactly q(n) seed queries during its
execution for some polynomial q. Let X1, . . . , Xq(n) be the sequence of strings in
{0, 1}n on which Acy,s makes its seed queries, i.e. Acy,s uses (1, Xt, it, jt) as its
t-th seed query. Each Xt is a random variable over the probability space defined
by the uniform choice of cy,s ∈ C ′

m and any internal randomness of algorithm A.
For each cy,s ∈ C ′

m let c̃y,s : {0, 1}m → {0, 1} be a modified version of cy,s

which answers 0 to all seed queries, i.e. c̃y,s(b, x, i, j) is cy,s(b, x, i, j) if b = 0
and is 0 if b = 1. Consider the following algorithm B which takes access to an
oracle for c̃y,s and outputs an n-bit string. B executes algorithm Ac̃y,s (note that
the oracle used is c̃y,s rather than cy,s), then chooses a uniform random value
1 ≤ t ≤ q(n) and outputs X̃t, the string on which Ac̃y,s made its t-th seed query.
Like the Xts, each X̃t is a random variable over the probability space defined
by a uniform choice of cy,s ∈ C ′

m and any internal randomness of A.
The following two lemmas together imply Lemma 3:

Lemma 5. 2q(n)2 · Prcy,s∈C′
m

[Bc̃y,s outputs y] ≥ Prcy,s∈C′
m

[Acy,s hits y].

Lemma 6.
∣
∣
∣Prcy,s∈C′

m
[Bc̃y,s outputs y] − 1

2n

∣
∣
∣ < 1

Q(n) for all polynomials Q and
all sufficiently large n.

Proof of Lemma 5. We have that

q(n)∑

t=1

Pr[Xt = y & Xτ 6= y for τ < t] ≤
q(n)∑

t=1

Pr[Xt = y | Xτ 6= y for τ < t].

Since the left side of this inequality is exactly Prcy,s∈C′
m

[Acy,s hits y], for some
value 1 ≤ t0 ≤ q(n) we have

Pr[Xt0 = y | Xτ 6= y for τ < t0] ≥ Pr[Acy,s hits y]/q(n). (2)

1074 R.A. Servedio

Since the distribution of responses to function queries which A makes prior
to its first seed query is the same regardless of whether the oracle is cy,s or c̃y,s,

it is clear that the random variables X1 and X̃1 are identically distributed. An
inductive argument shows that for all t ≥ 1, the conditional random variables
Xt | (Xτ 6= y for τ < t) and X̃t | (X̃τ 6= y for τ < t) are identically distributed
(in each case the conditioning ensures that the distribution of responses to seed
queries which A makes prior to its t-th seed query is the same, i.e. all 0).

We consider two possible cases. If Prcy,s∈C′
m

[X̃τ 6= y for τ < t0] > 1/2, then

Pr
cy,s∈C′

m

[Bc̃y,s outputs y] ≥ Pr[Bc̃y,s chooses t0] · Pr[X̃t0= y & X̃τ 6= y for τ < t0]

=
Pr[X̃t0= y | X̃τ 6= y for τ < t0] · Pr[X̃τ 6= y for τ < t0]

q(n)

> Pr[X̃t0= y | X̃τ 6= y for τ < t0]/2q(n)

= Pr[Xt0= y | Xτ 6= y for τ < t0]/2q(n)

≥ Pr[Acy,s hits y]/2q(n)2. by (2)

Otherwise if Prcy,s∈C′
m

[X̃τ 6= y for τ < t0] ≤ 1/2, then
∑t0−1

t=0 Pr[X̃t = y] ≥ 1/2
and hence Prcy,s∈C′

m
[Bc̃y,s outputs y] is at least

t0−1∑

t=1

Pr[Bc̃y,s chooses t] · Pr[X̃t = y] ≥ 1
2q(n)

≥ Pr[Acy,s hits y]
2q(n)2

. ut

Proof of Lemma 6. For z, ζ ∈ {0, 1}n let pz
ζ = Prcy,s∈C′

m
[Bc̃y,s outputs z | y = ζ].

For ` ∈ {1, . . . , n} let ζ||` denote ζ with the `-th bit flipped. Similarly, for
S ⊆ {1, . . . , n} let ζ||S denote ζ with bits flipped in all positions corresponding
to S.

Fix z, ζ ∈ {0, 1}n and ` ∈ {1, . . . , n} and consider the following algorithm
Dz,ζ,` which takes access to an oracle f : {0, 1}n → {0, 1}n and outputs a single
bit: For all i 6= ` algorithm Dz,ζ,` first chooses a random n-bit string si. Dz,ζ,`

then runs algorithm B, simulating the oracle for B as follows:

– queries (0, x, `, j) are answered with the bit f(x)j

– for i 6= ` queries (0, x, i, j) are answered with the bit hζi

si(x)j

– all queries (1, x, i, j) are answered with the bit 0.

Finally algorithm Dz,ζ,` outputs 1 if B’s output is z and outputs 0 otherwise.

It is easy to verify that for all z, ζ, ` we have pz
ζ = Prs∈{0,1}n [Dh

ζ`
s

z,ζ,` outputs 1]

and pz
ζ||` = Prs∈{0,1}n [Dh

1−ζ`
s

z,ζ,` outputs 1]. From the definition of pseudorandom-
ness and the triangle inequality it follows that |pz

ζ − pz
ζ||`| < 1

nQ(n) . Making
|S| ≤ n applications of this inequality and using the triangle inequality, we find
that |pz

ζ −pz
ζ||S | < 1

Q(n) . We thus have that |pz
ζ −pz

z| < 1
Q(n) for all z, ζ ∈ {0, 1}n.

Since
∑

z∈{0,1}n pz
ζ = 1, we have that

∣
∣
∣Prcy,s∈C′

m
[Bc̃y,s outputs y] − 1

2n

∣
∣
∣ =

∣
∣
∣ 1
2n

(∑
z∈{0,1}n pz

z

)
− 1

2n

∣
∣
∣ = 1

2n

∣
∣
∣
∑

z∈{0,1}n(pz
z − pz

ζ)
∣
∣
∣ < 1

Q(n) . ut

Separating Quantum and Classical Learning 1075

Proof of Lemma 4. The idea here is that conditioning on the event that
A misses y ensures that the only information which A has about y and s comes
from querying oracles for the pseudorandom functions hyi

si . Since these pseudo-
random functions are indistinguishable from truly random functions, no p.p.t.
algorithm can learn successfully.

Formally, let A be any p.p.t. learning algorithm. Consider the following al-
gorithm B which takes access to an oracle hyn

sn : {0, 1}n → {0, 1}n and outputs
a representation of a function g : {0, 1}n → {0, 1}n. Algorithm B first chooses
ŷ = y1 . . . yn−1 uniformly from {0, 1}n−1 and chooses n − 1 strings s1, . . . , sn−1

each uniformly from {0, 1}n. B then runs algorithm Ac̃y,s (observe that B can
simulate the oracle c̃y,s since it has access to an oracle for hyn

sn and knows yi, s
i

for i 6= n) which generates some hypothesis h. Finally B outputs the function
g : {0, 1}n → {0, 1}n defined by g(x) def= h(0, x, n, 1)h(0, x, n, 2) . . . h(0, x, n, n).

The following two lemmas together imply Lemma 4:

Lemma 7. For all sufficiently large n, Pryn∈{0,1},sn∈{0,1}n [Bhyn
sn outputs g ≡

hyn
sn] > Prcy,s∈C′

m
[Acy,s outputs h ≡ cy,s | Acy,s misses y]/2.

Lemma 8. Pryn∈{0,1},sn∈{0,1}n [Bhyn
sn outputs g ≡ hyn

sn] < 1
Q(n) for all polynomi-

als Q and all sufficiently large n.

Proof of Lemma 7. It is easy to see that if Ac̃y,s outputs a hypothesis which is
equivalent to cy,s, then g will be equivalent to hyn

sn . For sufficiently large n we
thus have that Pryn∈{0,1},sn∈{0,1}n [Bhyn

sn outputs g ≡ hyn
sn] is at least

Pr
cy,s∈C′

m

[Ac̃y,s outputs h ≡ cy,s] ≥ Pr[Ac̃y,s outputs h ≡ cy,s & Ac̃y,s misses y]

= Pr[Ac̃y,s outputs h ≡ cy,s | Ac̃y,s misses y] ·
Pr[Ac̃y,s misses y]

> Pr[Ac̃y,s outputs h ≡ cy,s | Ac̃y,s misses y]/2

where the last inequality follows from Lemma 3.
Let TRANS(Acy,s) (TRANS(Ac̃y,s) respectively) denote a complete

transcript of algorithm A’s execution on oracle cy,s (c̃y,s respectively).
TRANS(Acy,s) and TRANS(Ac̃y,s) are each random variables over the probabil-
ity space defined by a uniform choice of cy,s ∈ C ′

m and any internal randomness
of algorithm A. An easy induction shows that the two conditional random vari-
ables TRANS(Ac̃y,s) | (Ac̃y,s misses y) and TRANS(Acy,s) | (Acy,s misses y)
are identically distributed. This implies that Prcy,s∈C′

m
[Ac̃y,s outputs h ≡

cy,s|Ac̃y,s misses y] = Prcy,s∈C′
m

[Acy,s outputs h ≡ cy,s|Acy,s misses y], which
combined with the inequality above proves the lemma. ut

Proof of Lemma 8. The following fact, which follows easily from the pseudoran-
domness of {h0} and {h1}, states that {hb

s}b∈{0,1},s∈{0,1}n is a pseudorandom
function family:

1076 R.A. Servedio

Fact 1 For all polynomials Q, p.p.t. oracle algorithms A, and sufficiently large
n, we have

∣
∣
∣Prb∈{0,1},s∈{0,1}n [Ahb

s outputs 1] − PrF∈Fn [AF outputs 1]
∣
∣
∣ < 1

Q(n) .

Intuitively the pseudorandomness of {hb
s} should make it hard for Bhyn

sn to output
hyn

sn since clearly no p.p.t. algorithm, given oracle access to a truly random
function F, could output a function equivalent to F. Formally, we consider an
algorithm D which takes oracle access to a function f : {0, 1}n → {0, 1}n and
outputs a single bit. D runs Bf to obtain a function g and then selects a string
z ∈ {0, 1}n which was not used as an oracle query in the computation of Bf . D
calls the oracle to obtain f(z), evaluates g to obtain g(z), and ouputs 1 if the
two values are equal and 0 otherwise.

Clearly Pr[Df outputs 1] ≥ Pr[Bf outputs g ≡ f]. Since
PrF∈Fn

[DF outputs 1] = 1/2n, using Fact 1 we find that∣
∣
∣Pryn∈{0,1},sn∈{0,1}n [Dhyn

sn outputs 1] − 1
2n

∣
∣
∣ < 1

2Q(n) and hence

Pryn∈{0,1},sn∈{0,1}n [Bhyn
sn outputs g ≡ hyn

sn] < 1
Q(n) . ut

6 Breaking Classical Cryptography in a Quantum Setting

Our constructions highlight some interesting issues concerning the relation be-
tween quantum oracle computation and classical cryptography. It is clear that a
quantum algorithm, given access to a quantum black-box oracle for an unknown
function, can efficiently distinguish between truly random functions and pseudo-
random functions drawn from the family {gs} of Theorem 3. Our construction of
{gs} thus shows that cryptographic constructions which are provably secure in
the classical model can fail in a quantum setting. We emphasize that this failure
does not depend on the ability of polynomial-time quantum algorithms to invert
particular one-way functions such as factoring; even if no quantum algorithm can
efficiently invert the one-way function used to construct {gs}, our results show
that a polynomial-time quantum algorithm can be a successful distinguisher. It
would be interesting to obtain stronger constructions of pseudorandom functions
which are provably secure in the quantum oracle framework.

Acknowledgements. We thank S. Gortler and A. Klivans for stimulating dis-
cussions.

References

1. D. Angluin. Queries and concept learning. Machine Learning 2 (1988), 319-342.
2. D. Angluin and M. Kharitonov. When won’t membership queries help? J. Comp.

Syst. Sci. 50 (1995), 336-355.
3. R. Beals, H. Buhrman, R. Cleve, M. Mosca and R. de Wolf. Quantum lower bounds

by polynomials, in “Proc. 39th Symp. on Found. of Comp. Sci.,” (1998), 352-361.
4. C. Bennett, E. Bernstein, G. Brassard and U. Vazirani. Strengths and weaknesses

of quantum computing, SIAM J. Comp. 26(5) (1997), 1510-1523.

Separating Quantum and Classical Learning 1077

5. E. Bernstein & U. Vazirani. Quantum complexity theory, SICOMP 26(5) (1997),
1411-1473.

6. M. Boyer, G. Brassard, P. Høyer, A. Tapp. Tight bounds on quantum searching,
Forschritte der Physik 46(4-5) (1998), 493-505.

7. G. Brassard, P. Høyer and A. Tapp. Quantum counting, in “Proc. 25th Int. Conf.
on Automata, Languages and Programming” (1998), 820-831.

8. G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Si-
mon’s problem, in “Proc. Fifth Israeli Symp. on Theory of Comp. and Systems”
(1997), 12-23.

9. N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan and C. Tamon. Oracles and queries
that are sufficient for exact learning, J. Comput. Syst. Sci. 52(3) (1996), 421-433.

10. N. Bshouty and J. Jackson. Learning DNF over the uniform distribution using a
quantum example oracle, SIAM J. Comp. 28(3) (1999), 1136-1153.

11. H. Buhrman, R. Cleve and A. Wigderson. Quantum vs. classical communication
and computation, in “Proc. 30th Symp. on Theory of Comp.” (1998), 63-68.

12. R. Cleve. An introduction to quantum complexity theory, to appear in “Collected
Papers on Quantum Computation and Quantum Information Theory,” ed. by C.
Macchiavello, G.M. Palma and A. Zeilinger.

13. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation,
Proc. Royal Society of London A, 439 (1992), 553-558.

14. R. Gavaldà. The complexity of learning with queries, in “Proc. Ninth Structure in
Complexity Theory Conference” (1994), 324-337.

15. O. Goldreich, S. Goldwasser and S. Micali. How to construct random functions, J.
ACM 33(4) (1986), 792-807.

16. L. K. Grover. A fast quantum mechanical algorithm for database search, in “Proc.
28th Symp. on Theory of Comp.” (1996), 212-219.

17. J. H̊astad, R. Impagliazzo, L. Levin and M. Luby. A pseudorandom generator from
any one-way function, SIAM J. Comp. 28(4) (1999), 1364-1396.

18. T. Hegedűs. Generalized teaching dimensions and the query complexity of learning,
in “Proc. Eighth Conf. on Comp. Learning Theory,” (195), 108-117.

19. L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan and D. Wilkins. How many
queries are needed to learn? J. ACM 43(5) (1996), 840-862.

20. M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae
and finite automata, J. ACM 41(1) (1994), 67-95.

21. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseu-
drandom functions, SIAM J. Comp. 17(2) (1988), 373-386.

22. J. Patarin. How to construct pseudorandom and super pseudorandom permutations
from one single pseudorandom function, in “Adv. in Crypt. – EUROCRYPT ’92”
(1992), 256-266.

23. J. Pierpzyk. How to construct pseudorandom permutations from single pseudoran-
dom functions. in “Adv. in Crypt. – EUROCRYPT ’90” (1990), 140-150.

24. J. Pierpzyk and B. Sadeghiyan. A construction for super pseudorandom permuta-
tions from a single pseudorandom function. in “Adv. in Crypt. – EUROCRYPT
’92” (1992), 267-284.

25. J. Preskill. Lecture notes on quantum computation (1998). Available at
http://www.theory.caltech.edu/people/preskill/ph229/

26. R. Servedio and S. Gortler. Quantum versus classical learnability, to appear in
“Proc. 16th Conf. on Comput. Complex.” (2001).

27. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comp. 26(5) (1997), 1484-1509.

1078 R.A. Servedio

28. D. Simon. On the power of quantum computation, SIAM J. Comp. 26(5) (1997),
1474-1483.

29. A. Yao. Theory and applications of trapdoor functions, in “Proc. 23rd FOCS”
(1982), 80-91.

30. A. Yao. Quantum circuit complexity, in “Proc. 34th FOCS” (1993), 352-361.
31. C. Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A 60

(1999), 2746–2751.

A Proof of Theorem 3

We say that a polynomial-time deterministic algorithm G : {0, 1}n → {0, 1}2n

is a pseudorandom generator if for all polynomials Q, all p.p.t. algorithms
A, and all sufficiently large n, |Prz∈{0,1}n [A(G(z)) outputs 1] − Prz∈{0,1}2n

[A(z) outputs 1]| < 1
Q(n) . Thus a pseudorandom generator is an efficient al-

gorithm which converts an n-bit random string into a 2n-bit string which “looks
random” to any polynomial-time algorithm. H̊astad et al. [17] have shown that
pseudorandom generators exist if any one-way function exists.

For G a pseudorandom generator and s ∈ {0, 1}n we write G0(s) to de-
note the first n bits of G(s) and G1(s) to denote the last n bits of G(s).
For x, s ∈ {0, 1}n let fs : {0, 1}n → {0, 1}n be defined as fs(x) def=
Gxn

(Gxn−1(· · · (Gx2(Gx1(s))) · · ·)). In [15] it is shown that {fs} is a pseudo-

random function family. We now show that the family {gs} defined by gs(x) def=
fs(x)⊕fs(x⊕s) is pseudorandom.

Let F ′
n be the following probability distribution over functions from {0, 1}n

to {0, 1}n: a function F ′ is drawn from F ′
n by drawing a random function F from

Fn, drawing a random string s ∈ {0, 1}n, and letting F ′ be the function defined
as F ′(x) = F (x)⊕F (x⊕s). Theorem 3 follows from the following two lemmas:

Lemma 9. For all polynomials Q, all p.p.t. oracle algorithms M, and all suffi-
ciently large n,

∣
∣
∣PrF∈Fn

[MF outputs 1] − PrF ′∈F ′
n
[MF ′

outputs 1]
∣
∣
∣ < 1

Q(n) .

Proof. Consider an execution of M with an oracle F ′ ∈ F ′
n defined by F ′(x) =

F (x)⊕F (x⊕s). Let S = {x1, . . . , xt} ⊂ {0, 1}n be the set of strings which M
uses as queries to F ′. We say that M finds s if xi = xj⊕s for some xi, xj ∈ S. If
M does not find s, then the distribution of answers which M receives from F ′ is
identical to the distribution which M would receive if it were querying a random
function F ∈ Fn, since in both cases each distinct query is answered with a
uniformly distributed n-bit string. Thus the left side of the inequality above is at
most Pr[M finds s]. A simple inductive argument given in the proof of Theorem
3.3 of [28] shows that this probability is at most

∑t
k=1(k/(2n−(k−2)(k−1)/2)).

Since M is polynomial-time, t is at most poly(n) and the lemma follows. ut

Lemma 10. For all polynomials Q, all p.p.t. oracle algorithms A, and all suf-
ficiently large n,

∣
∣
∣PrF ′∈F ′

n
[MF ′

outputs 1] − Prs∈{0,1}n [Mgs outputs 1]
∣
∣
∣ < 1

Q(n) .

Separating Quantum and Classical Learning 1079

Proof. We require the following fact which is due to Yao [29]:

Fact 2 Let G be a pseudorandom generator, let q(n) and Q(n) be polynomials,
and let M∗ be a p.p.t. algorithm which takes as input q(n) strings each of length
2n bits. Then for all sufficiently large n we have |pG

n − pU
n | < 1

Q(n) , where pU
n is

the probability that M∗ outputs 1 on input q(n) random strings in {0, 1}2n and
pG

n is the probability that M∗ outputs 1 on input q(n) strings each of which is
obtained by applying G to a random string from {0, 1}n.

We prove Lemma 10 by contradiction; so suppose that there exists a p.p.t. oracle
algorithm M and a polynomial Q such that for infinitely many values of n,

∣
∣
∣
∣ Pr
F ′∈F ′

n

[MF ′
outputs 1] − Pr

s∈{0,1}n
[Mgs outputs 1]

∣
∣
∣
∣ ≥ 1

Q(n)
. (3)

We will show that there is a p.p.t. algorithm M∗ which contradicts Fact 2.
As in the proof in [15] that {fs} is a pseudorandom function family, we

use a so-called “hybrid” argument. Consider the following algorithms Ai (i =
0, 1, . . . , n), each of which defines a mapping from {0, 1}n to {0, 1}n and hence
could conceivably be used as an oracle to answer M ’s queries. Conceptually, each
algorithm Ai contains a full binary tree of depth n in which the root (at depth
0) is labeled with a random n-bit string s; if i > 0 then each node at depth i
is also labeled with an independently chosen random n-bit string. Each node at
depth j > i also has an n-bit label determined as follows: if node v has label z
then the left child of v has label G0(z) and the right child of v has label G1(z).
Each node in the tree has an address which is a binary string: the root’s address
is the empty string, and if a node has address α ∈ {0, 1}∗ then its left child has
address α0 and its right child has address α1 (so each leaf has a different n-bit
string as its address). Let L(x) denote the label of the node whose address is x.
Algorithm Ai answers a query x ∈ {0, 1}n with the n-bit string L(x)⊕L(x⊕s).

(Note that algorithm Ai need not precompute any leaf labels. Instead, Ai

can run in poly(n) time at each invocation by randomly choosing s once and for
all the first time it is invoked and labeling the necessary portion of the tree “on
the fly” at each invocation by choosing random strings for the depth-i nodes as
required and computing descendents’ labels as described above. Ai must store the
random strings which it uses to label depth-i nodes so as to maintain consistency
over successive invocations.)

For i = 0, 1, . . . , n let pi
n = Pr[MAi outputs 1], i.e. the probability that

M outputs 1 if its oracle queries are answered by algorithm Ai. Let pg
n =

Prs∈{0,1}n [Mgs outputs 1] and pF ′
n = PrF ′∈F ′

n
[MF ′

outputs 1]. We have that
p0

n = pg
n since algorithm A0 behaves exactly like an oracle for gs where s is a ran-

dom n-bit string. We also have that pn
n = pF ′

n since algorithm An behaves exactly
like an oracle for F ′ ∈ F ′

n. Inequality (3) thus implies that |p0
n − pn

n| ≥ 1/Q(n)
for infinitely many values of n.

Now we describe the algorithm M∗ which distinguishes between sets of
strings. Let q(n) be a polynomial which bounds the running time of M on in-
puts of length n (so M makes at most q(n) oracle queries given access to an

1080 R.A. Servedio

oracle from {0, 1}n to {0, 1}n). The algorithm M∗ takes as input a set Un of
2q(n) strings of length 2n. M∗ works by first selecting a uniform random value
0 ≤ i ≤ n − 1 and a uniform random string s ∈ {0, 1}n. M∗ then runs algorithm
M, answering M ’s oracle queries as follows (there are two cases depending on
whether or not the prefix s1 . . . si is 0i):

– Case 1: s1 . . . si 6= 0i. Let x = x1 . . . xn be the query string. If no earlier
query string had prefix x1 . . . xi or (x1⊕s1) . . . (xi⊕si), then M∗ takes the
next two 2n-bit strings from Un; call these strings u1 = u1

0u
1
1 and u2 =

u2
0u

2
1 where |ui

j | = n. M∗ stores the four pairs (x1 . . . xi0, u1
0), (x1 . . . xi1, u1

1),
((x1⊕s1) . . . (xi⊕si)0, u2

0), ((x1⊕s1) . . . (xi⊕si)1, u2
1) and answers with the

string

Gxn
(Gxn−1(. . . Gxi+2(u

1
xi+1

) . . .))⊕
Gxn⊕sn

(Gxn−1⊕sn−1(. . . Gxi+2⊕si+2(u
2
xi+1⊕si+1

) . . .)). (∗)

Otherwise, if an earlier query string had prefix x1 . . . xi or
(x1⊕s1) . . . (xi⊕si), then instead M∗ retrieves the two previously stored
pairs (x1 . . . xixi+1, u

1
xi+1

) and ((x1⊕s1) . . . (xi⊕si)(xi+1⊕si+1), u2
xi+1⊕si+1

)
and answers with (∗) as above.

– Case 2: s1 . . . si = 0i. Let x = x1 . . . xn be the query string. If no earlier
query string had prefix x1 . . . xi, then M∗ takes the next 2n-bit string from
Un; call this string u = u0u1 where |u0| = |u1| = n. M∗ stores the two pairs
(x1 . . . xi0, u0), (x1 . . . xi1, u1) and answers with

Gxn
(Gxn−1(. . . Gxi+2(uxi+1) . . .))⊕

Gxn⊕sn(Gxn−1⊕sn−1(. . . Gxi+2⊕si+2(uxi+1⊕si+1) . . .)). (∗∗)

Otherwise, if an earlier query string had prefix x1 . . . xi, then M∗ retrieves the
two pairs (x1 . . . xixi+1, uxi+1) and (x1 . . . xi(xi+1⊕si+1), uxi+1⊕si+1) (these
two pairs are the same if si+1 = 0) and answers with (∗∗) as above.

The crucial properties of algorithm M∗, which are straightforwardly verified,
are the following: If each string in Un is generated by applying G to a random
n-bit string (scenario 1), then M∗ simulates a computation of M with oracle
Ai. On the other hand, if each string in Un is chosen uniformly from {0, 1}2n

(scenario 2), then M∗ simulates a computation of M with oracle Ai+1.
It is easy to see now that in scenario 1 we have Pr[M∗ outputs 1] =

∑n−1
i=0 pi

n/n while in scenario 2 we have Pr[M∗ outputs 1] =
∑n

i=1 pi+1
n /n. These

two probabilities differ by (1/n)·|p0
n−pn

n|, which is at least 1/nQ(n) for infinitely
many values of n. Now by Fact 2 the existence of M∗ contradicts the fact that
G is a pseudorandom generator, and the lemma is proved. ut

Author Index

Abdulla, P.A. 639
Agarwal, P.K. 115
Alber, J. 261
Alur, R. 797
Arge, L. 115
Atserias, A. 1005

Bandini, E. 370
Baum-Waidner, B. 898
Beimel, A. 912
Benedikt, M. 652
Bilardi, G. 128
Bläser, M. 79
Boasson, L. 639
Bofill, M. 951
Bonet, M.L. 1005
Boreale, M. 667
Boros, E. 92
Bouajjani, A. 24, 639
Boudol, G. 382
van Breugel, F. 421
Brodal, G.S. 140
Buhrman, H. 1017

Cai, L. 273
Caragiannis, I. 732
Castellani, I. 382
Chakrabarti, A. 285
Chazelle, B. 190
Chekuri, C. 848
Chen, Z.-Z. 444
Chrobak, M. 862
Chwa, K.-Y. 456
Cohen, E. 744
Comon, H. 682
Cormode, G. 481
Cortier, V. 682
Csirik, J. 862
Czumaj, A. 493

Dai, J.J. 1028
Diekert, V. 543
Dodis, Y. 297
Droste, M. 555

Elbassioni, K. 92
Engebretsen, L. 201
Esteban, J.L. 1005
Etessami, K. 694, 797

Fagerberg, R. 140
Feige, U. 213
Feigenbaum, J. 927
Ferenczi, S. 567
Fernau, H. 261
Ferreira, A. 732
Fishkin, A.V. 875
Flajolet, P. 152
Fraigniaud, P. 757
Friedman, J. 310
Fürer, M. 322

Gandhi, R. 225
Gavoille, C. 757
Godefroid, P. 652
Godoy, G. 951
Goerdt, A. 310
Goldreich, O. 334
Gottlob, G. 708
Große-Rhode, M. 40
Guivarc’h, Y. 152
Gurvich, V. 92

Halperin, E. 744
Harju, T. 579
Havill, J.T. 773
Hemaspaandra, L.A. 1040
Hesse, W. 104
Holton, C. 567
Honsell, F. 963
Høyer, P. 346

Ibarra, O. 579
Imreh, C. 862
Ishai, Y. 912, 927
Isobe, S. 506

Jansen, K. 875
Jiang, T. 444
Juedes, D. 273
Jurdziński, T. 1052

1082 Author Index

Kaklamanis, C. 732
Kaplan, H. 744
Karhumäki, J. 579
Karpinski, M. 201
Khachiyan, L. 92
Khanna, S. 848
Khot, S. 285
Khuller, S. 225
Kiayias, A. 939
Kirsten, D. 591
Korovin, K. 979
Kosub, S. 1040
Kumar, P.N.A. 627
Kunc, M. 603
Kuty lowski, M. 1052

Langberg, M. 213
Lathrop, J.I. 1028
Lee, J.-H. 456
Li, Z. 433
Lin, G.-H. 444
Lutz, J.H. 1028

Madhusudan, P. 396, 809
Maier, P. 821
Makino, K. 92
Malkin, T. 927
Margara, L. 518
Mayordomo, E. 1028
Miculan, M. 963
Mitchell, J. 682
Mossakowski, T. 993
Muscholl, A. 543, 720
Mustafa, N.H. 530
Muthukrishnan, S. 481

Nakano, S-i. 433
Neerbek, J. 346
Niedermeier, R. 261
Nielsen, M. 61
Nishizeki, T. 506
Nissim, K. 927
Noga, J. 862

Östlin, A. 140

Papadimitriou, C.H. 1
Park, S.-M. 456
Pedersen, C.N.S. 140
Pekeč, A. 530

Peled, D. 720
Pérennes, S. 732
Peserico, E. 128
Pichler, R. 708
Porkolab, L. 875
Procopiuc, O. 115

Rahmann, S. 615
Rajan, B.S. 627
Reps, T. 652
Rivals, E. 615
Rivano, H. 732
Roura, S. 469
Rubinfeld, R. 190

Sadakane, K. 166
S. ahinalp, S.C. 481
Salomaa, A. 579
Sangiorgi, D. 408
Scagnetto, I. 963
Schröder, L. 993
Schuller, R.A. 694
Segala, R. 370
Seiden, S.S. 237
Sen, P. 358
Servedio, R.A. 1065
Sgall, J. 862
Shankar, P. 627
Shi, Y. 346
Sibeyn, J.F. 785
Simon, J. 518
Singh, H. 627
Sohler, C. 493
Srinivasan, A. 225
Strauss, M.J. 927
Szpankowski, W. 152

Takki-Chebihi, N. 166
Tarlecki, A. 993
Thiagarajan, P.S. 396
Thorup, M. 249
Tiskin, A. 178
Tokuyama, T. 166
Trakhtenbrot, B.A. 4
Trevisan, L. 190
Tromp, J. 1017

Vadhan, S. 334
Valente, A. 408
Vallée, B. 152

Author Index 1083

Venkatesh, S. 358
Viswanathan, M. 835
Viswanathan, R. 835
Vitányi, P. 1017
Vitter, J.S. 115
Voronkov, A. 979

Wagner, K.W. 1040
Wegener, I. 64
Wen, J. 444
Wigderson, A. 334
Wilke, T. 694

Woeginger, G.J. 862, 887
Worrell, J. 421
Wright, R.N. 927

Yannakakis, M. 797
Yung, M. 939

Zamboni, L.Q. 567
Zhang, G.-Q. 555
Zhou, X. 506

	 Automata, Languages and Programming
	Preface
	Table of Contents
	Algorithms, Games, and the Internet
	References

	Automata, Circuits, and Hybrids: Facets of Continuous Time
	Introduction
	Discrete Time
	The System {bf Ax}: First Refinements
	Realistic Features of Signals
	Circuits
	Constraining Continuous Automata
	Continuous-Time Control
	Hybrids
	Discussion
	References

	Languages, Rewriting Systems, and Verification of Infinite-State Systems
	Introduction
	Symbolic Reachability Analysis
	Models Based on Rewriting Systems
	Rewriting Systems
	Models of Infinite-State Systems

	Results
	Prefix Rewriting
	Cyclic Rewriting
	Factor Rewriting

	Related Work
	References

	Integrating Semantics for Object-Oriented System Models
	Introduction
	Transformation Systems
	Data States, Transformations, and Data Spaces
	Morphisms and Development Relations
	Composition of Transformation Systems

	Class Diagram Semantics
	State Machine Semantics
	Composition of State Machines

	Sequence Diagram Semantics
	Conclusion
	References

	Modelling with Partial Orders - Why and Why Not?
	Summary
	References

	Theoretical Aspects of Evolutionary Algorithms
	Introduction
	A Simple Evolutionary Algorithm
	The relax mathversion {bold}{$(1+1)$}EA on Monotone Polynomials
	The relax mathversion {bold}{$(1+1)$}EA on Affine Functions and Royal Road Functions
	Further Results on the relax mathversion {bold}{$(1+1)$}EA and Its Generalizations
	A Generic Genetic Algorithm
	Real Royal Road Functions and the Crossover Operator
	References

	Improvements of the Alder-Strassen Bound: Algebras with Nonzero Radical
	Introduction
	Model of Computation
	Previous Results
	New Results

	Preliminaries
	Characterizations of Multiplicative Complexity
	The Lower Bound Techniques of Alder and Strassen

	Lower Bounds: ``Growing'' Radicals
	Multiplying Multivariate Power Series
	Lower Bounds: The Hard Case
	Multiplication of Upper Triangular Matrices
	References

	On Generating All Minimal Integer Solutions for a Monotone System of Linear Inequalities
	Introduction
	Bounding the Number of Maximal Infeasible Vectors
	Generating Minimal Integer Solutions via Integral Dualization
	Joint Generation of Dual Subsets in an Integral Box
	Uniformly Dual-Bounded Antichains

	Dualization in Products of Chains
	References

	Division Is in Uniform TC0
	Introduction
	De nitions
	Previous Work
	Division Reduces to POW
	POW Is FO-Turing Reducible to IMULTO(log n) and
	DIVISION(log n) O(1) and IMULT(log n) O(1) Are in FO(M)
	DIVISION and IMULT Are in FO(M)
	POW Is in FO
	Conclusions
	References

	A Framework for Index Bulk Loading and Dynamization
	Introduction
	Computational Model and Previous Results
	Our Results

	The wp-Tree Framework
	The Restricted wp-Tree
	Examples of Restricted wp-Trees

	Bulk Loading Restricted wp-Trees
	The Dynamization Framework
	Partial Rebuilding
	Logarithmic Methods
	Applications
	References

	A Characterization of Temporal Locality and Its Portability across Memory Hierarchies
	Introduction
	Models of Machines and Computations
	Memory Management for a Fixed Operation Schedule
	Lower Bounds
	Efficient Strategies for Memory Management

	Optimal Schedule and Memory Access Function
	Conclusions
	References

	The Complexity of Constructing Evolutionary Trees Using Experiments
	Introduction
	Separator Trees
	Algorithm for Constructing and Maintaining Evolutionary Trees
	Adversary for Constructing Evolutionary Trees
	Lower Bound Analysis
	References

	Hidden Pattern Statistics
	Introduction
	Framework
	Mean and Variance Estimates of the Number of Occurrences
	Central Limit Laws
	Conclusion
	References

	Combinatorics and Algorithms on Low-Discrepancy Roundings of a Real Sequence
	Introduction
	Structure of the Set of Global Roundings
	Preliminaries
	Rounding Graph

	${cal I}_n$-Global Roundings
	Combinatorial Results
	Algorithm for Reporting all ${cal I}_n$-Global Roundings
	 Compact Rounding Graph for a Smaller Family of Intervals
	Algorithm to Compute a Compact Rounding Graph

	Fast Viterbi-Type Algorithms and Bicriteria Optimization
	Remarks on Digital Halftoning Applications
	References

	All-Pairs Shortest Paths Computation in the BSP Model
	Introduction
	The BSP Model
	Algebraic Path Computation
	All-Pairs Shortest Paths Computation
	Nonnegative Edge Lengths
	General Edge Lengths

	Conclusions
	References

	Approximating the Minimum Spanning Tree Weight in Sublinear Time
	Introduction
	Estimating the Number of Connected Components
	Approximating the Weight of an MST
	MST Weight and Connected Components
	The Main Algorithm
	Nonintegral Weights

	Lower Bounds
	Open Questions
	References

	Approximation Hardness of TSP with Bounded Metrics
	Introduction
	The Hardness of (1,B)-ATSP
	The Gadgets
	Proof of Correctness

	The Hardness of (1,2)-ATSP
	The Gadgets
	Proof of Correctness

	Conclusions
	References

	The RPR2 Rounding Technique for Semidefinite Programs
	Introduction
	SDP Relaxation of Max-Cut and Various Roundings
	{em Random Projection, Randomized Rounding} (RPR^2)
	Applications of RPR^2
	Conclusions
	References

	Approximation Algorithms for Partial Covering Problems
	Introduction
	k-Set Cover
	Parallel Implementation of Partial Set Cover Algorithm

	Set Cover for Small Sets
	Probabilistic Approaches for k-Vertex Cover
	Vertex Cover on Expanders
	k-Vertex Cover: Bounded-Degree Graphs
	k-Vertex Cover: Multiple Criteria

	Geometric Packing and Covering
	References

	On the Online Bin Packing Problem
	Introduction
	Interval Classification Algorithms
	Weighting Systems
	General Analysis with Weighting Systems
	Results
	Conclusions
	References

	Quick k-Median, k-Center, and Facility Location for Sparse Graphs
	Introduction
	Sampling $kmathop {mathgroup symoperators log}nolimits ^{O(1)} n$ Facilities
	Reducing to $k+k/mathop {mathgroup symoperators log}nolimits ^2 n$ Facilities
	Recursing Down to k Facilities
	k-Center
	Facility Location
	References

	Parameterized Complexity: Exponential Speed-Up for Planar Graph Problems
	Introduction
	Basic Definitions and Preliminaries
	Linear Problem Kernels
	Tree Decomposition and Layer Decomposition of Graphs
	Algorithms Based on Separators in Graphs

	Phase 1: Layerwise Separation
	How Can Layerwise Separations Be Obtained?
	What Are Layerwise Separations Good for?

	Phase 2: Algorithms on Layerwisely Separated Graphs
	Using Tree Decompositions
	Using Bounded Outerplanarity

	Conclusion
	References

	Subexponential Parameterized Algorithms Collapse the W-Hierarchy
	Introduction
	Preliminaries
	Parameterized Tractability of MAX SNP
	Parameterized Complexity of MAX SNP-Hard Problems
	Conclusion
	References

	Improved Lower Bounds on the Randomized Complexity of Graph Properties
	Introduction
	Preliminaries and Proof Outline
	Graph Packing
	Outline of the Proof of the Main Theorem

	A Technical Lemma
	Proof of the Packing Lemma
	Concluding Remarks
	References

	New Imperfect Random Source with Applications to Coin-Flipping
	Introduction
	Imperfect Random Sources
	Discrete Control Processes
	Black-Box Transformations and Adaptive Coin-Flipping
	References

	Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently
	Introduction
	From Random 3-SAT Instances to Random Graphs
	Concentration of the Degree
	Spectral Considerations
	References

	Weisfeiler-Lehman Refinement Requires at Least a Linear Number of Iterations
	Introduction
	The Cai-F{accent 127 u}rer-Immerman Method
	Logic Background
	Pebbling Games
	Weisfeiler-Lehman Refinement

	An Example Where k-Dim W-L Is Slow
	The Global Game
	Upper and Lower Bounds
	References

	On Interactive Proofs with a Laconic Prover
	Introduction
	Preliminaries
	Formal Statement of Results
	Extremely Laconic Provers (Saying Only One Bit)
	Laconic Provers with Perfect Completeness
	References

	Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness
	Introduction
	Quantum Black Box Computing
	Lower Bounds
	General Technique
	Lower Bound for Ordered Searching
	Lower Bound for Sorting
	Lower Bound for Element Distinctness

	A {{relax mathversion {bold}$qopname relax o{log}_3(N)$}} Algorithm for Ordered Searching
	Concluding Remarks and Open Problems
	References

	Lower Bounds in the Quantum Cell Probe Model
	Introduction
	Techniques
	Organisation of the Paper

	Definitions
	The Quantum Cell Probe Model
	Quantum Communication Protocols

	Preliminaries
	Quantum Cell Probe Complexity and Communication
	Background from Quantum Information Theory

	The Quantum Round Elimination Lemma
	Quantum Lower Bounds for Predecessor
	References

	Axiomatizations for Probabilistic Bisimulation
	Introduction
	Preliminaries
	Probabilistic Process Algebra
	Bisimulation
	Lifting Equivalence Relations
	Strong Bisimulation
	Weak Bisimulation
	Observation Congruence

	Axiomatizations
	Discussion of the Axioms
	Proof Sketches

	Concluding Remarks
	References

	Noninterference for Concurrent Programs
	Introduction
	The Language and Type System
	Properties of Typed Programs
	Adding a Scheduler
	Conclusion and Related Work
	References

	Distributed Controller Synthesis for Local Specifications
	Introduction
	Problem Setting
	Decidable Architectures
	Undecidable Architectures
	References

	A Distributed Abstract Machine for Safe Ambients
	Introduction
	Safe Ambients: Syntax and Semantics
	The Abstract Machine, Informally
	The Abstract Machine, Formally
	Correctness of the Abstract Machine
	Immobile Ambients
	Comparisons and Remarks
	Implementation Architecture
	Further Developments
	References

	Towards Quantitative Verification of Probabilistic Transition Systems
	Introduction
	The Pseudometric
	Desharnais, Gupta, Jagadeesan, and Panangaden
	De Vink and Rutten
	Norman
	References

	Efficient Generation of Plane Triangulations without Repetitions
	Introduction
	Preliminaries
	The Removing Sequence and the Genealogical Tree
	Algorithm
	Modification of the Algorithm
	Conclusion
	References

	The Longest Common Subsequence Problem for Sequences with Nested Arc Annotations
	Introduction
	Hardness Results
	{c-{sc Fragmented} LAPCS} and {c-{sc Diagonal} LAPCS}
	{1-{sc Fragmented} LAPCS({sc Crossing, Crossing})}
	{c-{sc Fragmented} LAPCS({sc Nested, Nested})}
	c-{sc Diagonal} LAPCS({sc Nested, Nested})

	{{sc Unary} LAPCS({sc Nested, Nested})}
	Concluding Remarks
	References

	Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher
	Introduction
	Preliminaries
	Definitions and Notations
	Clear vs. Contaminated

	Necessary Conditions for Searchable Polygons
	Sufficiency
	Movements of the 2-Searcher
	A Characterization of Searchable Corridors
	Second Step
	First Step

	Concluding Remarks
	References

	A New Method for Balancing Binary Search Trees
	Introduction
	Basic Definitions
	The Insertion and Deletion Algorithms
	Implementing LBSTs
	Final Remarks
	References

	Permutation Editing and Matching via Embeddings
	Introduction
	Notation
	Permutation Editing and Matching Problems
	Our Results
	Embeddings of Permutation Distances
	Reversal Distance
	Transposition Distance
	Permutation Edit Distance
	Combining All Operations

	Implications of the Embeddings
	Approximate Permutation Matching
	Discussion
	References

	Testing Hypergraph Coloring
	Introduction
	Our Contribution
	Context and Related Work
	Organization of the Paper

	Testing 2-Colorability of 3-Uniform Hypergraphs
	Coloring Game with the Adversary
	Our Strategy
	Proof of Theorem T @ref {thm:simple-2-col-3-unif}

	Testing $ell $-Colorability of k-Uniform Hypergraphs
	References

	Total Colorings of Degenerated Graphs
	Introduction
	Preliminaries
	Main Theorem
	Algorithms
	References

	Decidable Properties of Graphs of All-Optical Networks
	Introduction
	Prime Sets of Paths
	The Gap Is Computable
	Gap in 1-Fiber Networks

	Multiple Fiber Conjecture
	A Case Study: The Ring
	References

	Majority Consensus and the Local Majority Rule
	Introduction
	Majority Consensus Computers
	Structural Properties
	Master Conjecture for Highly Connected Graphs
	Generalizations and Conclusions
	References

	Solvability of Equations in Free Partially Commutative Groups Is Decidable
	Introduction
	Preliminaries
	Free Partially Commutative Monoids with Involution
	Recognizable and Rational Subsets, Factor Traces
	Graph Groups and Their Normalized Rational Subsets

	Equations over Graph Groups and Trace Monoids with Involution
	The Main Theorem
	Normal Forms
	References

	Rational Transformations of Formal Power Series
	Introduction
	Formal Power Series and Weighted Finite Automata
	Amplifying Transformations
	Coding Transformations
	Periodicity of Matrices and Recognizability-Preservation
	Conclusion
	References

	Combinatorics of Three-Interval Exchanges
	Introduction
	Combinatorics of Symmetric 3-Hat Languages
	Symmetric Languages
	Symmetric 3-Hat Languages: Description of the Bispecial Words
	Return Words and Rauzy Graphs

	Languages of Symmetric Three-Interval Exchange Transformations
	Preliminaries
	Description of the Language

	Structure Theorems
	Answer to Rauzy's Question: The Privileged Triangle
	Answer to Rauzy's Question: Outside the Privileged Triangle
	S-Adic Presentation
	References

	Decision Questions Concerning Semilinearity, Morphisms, and Commutation of Languages
	Introduction
	Preliminaries
	Semilinearity and Augmented Counters
	Examples of Automata Classes
	The Equivalence Problems for Sets of Maps
	Problems on Commutation
	References

	The Star Problem in Trace Monoids: Reductions Beyond C4
	Introduction
	Preliminaries
	Generalities
	Free Monoids and Trace Monoids
	Recognizable Languages

	The Star Problem and the FPP
	A Historical Survey
	Main Results
	Conclusions and Open Problems

	Reduction to Transitive Dependencies
	A Little Bit of Transitivity
	On Trailing $boldsymbol {b}$'s
	Completion of the Proof
	References

	The Trace Coding Problem Is Undecidable
	Introduction and Notations
	Basic Concepts
	Weak Codings
	Reduction into the Weak Coding Equivalent
	Content Fixation
	Encoding of the PCP
	Conclusion
	References

	Combinatorics of Periods in Strings
	Introduction
	Notations, Definitions, and Elementary Properties
	Characterization of Correlations

	Irreducible Periods
	Structural Properties of ${Gamma (n)}$ and ${Lambda (n)}$
	$Gamma (n)$ Is a Lattice Under Inclusion
	$Gamma (n)$ Does Not Satisfy the Jordan-Dedekind Condition
	The Poset $({Lambda (n)},subseteq)$ Satisfies the Jordan-Dedekind Condition

	Enumeration of All Autocorrelations of Length n
	Bounds on the Number of Autocorrelations
	Computing the Size of Populations
	References

	Minimal Tail-Biting Trellises for Certain Cyclic Block Codes Are Easy to Construct
	Introduction
	Background
	An Algorithm for the Construction of Minimal
	Minimal Tail-Biting Trellises for Reed-Solomon Codes
	References

	Effective Lossy Queue Languages
	Introduction
	Preliminaries
	Words and Languages
	Simple Regular Expressions
	Cyclic Rewriting Systems
	Substitutions and $0L$-Systems

	Constructibility for Context-Free Systems
	Unconstructibility Results
	Constructibility for n-Dim Context-Free Rings
	References

	Model Checking of Unrestricted Hierarchical State Machines
	Introduction
	Unrestricted Hierarchical State Machines
	Expressiveness of Unrestricted HSMs
	Complexity of Verification Problems for HSMs
	LTL Model Checking
	CTL* Model Checking for Single-Exit HSMs
	Concluding Remarks
	References

	Symbolic Trace Analysis of Cryptographic Protocols
	Introduction
	The Language
	Trace Analysis
	Symbolic Semantics
	Refinement
	Restriction
	Conclusions
	References

	Tree Automata with One Memory, Set Constraints, and Ping-Pong Protocols
	Introduction
	Protocol Motivation
	Definite Set Constraints
	Tree Automata with One Memory
	Set Constraints with Equality Tests
	Saturation
	The Main Result

	Analysis of Cryptographic Protocols
	References

	Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata
	Introduction
	Delayed, Fair, and Other (Bi)Simulations
	Simulation
	Bisimulation

	Reformulating (Bi)Simulations as Parity Games
	Simulation
	Bisimulation

	Fast Algorithm for Computing Fair (Bi)Simulations and Delayed Simulations
	Reducing State Spaces by Quotienting: Delayed Simulation Is Better
	Conclusions
	References

	Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width
	Introduction
	Preliminaries
	Restricting the Form of the Queries
	Restricting the Form of the Structures
	Generalized Tree-Width
	Conclusion
	References

	From Finite State Communication Protocols to High-Level Message Sequence Charts
	Introduction
	Definitions and Notations
	MSC Languages
	Diamond Automata

	HMSC Languages
	Diamond Automata and Finite Generation
	Bounded Automata, Communicating Automata, and Finite Generation
	References

	Fractional Path Coloring with Applications to WDM Networks
	Introduction
	Fractional Coloring
	An Algorithm for Fractional Path Coloring in Trees
	Trace of a Fractional Coloring
	Split and Merge
	Reducing the Problem Size

	Extensions and Applications
	Graphs of Bounded Degree and Bounded Treewidth
	Some Polynomial Instances
	Fractional Path Coloring on Binary Trees
	Integral Path Coloring in Trees

	Conclusions
	References

	Performance Aspects of Distributed Caches Using TTL-Based Consistency
	Introduction
	Model
	Source Types
	Extended Lifetime at a Client Cache
	Rejuvenating Sources

	Relations between the Basic Sources
	Rejuvenations and Extensions
	Does Lifetime Extension Pay Off?
	Does Rejuvenating Pay Off?

	Worst Case Performance
	Conclusion and Open Problems
	References

	Routing in Trees
	Statement of the Problem
	A Routing Scheme with $O(mathop {mathgroup symoperators log}nolimits n)$ Bits of Address and Memory Space
	Port and Address Assignment
	Routing Algorithm
	Correctness
	Implementation

	Routing Schemes for the Fixed-Port Model
	Address Assignment
	Routing Algorithm
	Correctness
	Implementation
	A Routing Scheme with Short Range Addresses

	Lower Bounds for Short Range Addresses
	Conclusion
	References

	Online Packet Routing on Linear Arrays and Rings
	Introduction
	Problem De nition
	Packet Scheduling Algorithms
	Past Research and Our Results

	Scheduling with LIS and MP
	Linear Array Networks
	Ring Networks

	Scheduling with FF
	Linear Array Networks
	Ring Networks
	Other Objective Functions

	Conclusions
	References

	Faster Gossiping on Butterflies
	Introduction
	Gossiping on Column-Based Networks
	Reduction of the Problem
	Coherent Row-Broadcasting
	First Results
	Towards $2{begingroup 1endgroup over 2} cdot k$
	Completing the Argument

	Program
	Conclusion and Further Research
	References

	Realizability and Verification of MSC Graphs
	Introduction
	MSCs and MSC Graphs
	Realizability
	Weak Realizability
	Safe Realizability

	Verification
	MSC Membership
	Checking Local Properties
	References

	Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs
	Introduction
	Preliminaries
	Sequential Behaviours of MSGs
	Branching Behaviours of MSGs
	References

	A Set-Theoretic Framework for Assume-Guarantee Reasoning
	Introduction
	The Framework
	Instantiation to Moore Machines
	Instantiation to Kripke Structures
	Encoding of Mealy Machines into Kripke Structures
	Conclusion and Future Work
	References

	Foundations for Circular Compositional Reasoning
	Introduction
	Assume-Guarantee Rule for Fixed Points
	Preliminaries and Notation
	Semantics of Assume-Guarantee Specifications
	Composing Assume-Guarantee Specifications

	Assumption-Guarantee for Traces Semantics
	Assume-Guarantee for Tree Semantics
	Moore Machines and Their Semantics
	Assume-Guarantee for Moore Machines
	Compositional Reasoning for Simulation

	Conclusion
	References

	A PTAS for Minimizing Weighted Completion Time on Uniformly Related Machines
	Introduction
	Preliminaries
	Input Transformations
	Overview of Dynamic Programming Framework

	Implementing the Dynamic Programming Framework
	Compact Description of Remaining Jobs
	Frontiers
	Scheduling Jobs within a Block
	References

	The Buffer Minimization Problem for Multiprocessor Scheduling with Conflicts
	Introduction
	Buffer Minimization and Fractional Chromatic Number
	The Online Problem for Arbitrary Conflict Graphs
	The Online Problem on Complete k-Partite Graphs
	The Online Problem on Trees
	The Online Problem on Small Graphs
	Final Comments
	References

	On Minimizing Average Weighted Completion Time of Multiprocessor Tasks with Release Dates
	Introduction
	Preliminaries
	Scheduling within Single Intervals
	Long and Short Tasks, Snapshots, and Relative Schedules
	Tiny versus Short
	Scheduling Tiny Tasks and Compact Instances

	The Dynamic Programming Algorithm
	Conclusion
	References

	On the Approximability of Average Completion Time Scheduling under Precedence Constraints
	Introduction
	Definitions, Propositions, and Preliminaries
	Equality of the Eight Approximability Thresholds
	Nice Precedence Constraints
	References

	Optimistic Asynchronous Multi-party Contract Signing with Reduced Number of Rounds
	Introduction
	Model and Notation
	Definitions
	Scheme Requiring Presence of Unwilling Parties
	Number of Messages and Rounds
	Scheme without Presence of Unwilling Parties
	Conclusion
	References

	Information-Theoretic Private Information Retrieval: A Unified Construction
	Introduction
	Overview of Techniques
	Definitions
	The Meta-construction
	Simultaneous Messages Protocols
	Families of PIR Protocols
	References

	Secure Multiparty Computation of Approximations
	Introduction
	Secure Multiparty Approximations
	Sublinear Private Approximation for the Hamming Distance
	Efficient Approximations of #P-Hard Functions
	References

	Secure Games with Polynomial Expressions
	Introduction
	Preliminaries and Definitions
	SPGEs of Type 1
	Security of A
	Security of B

	SGPEs of Type 2
	Private Information Retrieval
	Lists' Intersection Predicate
	Other Applications
	References

	On the Completeness of Arbitrary Selection Strategies for Paramodulation
	Introduction
	Basic Notions
	The Transformation Method
	Completeness Proof

	Application to Paramodulation with Respect to Non-monotonic Orderings
	Conclusions
	Future Work
	References

	An Axiomatic Approach to Metareasoning on Nominal Algebras in HOAS
	Introduction
	Nominal Algebras
	The Logical Framework $Upsilon $
	The Logical Framework $Upsilon $: Terms and Types
	Encoding Nominal Algebras in $Upsilon $
	The Logical Framework $Upsilon $: The Logic
	Properties of $Upsilon $

	Induction and Recursion in $Upsilon $
	First-Order and Higher-Order Induction
	First-Order and Higher-Order Recursion

	Case Studies
	Comparison with Related Work and Concluding Remarks
	References

	Knuth-Bendix Constraint Solving Is NP-Complete
	Introduction
	Preliminaries
	Isolated Forms
	From Constraints in Isolated Form to Systems of Linear Diophantine Inequalities
	Main Result
	References

	Amalgamation in CASL via Enriched Signatures
	Introduction
	Institutions
	Standard CASL Signatures
	Enriched Signatures
	Amalgamation and De nitional Completeness
	Conclusions and Future Work
	References

	Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution
	Introduction
	Definitions and Overview of the Lower Bound Proof
	Random Graphs and Restrictions
	The Lower Bound Argument
	Separation between Res(2) and Resolution
	Discussion and Open Problems
	References

	Time and Space Bounds for Reversible Simulation
	Introduction
	Reversible Turing Machines
	Time Parsimonious Simulation
	Background
	Reversible Pebbling
	Algorithm

	Space Parsimonious Simulation
	The Tradeoff Simulation
	Complexity Analysis
	Local Irreversible Actions
	Reversible Simulation of Unknown Computing Time

	Lower Bound on Reversible Simulation
	References

	Finite-State Dimension
	Introduction
	Preliminaries
	Finite-State Dimension
	Rational Sequences
	Individual Sequences
	Dimension and Compression
	Accounts versus States
	References

	The Complexity of Computing the Size of an Interval
	Introduction
	Preliminaries
	Orders with Feasibility Constraints
	Orders without Efficient Adjacency Checks
	Polynomial-Time Orders with Efficient Adjacency Checks
	Arbitrary Orders with Efficient Adjacency Checks
	The Complexity of Counting Divisors
	Conclusions
	References

	Communication Gap for Finite Memory Devices
	Introduction
	New Results
	Reduction to Diophantine Problems
	Outline of Diophantine Characterization of One-Way Automata
	Linear Characterization Lemma for One-Way Automata
	Outline of Diophantine Characterization of Two-Way Automata

	Solutions for Diophantine Problems for Addition and Divisibility
	References

	Separating Quantum and Classical Learning
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Simon's Algorithm
	Pseudorandomness
	Pseudorandom Functions Invariant under XOR Mask

	Proof of Theorem 1
	The Concept Class C
	A Quantum Algorithm Which Learns C in Polynomial Time
	No Classical Algorithm Learns C in Polynomial Time

	Breaking Classical Cryptography in a Quantum Setting
	References
	Proof of Theorem T @ref {thm:prf}

	Author Index

